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Abstract. RDF Graph Summarization pertains to the process of extracting concise but meaningful summaries from RDF Knowl-
edge Bases (KBs) representing as close as possible the actual contents of the KB. RDF Summarization allows for better explo-
ration and visualization of the underlying RDF graphs, optimizstion of queries or query evaluation in multiple steps, better un-
derstanding of connections in Linked Datasets and many other applications. In the literature, there are efforts reported presenting
algorithms for extracting summaries from RDF KBs. These efforts though provide different results while applied on the same
KB, thus a way to compare the produced summaries and decide on their quality, in the form of a quality framework, is necessary.
So in this work, we propose a comprehensive Quality Framework for RDF Graph Summarization that would allow a better,
deeper and more complete understanding of the quality of the different summaries and facilitate their comparison. We work at
two levels: the level of the ideal summary (or ideal schema) of the KB that could be provided by an expert user and the level of
the instances contained by the KB. For the first level, we are computing how close the proposed summary is to the ideal solution
(when this is available) by computing its precision and recall against the ideal solution. For the second level, we are computing
if the existing instances are covered (i.e. can be retrieved) and in what degree by the proposed summary. We use our quality
framework to test the results of three of the best RDF Graph Summarization algorithms, when summarizing different (in terms
of content) and diverse (in terms of total size and number of instances, classes and predicates) KBs and we present comparative
results for them. We conclude this work by discussing these results and the suitability of the proposed quality framework in order
to get useful insights for the quality of the presented results.
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1. Introduction

RDF has become one of the major standards in
describing and publishing data, establishing what we
call the Semantic Web. Thus, the amount of RDF
data available increases fast both in size and complex-
ity, making the appearance of RDF Knowledge Bases
(KBs) with millions or even billions of triples some-
thing usual. Given that RDF is built on the promise of
linking together relevant datasets or KBs and with the
appearance of the Linked Open Data (LOD) cloud, we
can now query KBs (both standalone or distributed)
with millions or billions of triples altogether. This in-

creased size and complexity of RDF KBs has a direct
impact on the evaluation of the RDF queries we ex-
press against these RDF KBs. Especially on the LOD
cloud, we observe that a query against a big, complex,
interlinked and distributed RDF KB might retrieve no
results at the end because either the association be-
tween the different RDF KBs is weak (is based only
on a few associative links) or there is an association
at the schema level that has never been instantiated
at the actual data level. Moreover, a lot of these RDF
KBs carry none at all or only partial schema informa-
tion (mainly contain instances build and described sep-
arately). Additionally, in the LOD cloud the number
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of KBs which do not use the full schema or they use
multiple schemas is increased due to the absence of the
schema information which describes the interlinks be-
tween the datasets and the combinatorial way of mix-
ing vocabularies.

One way to address the concerns described above is
by creating summaries of the RDF KBs. Thus we al-
low the user or the system to decide whether or not to
post a query, since she knows whether information is
present or not based on the summary. This would pro-
vide significant cost savings in processing time since
we will substitute queries on complex RDF KBs with
queries first on the summaries (on much simpler struc-
tures with no instances) and then with queries only to-
wards the KBs that we know will produce some use-
ful results. Graph summarization techniques would al-
low the creation of a concise representation of the KB
regardless of the existence or not of schema informa-
tion in the KB. Actually, the summary will represent
the actual situation in the KB, namely should capture
the existing/used classes and relationships by the in-
stances and not what the schema proposes (and might
have never been used). This should facilitate the query
building for the end users with the additional bene-
fit of exploring the contents of the KB based on the
summary. This is true regardless if we use heteroge-
neous or homogeneous, linked or not, standalone or
distributed KBs. In all these cases we can use the RDF
summary to concisely describe the data in the RDF
KB and possibly add useful information for the RDG
graph queries, like the distribution and the number of
instances for each involved entity.

In the literature we can find various efforts propos-
ing summarization techniques for RDF graphs. These
techniques, presented briefly in section 3, come from
various scientific backgrounds ranging from generic
graph summarization to explicit RDF graph summa-
rization. While all promise that they provide correct,
concise and well-built summaries so far has been very
little effort into address in a comprehensive and co-
herent way the problem of evaluating these summaries
against different criteria and have some mathemati-
cal metrics to describe the quality of the results. Only
sparse efforts have been reported, usually tailored to
a specific method or algorithm. So with this paper,
we aim to cover the gap that exists in the literature
and provide a comprehensive Quality Framework for
RDF Graph Summarization that would allow a better,
deeper and more complete understanding of the qual-
ity of the different summaries and facilitate their com-
parison. We propose to take into account the possibil-

ity to compare the summary against two levels of in-
formation possibly available for a RDF KB. In the case
where an ideal summary exists, either because it has
been proposed by a human expert or because we can
assume that an existing schema represents perfectly
the data graph, we compare the summary provided by
the algorithms with it and use similarity measures to
compute its precision and recall against the ideal sum-
mary. If this is not available or additionally to it, we
compute the percentage of the instances represented
by the summary (including both class and property in-
stances). This provides us with the understanding of
how well the summary covers the KB. One can com-
bine at the end the two overall metrics or use them in-
dependentantly. In order to validate the proposed qual-
ity metrics, we evaluated three of the most promising
PDF graph summarization algorithms and report on
the quality of their results over different datasets with
diverse characteristics. We should note here that the
proposed Quality Framework is independent of any of
the algorithms evaluated but it is suitable in providing
a common ground to compare them.

The paper is structured as follows: Section 2 in-
troduces some of the foundations of RDF and RDFS,
which are useful for defining later on some concepts
in our work; Section 3 provides a review of the ex-
isting works around quality metrics in graph summa-
rization; while Section 4 presents our proposed Quality
Metrics for RDF Graph Summaries. Section 5 presents
the three of the most promising RDF Graph Summa-
rization algorithms in the literature that are compared
using the proposed Quality Framework in Section 6,
where the extensive experiments performed in order
to validate the appropriateness of the proposed metrics
are reported. We then conclude our paper in section 7.

2. Preliminaries

As per the W3C standards, the RDF data model
represents data on the Web as a set of triples of the
form (s, p,0), expressing the fact that for the subject
s, the value of the property p is the object/value o.
RDF data can also be represented as a labeled directed
graph in which entities (subjects/objects) are repre-
sented as nodes and property instances (expressed by
the triples) as labeled directed edges. RDF datasets are
usually accompanied with a RDF Schema', which pro-

Uhttps://www.w3.0rg/TR/2004/REC-rdf-schema-20040210/
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vides a data-modeling vocabulary for RDF data. RDF
Schema (RDFS) defines a set of classes for declaring
the resource types and a set of properties for declaring
the resource relationships and attributes. RDF Schema
describe relations between classes and properties, but
could also be represented as a directed labeled graph,
where the labeled nodes represent the classes and the
labeled edges represent properties relating class in-
stances.

Let C,P, I and L be the sets of class Universal
Resource Identifiers (URIs), property URIs, instance
URIs and literal values respectively, and let T be a set
of RDFS standard properties (rdfs:range, rdfs:domain,
rdf:type, rdfs:subClassOf, etc.). The concepts of RDF
schemas and instances can be formalized as follows.

Definition 1 (RDF schema graph). An RDF schema
graph G, = (N, E, A, C, P, T) is a directed labeled
graph where:

— N is the set of nodes, representing classes and
properties.

- E; C{(x,a,y)| x € Ns,a € T,y € N} is the set
of labeled edges.

— A; : Ny — C U P is an injective node labeling
function that maps nodes of N to class and prop-
erty URIs.

We note A, : E; — T the edge labeling function that
associates to each edge (x,a,y) € E, the RDFS stan-
dard property URIa € T.

Definition 2 (RDF data graph). An RDF data graph
G; = (Ni,E;, A, 1,P L) is a directed labeled graph
where:

— N, is the set of nodes, representing instances and
literals.

- E; C{(x,@,y)|x € Ni,a& € P,y € N;} is the set
of labeled edges.

— A; : N; — I U L is a node labeling function that
maps nodes of N; to instance URIs or literals.

We note A,; : E; — P the edge labeling function that
associates to each edge (x, a,y) € E; the property URI
ac P

Example 1 The upper part of Figure 1 shows a vi-
sualization of an RDF schema graph example for the
cultural domain, representing only class nodes, while
properties are illustrated as edges between classes. For
example, the class Painter denotes the set of instances
which represent painter entities, while property paints

Fig. 1.: RDF Schema and data graphs

relates class Painter instances to class Painting in-
stances. The lower part of Fig. 1 depicts an instance
(data) graph building on this schema. This graph rep-
resents 6 different resources. For example the resource
Picasso is an instance of the Painter class having prop-
erties fname, Iname and paints.

Type edges. Edges labeled with rdf:type in the RDF
data graph explicitly describe the type (class) of an in-
stance, e.g. dashed edges in Fig. 1, where for instance
Picasso is declared to be a Painter. We will note in the
following the type edge label with 7. For an instance
X € N;, we define Types(x) = {y|(x,7,y) € E;} to
be the set of types related to the node x via an explicit
type edge definition, e.g., Types(Picasso)= {Painter},
while Types(Guernica)= {Painting}.

Properties. We denote by Properties(x) = {a :
V(x,a,y) €Ei:a #1AA4(y) € I ANx € N}, aset of
labels of the non-Type edges which associate the node
x with a set of entity nodes(nodes labeled by instance
URIs).

Attributes. We denote by Attributes(x) = {a :
V(x,a,y) € E; @ # 1A A(y) € LAx € N;} asetof
labels of the non-Type edges which associate the node
x with a set of literal nodes(nodes labeled by literal
values) ,

Example 2 The set of properties associated with Pi-
casso node in our example are {paints}, while the set
of attributes of Picasso node are { fname, lname}.

Bisimilarity in a directed labeled graph is an Equiv-
alence Relation defined on a set of nodes N, such that
two nodes (u,v) are Bisimilar if and only if the set of
edges coming immediately out of u is equal to the set
of edges coming immediately out of v and also, all suc-
cessor nodes of u and v must be Bisimilar( in other
words, the outgoing paths of u and v are similar ). We
call the Bisimilarity relation when defined based on
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outgoing paths, Forward (FW) Bisimilarity, and when
it is based on incoming paths, Backward (BW) Bisim-
ilarity.

Knowledge pattern. A knowledge pattern (or simply
pattern from now on) characterizes a set of instances
in an RDF data graph that share a common set of types
and a common set of properties. More precisely, a
knowledge pattern KP in an RDF data graph is a quad
(CL Pr,Ins,SUP), where Cl = {c1,¢2,.....cn} € C
is a set of classes, Pr = {Pry, Pra,....., Pr,y} C Pis
a set of properties, Ins C I is the set of instances that
have all the types of C! and all the properties of Pr,
and SUP = |Ins| is called the support of the knowl-
edge pattern in the RDF data graph. For instance, Ins
corresponds to the set of bindings for the ?a variable
over the RDF data graph in the following SPARQL-
like conjunctive pattern: {<?a,7,¢1 >,<%a,T,co >
e <la,t,c, >,<?a,Pri,?by >,<?%a,Pry,7by >
s eeees <70, Pry, Tby, >}. We introduce the term knowl-
edge pattern because it is not sure that all summari-
sation algorithms will produce something that can be
necessarily defined as an RDF class and also because
we want to differentiate from the classes of the ideal
summary when we compare the two.

3. Related work

RDF graph summarization has been intensively
studied, with various approaches and techniques pro-
posed to summarize the RDF graphs, which could be
grouped into four main categories:

1. Aggregation and grouping approaches [27,28,
29? ,32,23], which are based on grouping the
nodes of an input RDF graph G into clus-
ters/groups based on the similarity of the at-
tribute values and on the neighborhood relation-
ships associated with nodes of G.

2. Structural extraction approaches [12,20,13,19,
31,17,18,9,21,22,26], which define an equiva-
lence relation on the nodes of the RDF data graph
G, usually based on the set of incident graph
paths. This allows extracting a form of schema
for G by representing the equivalence classes of
nodes of G as nodes in the summary graph, char-
acterized by the set of incident paths of each
class.

3. Logical compression approaches [15,16], which
are based on compressing the RDF datasets by
generating a set of logical rules from the dataset

and removing triples that can be inferred from
these rules. The summary graph is then repre-
sented by a compressed graph and set of logi-
cal decompression rules, with the drawback that
such approaches do not produce RDF graphs as
summaries.

4. Pattern-mining-based approaches [33,14,34], which

are based on extracting frequent patterns from
the RDF graph, then composing them to build an
approximated summary graph.

Typically, the RDF summarization methods pro-
posed so far do not address in depth the problem of
the quality of the produced RDF summaries. A notice-
able exception is the work in [11], which proposes a
model for evaluating the precision of the graph sum-
mary, compared to a gold standard summary. The main
idea of the precision model is based on counting the
edges or paths that exist in the summary and/or in the
data graph. The precision of a summary is evaluated
in the standard way, based on the number of true pos-
itives (the number of edges existing in the summary
and in the input graph) and false positives (the number
of invalid edges and paths existing in the summary but
not in the input graph). The limitation of this quality
model is that the precision alone cannot accurately as-
sess the quality, since a high precision can be achieved
at the expenses of a poor recall by returning only few
(even if correct) common paths.

Besides that, only few efforts have been reported in
the literature addressing the quality of the schema sum-
marization methods in general [30,25,10], i.e. the qual-
ity of the RDF schema that can be obtained through
RDF summarization. The quality of the RDF schema
summary in [25] is based on expert ground truth and
is calculated as the ratio of the number of classes iden-
tified both by the expert users and the summarization
tool over the total number of classes in the summary.
The main limitation of this approach is that it uses a
Boolean match of classes and fails to take into account
similarity between classes when classes are close but
not exactly the same as in the ground truth or when
classes are represented by more than one class in the
summary. Works in schema matching (e.g. [30]) are
also using to some extend similar metrics like recall,
precision, F1-Measure commonly used in Information
Retrieval, but are not relevant to our work since even
if we consider an RDF graph summary as an RDF
schema, we are not interested in matching its classes
and properties one by one, since as stated above this bi-
nary view of the summary results does not offer much
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in the quality discussion. Additionally these works do
not take into account issues like the size of the sum-
mary.

To the best of our knowledge, this is the first effort
in the literature to provide a comprehensive Quality
Framework for RDF Graph Summarization, indepen-
dent of the type and specific results of the algorithms
used and the size, type and content of the KBs. We pro-
vide metrics that help us understand not only if this is
a valid summary but also if a summary is better than
another in terms of the specified quality characteris-
tics. And we can do this by assessing information, if
available, both at schema and instance levels.

4. Quality Assessment Model

In this section we present a comprehensive and
coherent way to measure the quality of RDF sum-
maries produced by any algorithm that summarises
RDF graphs. The framework is independent of the way
algorithms work and makes no assumptions on the
type or structure neither of the input nor of the final re-
sults, besides being expressed in RDF; this is required
in order to guarantee the validity of the result but can
be easily extended to other cases of semantic summari-
sation, like for graphs expressed in OWL or Descrip-
tion Logics. In order to achieve this, we work at two
levels:

— schema level, where if an ideal summary exists,
the summary is compared with it by computing
the precision and recall for each class and its
neighbourhood (properties and attributes having
as domain that class) of the produced summary
against the ideal one; we also compute the pre-
cision and recall of the whole summary against
the ideal one. The first will capture the quality of
the summary at the local (class) level, while the
second will give us the overall quality in terms of
classes’ and properties/attributes’ precision and
recall.

— instance level, where the coverage that the sum-
mary provides for class and property instances is
calculated, i.e. how many instances will be re-
trieved if we query the whole summary graph. We
use again precision and recall against the contents
of the original KB.

At the end a metric is presented that provides an in-
dication of the quality of the graph summary by mea-
suring whether or not the summary is a connected

graph. Ideally, a summary should be a connected graph
but this also depends on the actual data stored in the
Knowledge Base. Thus a disconnected graph could be
an indication of the data quality in the KB and not nec-
essarily a problem of the summarisation process. Nev-
ertheless, we present it here as another indicator of the
quality process, especially if the summary is compared
with an ideal one, but for the reason mentioned before
we avoid to combine it with the rest of the presented
metrics. Finally, we discuss some results that combine
these metrics and interpret their meaning.

4.1. Quality Metrics in the presence of an ideal
summary

In this section we present our quality assessment
framework to evaluate the quality of an RDF graph
summary against a ground truth summary (S) (e.g. one
provided by an expert). We measure how close the
proposed summary is to the ground truth summary by
computing its precision and recall against this ground
truth. We suggest that we compute both the precision
and recall at the class and at the property level and at
the overall summary level. Table 1 gives us a summary
Description of the schema-level proposed measures.

Precision and Recall for classes We present here the
recall and the precision measures for the classes of the
detected patterns against a ground truth summary S.
We first introduce the recall over the classes which is
the fraction of relevant classes that are reported in the
summary. Given a set of knowledge patterns II (as de-
fined in Section 2 and referred commonly as patterns
from now on) and a set of classes C € S, we start
by defining the recall of a class ¢ € C over the set of
patterns II as the fraction of relevant class’s properties
(namely properties that have this class as their domain)
that are reported in 11, we denote it by schema class
recall S chemaRec(c,1I) :

| U (A(c) nA(pa))

pa€ll

S chemaRecall(c, 1) = ()

[A(c)l

The A(pa) is the set of properties and attributes in-
volved in the pattern pa, and the A(c) is the set of prop-
erties and attributes of the ideal class c¢. Thus, the over-
all summary recall using the classes S chemaRecciqssan
is computed as the mean of the various schema class
recall S chemaRecall(c,II) for all the classes ¢ of the
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Measure ‘What it indicates

How it is computed

S chemaRecall(c, IT)

Schema recall of a class ¢ over the set of patterns IT.

Divide the number of relevant class’s properties that are reported
in IT on the total number class’s properties.

S chemaRecciugsan Overall schema class recall.

Compute the mean of the various S chemaRecall(c, IT) for all the
classes c of the ground-truth Schema S .

Sim(pa, c) Similarity between a class ¢ and a pattern pa. Divide the number of common properties between the class ¢ and
the pattern pa on the total number of pa propertiespa.
Nps(c) The number of patterns that represent the class ¢ Count all the patterns having Sim(pa, ¢)>0.

S chemaPrec(c, IT)

Schema class precision of the class ¢ over the set of patterns IT.

Sum the sim(pa, c) for all the patterns of IT.

S chemaPreccigssan Overall schema class precision.

Compute the mean of the various class precision values
SchemaPrec(c, IT) for all the retrieved classes of the ground-
truth Schema S.

SchemaF1, Schema class F-Measure.

Combine the S chemaPrecciassan and S chemaReccq554n using the
standard formula of the F-Measure.

S chemaRec propertyail Overall Schema property recall.

Divide the number of relevant properties extracted by the sum-
mary on the total number of properties in the ground truth schema.

SchemaF1, Schema property F-Measure. Combine the SchemaPrecproperyan and S chemaRecproperiyan Us-
ing the standard formula of the F-Measure
S chemaF1 Overall schema F-measure. Combine the class schema F-Measure S chemaF 1. and property

schema F-Measure S chemaF1,.

Table 1: Summary description of the proposed Schema Measures

ground-truth Schema S'.

1
S chemaRecciissnn = — Z S chemaRecall(c,11)

‘Cl ceC
2)

The precision is the fraction of retrieved classes and
properties of the summary that are relevant. If a knowl-
edge pattern of a summary carries a typeof link then
this pattern is relevant to a specific class if the typeof
points to this class, if not this is not relevant to this
class. If no typeof information exists then we use the
available properties and attributes to evaluate the sim-
ilarity between a class and a pattern. Thus we define
the L(c, pa) function to capture this information and
we add this to the similarity function.

1, iftypeof(pa) = c or typeof(pa) = )

L(c, pa) =
(¢, pa) 0, otherwise

3

The similarity between a class c in the ideal summary
and a pattern pa Sim(pa, c) in the computed summary
is defined as the number of common properties be-
tween class ¢ and pattern pa divided on the total num-
ber of the properties of the patterns pa:

Sim(pa,c) = L(pa,c)) * 4)

Given that a class might be represented by more than
one knowledge patterns, depending on the algorithm
used, we are interested in introducing a way to pe-

nalise cases where this happens, thus favouring smaller
summaries over bigger ones. We achieve this by intro-
ducing a weight function that allows us to reduce the
similarity value if this is based on consuming multiple
patterns. Thus we introduce the following exponential
function, which uses coefficient a to allow variations
if needed in the future, and is chosen based on exper-
imental evaluation of the functions that could provide
us a smooth decay in similarity as patterns’ number
increases. The Nps(c) is the number of patterns that
represent the class ¢ and @ € [1, 10].

W(e) = e' = VP o)

Based on this weight function we define the class pre-
cision metric for every pattern pa in the computed
summary and every class ¢ in the ground truth sum-
mary as follows:

> Sim(pa,c)

pa€ll
*

S chemaPrec(c,11) = W(c) Nps(©)

(6)

Thus, we define the schema class precision S chemaPrecciqssan

as the mean of the various class precision values
S chemaPrec(c,1I) for all the classes of the ground-
truth Schema S.

>~ SchemaPrec(c,II)

ceC

@)

S chemaPrecciassan =

1

where C1 € C is the list of all the ground truth’s re-
trieved classes, or in other words, is the list of the
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ground truth’s classes for which S chemaPrec(c,II) >
0.

However, neither precision nor recall alone can ac-
curately assess the match quality. In particular, recall
can easily be maximized at the expense of a poor pre-
cision by returning as many correspondences as possi-
ble. On the other side, a high precision can be achieved
at the expense of a poor recall by returning only few
(correct) correspondences. Hence it is necessary to
consider both measures and and express this through
a combined measure; we use the F-Measure for this
purpose, namely S chemaF1,:

S chemaPrecciassan * S chemaRecciassan
S chemaPrecciassan + S chemaRecciassan

(®)

SchemaF1, = 2%

Precision and Recall for properties The overall re-
call at the property level, namely S chemaRecproperiyan
is computed as the ratio between the total number of
common properties extracted by the summary and the
total number of properties in the ground truth sum-
mary:

| U Alpa)n U Ale)]

pa€cll ceC

| U Ale)]

ceC

(C)]

S chemaRecpropervail =

Since there is no false positive for properties be-

cause the algorithms do not invent new properties, the
U A(pa)n U A(c) = U A(pa). Thus, We can

pacll ceC pacll

re-formulate the previous equation as follows:

| U A(pa)|

paclIl
S chemaRecproperyall = —1————1— (10

| U A(e)l

ceC

We note that the schema precision at the property
level in our experiments is always equal to 1, since
there are no false positives for properties because
the way summarisation algorithms work, they do
not invent new properties, at worst they might miss
some. Thus the F-Measure for the schema proper-
ties, namely SchemaF1, will depend only on the
S chemaRecpropertyail:

S chemaPrecpropervan * S chemaRec properiyall
SchemaF1, = 2% pery pery

1)

S chemaPrecproperiyann + S chemaRecpropertyan

By defining the individuals metrics for the class
schema F-Measure S chemaF1, and property schema
F-Measure, we can define the combined overall schema
F-measure S chemaF1 as the weighted harmonic mean
of the schema F-Measure and property schema F-
Measure :

SchemaF1 = BxSchemaF1,+(1—p)*S chemaF1. (12)

where the weight 8 € [0,1]. The overall schema F-
measure can be viewed as a compromise between class
schema F-Measure and property schema F-Measure.
It is high only when both class and property schema
F-Measure are high. It is equivalent to class schema
F-Measure when 8 = 0 and to property schema F-
Measure when 8 = 1. But it is not adequate to pro-
vide by itself a full picture of the summarisation pro-
cess; thus the readers should also refer to the rest of the
metrics, too, when they want to get a better idea on the
quality of the computed summary.

4.2. Quality Model At Instance Level

We measure the quality with regard to the instances
by introducing the notion of the coverage of the in-
stances of the original KB, i.e. how many of the orig-
inal class and property instances are successfully rep-
resented by the computed RDF summary graph (e.g.
can be retrieved in the case of a SPARQL query). This
requires computing both the precision and recall at the
class instance and at the property instance levels. The
Table 2 gives us a summary description of the proposed
instance measures.

Precision and Recall for class instances The overall
recall at the instance class level is the total number of
the class instances represented by the computed sum-
mary divided on the total number of instances of the
original KB D.

linstances(11)|

InstanceRecciassan = (13)

linstances(D)|

The class instances(II) is the list of instances cov-
ered by the set of patterns II, instances(D) is the list
of all instances of the original KB D. To avoid the
problem of overlapping of instances in several patterns
which will cause the over-coverage, we calculate the
instances(I1), instances(D) as follows:

instances(II) = U instances(pa) (14)
pa€ll
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Measure ‘What it indicates

How it is computed

instances(c) The list of class ¢ instances.

instances(p) The list of subjects which have the property p.

pa.

instances(pa) The list of covered class instances by the pattern pa. —
instances(IT) The list of class instances covered by the set of patternsII. —
instances(D) The list of all class instances of original KB D. —
Covc(c, pa) The list of the class instances which are represented by a pattern Get the instances(pa) if the pattern pa is relevant to the class ¢ or

() otherwise.

instances(c, IT)

patterns IT representing the class c.

The total number of class instances that are reported by a set of | Sum the |Cov,(c, pa)| for all the patterns of the II.

InstancePrec(c, IT)
I1.

The instance class precision of a class ¢ over the set of patterns

Divide the number of original instances of the class ¢ reported in
11 on instances(c, IT).

InstancePrecciassan Overall instance class precision.

The mean of the various InstancePrec(c, IT) for all the classes of
the ground-truth Schema S.

represented by a pattern pa.

InstanceF1, Instance class F-Measure. Combine the InstancePreccigssan and S chemaRecciqssan 0sing
the standard formula of the F-Measure.
Cov,(p, pa) The list of the original property instances which are successfully | Get the instances(p) if the property p is reported in the pattern pa

or get () otherwise.

instances(p, IT)
covered by a set of patterns II.

The list of the original property p instances that are successfully

The Union of the Cov, (p, pa) for all the in IT.

InstanceRec(p, I1) The instance property recall.

Divide |IT instances(p, I1)| on instances(p).

nstanceRecproperiyll Overall recall at the instance property lebel

Weighted mean of the various InstanceRec(p, IT) for all the prop-
erties of the ground-truth.

InstancePrec(p, IT),

The precision of a property p in P over the set of patterns II.

InstancePrecproperyail Opverall instance property precision

Mean of the various InstanceRec(p, IT) for all the covered prop-
erties of the ground-truth.

InstanceF1,: Instance property F-Measure Combine the InstancePrecproperyan and InstanceaRecproperyan
using the standard formula of the F-Measure.
InstanceF1 Overall instance F-measure . Combine the class Instance F-Measure InstanceF 1. and property
Instance F-Measure InstanceF1,.
Table 2: Summary Description of the proposed Instance Measures
instances(D) = U instances(c) (15) lows:

ceC

The instances(pa) denotes the list of covered in-
stances by the pattern pa and the instances(c) denotes
the list of instances of the type c in the original KB D.

We denote by Cov,(c, pa), the list of the class in-
stances which are represented by a pattern pa:

instances(pa), ifL(c, pa) =

Cove(c, pa) = ! (16)

0, otherwise

InstancePrec(p,11), the precision of a property p in
P over the set of patterns II and then in the case of
multiple patterns representing the class instances:

instances(c,IT) = Z |Cove(c, pa)| (17)

pa€ll

where the instances(c,II) is the total number of class
instances that are reported by a set of patterns II repre-
senting the class c.

We define InstancePrec(c,11) the instance preci-
sion of a class c in C over the set of patterns II as fol-

InstancePrec(c, 1) = |instance.s(c) N instances(c, I1)]
linstances(c, IT)|

(18)

Thus, we define the overall instance class precision
denoted by InstancePrecciqssan as the weighted mean
of the various InstancePrec(c,1I) for all the retrieved
classes:

> wi(c) * InstancePrec(c, 1)
ceC

InstancePrecciassan = |C1\

19)

The wi(c) is the weight of a class ¢ and it measures the
percentage of class instances of the class ¢ with respect
to the total number of class instances in the KB. This
is used to wight in the importance of the specific class
in terms of the number of instances it "represents"; so
the more instances it "represents"the bigger the weight.
It is defined as the number of instances of class c in
the KB instances(c) compared to the total number of
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property instances in the KB instances(D).

instances(c)
instance(D)

wi(c) = (20)

The overall instance class recall and the overall in-
stance class precision are combined by the instance
class F-Measure, namely InstanceF1.:

InstancePrecciassan * InstanceRecciassan

InstanceF1, =
InstancePrecciassan + InstancePrecciassan

ey

Precision and Recall at Property Level The Cov(p, pa)
represents the list of the original property instances which
are successfully represented by a pattern pa:

instances(pa), ifp € pa

22
0, otherwise 22)

Covp(p, pa) = {

We denote by the instances(p, 1) the list of the origi-
nal property instances that are successfully covered by
a set of patterns II:

Instance(p,11)) = U (Covy(p, pa)Ninstances(p)) (23)
pa€ll

The instances(p) denotes the list of original instances

which have the property p in original KB D. Thus, the
instance property recall InstanceRec(p,I1) defined as:

_ |instances(p,11) N instances(p)|

InstanceRec(p, 1) linstances(p)|

(24)

The overall recall at the instance property level
InstanceRecpyoperyan 18 computed as the weighted
mean of the various instance property recall InstanceRec
for all the properties of the ground-truth.

>~ wi(p) * InstanceRec(p, IT)
peEP

InstanceRecp operyann = |P|

(25)

The wi(p) is the weight of the property p and it mea-
sures the percentage of instances of a property p with
respect to the total number of property instances in the
KB. It is defined as the number of instances of property
p in the KB instances(p) compared to the total number
of property instances in the KB. Again the idea here is

to capture the important properties by weighting in the
number of property instances it represents.

. instances
wi(p) = (p)

© Y instances(pl)
pleprP

(26)

We define InstancePrec(p, I1), the precision of a prop-
erty p in P over the set of patterns II as follows:

_ |instances(p) N instances(p, II)|

InstancePrec(p, 1) linstances(p, 0]

27

Thus, we define the overall instance precision for prop-
erty instances denoted by InstancePrecproperiyan as the
mean of the various InstancePrec(c,II) for all the
properties of the ground-truth Schema S:

> InstancePrec(p,1I)
pEP

(28)

InstancePrecproperiyail =

|P1]

where P1 € P is the list of retrieved properties, or in
other words the list of properties having
InstancePrec(p,II) > 0. The overall instance re-
call and the overall instance precision for property in-
stances are combined by the instance class F-Measure,
namely S chemaF1,:

InstancePrecpropertyan * InstanceRec propermyail

InstanceF1, =

InstancePrecproperiyan + Instance Precpropertyail

(29)

Thus, the overall instance F-measure InstanceF1 is
obtained by combining the overall instance schema F-
Measure InstanceF'1, and overall property instance F-
Measure InstanceF1,,.

InstanceF1 = BxInstanceF1,+(1—pB)*InstanceF1. (30)

where the weight 8 € [0, 1]. The overall instance F-
measure can be viewed as a compromise between over-
all class instance F-Measure and overall property in-
stance F-Measure. It is high only when both overall
class and property instance F-Measure are high. It is
equivalent to the class instance F-Measure when 8 = 0
and to the property instance F-Measure when 8 = 1.

Connectivity One more important aspect that we
need to consider, is the connectivity of the summary,
i.e is the summary a connected graph? So, we pro-
pose a new metric to measure how many disconnected
graphs exist in the summary and what percentage of
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the classes in the ground truth they represent. The con-
nectivity of a summary graph G, Con(Gy) is defined as
the number of the connected components(independent
subgraphs) of the summary graph divided on the num-
ber of the connected components(independent sub-
graphs) of the ground truth.

numbero fconnectedcomponentso fthesummary

Con(Gs) =
(3D

This metric gives an indication of the connectivity
of a generated summary. If it is 1, it shows that the
summary is a fully contented graph comparing to the
ground truth, while when it is bigger than 1 but not
so high it means that the summary graph miss some
links between the original classes of the ground truth.
But if it is so high this means that the summary miss
all or almost all the links between the original classes
which means we ended-up with a disconnected sum-
mary graph. Thus, this metric provides a better under-
standing of how the interlinked classes of the original
KB are represented in the summary, which might be
of help in cases where a user has two summaries with
the similar or almost similar values for the rest of the
previously discussed measures.

5. Representative Algorithms for validating the
Quality Framework

As we have already mentioned in section 3 the RDF
graph summarization could be grouped into four main
categories. Based on the results reported in the litera-
ture we have chosen three of the most well perform-
ing RDF graph summarization algorithms [17,12,33]
according to their authors. Our selection of these algo-
rithms was also based on specific properties and fea-
tures that they demonstrate: (a) they do not require
the presence of RDF schema (triples) in order to work
properly, (b) they work on both homo- and hetero-
geneous KBs, (c) they provide statistical information
about the available data (which can be used to estimate
a query’s expected results’ size), and (d) they provide
a summary graph that is considerably smaller than the
original graph.

ExpLOD [17,18] is a RDF graph summarization al-
gorithm and tool that produces summary graphs for
specific aspects of an RDF dataset, like class or pred-
icate usage. The summary graph is computed over the
RDF graph based on a forward bisimulation that cre-

numbero fconnectedcomponentso fthegroundtruth

ates group nodes based on classes and predicates. Two
nodes v and u are bisimilar if they have the same set of
types and properties. The generated summaries contain
metadata about the structure of the RDF graph, like the
sets of used RDF classes and properties. Some statis-
tics like the number of instances per class or per prop-
erty are aggregated with this structural information.
The ExpLOD summaries are extracted by partition
refinement algorithms or alternatively via SPARQL
query where the summary graph is a labeled graph
with unlabeled edges. The advantage of ExpLOD ap-
proach is that its generated summaries show a dataset’s
structure as homo- or heterogeneous as it may be. The
big disadvantage is the need for transforming the orig-
inal RDF KB into a ExpLOD graph which is an unla-
beled edges graph, where for each triple in RDF KB
it generates a node for the subject, node for the object
and a unique node for the predicate. Then an edge is
drawn from the subject node to the predicate node and
other edge from the predicate node to the object node.
This process requires the materialization of the whole
dataset and this can be limiting in cases of large KBs.
The second limitation is that the created summary is
not necessarily a RDF graph itself.

Campinas et al [12] are creating their own RDF
summarization graph, whose nodes represent a subset
of the original nodes based on their types or used pred-
icates. This summary graph is generated by the follow-
ing mechanism: (1) extract the types and predicates for
each node in the original graph; (2) group the nodes
which share the same set of types into the same node
summary where two nodes, one of type A and one of
types A and B, will end up in different disjoint sum-
mary nodes; (3) group based on attributes only if a
node does not have a class definition. Like ExpLOD,
a summary node is created for each combination of
classes, i.e., two nodes, one of type A and one of types
A and B, will end up in different disjoint summary
nodes. Some statistics like the number of instances per
class or the number of property instances are aggre-
gated with this summary graph. Unlike ExpLOD, the
summary nodes are not further partitioned based on
their interlinks (properties), i.e., two nodes of type A,
one has a, b and ¢ properties and one has a and d prop-
erties will end up in the same summary node. Unlike
ExpLOD, their summary graph is a RDF graph which
makes it compatible for storing at RDF databases and
queried by SPARQL.

Zneika et al. [33,34] present an approach for RDF
graph summarization based on mining a set of approx-
imate graph patterns is presented. It aims at extract-
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ing the best approximate RDF graph patterns that de-
scribe the input dataset and it works in three indepen-
dent steps that are described below.

Binary Matrix Mapper: Transform the RDF graph
into a binary matrix, where the rows represent the sub-
jects and the columns represent the predicates. They
preserve the semantics of the information by capturing
distinct types (if present), all attributes and properties
(capturing property participation both as subject and
object for an instance).

Graph Pattern Identification: The binary matrix
created in previous step is used in a calibrated version
of the PaNDa+ [24] algorithm, which allows to exper-
iment with different cost functions while retrieving the
best approximate RDF graph patterns. Each extracted
pattern identifies a set of subjects (rows) all having ap-
proximately the same properties (cols). The patterns
are extracted so as to minimize errors and to maxi-
mize the coverage (i.e. provide a richer description)
of the input data. A pattern thus encompasses a set of
concepts (type, property, attribute) of the RDF dataset,
holding at the same time information about the number
of instances that support this set of concepts.

Constructing the RDF summary graph: A process,
which reconstructs the summary as a valid RDF graph
using the extracted patterns is applied at the end. The
process exploits information already embedded in the
binary matrix and constructs a valid RDF schema to
summarize the KB.

6. Experiments

In this section, we compare the quality of the gen-
erated summaries of the three RDF graph summariza-
tion approaches covered in section 5. We implemented
these three approaches in Java 1.8 using the Nxparser?
API to parse the RDF triples. All the experiments ran
on a Intel(R) Core(i5) Opteron 2.5 GHz server with
16 GB of RAM (of which 14 GB was assigned to
the Java Virtual Machine), running Windows 7. Sec-
tion 6.1 describes the datasets considered in the exper-
iments. Section 6.2 gives a quality evaluation of the
created summaries based on the three discussed ap-
proaches and using the metrics described in section 4.

2Nxparser: https://github.com/nxparser/nxparser

6.1. Datasets

Table 3 shows the datasets from the LOD cloud
that are considered for the experiments. The first seven
columns show the following information about each
dataset: its name, the number of triples it contains, and
the number of instances, classes, predicates, properties
and attributes. The eighth column shows the class in-
stance distribution metric which provides an indication
on how instances are spread across the classes and it
is defined as the standard deviation (SD) in the num-
ber of instances per class. When the number of class
instances per class in a dataset is quite close then the
standard deviation is small; while, when there are con-
siderable differences, the standard deviation will be
relatively large. The ninth column shows the property
instance distribution metric which provides an indica-
tion on how instances are spread across the properties
and it is also defined as standard deviation (SD) in the
number of instances per property.

The main goal of our datasets selection is to use
real-world datasets from diverse domains with differ-
ent size (number of triples) and with different numbers
of classes (and class instances) and properties (and
properties instances). We are also interested in the dis-
tribution of the data which might indicate if the struc-
ture of the KB or the size of the represented knowledge
could affect the quality of the generated summaries.
So we have datasets from 270 thousand (Jpeel) to 263
million triples (Lobid), from one (Bank2) to 53 unique
classes (LinkedMDB), from about 76 thousand(Jpeel)
to about 18 million unique instances/entities and from
12 to 222 predicates. These datasets range from being
very homogeneous (the Bank dataset where all sub-
jects have the same list of attributes and properties) to
being very heterogeneous (LinkedMDB where the at-
tributes and properties are very heterogeneous across
types). The diversity of the datasets can help us to un-
derstand better how the selected approaches work in
different situations and thus validate that the proposed
quality metrics will capture the different behaviours
correctly.

6.2. Evaluation Results

In this section, we discuss the quality results of the
RDF graph summarization approaches covered in sec-
tion 5, evaluated over all the datasets described in table
3 for the following two cases:

— Typed Dataset: A significant number of instances
of a dataset have at least one typeof link/property.
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Dataset Triples Instances Classes Predicates properties attributes Class instance distribution Property instance distribution
Mean SD Mean SD
Jpeel [4] 271,369 76,229 9 26 14 12 8,449 8,289.61 9,374.48 15,988.21
Jamendo [3] 1,047,950 335,925 11 25 14 11 20,542 19,622.08 34,633.48 59,458.62
Sec ¢ 1,813,135 460,446 5 12 3 9 66,861.8 41,233.64 144,041.83 63,388.13
linkedMDB [6] 6,148,121 694, 400 53 222 153 69 13,971 37,368.26 24,758.70 80,271.76
Bank [1] 7,348,860 200,429 1 33 0 33 200,429 0 197,065.61 4,786.98
Wordnet [8] 8,574,807 647,215 5 63 55 8 129,147 69,768.22 59,947.92 113,775.88
DBLP [2] 41,802,523 5,942,858 10 19 9 10 497,153.9 971,029.76  538,837.42 805,531.71
Linkedct [5] 49,084,152 5,364,776 30 121 44 71 178,826 217,293.64  214,010.65 218,145.29
Lobid [7] 263,215,517 17,854,885 24 104 40 64 663,355.26  996,359.95 661,974.82 979,956.84

Table 3: Descriptive statistics of the datasets

“U.S. SEC data: http://www.govtrack.us/data/misc/sec.n3.gz
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Fig. 2.: F-Measure results for typed/untped presented datasets at the schema Level
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Fig. 3.: Class precision results for typed/untped presented datasets at the schema Level

— Untyped Dataset: None of the datasets sub-
jects/objects or properties has a defined type (we
explicitly deleted all of them).

6.2.1. Schema level
Table 4 reports the precision, recall and F-Measure
values at the schema level for classes and properties of

the generated RDF summaries over the set of datasets
depicted in table 3 for the typed and untyped cases.
The left part of Table 4 shows the results for the typed
used datasets while the right part shows the results for
untyped used datasets. The Figures 2 and 3 are a flow
chart representing for The overall schema F-Measure
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Algorithm R, P, Fi. R, P, F, F1 Algorithm R. P, Fi. R, P, F, F1
ExpLod 1 046  0.63 1 1 1 0.81 ExpLod 1 040  0.57 1 1 1 0.78
Campinas et al 1 0.77 0.87 1 1 1 0.93 Campinas et al 1 0.40 0.57 1 1 1 0.78
Zneika et al 1 0.84  0.90 1 1 1 0.95 Zneika et al 1 0.66 0.79 1 1 1 0.89
(a) Typed Jpeel (b) Untyped Jpeel
Algorithm R, P, F1, R, P, F, F1 Algorithm R, P, F1, R, P, F, F1
ExpLod 1 0.74  0.85 1 1 1 0.92 ExpLod 1 0.60  0.75 1 1 1 0.87
Campinas et al 1 0.83 0.90 1 1 1 0.95 Campinas et al 1 0.60 0.75 1 1 1 0.87
Zneika et al 1 092 095 1 1 1 0.97 Zneika et al 1 0.79  0.88 1 1 1 0.94
(c) Typed Jamendo (d) Untyped Jamendo
Algorithm R, P, Fl. R, P, F, F1 Algorithm R, P, Fl. R, P, F, F1
ExpLod 1 0.21 0.34 1 1 1 0.67 ExpLod 1 058  0.73 1 1 1 0.86
Campinas et al 1 0.28 0.43 1 1 1 0.71 Campinas et al 1 0.58 0.73 1 1 1 0.86
Zneika et al 1 0.53  0.69 1 1 1 0.84 Zneika et al 1 0.83  0.90 1 1 1 0.95
(e) Typed Sec (f) Untyped Sec
Algorithm R, P. F1, R, P, F, F1 Algorithm R. P. F1, R, P, F, Fl1
ExpLod 1 0.03  0.05 1 1 1 0.52 ExpLod 1 0.03  0.05 1 1 1 0.52
Campinas et al 1 1 1 1 1 1 1 Campinas et al 1 0.03 0.05 1 1 1 0.52
Zneika et al 1 1 1 1 1 1 1 Zneika et al 1 1 1 1 1 1 1
(g) Typed Bank (h) Untype Bank
Algorithm R, P, F1, R, P, F, F1 Algorithm R, P, F1, R, P, F, F1
ExpLod 1 028 043 1 1 1 0.71 ExpLod 1 020 033 1 1 1 0.66
Campinas et al 1 0.33 0.49 1 1 1 0.74 Campinas et al 1 0.20 0.33 1 1 1 0.66
Zneika et al 1 0.87  0.93 1 1 1 0.96 Zneika et al 1 080  0.89 1 1 1 0.94
(i) Typed LinkedMDB (j) Untyped LinkedMDB
Algorithm R. P, Fl. R, P, F, F1 Algorithm R, P, Fl. R, P, F, F1
ExpLod 1 027 042 1 1 1 0.71 ExpLod 1 0.16  0.27 1 1 1 0.63
Campinas et al 1 0.80 0.88 1 1 1 0.94 Campinas et al 1 0.16 0.27 1 1 1 0.63
Zneika et al 1 0.89  0.94 1 1 1 0.97 Zneika et al 1 070  0.85 1 1 1 0.92
(k) Typed Wordnet (1) Untyped Wordnet
Algorithm R, P, F1, R, P, F, F1 Algorithm R, P, F1, R, P, F, F1
ExpLod 1 033 049 1 1 1 0.74 ExpLod 1 028 043 1 1 1 0.71
Campinas et al 1 0.73 0.84 1 1 1 0.92 Campinas et al 1 0.28 043 1 1 1 0.71
Zneika et al 1 0.82  0.90 1 1 1 0.96 Zneika et al 1 0.66  0.79 1 1 1 0.89
(m) Typed DBLP (n) Untyped DBLP
Algorithm R, P, F1. R, P, F, F1 Algorithm R, P, Fl. R, P, F, F1
ExpLod 1 0.14  0.09 1 1 1 0.54 ExpLod 1 0.11 0.19 1 1 1 0.59
Campinas et al 1 095 097 1 1 1 0.98 Campinas et al 1 0.11 0.19 1 1 1 0.59
Zneika et al 095 091 092 093 1 096  0.94 Zneika et al 1 075  0.85 1 1 1 0.94
(o) Typed Linkedct (p) Untyped Linkedct
Algorithm R, P. F1, R, P, F, F1 Algorithm R. P. F1,. R, P, F, Fl1
ExpLod 1 023 037 1 1 1 0.68 ExpLod 1 023 037 1 1 1 0.68
Campinas et al 1 0.82 0.90 1 1 1 0.95 Campinas et al 1 0.23 0.37 1 1 1 0.68
Zneika et al 1 085 091 1 1 1 0.96 Zneika et al 1 0.80  0.87 1 1 1 0.93
(q) Typed Lobid (r) Untyped Lobid

Table 4: Precision, Recall and F-Measure at the Schema level. The R. column reports the schema class Recall
S chemaRecciqssan- The P. column reports the schema class precision SchemaPreccissan. The F1, reports the
schema class F-measure SchemaF1.. The R, column reports the schema property Recall §chemaRecp;operiyair-
The P, coulmn reports the schema property precision S chemaPrecproperyan- The F1, column reports the schema
property F-measure S chemalF1,. The F1 column reports the overall schema F-Measure S chemaF'1
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and the class precision metrics values receptively that
carries more visualization details.

We can note from Table 4 that the schema property
recall, schema property precision and the schema prop-
erty F-Measure, reported in columns R, P, and F, re-
spectively, are always equal to 1 for the ExpLod and
the Campinas et al algorithms over all the presented
datasets. The same is true for the schema class recall
reported in column R.. We can also note from the right
part of the 4 that the values of the previously men-
tioned measures are equal to 1. This is because the Ex-
pLod and Campinas et al algorithms depend on the no-
tion of the forward bisimulation that groups the orig-
inal nodes based on classes and/or predicates, hence
they are no missed properties or types (and of course
nothing new is added), thus the schema class recall val-
ues will be always 1 for the ExpLod and the Campinas
et al. A predicates-based grouping is necessary for the
Campinas et al algorithm when the entities’ nodes do
not have a class definition, hence they are no missed
properties for the untyped case, which explains why
the values for these measures have not changed for the
untyped datasets. This is also explains why we have the
same measures’ values for the ExpLod and Campinas
et al for the untyped datasets. For Zneika et al algo-
rithm, although it depends on the approximation type
selected, if we exclude the linkedct dataset the values
for measures mentioned previously are also equal to 1
for the typed an untyped datasets, which means that the
algorithm successfully summarizes the KBs, despite
the fact that by construction the algorithm uses approx-
imate pattern mining to detect the classes and proper-
ties available and thus some could have been possibly
missed.

Another notable observation from the Table 4g and
the Figure 2b, is that for the Bank dataset and for the
overall schema F-Measure the perfect value (equal to
1) is reported for the Zneika et al and Campinas et al
algorithms. This is because the Bank dataset is a fully
typed and homogeneous dataset(each subject of this
dataset has at least one typeof link/property) and as we
explained earlier, the Campinas et al algorithm groups
the original nodes based only on their types when types
exist, hence they are no missed or added properties in
this case.

For the Sec dataset, the table 4e shows that the val-
ues of schema class precision reported in column P,
and depicted in Figure 3a are low for the three dis-
cussed algorithms. This is because that the ground
truth schema of the Sec dataset contains a lot of inher-
itance relationships and as none of three discussed al-

gorithms deals with inheritance, the three algorithms
end up with a lot of overlapping patterns (some prop-
erties which belong to the subclasses are assigned to
the patterns which represent the superclasses).

Table 4 shows well that algorithms like ExpLod do
not provide quality summaries in extreme cases like
the Bank dataset (where we have only one class) or
in heterogeneous datasets like LinkedMDB, Linkedct
and DBLP, where we report very low precision values,
because instances of the same class in these cases are
having quite different properties and they cannot be
grouped together by ExpLod. We can also note from
Table 4 and the Figures 3 and 2 that the Zneika et al
algorithm gives better results, when compared with the
other two algorithms, over all the presented datasets,
and it showcases that it works well with heterogeneous
datasets like the LinkedMdb, unlike the ExpLod and
Campinas et al that give a low class precision with the
heterogeneous datasets.

By comparing the results for the fyped datasets case
depicted in Figure 3a and the untyped datasets depicted
in Figure 3b. We can easily observe that the behaviour
of Zneika et al and ExpLod algorithms in the case of
the untyped cases is the same as in the case of the fyped
datasets, which means that the quality of the summary
is not affected by the presence (or not) of schema in-
formation in the KB. While we can easily observe the
significant impact the absence of typeof schema infor-
mation had for the Campinas et al algorithm.

The discussion so far provides some insights on how
we can use the proposed Quality Framework to assess
the quality of the summaries produced by the differ-
ent algorithms. Since we are looking at comparing the
quality of the computed summary to a ground truth
summary provided by an expert in general we can ob-
serve that:

— the summarization algorithms usually capture
correctly the properties involved in the data but
miss at different levels (and for different reasons)
some of the classes. The Quality Framework pro-
vides enough resolution to really identify the al-
gorithms that provide a better summary in turn
of the classes reported and the quality of this re-
port (e.g. are all properties reported, is the class
present as one entity in the computed summary,
etc.).

— the summarization algorithms could have quite a
few differences when reporting on the contents of
the KB and the quality of the summaries could
greatly vary and this is mostly because of the dif-
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ferences in the precision of reporting the classes
in the summary, including penalizing verbose de-
scriptions (like those reported by Explod). So ac-
tually we can capture even fine differences where
for example a single class in the ground truth is
represented by two in the computed summary.

6.2.2. Instance level

Table 5 reports the precision, the recall and the
F-Measure of RDF summaries at the instance level,
based on the same datasets and algorithms as before.
The left part of Table 4 shows the results for the typed
datasets while the right part shows the results for un-
typed datasets. For each dataset, we report the preci-
sion, the recall and the F-measure values at class and
property level. We note that ExpLod produces the best
results (actually perfect ones, always 1) since it is not
missing any property or class instance because Ex-
pLod works by grouping of even two instances if they
have the same set of attributes and types, thus does
not add any false positives. We can also note that the
instance class precision and the instance recall preci-
sion reported in columns P, and R, are always equal to
1 for Campinas et al algorithm over all the presented
datasets, while the property instance precision reported
in column P, is low in most presented datasets. This is
because the Campinas et al algorithm works by group-
ing of two instances if they have the same set types,
thus it does not add any false positives at the class
level but maybe it will assign some properties to sub-
jects/instances which do not actually have these prop-
erties at the KB (false positive at the property level).
This is explain why it is important to take into consid-
eration quality metrics at the property and class level.

Table 5 shows also that the behavior of Zneika et
al and ExpLod algorithms in the case of the untyped
datasets is the same or approximately the same as in
the case of the typed datasets, which means that the
quality of the summary with regard to the coverage
of the instances is not affected by the presence (or
not) of schema information in the KB for these two
algorithms. On the other hand, we can easily observe
the great positive impact left by the absence of typeof
schema information for the Campinas et al algorithm.

From this discussion, we can observe that the sum-
marization algorithms provide results of good quality
when the coverage of the instances in the KB is con-
cerned. The proposed quality metrics clearly show that
relying only on this metric is not adequate to judge the
quality of a summary since a lot of the algorithms re-
port perfect scores in all measures. But still we have

cases where we can distinguish the quality among the
results based on the instances covered by the com-
puted summary, especially when algorithms use ap-
proximative methods to compute the summary (one al-
gorithm in our case). It is worth noting here that our
Quality Framework can capture both under-coverage
(when not all instances are represented in the final re-
sult) and over-coverage (when some instances are rep-
resented more than once or some fictitious instances
are included) of instances. With the metrics at the in-
stance level we can capture these fine differences for
covering correctly or not and how much the instance
in the KB.

6.2.3. Combined results

By comparing the results in both cases, it becomes
clear why it is important, to take into consideration
quality metrics that capture information both at the in-
stance and the conceptual level. Otherwise behaviors
like the one demonstrated by ExpLod cannot be cap-
tured and summaries that are flawed might be indis-
tinguishable from better ones. Overall, we could argue
that the Quality Framework introduced in section 4 is
adequate for capturing the fine differences in quality of
the summaries produced by the three algorithms. We
can also see that with a closer look at the results we
can gain or verify insights on how specific algorithms
work and the quality of the summaries they produce.

One final metric to be considered is whether the fi-
nal graph is connected or not and appears as more than
one connected components. This might mean that the
summarization algorithm while captures correctly the
important propeties and classes in the KB fails to pro-
vide at the end a connected graph. This is important
because this might signify whether the summary graph
is usable or not for answering for example SPARQL
queries. Table 6 reports the connectivity metric values
for the summaries produced by the three discussed al-
gorithms over all the datasets described in table 3.1t
shows that the ExpLod has always a high values for
this metric which means it provides a disconnected
summary while the two others always have always 1
which means that these two algorithm provide a fully
connected summary.

So measuring the quality at the schema level, the
instance level and the connected components of the
graph can give us a detailed view of the strengths and
weaknesses of a summary and decide whether to use
it or not depending on the potential use and applica-
tion. We avoided combining all the measures together
because this might blur the final picture. The idea is
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Algorithm R, P, F1,. R, P, F, F1 Algorithm R, P. F1. R, P, F, F1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.33 0.49 0.74 Campinas et al 1 1 1 1 1 1 1
Zneika et al 0.99 0.96 0.97 0.99 0.95 0.97 0.97 Zneika et al 0.99 0.96 0.97 0.99 0.95 0.97 0.97
(a) Typed Jpeel (b) Untyped Jpeel
Algorithm R. P, Fl, R, P, F, Fl Algorithm R, P. Fi, R, P, F, F1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.49 0.65 0.82 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 098 099 1 098 099  0.99 Zneika et al 1 0.98  0.99 1 098 099  0.99
(c) Typed Jamendo (d) Untyped Jamendo
Algorithm R, P, F1,. R, P, F1, F1 Algorithm R, P, F1, R, P, F1, F1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.92 0.95 0.97 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 1 1 1 1 1 1 Zneika et al 1 1 1 1 1 1 1
(e) Typed Sec (f) Untyped Sec
Algorithm R, P. F1, R, P, F1, Fl1 Algorithm R. P, F1, R, P, F1, Fl1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.97 0.98 0.99 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 1 1 1 0.97 0.98 0.99 Zneika et al 1 1 1 1 0.97 0.98 0.99

(g) Typed Bank (h) Untyped Bank

Algorithm R. P. F1I. R, P, F1, Fl Algorithm R. P. Fi, R, P, F1, Fl
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.08 0.14 0.57 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 0.93  0.96 1 073 084  0.89 Zneika et al 1 093 096 1 073 084 0.89
(i) Typed LinkedMDB (j) Untyped LinkedMDB
Algorithm R, P, F1,. R, P, F1, F1 Algorithm R, P, F1. R, P, F1, F1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.32 0.48 0.74 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 0.80 0.88 1 0.82 0.90 0.89 Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89
(k) Typed Wordnet (1) Untyped Wordnet
Algorithm R. P. Fi. R, P, F1, Fl Algorithm R. P. F1. R, P, Fl1, FI
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.64 0.78 0.89 Campinas et al 1 1 1 1 0.79 0.88 0.94
Zneika et al 1 0.82 090 1 071 083  0.86 Zneika et al 1 1 1 1 096 098  0.99
(m) Typed DBLP (n) Untyped DBLP
Algorithm R, P, F1,. R, P, F1, F1 Algorithm R, P, F1,. R, P, F1, F1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.79 0.88 0.94 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 1 1 1 0.96 0.98 0.99 Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89
(o) Typed Linkedct (p) Untyped Linkedct
Algorithm R. P. F1, R, P, F1, F1 Algorithm R, P. F1, R, P, F1, Fl1
ExpLod 1 1 1 1 1 1 1 ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.37 0.54 0.77 Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 0.91 0.95 1 086 092  0.935 Zneika et al 1 0.89 094 1 077 088 091

(q) Typed Lobid (r) Untyped Lobid

Table 5: Precision, Recall and F-Measure at the instance level. The R, column reports the instance class Re-
call InstanceRecciyssan- The P. column reports the instance class precision InstancePrecciqassan. The F1. col-
umn reports the instance class F-measure InstanceF1l.. The R, column reports the instance property Recall

InstanceRecproperyan- The P, column reports the instance property precision InstancePrecpyoperyan. The F1, col-
umn reports the instance property F-measure InstanceF1,. The F1 column reports the overall instance F-Measure

InstanceF'1
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Dataset ExpLod Campinas et al Zneika et al
Jpeel 25 1 1
Jamendo 31 1 1
Sec 6 1 1
LinkedMDB 8464 1 1
Bank 11 1 1
Wordnet 778 1 1
DBLP 108 1 1
Linkedct 5699 1 1
Lobid 9786 1 1

Table 6: Connectivity Metric results

not to necessarily prove an algorithm as better or worse
(we can do this to a great extend through the differ-
ent F-measures) but mainly to help the user understand
the different qualities of the summaries and choose the
best one for the different needs of the diverse use cases.

7. Conclusions and Future Work

In this paper, we provided a quality framework by
introducing a set of metrics, that can be used to com-
prehensively evaluate any RDF summarization algo-
rithm that is reported in the literature. The metrics pro-
posed are independent of the algorithm, the KB (thus
the data) and the existence or not of schema informa-
tion within the KB. The literature does not report any
other effort that tries to capture the quality properties
of RDF graph summaries both at the concept (schema)
and instance level in a complete and comprehensive
way. The experiments showed that using the proposed
set of metrics we are able now to compare the qual-
ity at different levels of the RDF summaries produced
by different algorithms found in the literature, applied
on different and diverse datasets and extract useful in-
sights for their suitability for various tasks.

We plan to extend this work by applying the frame-
work to Linked Data sources where quality results
might be different for each part of the linked datasets.
We would like to explore both theoretically and exper-
imentally whether there are ways to provide consoli-
dated quality metrics treating the linked KBs as one,
which will go beyond simply averaging the individual
quality results. We would also like to use the frame-
work to assess the quality of the results of more algo-
rithms, in order to validate experimentally its suitabil-

ity.
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