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Abstract. Knowledge Graphs (KG) represent a large amount of Semantic Associations (SAs), i.e., chains of relations that may
reveal interesting and unknown connections between different types of entities. Applications for the contextual exploration of
KGs help users explore information extracted from a KG, including SAs, while they are reading an input text. Because of the
large number of SAs that can be extracted from a text, a first challenge in these applications is to effectively determine which
SAs are most interesting to the users, defining a suitable ranking function over SAs. However, since different users may have
different interests, an additional challenge is to personalize this ranking function to match individual users’ preferences. In this
paper we introduce a novel active learning to rank model to let a user rate small samples of SAs, which are used to iteratively
learn a personalized ranking function. Experiments conducted with two data sets show that the approach is able to improve the
quality of the ranking function with a limited number of user interactions.

1. Introduction

Knowledge Graphs (KGs) describe real-world enti-
ties and their properties. Some of these properties rep-
resent links to other entities, providing a rich source
of relational information. Languages recommended by
W3C like RDF1 can be used to publish KGs as (open)
linked data, but KGs are frequently used also in the in-
dustry. KGs support a large variety of applications, in-
cluding those targeted to knowledge exploration. Dif-
ferently from query answering approaches, designed
to return information relevant to specific information
needs explicitly expressed by the users, knowledge ex-
ploration approaches are designed to deliver informa-
tion interesting for the users in a more proactive fash-
ion [1].

1https://www.w3.org/RDF/

We use contextual KG exploration to refer to a KG
exploration setting in which a user who is carrying
out a familiar task, e.g., querying a search engine,
watching media content [2], reading a text of inter-
est [3,4], receiving content extracted from a KG, se-
lected and pushed to her in a proactive fashion. In
these approaches, an input text (which may be ex-
tracted from any media content) is used as an entry
point to determine which pieces of information can be
interesting to show users in this context. Named Entity
Recognition & Linking techniques [3] can be used to
find one or more mentions of KG entities within the
text. Then some information about these entities, se-
lected based on its estimated relevance, is shown to
the users. Examples of these approaches are entity ex-
pansion in [3] and entities extracted from Google’s
KG returned shown to users posting entity queries to
Google’s search engine.
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Fig. 1. An example of contextual exploration of KG with SAs from the DaCENA interface

1.1. Contextual Exploration of KG with Semantic
Associations

In our previous work [4], we designed an applica-
tion that goes beyond showing plain properties of enti-
ties like the above-mentioned applications do: with our
data journalism application DaCENA 2, we let users
who are reading a text explore Semantic Associations
(SAs) extracted from the KG. SAs are loop-free semi-
walks of finite length that connect two entities in the
KG [5,4]. SAs between entities extracted from the in-
put text reveal complex connections between entities,
which provide new and interesting insights into the
topic of the input text.

DaCENA presents to a user a set of SAs extracted
from a KG as a data context for the article that she
is reading. The reference KG for DaCENA is DBpe-
dia3. End users can read the article and explore the
extracted SAs from an interactive interface. Figure 1
shows a screenshot of the interface, with a news ar-
ticle extracted from the NYT 4 (curious readers can
play with the example shown in the figure online 5).
The graph shows the k-most interesting SAs, where
k can be set by the user. When the user clicks on an

2http://www.dacena.org
3http://wiki.dbpedia.org/
4https://goo.gl/RFvqZh
5http://www.dacena.org/article/84

entity node, e.g., Separatism, SAs from/to such node
are shown in the lower panel and ordered by estimated
interest. Processing an article may require significant
amount of time (up to thirty minutes) if semantic data
are fetched by querying a SPARQL endpoint as we
currently do to ensure that we use fresh data. There-
fore, texts and data are processed off-line so as to make
the interactive visualization features as much fluid as
possible (for further details about DaCENA processing
steps we refer to [4]).

1.2. Challenges for Personalized Contextual
Exploration of KG with SAs

Deciding which properties are valuable to be shown
to users is challenging for every contextual KG explo-
ration approach, but the problem is even more com-
pelling when SAs are included in the information that
is delivered to users, because of the very large amount
SAs that can be found between entity pairs extracted
from even relatively short texts. For example, for the
article used in the exploration use case depicted in Fig-
ure 1, we extracted 40.107 SAs from DBpedia. Other-
wise, preliminary user studies to evaluate the usability
of our DaCENA application suggest that users do not
want to look at more than 100 SAs.

A crucial problem to support users in exploring SAs
is to provide effective methods to identify those few
ones among the many that can be extracted, which are
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more interesting for the user in this context. In other
words the crucial problem to solve to support SA ex-
ploration is to find an effective ranking function. Sev-
eral approaches have been proposed that use context-
less measures based on graph analytics to rank and fil-
ter SAs [5,6]. Others make use of machine learning
methods to learn which associations are more inter-
esting based on labels provided by a group of anno-
tators [7]. In our previous work we defined a context-
aware measure that considers the relevance of the SAs
with respect to the input text [4]. However, none of
the above-mentioned ranking approaches places the in-
dividual user in the loop, supporting the personalized
exploration of SAs by adapting the ranking function
to her preferences. These approaches are thus inade-
quate if different users are interested in different kinds
of SAs. We refer to the latter as to the "personalization
hypothesis" for KG exploration with SAs. For exam-
ple, if we consider the exploration use case depicted in
Figure1, while some user may be interested in finding
out information about small municipalities associated
with separatism, other users may be more interested in
information about more important cities.

1.3. Contribution of this Paper

In this paper we propose a pay-as-you-go approach
to personalized contextual exploration of large KGs
with SAs. With our approach a user who is reading
a text can explore a set of SAs heuristically ranked
by Serendipity [4], i.e., estimated to be relevant to the
input text as well as unexpected (and thus interest-
ing) for her. Then she can iteratively refine the rank-
ing by rating few SAs at the time, thus expressing her
preferences. We use a learning to rank algorithm, i.e.,
RankSVM [8] to learn from the individual user rat-
ings and an active sampling method [9] is used to se-
lect the SAs on which ratings are collected. To sup-
port RankSVM, we use a combination of state-of-the-
art measures that consider the graph topology, the se-
mantics of paths that occur in SAs, relevance with re-
spect to the text, and the temporal relevance of the
entities occurring in the SAs. In order to learn better
from a limited number of rates we define an Active
Learning to Rank (ALR) approach that supports the it-
erative improvement of the ranking quality, measured
as adherence to the individual user preferences, while
minimizing the user effort. On the one hand, our ac-
tive learning method overcomes a limitation of a pre-
vious approach [7], which does not attempt to mini-
mize the number of ratings collected from the users.

On the other hand, by using Serendipity as heuristic
function, we solve the cold-start problem that charac-
terizes active sampling methods for ALR, i.e., the se-
lection of informative samples requires an initial rank-
ing, and at the same time, we are able to show to the
user reasonably interesting SAs even before collecting
any ratings.

Experiments conducted with two different datasets
show that our approach is capable of improving the
quality of the ranking over time using a limited amount
of user ratings. We compare our approach with differ-
ent baselines and alternative configurations for ALR.
These configurations use different bootstrapping meth-
ods to overcome the cold start problem using differ-
ent sampling methods. We show that our approach per-
forms significantly better in terms of ranking qual-
ity improvement than all these alternative approaches,
despite being more efficient and supporting a full
pay-as-you-go, and thus more appealing, interaction
model. Finally, the datasets constructed to evaluate our
method provide clear evidence for the personalization
hypothesis, supporting the main motivation behind our
approach.

To the best of our knowledge, our approach provides
the first application of active sampling to learning to
rank for SAs and the first full pay-as-you go approach
to contextual exploration of KGs with SAs. This paper
presents an extended version of a paper accepted for
publication at ESWC 2017 [10]. While in the latter we
explored the performance of different approaches, in
this paper we describe in more details our approach
based on the combination of Serendipity and Active
Learning, proving the significance of the results of our
experiments and providing further insights about our
findings.

The paper is organized as follows: in Section 2, we
explain our ALR; in Section 3 we describe the exper-
iments conducted to evaluate our model; in Section 4
we discuss related work, while in Section 5 we draw
some conclusions and discuss future work.

2. Serendipity and Active Learning To Rank for
Semantic Associations

In this section we explain in details our ALR model.

2.1. ALR Loop and Algorithms

We want to learn a ranking function for each user
and we use the RankSVM [8,11] algorithm to do this.
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RankSVM has been chosen for because it is consid-
ered a state of the art algorithm and has been widely
used in the learning to rank domain [12,13]. This force
us to solve two problems: we cannot expect that a user
is willing to provide the large number of ratings that
would be required to effectively train the RankSVM al-
gorithm (user-effort problem); RankSVM requires an
initial set of ratings to initialize the model (cold-start
problem). To solve the user-effort problem we decide
to use active learning techniques [14], which have been
proposed to reduce the number of observations needed
to train a classifier. In our case, active learning is used
to reduce the number of ratings required to train the
learning to rank algorithm.

To solve the cold-start problem we use Serendip-
ity, an heuristic ranking function [4]. The advantage
of using an heuristic function is that we can collect
the ratings needed to initialize the RankSVM model
on a set of SAs that are also (heuristically) estimated
to be interesting for the user. Consider the example
with the DaCENA application discussed in Section1.
Only a subset of SAs deemed to be more interesting for
the user can be shown to her in the user interface. By
using Serendipity to bootstrap RankSVM, we can let
users rate SAs that are in the subset shown in the user
interface. Unfortunately, being Serendipity an heuris-
tic function not specifically introduced to select sam-
ples that are informative for training RankSVM, it is
uncertain weather this method is able to sample also
useful training data. In addition, in order to initialize
RankSVM, we need at least two ratings with different
scores, meaning that we may need to sample more than
once in order to initialize RankSVM. Alternative ap-
proaches proposed to solve the cold-start in previous
work use clustering algorithms to collect ratings on a
sample of SAs that are more representative, and thus
more suitable to train RankSVN. Otherwise, these ap-
proaches could require that a user rates a set of SAs
that are not interesting to him. In the experiments of
Section 3 we will show that Serendipity leads to better
performance than these clustering algorithms, despite
the above-mentioned concerns. In addition, we will see
that only a limited number of time we need to sam-
ple more than once before initializing the RankSVM
model (see Section 3.3 for more details).

The model proposed to personalize the exploration
of KG is based on the learning loop described in Fig-
ure 2. At each iteration, user ratings collected on small
samples of SAs are used to train RankSVM and to up-
date the ranking of the whole set of SAs. To better il-

lustrate the loop, an example with two iterations, based
on an actual run of our model, is depicted in Figure 3.
Ratings shown in the red circles represent ratings given
by one user that contributed to our experimental eval-
uation. Ratings shown in the blue clouds represent the
ratings eventually given by the same user after having
rated all SAs. We describe each step of the loop here
below.

Step 1 - Bootsrapping. In the bootstrapping phase,
SA are ranked by Serendipity. The user can view
this pre-ordered set of SAs and then decide, if she is
not satisfied with the result, to start a personalization
phase. In this case, a small number of top-k SAs ranked
by Serendipity are selected to be rated by the user. In
our experiments, we use k=3 and k=5 on two differ-
ent datasets (see Section 3 for more details about the
choice of these parameters). Step 2 - User Ratings.
The user labels the SAs selected in the first step (thus
the SAs obtained with the serendipity heuristic) using
ratings in a graded scale, e.g., < 1, 2, 3, 4, 5, 6 >, where
higher grades represent higher interest for an SA. Step
3 - Ranking. We use the ratings provided by the user
to train RankSVM, which ranks all the remaining SAs
by assigning them a score. Step 4 - User Decision.
The user can see the output of the ranking function
and if she is satisfied with the ranking obtained so far,
the loop stops. Else, we further improve the ranking
by letting the user trigger the selection of a new sam-
ple of SAs to rate. Step 5 - Active Sampling. An ac-
tive sampling algorithm proposed for document learn-
ing [9], referred to as AUC-Based Sampling in the pa-
per, is used to find the observations (SAs) for which
ratings are estimated to be more informative. The algo-
rithm uses the scores determined by the learned rank-
ing function, which motivates the reason for using a
different algorithm for sampling the data used to boot-
strap the model. After Step 5, we close the loop by re-
peating Step 2.

Observe that after the first iteration, the user always
labels SAs selected with active sampling. In Figure 3,
it can be noticed that the quality of the ranking im-
proves after the second iteration (Step 3). The main
steps of the loop, i.e., bootstrapping, ranking and active
sampling, are explained in more details here below.
Bootstrapping with Serendipity. Serendipity is de-
fined as a parametric linear combination of Relevance,
a measure that evaluates the relevance of an SA with
respect to a text, and Rarity, a measure that evaluates
how much an SA may be unexpected for the users. A
SA is relevant if a virtual document representing its en-
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Fig. 2. Workflow of the Active Learning to Rank model

Fig. 3. Example of iterative ranking refinement with the ALR model

tities is similar to the input text. Relevance of a SA π
to an input text text is thus defined as follows:

relevance(text, π) = cos(vtext, vπ),

where vtext and vπ are word vectors representing the
text and the SA respectively. The text from which we
generate vπ is built as the concatenation of short texts
describing the entities occurring in π in the KG (in par-

ticular, we used DBpedia abstracts6). Word vectors are
weighted using TF-IDF, where for each input text (and
the SAs extracted from it) we build a dedicated vector
space.

An SA is unexpected when it is composed by prop-
erties that are not frequently used in the KG, which can

6http://dbpedia.org/property/abstract
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be captured by a Rarity measure. Rarity of a property
p can be defined as follows:

rarity(p) = 1− n_ f requency(p)

where, n_ f requency(p) represents the frequency of p
in the KG normalized into the range [0, 1] using the
max-min method. In other words rarity is defined as
the inverse normalized frequency of a property. Rarity
of a SA is defined as the average rarity of the properties
occurring in the SA.

Since Relevance and Rarity are normalized in the
interval [0, 1], they can be smoothly combined. Let
α ∈ [0, 1] be a parameter used for balancing the
weight of each measure, and text be the input text; the
serendipity S (π) of an SA π, is computed as

S (π, text) = αrelevance(π, text)+(1−α) rarity(π)

We show an example of the top-2 ranked SAs and one
of the bottom-2 ranked SAs, computed using Serendip-
ity with α = 0.5 in Figure 4. The text7 from which
those SAs were extracted from is shown on the left-
hand side of the figure. The top ranked SAs contain the
entity Hillary Clinton, which is relevant to the article
text. The order of the SAs showed is consistent with
the definition of Serendipity: the predicate birthPlace
is used frequently in DBpedia (and thus probably unin-
teresting) and George W Cate and Joseph K Allen are
not mentioned in the article text. The birthPlace predi-
cate is present also in the top-2 ranked SAs, but higher
relevance of the entities occurring in these SAs to the
article text lead to higher Serendipity scores.

Ranking with RankSVM We choose to use Rank
SVM to learning the ranking function based on the
user ratings. Rank SVM has become one of the state of
the art algorithm for learning to rank documents [8,11].
RankSVM is an adaptation of Support Vector Ma-
chines to solve ranking problems and represents the
items to rank as feature vectors. RankSVM is based on
a pairwise ranking algorithm. This means that the input
to the model is a set of pairs that contains two observa-
tions with their relative order. As an example, if in the
training set there are two feature vectors xi and x j, the
input to the RankSVM would be {(xi, x j), y}, where y
is a label that indicates the relative order between xi

and x j. The label y = +1 if xi should be ranked higher
then x j and viceversa. RankSVM is capable to build

7https://www.theguardian.com/us-news/2016/jun/16/bernie-
sanders-will-work-with-clinton-donald-trump-speech

such pairs based on a set of ratings provided on an ar-
bitrary set of observations. The model is trained at an
iteration t using the SAs rated by an individual user un-
til iteration t and update the ranking of the remaining
SAs.

Active Sampling. We use AUC-based Sampling as
active sampling algorithm in our model [9]. This algo-
rithm has the main aim of minimizing rank loss and
does not consider the pairwise structure of the prob-
lem making the algorithm sub-optimal for this task, but
faster to compute. This method optimizes the Area Un-
der the ROC Curve and accepts ratings on an arbitrary
set of observations. Other methods that consider the
pairwise structure are more expensive to compute. An
example of the SAs selected by this active learning to
rank algorithm can be seen in Step 5 of Figure 3. While
it was designed and developed in a binary learning to
rank setting the algorithm was able to obtain good re-
sults even in a multi-rating setting as shown in Section
3.

2.2. Features

To represent the SAs as features vectors we used
different measures. Many of the used measures return
values with different ranges. In order to make mea-
sures comparable, we normalize the values by scaling
to have zero mean and unit variance [15].

2.2.1. Topological Features
Here we present the features that are based on the

topological structure of the graphs used to represent
the data. These features are mostly based on central-
ity measures that evaluates the importance of the enti-
ties in the SAs and can be computed considering two
different graphs: the first one is the KG from which
we extract the SAs, which will be referred to as global
graph; the second one is the subgraph of the KG that
consists of the SAs extracted from the input text, which
will be referred to as the local graph. Using these two
graphs we can compute global and local scores of cen-
trality for the entities. Entity with an high centrality
scores can be considered important due to the high
number of links they have (and thus, more or less inter-
esting for a user depending on her preferences). Once
we have computed centrality scores for all the entities
in a SAs, scores used as features are computed as the
average of the scores computed for the entities. Then
we normalize each score as defined above.
Global PageRank. We use the data in [16] to collect
a global PageRank score inside DBpedia. In this, way
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Fig. 4. Example of top-2 and bottom-2 SAs ordered by Serendipity

we are able to get an overall estimation of the impor-
tance of an entity inside the KG. With this feature, en-
tity that are central in DBpedia (like United States of
America8 and Barack Obama9) will be considered im-
portant even if they have a limited number of links in
the subgraph extracted from the text.
Local PageRank. We compute PageRank on the local
graph defined by the SAs extracted from the input text.
Local HITS. We ran the HITS (Hyperlink-Induced
Topic Search)[17] algorithm to compute two scores for
each node of the local graph. Authority score, indicates
how much a node is important, while hub score indi-
cates nodes that point to nodes with a high authority
score. The algorithm gives two scores in the feature
vectors describing a SA: one for the average of the au-
thority values and one for the average of the hub val-
ues.

2.2.2. Predicate-Based Features
In this section we present features that considers

predicates occurring in the SAs. We decided to use
features that are focused on finding the most impor-
tant/interesting predicates inside the SAs.
Path Informativeness. It is a measure defined in [5],
based on the concept of Predicate Frequency Inverse
Triple Frequency (PF-ITF). This measure tries to iden-
tify discriminative paths in a way that is similar to the
ones commonly defined for text like TF-IDF (Term
Frequency - Inverse Document Frequency).
Path Pattern Informativeness. It is a measure based
path patterns, defined in [5], to get the informativeness
of patterns extracted from paths. The path pattern is
used to generalize the paths in a dataset.

8http://dbpedia.org/page/United_States
9http://dbpedia.org/page/Barack_Obama

Rarity. This measure is the unexpectedness factor pre-
sented in the Serendipity Heuristic, more details can be
found in Section 2. For example predicate frequently
used in DBpedia, like birthPlace, have low rarity score.

2.2.3. Relevance Features
This last section illustrates the features that have

been defined to find those SAs that are more related to
the context of the article that was analyzed.
Relevance. This measure is the relevance factor pre-
sented in the Serendipity Heuristic, more details can
be found in Section 2.
Temporal Relevance. Using the Wikimedia API we
extract the number of times a Wikipedia entity (page)
as been accessed in a specific date (date of the publi-
cation of a given text, for example). In this way we are
able to measure the value of importance related to tim-
ing. For example, if we consider Wikipedia access10

for the page Paris, we see that the page has been ac-
cessed 8.331 times on 12-11-2015 and 171.988 times
on 14-11-2015, 13-11-2015 being the date of terrorist
attacks in Paris. The scores used as features are com-
puted as the average of the scores computed for the
entities.

3. Experiments

The validity of the personalization hypothesis and
the evaluation of the performance of our model are
tested through experiments. The targets of our appli-
cation are fairly educated users familiar with IT tech-
nologies. In our experiments we have involved mas-
ter students from Computer Science, Mechanical En-
gineering and Communication Sciences with good En-

10http://tools.wmflabs.org/pageviews/
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glish reading skills. All the data sets used in our exper-
iments are available online11. The experiments were
run on a machine with a Intel Core i5 (4th Gen,
1.6Ghz).

3.1. Experimental Settings

Two different dataset were built to test the perfor-
mance of our approach. We collected these dataset be-
cause we weren’t able to find an open dataset that
could be used in our domain: in our approach the
context is given by the text, that is fundamental for
our exploration scenario. Each one consists of triples
< texti, Ai, ratingsu,i >, where texti is a piece of text
that was extracted from an article retrieved from on-
line news platforms like NYT12 and The Guardian13,
Ai is the set of all SAs extracted from texti with the Da-
CENA application, and ratingsu,i contains the ratings
assigned by a user u to every SA that is present in Ai.
From each triple in a dataset, we can derive a complete
ranking of the retrieved SAs for one user, i.e., a per-
sonal ideal ranking. We show an example of data con-
tained in the dataset used for experiments in Figure 5,
we show the piece of the article14 user had to read for
the experiments, two SAs extracted form that text and
the respective rating given by the user. We describe the
creation of each dataset here below.

Short Articles Many Users (SAMU). We collected
user ratings for this data set using an online form. For
ratings we choose a graded scale from 1 to 6 following
guidelines suggested in a recent study [18].

Differently from a five-valued ordinal scale, this
scale provides a symmetric range that clusters scores
in two sets: scores with a negative tendency (1, 2 and 3)
and scores with a positive tendency (4, 5 and 6). Each
user had to evaluate the complete set of associations
extracted from one text, thus we had to choose texts
small enough to let users perform their task without
being subject to fatigue bias [18]. We thus selected the
first self-contained paragraphs of articles from NYT
and Guardian with the following features: the article’s
topic concerns politics and is reasonably well-known
and engaging for foreign (Italian) educated users; the
number of associations extracted by DaCENA is com-
prised between 50 and 100 SAs. The average task com-

11https://github.com/vinid/semantic-associations-survey
12www.nytimes.com/
13https://www.theguardian.com/
14https://www.theguardian.com/us-news/2016/jun/16/bernie-

sanders-will-work-with-clinton-donald-trump-speech

pletion time resulted in 12 minutes - little below the fa-
tigue bias threshold mentioned in [18]. We also wanted
to have preferences of different users on a same arti-
cle to measure inter-user agreement and validate the
“personalization hypothesis”: we needed a number of
articles small enough to collect at least 3 evaluations
from different users. Articles were assigned randomly
to each user to avoid any bias on the selection of the
articles. After evaluating the first article we asked the
user if she wanted to evaluate an other article or if she
wanted to stop; some articles were evaluated by dif-
ferent users and some users evaluated more then one
article. We stopped gartering users for the evaluation
when we collected evaluations by at least 3 users on
each article (for a total number of 5 articles), which re-
sulted in a total of 14 different users, and 25 gold stan-
dards (personal rankings). The average number of SAs
for each article present in the dataset is equal to 73.2.

Long Articles Few Users (LAFU). We wanted also
to evaluate if results obtained over small SA sets are
comparable with results obtained with (and thus gener-
alizable to) large SA sets. To this end, two users were
asked to rate thousands of SAs extracted for two full-
length articles, with the goal of evaluating heuristic
functions used in an early version of DaCENA. The ar-
ticles contained 890 and 3539 SAs respectively. In this
case, we used a three-valued scale for ratings, from 1
to 3. The two users involved in the evaluation of the
longer articles were Communication Sciences students
with no background in Computer Science. They were
granted several days for completing the task, and asked
to complement their task with a qualitative analysis. At
the end of this evaluation we had three dataset (com-
ing from two articles) on which experiment on, with
an average number of SAs equal to 2656 SAs. .

Measures for the Evaluation. Using the ideal rank-
ings in the two dataset, we decided to measure the
quality of the rankings returned by our model at dif-
ferent iterations using Normalized Discounted Cumu-
lative Gain (nDCG) computed over the top-10 ranked
SAs, denoted by nDCG@10. nDCG@10 was used to
give more importance to the first retrieved SAs. In ad-
dition, we wanted to have an aggregate performance
measure, and thus we computed the Area Under the
nDCG@10 Curve (AUNC), the curve is based on the
nDCG@10 values at each iteration.
Settings of the experiments We carry out experiments
in two different settings. 1) In Contextual Exploration
Settings, we consider the workflow as implemented in
a system that supports contextual exploration: the set
from which we select the SAs to label is the same set
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Fig. 5. Example of data contained in the dataset used for the experiments

used to evaluate the performance of the model. In these
settings, we make sure that observations labeled during
previous iterations are not labeled a second time by the
user. 2) In Cross Validation Settings, active sampling
always picks SAs from the training set similarly to the
approach used in active learning to rank [9]. This latter
approach was not defined for interactive exploration
and in fact is used because it is helpful to evaluate the
robustness of the model. We can use 2Fold-Stratified
Cross Validation (CV) to make sure that results can be
reasonably generalized and do not depend on specific
data. 2Fold CV was used because the cardinality of the
dataset was low. With 2Fold CV we were able to have
enough data on which the active sampling algorithms
were able to select the observations to rate and enough
data to test the model.

3.2. Configurations and Baselines

Direct comparison with other state-of-the-art ap-
proaches is difficult because we could not find an ac-
tive learning to rank approach for SAs, in addition of-
ten appraoches over SAs were evaluated in a context-
free settings, while in our contextual exploration sce-
nario, input text is a basic component for the ranking.
Thus we compared our approach to others we defined.
In those other approaches, that use a learning to rank
model, we used again RankSVM to rank SAs. A sum-
mary of the configurations we have defined is visible in
Table 1, where we show, for each algorithms the basic
configuration for the three steps of our model, namely
Bootstrapping, Active Sampling and Ranking. The
algorithms that have are signed with the blue columns
are the ones that use active sampling techniques to re-
duce the number of observations needed to learn the
model, while the ones in red do not use active sam-
pling. We will illustrate the details of the algorithms in
the remaining part of this section.

The Bootstrapping phase of our model is currently
guided by the serendipity heuristic (with α = 0, 5).
We decided to compare it with the use of clustering

algorithm, since they have been already used in ac-
tive learning settings [19,20], in which they are used to
find the first observations for machine learning mod-
els. The choice of a clustering approach was due to the
following idea: the observations nearer to the clusters
means can be considered representative of the clus-
ter and thus it could be informative to learn prefer-
ence among clusters. We consider two clustering algo-
rithms: the Gaussian Mixture Model and the Dirich-
let Gaussian Mixture Model. Dirichlet Gaussian Mix-
ture Model was chosen due to its ability to automati-
cally find the number of clusters for the dataset. For the
Gaussian Mixture Model we use the silhouette coeffi-
cient [15] to detect the best number of clusters in each
dataset. The first SAs to show to the user for evaluation
are those nearer to the mean of each cluster found by
the clustering algorithm, thus we selected one SAs for
each cluster.

The active sampling phase of our model is done us-
ing AUC Based Sampling [9] (AS), we thus selected
Pairwise Sampling [21] (PS) as an alternative to it. PS
is based on the pairwise structure of the RankSVM ap-
proach, and it tries to find those observations that could
be more interesting to evaluate by studying the un-
certainty of the observations with respect to the rank-
ing problem. PS combines two different kind of uncer-
tainty a Global Uncertainty and Local Uncertainty, to
prevent the selection of outliers in the active sampling
phase, the algorithm is explained in [21]. Parameters
of these two algorithms have been determined exper-
imentally in cross validation, we set λ = 0.8 for AS
and p = 1 for PS. Three baseline algorithms that do
not use proper active learning were also tested:

– Random + Random: we use RankSVM to learn a
ranking function, but the model is trained using
ratings over randomly sampled SAs. Randomly
selected SAs are thus used for the first step (ini-
tialization) and the active learning step. This ran-
dom algorithm has been run multiple times to sta-
bilize the results (100.000 times).
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Algorithm Bootstrapping Sampling Learning
Serendipity AS Serendipity Heuristic AUC-Based Sampling RankSVM
Serendipity PS Serendipity Heuristic Pairwise Sampling RankSVM
Dirichlet AS Dirichlet Gaussian Mixture Model AUC-Based Sampling RankSVM
Dirichlet PS Dirichlet Gaussian Mixture Model Pairwise Sampling RankSVM
Gaussian AS Gaussian Mixture Model AUC-Based Sampling RankSVM
Gaussian PS Gaussian Mixture Model Pairwise Sampling RankSVM

Random Random Random Random RankSVM
Random - No AL No Bootstrapping No Active Sampling No Learning to Rank
Serendipity - No AL No Bootstrapping No Active Sampling No Learning to Rank

Table 1
Details of the algorithms configurations

– Serendipity No-AL: we consider the ranking de-
termined with Serendipity, which is not based on
active learning and does not change across itera-
tions. In this case RankSVM is not used.

– Random No-AL: we consider random rankings
of SAs, which are not based on active learn-
ing and do change across iterations. In this case
RankSVM is not used.

The last two algorithms are considered to understand
if an incremental learning with active learning to rank
can outperform a order given by a simple heuristic
function and a random approach.
Configuration Details. To compare the approaches
with the serendipity heuristic we had to define a few
configurations so that the training set for the various
algorithms would have been of the same size and thus
balanced. In the SAMU data sets Dirichlet and Gaus-
sian Clustering, in the first iterations, detected an aver-
age number of clusters equal to 3 (and thus, an average
number of 3 SAs are selected from this two methods
in the first iteration); for this reason, to feed the model
with a balanced number of SAs, on the average, for
both Serendipity and Random we choose to select 3
SAs when using Serendipity and Random in the boot-
strapping step. The active sampling step for this dataset
extracts the top-2 ranked SAs as determined by the
active sampling techniques used in the configuration.
For the Random Random approach we again select 2
random SAs. The number of observations collected at
each iteration was increased in LAFU since this dataset
it is bigger. The clustering algorithms in this dataset
detected an average number of cluster equal to 5, lead-
ing to 5 SAs to be labeled when using Serendipity and
Random. In the active sampling, for the LAFU data
set, we selected 6 observations to be labeled at each it-
eration for both AS and PS. Table 2 shows the number
of SAs that each algorithms selects for each step. The

Temporal Relevance could not be used in LAFU as a
feature because articles in this dataset were not recent
enough to be able to extract the page views. We used
a RankSVM with polynomial kernel (degree equal to
2) on LAFU, since dataset were bigger and nonlinear-
ity was more probable, that was able to output the re-
sults of a single iteration in what we considered inter-
active time (less then 2 seconds); on the SAMU dataset
RankSVM was run with a linear kernel.

3.3. Results and Discussion

User interests and personalization. One of our as-
sumption was that the personalization was needed, be-
cause different user are interested in different SAs.
We measured Inter-Rater Reliability [22] (IRR) among
users who provided ratings in the SAMU dataset, to
prove that a personalized exploration is not only im-
portant but needed. IRR is used to compute the rate of
agreement between the users, in our case a low rate of
agreement would indicate a disagreement of the inter-
est of different users with respect to the same SAs. We
used to measures for evaluating the IRR of the dataset:
Krippendorff’s alpha (weighted using an ordinal ma-
trix, since our context uses ordinal values), which out-
put was 0.06154, and Kendall’s W, from which we
obtained a score of 0.2608. The Table 4 shows these
results. IRR is low and distant from 1, the value that
usually represents unanimity between the raters. We
show, in Table 3, the distribution of the ordinal ratings
for both datasets. We remark again that the SAs in the
SAMU dataset have a rating scale that range from 1
(low interest) to 6 (high interest) while the one from
LAFU are from 1 (low interest) to 3 (high interest).

Contextual Exploration Settings. The reader can
view the results in Figure 6, where we plot the average
nDCG@10 for the first five iterations of the model. On
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SAMU LAFU
Step 1 #SAs

Serendipity Top-3 SAs with serendipity Top-5 SAs with serendipity

Random 3 randomly extracted SAs 5 randomly extracted SAs

Clustering 3 SAs found on average 5 SAs found on average

Step 3 #SAs
AS&PS Top-2 SAs found with AL Top-6 SAs found with AL

Random 2 randomly extracted SAs 6 randomly extracted SAs
Table 2

Number of observations selected at each steps by the algorithms

Rating 1 2 3 4 5 6
SAMU 23.7% 14.5% 22.3% 20.9% 10.1% 5.5%

Rating 1 2 3
LAFU 67.4% 30.1% 2.5%

Table 3
Rating distribution in the two data sets

Krippendorff’s alpha 0.0615

Kendall’s w 0.268
Table 4

Inter-Rater Reliability on the SAMU data set

the average a user at the 5th iteration has given rat-
ing to 12 SAs for the SAMU dataset and 30 for the
LAMU dataset. On the SAMU dataset the best algo-
rithm appears to be the Serendipity AS one. One in-
teresting thing to notice is that active learning, per-
forms better then methods that do not use an incremen-
tal learning method (Random No-AL and Serendip-
ity No-AL). This is important because it proves that
active sampling is useful for maximizing the ranking
function. In the LAFU dataset Serendipity No-AL was
able to get a good result and, if we do not consider the
Serendipity AS configuration, active learning required
three iterations to perform better then Serendipity No-
AL. The Random Random approach, that uses a ran-
dom selection method for active sampling, performs
better with each iterations, but the overall performance
is low, compared to the other algorithms that use active
sampling. This is an indication of how much the initial
training set and the SAs selected actively are impor-
tant for ranking algorithms. The areas computed can
be found in Table 6 and show that Serendipity AS is
the algorithm with the biggest area.
Cross Validation Settings. Cross validation has been
used to provide evidence that the module is robust and
the main result obtained is that the model with the best
performance is ours. The conclusions are similar to the
one already explained in the section above, the general
performance in this case is slightly less good, mainly
because in the cross validation setting the algorithms
are not able to access to the testing data. The plots can

be found in Figure 6 while the computed areas are in
Table 5.
Interactive Time. We designed an approach that
should interact with users. One of the most impor-
tant requirements from the user side is the interactive
time. An user is willing to use an application only if
the response he gets from the platform are given in a
short period of time. We computed the average num-
ber of seconds the model needs to train the ranking
algorithms and provide a ranking to the user; in this
case we tested the Serendipity AS algorithm. For the
SAMU dataset the model was able to compute the re-
sult in 0.35 seconds while for the LAFU dataset the
average number of seconds required is around 2. This
means that as the dataset gets bigger, the algorithms
requires longer time to compute the result.
Initial training set analysis. If a user in the first step
(that can be done with the serendipity heuristic or the
clustering algorithms) evaluates all the SAs with the
same ordinal degree, we can not initialize the Rank
SVM model. We thus evaluate the time for first iter-
ation value, that corresponds to the average number
of iterations needed for each method to have a train-
ing that can be used to training the learning to rank
algorithm. Table 7 shows the result. We show data
for both Cross Validation (CV) and Contextual Explo-
ration Setting (CE). In LAFU data set the algorithms
can find the first observations needed to train the model
becomes more difficult for methods with the exception
of Dirichlet that can probably adapt itself to the size
of the dataset in an easier way, result that is consistent
with how it is defined. Analyzing the plots 6 we can see
that while Dirichlet clustering is able to rapidly gain
an initial training set for the RankSVM model (typ-
ically around 1 iteration), this training set makes the
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Configurations SAMU LAFU
Serendipity AS 3.0742 2.711
Serendipity PS 3.0302 NaN

Gaussian AS 3.0168 2.6455

Dirichlet PS 3.0009 NaN

Dirichlet AS 3.0011 2.6872

Gaussian PS 2.9975 NaN

Random Random 2.976 2.6013
Table 5

AUNC in Cross Validation

Configurations SAMU LAFU
Serendipity AS 3.2018 3.0817
Serendipity PS 3.1399 NaN

Gaussian AS 3.0242 2.747

Gaussian PS 2.9629 NaN

Dirichlet AS 3.0711 2.7174

Dirichlet PS 3.019 NaN

Random Random 2.9359 2.673

Serendipity No-AL 2.7199 2.734

Random No-AL 2.3199 1.7971
Table 6

AUNC in Contextual Exploration

Fig. 6. nDCG@10 in Contextual Exploration and Cross Validation settings

model obtain a less good performance compared to the
Serendipity one.
Wilcoxon test. To verify the results obtained by our
model we performed the Wilcoxon test, on the various
nDCG@10 obtained by the last iteration of the Cross-
Validation, to prove that the final result of each algo-
rithm is statistically significant with respect to the oth-
ers. We generated a matrix with the algorithms config-
urations on the columns and the datasets on the row.
An element xi, j of this matrix is the nDCG@10 of
the last iteration of the Cross Validation for the i-th
dataset obtained with the j-th algorithm. P-values ob-
tained with the Wilcoxon test (that was run with an
α = 0.05) can be seen in Table 8, we signed with
a “*” the values on which we are statistically signifi-
cant. We can conclude that AS is significant with re-
spect to PS and Random. When we use AS we can
see that results with Serendipity, Dirichlet or Gaussian
are correlated, this is because the only difference be-

tween Serendipity AS, Gaussian AS and Dirichlet AS
lies in the first iteration. However, from an applicative
point of view, Serendipity provides an approach that
is smoother and cleaner for a user, because the SAs
retrieved in the first iteration could already be inter-
esting (since the heuristic measure combines relevance
with unexpectedness), while using a clustering algo-
rithm could force the user to evaluate SAs that are not
interesting. Results of the test suggest that not only re-
sults obtained with AS seem more significant of those
obtained with PS, but even of those obtained with a
Random approach.
Discussion. We observed that different users have dif-
ferent interests, which motivates the need for person-
alization in KG exploration approaches. The serendip-
ity heuristic with the AS algorithm model introduced
in this paper shows remarkable improvement over
other configurations. While the difference between
Serendipity, Gaussian and Dirichlet is not statistically
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Algorithm Average #Iter. SAMU CV Average #Iter. LAFU CV Average #Iter. SAMU CE Average #Iter. LAFU CE
Serendipity 1.08 1.5 1.346 1.1363

Dirichlet 1.16 1.11 1.010 1.063

Gaussian 1.08 1.16 1.066 1.381

Random 1.25 1.5 1.1866 1.229
Table 7

Average #Iterations to find the first training set for the ranking model

Wilcoxon Dirichlet AS Gaussian PS Dirichlet PS Serendipity AS Serendipity PS Random
Gaussian AS 0.07548 0.003781* 0.02365* 0.7915 0.173 0.0008081*

Dirichlet AS 0.09032* 0.5077 0.615 0.5782 0.05158*

Gaussian PS 0.1014 0.002255* 0.1073 0.731

Dirichlet PS 0.01247* 0.9578 0.4908

Serendipity AS 0.09573 0.02748*

Serendipity PS 0.5965
Table 8

P-values for the Wilcoxon signed-rank test on the SAMU dataset

significant, the serendipity heuristic is able to show a
pre-ordered set of SAs from the first iteration, and this
might be of big interest for the user. This is important
for the user experience, since a user might not be inter-
ested in evaluating SAs that do not interest her.
Summary The results we got leave us with the follow-
ing assertions:

– ALR is a good way to rapidly gain feedback from
the user while optimizing their own ranking func-
tion

– The serendipity heuristics is a good method to ini-
tialize the ALR model and is able to show to the
users a pre-ordered set of SAs from the beginning

– Our experiments showed that user are interested
in different kind of SAs and thus the personaliza-
tion of the exploration is an important and funda-
mental task

4. Related Work

We compare our work to previous work in the field
of interactive KG exploration and of learning to rank
approaches for KG exploration.
Interactive Knowledge Graph Exploration. Several
methods, described and compared in a recent sur-
vey [1], combine navigation, filtering, sampling and
visualization to let users explore large data sets. One
approach to entity expansion provides an example of
contextual KG exploration, but does not focus on the
retrieval of SAs like our approach [2]. RelFinder is
a web application that finds SAs between two spe-
cific entities selected by a user [23]. Other applica-

tions similar to RelFinder also incorporate measures to
evaluate and explain SAs between two specific enti-
ties [6,5,24]. inWalk is another application for interac-
tive linked data exploration based on thematic graphs,
whose nodes represent clusters of similar linked data,
and edges are proximity relations between the clus-
ters [25]. Aeemo is another example of tool for knowl-
edge exploration [26]: it uses a keyword based search
to help user find summarized information about an en-
tity using Wikipedia, Twitter and Google News. Re-
fer [3] is a Wordpress Plugin that help a user enrich
an article with additional information extracted from
KBs like Wikipedia. The plugin finds entities in the
article and recommends SAs that are estimated to by
unknown to the user. Refer is an example of contex-
tual exploration of KG; the main difference between
their approach and our approach is that we introduce a
model to order all SAs, introducing a machine learn-
ing model to personalize the exploration. None of the
approaches mentioned above or surveyed in [1] in-
troduces methods to learn information to show to the
users based on their explicit feedback. An interesting
approach seen in the literature [27] uses genetic pro-
gramming to find strong relationships in linked data; in
their experiments, eight judges were asked to evaluate
the relationships, but relationships with low inter-user
agreement were not considered positive examples for
training because not interesting for all users. Since dif-
ferent users have different interests, we train our model
based on the preferences of individual users using an
ALR approach.
Learning to Rank and Active Learning for KG Ex-
ploration Learning to rank has been extensively ap-
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plied in document retrieval [28] but only in one ap-
proach to KG exploration [7]. This approach use a vari-
ant of SVM to rank SAs extracted from Freebase, but
does not try to minimize the inputs needed to learn
the ranking function through active learning. In addi-
tion, some of their features are specifically tailored on
the Freebase structure while our features can be eas-
ily applied to any KG (with the exception of Tempo-
ral Relevance, which requires bridges from the KG to
Wikipedia). Active learning to rank introduces tech-
niques to select the most informative observations to
train the model. In our approach, we have implemented
and tested two different techniques proposed for docu-
ment retrieval. A first approach [9] collects labels over
individual observations (SAs in our case) and solves
the cold-start problem, mentioned before, by randomly
selecting positive and negative instances from a sub-
set of the data reserved for training. In our interactive
approach we pick the SAs that are labeled by the user
from the same set that has to be ranked, which is coher-
ent with contextual KG exploration scenarios. How-
ever, we have also conducted tests with data split in
a training and a test set to show the robustness of the
model. In addition, we provided a principled approach
to solve the cold-start problem in our domain. The sec-
ond approach, which collects labels over pairs of ob-
servations [21], seems to be not only less efficient,
but also less effective for ranking SAs. To the best of
our knowledge, ours is the first attempt to apply ac-
tive learning to rank to the problem of exploring SAs.
While many active learning to rank techniques and
methods have been proposed in literature [29,30,9,21],
to the best of our knowledge none of them as been ap-
plied for SAs active ranking. We choose to concen-
trate our attention only on two of them, mainly because
they could be easily applied in a pairwise learning to
rank setting with RankSVM, a well-known state-of-
art algorithm in this context. the one that we use in
our approach [9] has been chosen to provide a method
that was computationally fast while the second one
[21] was selected to test a pairwise sampling algorithm
that uses uncertainty measure like those seen in active
learning for classification problems [14](In Section 3 a
few more details were given in Section). One approach
that has been proposed the application of active learn-
ing in the context for KG exploration, has been applied
to a classification problem, i.e., to decide which nodes
should be included in a graph summary [31], which is
very different from the learning to rank problem dis-
cussed in this paper.

5. Conclusion

Experimental results show that our approach, based
on a serendipity heuristic and with the use of an AUC
based active learning to rank algorithm is able to in-
crease the ranking of the SAs while keeping the num-
ber of feedbacks requested to the user low. Moreover
we have been able to prove that personalization of KG
exploration is necessary since user are interested in dif-
ferent kind of relations. In future work, we plan to an-
alyze the impact of individual features on the perfor-
mance of an active learning to rank model for SAs,
and evaluate the use of additional measures. In addi-
tion, we want to incorporate our active learning to rank
model into the DaCENA application, by tackling the
challenge of designing human-data interaction patterns
that can engage the users. An other research area that
we plan to explore is the one of online learning to rank
with the use of implicit feedbacks (like clicks) given by
the users on the SAs; combining implicit and explicit
feedbacks could greatly improve the performance of
the models while lowering the effort requested to the
user to get personalized results. We would also like, in
the future, to improve the performance of our applica-
tion. So far, we preferred to have fresher information
via a SPARQL endpoint despite the longer process-
ing time, because processing is performed off-line. In
journalism, freshness of information is relevant and we
plan to further investigate methods to refresh/update
SAs after processing in the future.
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