Semantic Web 1 (2017) 1-40 1
10S Press

A Query Language for Semantic Complex
Event Processing: Syntax, Semantics and
Implementation

Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Syed Gillani ?, Antoine Zimmermann °, Gauthier Picard ® and Frédérique Laforest *

2 Univ Lyon, UIM Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, France
E-mail: syed.gillani @univ-st-etienne.com, frederique.laforest@telecom-st-etienne.fr

® Univ Lyon, MINES Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, France
E-mail: antoine.zimmermann @ emse.fr, gauthier.picard @ emse.fr

Abstract

Today most applications on the Web and in enterprises produce data in a continuous manner under the form of streams, which
have to be handled by Data Stream Management Systems (DSMSs) and Complex Event Processing (CEP) systems. The Semantics
Web, through its standards and technologies, is in constant pursue to provide solutions for such paradigms while employing the
RDF data model. The integration of Semantic Web technologies in this context can handle the heterogeneity, integration and
interpretation of data streams at semantic level. In this paper, we propose a new query language, called SPAsEQ, that extends
SPARQL with new Semantic Complex Event Processing (SCEP) operators that can be evaluated over RDF graph-based events.
The novelties of SPAsEqQ includes (i) the expressibility of temporal operators such as Kleene+, conjunction, disjunction and event
selection strategies, and (ii) the support for multiple heterogeneous streams. SPAseQ not only enjoys good expressiveness but
also uses a non-deterministic automata (NFA) model for an efficient evaluation of the SPAseqQ queries. We provide the syntax
and semantics of SPAseQ and based on this, we implement a query engine that employs NFA to evaluate these operators in
an optimised manner. Moreover, we also present an experimental evaluation of its performance, showing that it improves over
state-of-the-art approaches.

Keywords: Complex Event Processing, Query Language, Semantic Web, SPARQL, RDF streams, Automata Model, Query
Optimisation

1. Introduction

With the evolution of social networks and sensor net-
works, large volumes of data are generated in a stream-
ing fashion. This leads to the popularity of stream pro-
cessing systems, where query operators such as selec-
tion, aggregation, filtering of data are performed in real-
time manner [1,2]. Complex Event Processing (CEP)
systems, however, provide a different view and addi-
tional operators for these applications: each data item

within data streams is considered as an event and pre-
defined temporal patterns are used to generate actions
to the systems, people and devices. CEP systems have
demonstrated utility in a variety of applications includ-
ing financial trading, security monitoring, social and
sensor network analysis [3,4,5]. In general, CEP de-
notes algorithmic methods for making sense of events
by deriving higher-level knowledge, or complex events,
from lower-level events in a timely fashion. CEP appli-
cations commonly involve three requirements:

1570-0844/17/$35.00 © 2017 — 10S Press and the authors. All rights reserved

2 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

(i) complex predicates (filtering, correlation);
(ii) temporal, order and sequential patterns; and
(iii) transforming event(s) into more complex struc-
tures [0,7].

The past several years have seen a large number of
CEP systems and query languages developed by both
academic and industrial world [5,8,9,10,11,12]. How-
ever, most of the existing CEP systems consider a re-
lational data model for streams and their proposed lan-
guages and optimisations are also tightly coupled with
the model. Hence, the issues of integration and analysis
of data coming from diverse sources — with varying
formats — are not covered under this model and requires
a radical change in their approach.

Following the trend of using RDF as a unified data
model for integrating diverse data sources across het-
erogeneous domains, Semantic CEP (SCEP) employs
the RDF data model to handle and analyse complex re-
lations over RDF graph streams. In addition, it can also
employ the static background information (static RDF
datasets or ontologies) to reason upon the context of de-
tected events. Thus, the events within a data stream are
enriched with semantics, which in turn can lead to new
applications that tackle the variety and heterogeneity
of data sources.

The design of an efficient SCEP system requires care-
fully marrying the temporal operators with the RDF
data model and an additional characteristic of event
enrichment. Even though SCEP can be evolved from
the common practice of stitching heterogeneous envi-
ronments, a well organised query language is a vital
part of SCEP: it not only allows users to specify known
queries or patterns of events in an intuitive way, but
also to showcase the expected answers of a query while
hiding the implementation details.

While there does not exist a standard language
for expressing continuous queries over RDF graph
streams, a few options have been proposed. In par-
ticular, a first strand of research focuses on extend-
ing the scope of SPARQL to enable the stateless
continuous evaluation of RDF triple streams. These
query languages include CQELS [13], C-SPARQL
[14], SPARQLgream [5]: they are used to match query-
defined graph patterns, aggregates and filtering oper-
ators against RDF triple streams, i.e. a sequence of
RDF triples (subject, predicate, object), each associ-
ated with a timestamp 7. These languages do not pro-
vide any temporal pattern matching operator and thus
cannot be classified under the SCEP languages.

The second strand of research focused on SCEP
languages to extend SPARQL with stateful operators,
where few options have been proposed [16,17,18]. EP-
SPARQL [16]—with its expressive language and frame-
work — is the primary player in this field with other
works focusing on a subset of operators and function-
alities. EP-SPARQL extends SPARQL with sequence
constructs that allow temporal ordering over triple
streams and its semantics are derived from the ETALIS
language [19]. Although EP-SPARQL is a pioneering
work in the field of SCEP, it suffers from following
drawbacks:

— It works on a single stream model, and thus does
not support the integration of multiple heteroge-
neous streams.

— It lacks explicit Kleene+, and event selection op-
erators.

— Its definition of sequence operator and graph pat-
tern matching operators are mixed. Thus, making
it difficult to extend it for RDF graph streams, i.e.,
a sequence of RDF graph events, where each event
(1, G) contains an RDF graph G associated with a
timestamp 7 or an interval.

Considering these shortcomings, our contribution in
this paper is twofold. First, we present a novel query
language and system, called SPASEQ, to enable com-
plex event processing over heterogeneous sources us-
ing the RDF graph model. SPAseqQ covers the afore-
mentioned shortcomings of existing languages and sys-
tems, and provides a unified language for SCEP over
RDF graph streams, while introducing expressive ex-
plicit operators over heterogeneous streams. The use of
explicit operators lets the users specify complex queries
at high level and enables the appropriate implementa-
tion details and optimisations at the domain specific
level. The most important feature of SPAsEQ is that it
clearly separates the query components for describing
temporal patterns over RDF graph events, from speci-
fying the graph pattern matching over each RDF graph
event. This enables SPAsEQ to employ expressive CEP
operators, such as Kleene+, disjunction, conjunction
over events from heterogeneous streams.

As our second contribution, we provide an execu-
tional framework for SPASEQ using a non-deterministic
finite automata (NFA) model called NF A, ,. Automata-
based techniques have become a de facto standard for
temporal sequencing on traditional relational data mod-
els [6,7,20]. In particular, the NFA model offers higher
expressiveness and less complexity as compared to its

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 3

deterministic counterparts. Hence, leveraging the well-
established techniques, SPAseQ queries are compiled
over equivalent NFAs, and a run-based technique [21]
is used for the efficient evaluation of SPAsEQ queries.
Moreover, we employ various optimisation techniques
on top of our system. It includes: indexing and par-
titioning of incoming streams by run id; pushing the
stateful predicates and query windows; and lazy evalu-
ation of the disjunction and conjunction operators.
Our main contributions are summarised as follows:

— We present the design and syntax of a novel SCEP
query language, called SPAsEQ, through intuitive
examples.

— We provide the detailed semantics of SPAseQ and
its main operators.

— We provide the NFA-based framework to effi-
ciently compile and evaluate SPAsEQ queries.

— We provide system and operator-level optimisa-
tion strategies for SPAsEQ queries.

— Using real-world and synthetic datasets, we show
the effectiveness of our optimisation strategies and
our experimental evaluations show that they out-
performs existing systems for the same use cases
and datasets.

The rest of the paper is structured as follows. Sec-
tion 2 presents the motivation of a new language and re-
views the limitations of existing approaches. Section 3
presents the data model and syntax of SPAseQ. Sec-
tion 4 presents intuitive examples of SPAsEQ queries.
Section 5 presents the semantics of the SPAseqQ lan-
guage. Section 6 provides a qualitative analysis of
SPAseqQ as compared with related query languages.
Section 7 presents the details about the compilation of
SPAsEQ queries onto the NFA .., model, the evalua-
tion of NFA ., automata and the design of the SPAseQ
query engine. Section § presents the optimisations tech-
niques used for the SPAseEQ query engine. Section 9
provides experimental evaluations of the SPAsEq query
engine.

2. Why A New Language?

In order to justify the need of a new query language
for SCEP, we use a running use case: it illustrates the
main limitations of existing approaches and shows the
kind of expressiveness and flexibility needed.

2.1. A Motivating Example

Consider a smart grid application that processes in-
formation coming from a set of heterogeneous sensors.
Based on the events from these streams, it notifies the
users or an online service to take a decision to improve
the power usage. Let us consider it is working on three
streams: the first stream (S1) provides the fuel-based
power source events, the second stream (S2) provides
the weather-related events, and the third stream (S'3)
provides the storage-related source events that is at-
tached to a renewable power source. Herein, we present
a simple use case (UC) to illustrate the features a SCEP
language should provide.

UC 1 (Smart Grid Environment Monitoring): Con-
sider the aforementioned three RDF graph streams S 1,
So and S 5. These are fed to an application that notifies
the user to switch to renewable power source instead
of fuel-based power source, if the system observes the
following sequence of events: (A) the price of electric-
ity generated by a fuel-based power source is greater
than a certain threshold; (B) weather conditions are
favourable for renewable energy production (one or
more events); and (C) the price of storage source at-
tached to the renewable power source is less than the
fuel-based power source.

UC 1 highlights the following main principles of a
SCEP language:

— Since the RDF model is the corner-stone of SCEP,
its features such as seamless integration of multi-
ple heterogeneous streams (as described in UC 1)
should be considered for the design of a SCEP
language.

— The main aim of an SCEP language is to provide
temporal operators on top of standard SPARQL
operators. Thus, the list of temporal operators
introduced for CEP over relational models [4,9,

], such as sequencing, conjunction, disjunction,
Kleene+ and event selection strategies should be
supported in a SCEP language.

— The SCEP language — by following the custom-
ary design of semantic stream processing lan-
guages such as CQELS, C-SPARQL - should pro-
vide operators to directly enrich events through a
static background knowledge. For instance, a static
background knowledge, such as user profiles and
detailed information about the location of power
sources, can further enrich the context in UC 1.

4 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

Following the language considerations as discussed
above, we also provide some general requirements for
the SCEP language.

— The SCEP language should follow the principle
of genericity, i.e. its design should be independent
of the underlying execution model.

— The SCEP language should provide the property
of compositionality. That is, the output of a query
can be used as an input for another.

— The SCEP language should be user-friendly with
low barrier of entrance, especially in the Semantic
Web community.

The aforementioned points underline the main re-
quirements for a SCEP language. Herein, using them
as a yardstick, we outline the limitations of existing
languages.

2.2. Limitations of Existing Languages

Existing languages for RDF stream processing sys-
tems differ from each other in a wide range of aspects,
which include the executional semantics, data models
and targeted use cases. In this section, we adopt the
same classification criteria as used in [23], and divide
the systems into two classes: RDF Stream Processing
(RSP) systems, and Semantic Complex Event Process-
ing (SCEP) systems. Their details are discussed as fol-
lows.

2.2.1. RDF Stream Processing (RSP) Systems

The standardisation of the RSP is still an ongoing
debate and the W3C RSP community group! is an
important initiative in this context. Most of the RSP
systems [13,14,15,24] inherit the processing model
of Data Stream Management Systems (DSMSs), but
consider a semantically annotated data model, namely
RDF triple streams. Query languages for these sys-
tems are inspired from CQL [25], where a contin-
uous query is composed from three classes of op-
erators, namely stream-to-relation (S2R), relation-to-
relation (R2R), and relation-to-stream (R2S) operators.
C-SPARQL [14] and CQELS [13] are among the first
contributions, and often cited as a reference in this field.
They support timestamped RDF triples and queries are
continuously updated with the arrival of new triples.
The query languages for both systems extend SPARQL
with operators such as FROM STREAM and WINDOW to

https://www.w3.org/community/rsp/

select the operational streams, and the most recent
triples within sliding windows. They also support the
integration of background static data to further enrich
the incoming RDF triples. Unlike the aforementioned
systems, recently, we proposed a system called SPEC-
TRA [26] to process RDF graph streams. It provides
various system and operator level optimisations and
continuously processes the standard SPARQL queries
over RDF graph streams.

All the aforementioned systems and various others
[15,24] are mainly developed as real-time monitoring
systems: the states of the events are not stored to imple-
ment temporal pattern matching among a set of events.
For the same reason, their query languages do not pro-
vide any operators for temporal pattern matching.

2.2.2. Semantic CEP Systems

Semantic CEP (SCEP) systems are evolved from the
classical rule-based CEP systems, i.e. by integrating
high-level knowledge representation and background
static knowledge. To the best of our knowledge, EP-
SPARQL is the only system that provides a unified
language and executional framework for processing
semantically enriched events with temporal ordering.
The main building blocks of the EP-SPARQL lan-
guage are represented by a set of four binary tem-
poral operators: SEQ, EQUALS, OPTIONAL-SEQ, and
EQUALS-OPTIONAL, which can be combined to express
complex sequence patterns over RDF triple streams;
each incoming triple-based event is associated with a
time interval having start and end times.

Although EP-SPARQL is a pioneering work in the
field of SCEDP, it lacks various important features. These
limitations are discussed as follows:

— Multiple Heterogeneous Streams: The EP-SPARQL
data model is based on a single stream model.
That is, a single RDF triple stream is used to eval-
uate the temporal sequences between events. This
contradicts some of the motivations behind SCEP:
the support of heterogeneous multiple streams
forms the backbone of SCEP. The reason is based
on its inspiration from an existing CEP system
(ETALIS), where an RDF triple stream is mapped
onto a Prolog object stream and language oper-
ators are mapped onto the underlying ETALIS
language. Hence, its design is directly motivated
from its underlying executional model, and ex-
tending it for the multiple streams model requires
extensive overhauling of its semantics.

https://www.w3.org/community/rsp/

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 5

Properties of the

Table 1
Existing SCEP Systems

CEP Systems Input Model Operators Available Implementation
EP-SPARQL [16] Triple Streams Sequence, Conjunction, v
Disjunction, Optional
STARQL [17] Triple Streams Sequence X
RSEP-QL [18] Graph Streams Sequence, Event Selec- X
tion Strategies
CQELS-CEP [27] Graph Streams Sequence,Optional, X

Negation

— Temporal Operators: EP-SPARQL only supports
a small subset of temporal operators. Operators
such as Kleene+ or event selection strategies are
not supported. These operators are important for
many applications where semantic noise is ob-
served (more details are provided in Section 6.3).
Moreover, the conjunction and disjunction oper-
ators in EP-SPARQL are inspired from SPARQL
(UNION and AND). These operators do not provide
the nesting over a set of events as described for
CEP systems [5,22]. This leads to a design where
the semantics of temporal operators and SPARQL
graph patterns are mixed, and hence cannot be
easily extended.

— Enriching Events with Background Knowledge:
The static background knowledge is used to ex-
tract further implicit information from events. As
a query language, EP-SPARQL does not provide
any explicit operator to join graph patterns de-
fined on an external knowledge and incoming
RDF events. It, however, employs Prolog rules or
RDFS rules within an ETALIS engine. Neverthe-
less, such feature should be provided at the query
level to give users control on which information
is required or not: this observation is based on
the RSP languages that provide such functional-

ity [28,29].

Apart from EP-SPARQL, recently, some other works
also provide the intuition of SCEP. Some of these works
are presented mainly for the purpose of theoretical anal-
ysis instead of practical implementation, while others
take an approach for transforming queries over ontolo-
gies into relational ones, via ontology-based data ac-
cess (OBDA) with temporal reasoning. Table 1 shows
the properties of these systems. STARQL [30] uses the
OBDA technique to determine Abox sequencing with a
sorted first order logic on top of them. It provides simple
formalism/mapping to SQL for sequence operators and

all the other operators (such as Kleene+, conjunction,
disjunction, event selection strategies) are not part of
its framework. Furthermore, it is not a freely available
system and it does not provide operators for explicitly
referencing different points in time [17]. CQELS re-
cently proposed in [27] the integration of sequence and
path negation operators inspired from EP-SPARQL.
However, its sequence clause is evaluated over a single
stream and its syntax and semantics does not include
event selection strategies. RSEP-QL [18] is a reference
model to capture the behaviour of existing RSP solu-
tions and to capture the semantics of EP-SPARQL’s
sequence operator. It is based on RDF graph model;
however, its main focus is to capture the event selection
strategies and other complex operators are currently not
supported.

In this section, we pointed out various general re-
quirements of an SCEP query language and the limi-
tations of existing SCEP systems and query languages.
Using the aforementioned discussion, we present the
design of a new SCEP language in the subsequent sec-
tions.

3. The SPAseQ Query Language

Considering the shortcomings of EP-SPARQL and
other languages, we propose a new language called
SPAseQ. The design of SPAsEq is based on the fol-
lowing main principles: (1) support of an RDF graph
stream model; (2) adequate expressive power, i.e. not
only based on core SPARQL constructs but also in-
cluding general purpose temporal operators (inspired
from the common CEP operators); (3) genericity, i.e.
independent of the underlying evaluation techniques;
(4) clear separation between the temporal and RDF
graph operators; (5) compositionality, i.e. the output
of a query can be used as an input for another one;
(6) user-friendly with a low barrier of entrance, espe-

6 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

cially in the Semantic Web community. The most im-
portant feature of SPAsEQ is that it clearly separates
the query components for describing temporal patterns
over RDF graph events, from specifying the graph pat-
tern matching over each RDF graph event. This enables
SPAsEQ to employ expressive temporal operators, such
as Kleene+, disjunction, conjunction and event selec-
tion strategies over events from heterogeneous streams.
In the following, we start with the data model over
which SPAsEQ queries are processed and then provide
the details regarding its syntax and semantics.

3.1. Data Model

In this section, we introduce the structural data model
of SPAsEeqQ that captures the concept of RDF graph
events: this serves as the basis of our query language.
We use the RDF data model [31] to model an event.
That is, we assume three pairwise disjoint and infinite
sets of IRIs (Z), blank nodes (15), and literals (£). An
RDF tripleis atuple (s, p,0) € (ZUB)xZx(ZUBUL)
and an RDF graph is a set of RDF triples. Based on
this, the concepts of RDF graph event and stream are
defined as follows.

Definition 1 An RDF graph event (G,) is a pair (1, G)
where G is an RDF graph, and 7 is an associated times-
tamp that belongs to a one-dimensional, totally ordered
metric space.

We do not make explicit what timestamps are be-
cause one may rely on, e.g., UNIX epoch, which is a
discrete representation of time, while others could use
xsd:dateTime which is arbitrarily precise.

In our setting, streams are sets of RDF graph events
defined as follows:

Definition 2 An RDF graph event stream S is a pos-
sibly infinite set of RDF graph events such that, for any
given timestamps T and 7', there is a finite amount of
events occurring between them, and there is at most
one single graph associated with any given timestamp.

An RDF graph event stream can be seen as a se-
quence of chronologically ordered RDF graphs marked
with timestamps. The constraints ensure that it is always
possible to determine what unique event immediately
precedes or succeeds a given timestamp. Without the
first restriction, it would be possible to define a stream
{(2,G) | n # 0 an integer} where there is no event
immediately succeeding 0. In order to handle multiple
streams, we identify each using an IRI and group them
in a data model we call RDF streamset.

Definition 3 A named stream is a pair (u,S) where
u is an IRI, called the stream name, and S is an RDF
graph event stream. An RDF graph streamset X is a
set of named streams such that stream names appear
only once.

In the rest of the paper, we simply use the terms graph
for RDF graph, event for RDF graph event, stream
for RDF graph stream, and streamset for RDF graph
streamset.

Example 1 Recall UC 1, here we extend it with our
data model. The first named stream (u1,S1) provides
the events about the power-related sources from a
house, the second named stream (uz, So) provides the
weather-related events for house, and the third named
stream (u3,S3) provides the power storage-related
events. Figure 1 illustrates the general structure of
the events from each source. For instance, the named
stream (u1,S1) can contain the following events:

| time | graph ‘
:H1 :loc :L1
:H1 :pow :Pwl
10 :Pwl :source ‘solar’
:Pwl :fare 5

:Pwl :watt 20

:H2 :loc :L2
:H2 :pow :Pw2
15 :Pw2 :source ‘wind’
:Pw2 :fare 6
:Pw2 :watt 20

3.2. Syntax of SPASEQ

This section defines the abstract syntax of SPAsEQ,
where SPASEQ queries are meant to be evaluated over
a streamset, and each query is built from the two
main components: graph pattern matching expression
(GPM) for specifying the SPARQL graph patterns over
events; and sequence expression for selecting the se-
quence of a set of GPM expressions. For this discus-
sion, we assume that the reader is familiar with the def-
inition and the algebraic formalisation of SPARQL in-
troduced in [32]. In particular, we rely on the notion of
SPARQL graph pattern by considering operators AND,
OPT, UNION, FILTER, and GRAPH.

Definition 4 A SPAseo SELECT query is a tuple Q =
(V, w, SeqExp), where V is a set of variables, w is a

O 001U A LR —

W —

S

SIS

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 7

(b)

Figure 1. Structure of the Events from three Named Streams, (1a) (u1,S1) Power Event, (1b) (u2, S2) Weather Event, (1¢) (u3,S3) Power

Storage Event

duration, and SeqExp is a sequence expression defined
according to the following grammar:

SeqExp ::= Arom | SeqExp ‘3" Atom | SeqExp ;" Atom

Atom = GPM | GPM‘+’ | BOP
BOP == GPM((‘&|1)) BOP
GPM == (u, P) | (u, P) Graph (u,Pp)

where u is an IRI, P is a SPARQL graph pattern,
(u, P) is called a graph pattern matching expression
(GPM), and Pp is a SPARQL graph pattern defined for
a static RDF graph, i.e. an external knowledge-base.

SELECT ?house ?frl ?fr2

WITHIN 30 MINUTES

FROM STREAM S1 <http://smartgrid.org/mainSource>
FROM STREAM S2 <http://smartgrid.org/weather>

FROM STREAM S3 <http://smartgrid.org/storageSource>

WHERE {
SEQ (A; B+, O

DEFINE GPM A ON S1 {

?house :loc ?1.
?house :pow :Pw.
:Pw :source "fuel".
:Pw : fare 7fril.

FILTER(?frl > 20).
}

DEFINE GPM B ON S2 {

?wther :loc 71.

?wther :value :VI1.
:V1 :light ?1t.
:V1 :windsp ?sp.

FILTER (?sp > 3 && 7?1t > 40).
}

DEFINE GPM C ON S3 {
?storage :loc ?1.
?storage :pow :Pw.

:Pw :source "solar".
:Pw :fare ?7fr2.

FILTER (?fr2 < ?frl).
}
}

Query 1: A Sample SPAseQ Query for the UC 1

The concrete syntax of SPAsEqQ is illustrated in
Query 1 which includes syntactic sugar that is close
to SPARQL. It contains three GPM expressions each

identified with a name (A, B, and C), which allows one
to concisely refer to GPMs and to the named streams.
These names are employed by the sequence expression
to apply various temporal operators. The sequence ex-
pression in Query 1 is presented at line 9; the streams
are described at lines 3-5; the GPM expressions on
these streams start at lines 11, 19 and 27.

One of the main property of the SPAseqQ language
is depicted in Query 1, i.e. the separation of sequence
and GPM expressions. Herein, we first study how the
sequence expression interacts with the graph pattern
to enable temporal ordering between matched events.
We start with the brief description of unary operator
({*+’}), the event selection strategies ({‘;’,‘,’}) and
binary operators ({‘&’, ‘|'}). The details of these op-
erators are covered during the description of their se-
mantics in Section 5. Furthermore, we also present the
Graph operator for the SPAsEQ query language.

3.2.1. SPAseo Unary Operators

The sequence expression SeqExp in SPAsEQ is used
to determine the sequence between the events matched
to the graph pattern P. The symbol {‘+’, } corresponds
to the Kleene+ operator. It determines the occurrence
of one or more events of the same kind. This means a
series of events can be matched using this operator.

3.2.2. SPAskg Event Selection Strategies

In general, the sequence temporal patterns between
events detect the occurrence of an event followed-by
another. However, a deeper look reveals that it can
represent various different circumstances using dif-
ferent event selection strategies [4]. These selection
strategies overload the sequence operator with the con-
straints to define how to select the relevant events
from an input stream, while mixing relevant and irrel-
evant events. The symbols {‘;’, ‘,’} are binary opera-
tors which describe the interpretations of the sequence
between events. An event G| matched to the graph pat-
tern P; followed-by an event G! matched to the graph

8 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

pattern P; can be interpreted as (1) the occurrence of
an event G, is followed-by an event G} and there being
no events of any other type between them (immediately
followed-by (*,)); (2) the occurrence of an event G is
followed-by an event G} and there can be other events
of any named stream between both events (followed-
by (‘3’)). That is, all the irrelevant events are skipped
until the next relevant event is read for the followed-by
operator.

3.2.3. SPAskg Binary Operators

Conjunction and disjunction defined over the event
streams constitute the binary operators. In SPASEQ,
these operators are introduced within the sequence ex-
pression through symbols (‘&’) and (‘|") respectively.
They provide the intuitive way of determining if a set
of events happen at the same time (conjunction) or at
least one event among the set of events happens (dis-
junction).

Example 2 Consider the SPAseo Query 1, which illus-
trates the UC 1. The sequence expression SEQ(A; B+,
O) illustrates that the query returns a match: if an event
of type A defined on a stream S1 matches the GPM ex-
pression A followed-by one or more events (using op-
erators (y’) and (‘+°)) from stream S2 that match the
GPM expression B, and finally immediately followed-
by (using operator (*,’)) an event from stream S3 that
matches the GPM expression C. Notice that a GPM
expression mainly utilises SPARQL graph patterns for
the evaluation of each event.

3.3. SPAseo Graph, Window and Stream Operator

The combination of streaming information in the
form of RDF graph streams and other information from
the static knowledge base can lead to novel seman-
tics and information rich CEP. The Graph operator in
SPAsEQ is designed to take advantage of static infor-
mation available in the form of an RDF graph. Thus,
a graph pattern Pp defined over the static RDF graph
Gp is first evaluated and then the results are matched
with the incoming stream S. This leads to a SCEP sys-
tem, where detailed information regarding a context
can be revealed with the help of already available static
datasets.

In SPASsEQ, the sequence expression is defined over
a streamset. Thus, we use the FROM STREAM clause to
define a set of streams. For instance, in Query | we use
three streams identified as S1, S2 and S3 (lines 3-5).
These stream names are used within the defined GPM

0 —

N W — OO0 W

N

46
48

49
50

expressions. Furthermore, since the sequence over a set
of events is constrainted by the temporal window, we
use the WITHIN clause to define the temporal windows
(line 2 in Query 1). In SPAsEqQ, windows can be defined
in seconds, minutes and hours. For instance, in Query |
we use a 60 MINUTES window.

4. SPAseqQ By Examples

In this section, we provide a list of use cases sup-
ported by SPAseQ, while highlighting its SPARQL-
based and temporal operators. Each example showcases
a specific operator supported by SPAsEQ.

PREFIX pred: <http://example/>

SELECT ?company ?pl ?p2 ?p3 ?p4 ?p5 ?p6 ?p7 ?voll ?vol2
?vol3 ?vol4 ?vol5 ?vol6 ?vol7

WITHIN 60 MINUTES

FROM STREAM S1 <http://stockmarket.org/stocks/google>

WHERE {
SEQ (A, B, C, D, E, F, G

DEFINE GPM A ON S1 {
?company pred:price ?pl.
?company pred:volume ?voll.

}

DEFINE GPM B ON S1 {
?company pred:price ?p2.
?company pred:volume ?vol2.
FILTER (?p2 > ?pl)

}

DEFINE GPM C ON S1 {
?company pred:price ?p3.
?company pred:volume ?vol3.
FILTER (?p3 < ?p2 && 7p3 > ?pl).
}

DEFINE GPM D ON S1 {
?company pred:price ?p4.
?company pred:volume ?vol4.
FILTER (?p4 > 7?p2).

}

DEFINE GPM E ON S1 {
?company pred:price ?p5.
?company pred:volume ?vol5.
FILTER (?p5 < ?p4 && ?p5 > ?p3).
}

DEFINE GPM F ON S1 {
?company pred:price ?p6.
?company pred:volume ?vol6.
FILTER (?p6 > ?p5 && ?p6 < ?p4).
}

DEFINE GPM G ON S1 {
?company pred:price ?p7.
?company pred:volume ?vol7.
FILTER (?p7 < ?p6 && ?p7 > ?7p5).
}
}

Query 2: Head and Shoulders Pattern: SPAsSEQ query

UC 2 (Head and Shoulders Classification) The Head
and shoulders pattern consists of the following peaks:

NN RN o W I NEIC R S

10

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 9

head

P4 right shoulder
left shoulder Pe

price

Figure 2. Head and shoulders pattern for the UC 2

(i) the left shoulder that is formed by an uptrend; (ii)
the head being a peak higher than the left shoulder;
(iii) the right shoulder that shows an increase but fails
to take out the peak value of the head. Figure 2 shows
such a pattern for the stock prices of a company.

Head and shoulders classification is a well-known
pattern to predict the future development of varying val-
ues and belongs to the family of reversal patterns [33].
It is an extension of the V-shaped pattern [9], i.e. the
sequence of values that go down to a lower value, then
rising up to a higher value, which was higher than the
starting value.

PREFIX pred: <http://example/>

SELECT ?vessel ?n ?cname

WITHIN 30 MINUTES

FROM STREAM S1 <http://harbour.org/boats>

WHERE {
SEQ (A, B+, O

DEFINE GPM A ON S1 {
?vessel pred:speed ?sl
?vessel pred:location "harbour".
?vessel pred:direction ?dirl.
FILTER (?s1 > 0)

}

DEFINE GPM B ON S1 {
?vessel pred:speed ?7s2.
?vessel pred:location ?1.
?vessel pred:direction ?dirl.
FILTER (?s2 > ?sl)

}

DEFINE GPM C ON S1 {
?vessel pred:speed 0.
?vessel pred:location "fishingarea".
?vessel pred:direction ?dir3.

GRAPH <http://harbour.org/db> {
?vessel :name ?n.
?vessel :operatedBy ?company.
?company :name ?cname.
}
}
}

Query 3: Trajectory Classification: SPAsEQ query

The application of the head and shoulders pattern
ranges from stock analysis, weather prediction to tra-
jectory classification.

Query 2 shows a SPAsgQ query for such pattern over
the stream of Google stocks, where a set of GPM ex-

pressions are used to determine the sequence over the
stock price values. The SELECT expression provides the
projection of various variables within the GPM expres-
sions, while the GPM expressions utilise the ?company
variable to select the company mappings, and its cor-
responding volume and price mappings. The head and
shoulders pattern in Query 2 can also be spiced up with
the disjunction operator to evaluate the occurrence of
negative head and shoulders.

UC 3 (Trajectory Classification) Trajectory classifi-
cation involves in determining the sequence of objects
movement (trajectories) to determine their types. For
instance, finding the fishing boat by discovering the
trajectory of a boat over some time interval.

A SPASsEQ query to determine the trajectory of fish-
ing boats is described in Query 3. It represents the fol-
lowing sequence: A: vessel leaves the harbour, B: ves-
sel travels by keeping steady speed and direction (one
or more events are registered with Kleene+ operator),
C: vessel arrives at the fishing area and stops. The GPM
expressions in the query employ the same ?vessel
variable to extract the defined sequences related to spe-
cific boats. Another important operator described in
Query 3 is the Graph operator to join the event data
with static knowledge base. That is, using an external
knowledge base, the query extracts the name (?n) and
company name (7cname) of the vessels that follow the
sequence defined in the sequence expression.

UC 4 (Inventory Management) Consider an inven-
tory management system monitoring the status (surgi-
cal usage, recycling, etc.) of equipments in a hospital by
using various RFID sensors. We can define a complex
event by monitoring if a surgical tool is washed/recy-
cled and is put back into the use following the process
of either disinfection or sterilisation.

In the aforementioned use case, RFID generated
events are used to track the status of a product/equip-
ment. Furthermore, we need to construct a new event
composed of the detected events.

Query 4 presents the UC 4, and it consists of four
GPM expressions. The first GPM expression (GPM A
ON S1) determines the recycling status of an instru-
ment, the second and third GPM expressions (GPM B
ON S1andGPM C ON S1) utilise the same variable for
the instrument (?inst) to determine if it has been ei-
ther disinfected or sterilized, and the fourth GPM ex-
pression determines the status of the instrument, i.e.
if it has been used or not. The sequence expression

NN RN o NV I IR

EOR—O

10 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

(SEQ(A; B|C; D)) orchestrates the matching of the
GPM expressions. The disjunction operator (‘|’) in the
sequence expression makes sure that the sequence is
only matched if there are events of type B or C —i.e. the
status of an instrument is “disinfected” or “sterilized”
— between A and D.

PREFIX pred: <http://example/>

CONSTRUCT S2 <http://hospital.org/newStream> {
?inst pred:InRoom ?r3.
?inst pred:name ?nl.

}
WITHIN 60 MINUTES
FROM STREAM S1 <http://hospital.org/instruments>

WHERE {
SEQ (A; B|C; D)

DEFINE GPM A ON S1 {
?inst pred:name ?nl.
?7inst pred:status "recycled"@en.

}

DEFINE GPM B ON S1 {
?inst pred:status "disinfected"@en.

3

DEFINE GPM C ON S1 {
?inst pred:status "sterilized"@en.

}

DEFINE GPM D ON S1 {
?inst pred:InRoom ?r3.
?inst pred:name ?nl.
?inst pred:status "can use"@en.
}
}

Query 4: Inventory Management: SPASEQ query

The CONSTRUCT clause in Query 4 shows the com-
position of new events from the detected ones. That
is, new RDF graph events can be constructed/gener-
ated if the defined sequence is matched with the incom-
ing events. SPAseQ employs the standard CONSTRUCT
expression from SPARQL to create new graph events
from the matched mappings. The set of constructed
events takes the form of a stream (S2 in Query 4), and
they can either be transmitted to the defined sink (an
application) or can be reused within the defined query.
Note that the syntax and implementation of SPAsEQ
supports the CONSTRUCT clause. However, for the sake
of brevity, during the discussion of SPAsEQ semantics,
we focus on SELECT SPASEQ queries.

5. Formal Semantics of SPAsEQ

To formally define the semantics of SPAsEQ queries,
we reuse concepts from the semantics of SPARQL as
defined in [32]. A mapping is a partial function from a
set of variables to RDF terms (BUZUL). The domain of

amapping y, denoted dom(u), is the set of variables that
have an image via u. We say that two mappings ¢ and
' are compatible if they agree on all shared variables,
ie. if p(x) = p/(x) for all x € dom(u) N dom(y').
For a graph pattern P, we denote by vars(P) the set of
variables appearing in P and u(P) is the graph pattern
obtained by replacing each variable v € vars(P) by
w(v) whenever defined.

We repeat the definitions of join (), union (U),
minus (\), left outer-join () and evaluation of graph
patterns as in [32].

Definition 5 Let Q21 and Q)5 be sets of mappings:

Oy X Q= {uy U | 1 € Qp, 12 € Qo, 1 and ps compatible}

QUQ={u|peQ orucQ}

D\ Qo= {1 € Q1| forall us € Qo, w1 and ps not compatible}

QlNQQ = (Ql X Qg) @] (Ql \QQ)

Definition 6 Let t be a triple pattern, P, P1, Py graph
patterns and G an RDF graph, then the evaluation [[-]g
is recursively defined as follows:

[tle = {u | dom(u) = vars(t) and u(t) € G}

[[Pl AND PQHG = [PlﬂG N[[PQ]]G
[PLUNION Py = [P1]c U[P2]6

[P1 OPTIONAL Po]g = [P1]c > [P2]g

[P FILTER R]¢ ={u € [Pl | u(R) is true }

In this section, we define the semantics of SPASEQ
in a bottom-up manner, where we start with the seman-
tics of GPM expressions by integrating the temporal
aspects of events and streams. Note that, for the sake
of brevity, we show the evaluation of GPM expressions
over a streamset and the aspects of evaluating Graph
operator (over RDF dataset) within GPM expressions
are discussed later. This will aid us in highlighting the
decisions we took to define the semantics of SPASEQ
operators.

5.1. Evaluation of Graph Pattern Matching
Expressions

In SPAsEQ, Graph Pattern Matching expressions are
evaluated against a streamset over a finite time interval
that “tumbles” as time passes. Consequently, we con-
strain the evaluation function to a temporal boundary
(i.e. a window), with a start time (7,) and an end time
(1.). In addition, we use the notation X(u) to select a
stream of name u from a streamset, such that

S (u) = {S if (u,8)ex

@ otherwise

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 11

The evaluation of a GPM expression is defined as
follows.

Definition 7 The evaluation of a GPM expression
(u, P) over the streamset X for the time boundaries
[Tp,Te] is:

[,]S = {(%,[P6) | (+.G) € Z(u)A
7, <1< 7,)A[P]c # 0}

The evaluation of the GPM expression (u, P) over
an event within a streamset results in a set of mappings
annotated with the timestamp of the matched event. In
the absence of a match, no results are returned for the
considered timestamp.

Example 3 Consider a GPM expression (u1,P1) :=
(u1, {(?h, pow, ?p), (?h, loc, ?1)}) and a power-related
named stream (u1,S1) € X with events as follows:

| fime | graph |
10 :H1 :pow :Pwl
:H1 :loc :L1
15 :H2 :pow :Pw2
:H2 :loc :L2
25 :H3 :pow :Pw3
:H3 :loc :L3

The evaluation of (u1, P1) over X for the time bound-

aries [5,15], i.e. [(ur, Py)]5*"

lows:

, is described as fol-

[time [2n [72p | 71 |
10 :HI :Pwl ;L1
15 :H2 | :Pw2 | :L2

Notice that since the end time of the window is re-
stricted at T = 15, only the eventsatt = 10and v = 15
are included in the result. The event at T = 25 is outside
the window and thus is not included in the results.

In order to define the semantics of sequence expres-
sions, we introduce the notion of BOp expressions, for
conjunction and disjunction operators, defined as fol-
lows:

Definition 8 A BOp expression is either a GPM ex-
pression or an expression containing exclusively binary
operators ‘&’ and ‘|’.

Consequently, a BOp expression does not contain
Kleene+, followed-by, or immediately followed-by op-
erators.

5.2. Evaluation of Binary Operators

Herein, we define the semantics of binary operators
provided for SPAsEQ, i.e. conjunction and disjunction
of events.

Definition 9 Given two BOp expressions ¥y, Uy the
evaluation of the conjunction operator over the
streamset Y. and for the time boundaries [tp, T, is de-
fined as follows:

[0 & W] =
(X % Y) | (1.X) € [¥] A
(1Y) € [Ua] ™ A X ¥ £ 0

The conjunction operator detects the presence of two
or more events that match the defined GPM expressions
and occur at the same time, i.e. containing the same
timestamps.

Example 4 Consider the following, a GPM expression
(u1,P1) = (u1, {(?h, pow,?p), (?h,loc,?)}) and a
power-related named stream (u1,S1) € X as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2

Now consider a GPM expression (us,P3) :=
(ua, {(?w, value, v), (Tw,loc,?1)}) and a weather-
related named stream (uz, S2) € X as follows:

| fime | graph |
10 ;W1 :value :V11
:W1 :loc :L1

(W2 :value :VI12

20 (W2 :loc :L1

The evaluation of the conjunction operator over the
aforementioned GPM expressions and named streams
([(u1,P1) & (uz, P3) [210’25])f0r the time boundaries

[10,25] will result in the following sets of mappings.

[time | ?n [72p [21 [2w | ?v |

l 10 [:H1 [:Pwl [:L1 [:Wll :Vll‘

12 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

‘We now define the disjunction operator. It detects the
occurrence of events that match to a GPM expression
within the set of defined ones.

Definition 10 Given two BOp expressions V1 and Vs,
the evaluation of the disjunction operator over the
streamset Y. and for the time boundaries [ty, T,] is de-
fined as follows:

[0y | o] = [0 U [,

Example 5 Consider the two GPM expressions (u1, P1)

as follows:

[™ =
(X xY) | 3, (n.Y) € [¥]2™IA
(7,X) € [[U]}[ET”’T“] AT <TAX XY #0

From the above definition, the evaluation of the
followed-by operator is simply the join between the
mapping sets from o and the GPM expression. Its eva-
lution is explained in the following example.

and (us, Ps), and the two named streams (u1, Sy), (u2, So) € Example 6 Consider the following, a GPM expression

Y from Example 4.

The evaluation of the disjunction sequence operator
Jorthe sequence expression [((u1, P1) | (u2, P2)))]
and for the time boundaries [10,25] is as follows:

[fime | ?2n [7p [721] 7w [?v |
10 :H1 :Pwl ;L1
10 ;L1 W1 :V11
15 ;L1 W1 :V11
20 ;L1 (W2 | :vI12
25 :H2 | :Pw2 | :L2

Notice that the disjunction operator may generate
several sets of mappings for the same timestamp, as we
can see at time 10 in the example.

5.3. Evaluation of Event Selection Operators

The event selection operators, i.e. followed-by and
immediately followed-by, determine how a matched
event follows the other. Interpreting sequence opera-
tors has been shown to be subject to design decisions,
as shown by [4,18]. Here we present two possible in-
terpretations of the followed-by operator. These inter-
pretations can be classified as skip-till-next and skip-
till-any according to [4]. While the latter is relatively
easy to define and understand, the former leads to more
efficient implementations.

Let o be a sequence with a set of GPM expres-
sions and binary/unary operators. The evaluation of
the followed-by operator according to the skip-till-any
interpretation is defined as follows:

Definition 11 Given a sequence o and an BOp ex-
pression VU, the evaluation of the followed-by (;) se-
quence operator in the skip-till-any configuration over
a streamset 3 for the time boundaries [y, T, is defined

[10,25]
E i)

(u1,P1) = (u1,{(?h, pow,?p), (*h,loc,?)}) and a
power-related named stream (u1,S1) € X as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
15 :H2 :pow :Pw2
:H2 :loc :L1

A GPM expression as follows:
(ug, Pa) := (ua, {(?w,value, 7v), (Tw, loc, 1) })

and a weather-related named stream (us,Ss) € 3 as
follows:

] time [graph [
15 ;W1 :value :V11
:W1 :loc :L2
20 W1 :value :V11
(W1 :loc :L1
25 (W2 :value :VI12

(W2 :loc :L1

Then for the evaluation of the followed-by opera-
tor in the skip-till-any configuration on these GPM
expressions for the time boundaries [10,25], i.e.
[(u1, P1); (uz, P2) [210’25], we have the mappings as
given below.

[time | ?n [7p [?1] 2w | ?v |
20 :H1 :Pwl | L1 :W1 :V11
25 :H1 :Pwl | L1 (W2 | :vIi2
20 :H2 | :Pw2 | L1 :W1 :V11
25 :H2 | :Pw2 | L1 tWi :V11

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 13

Notice that there are four matches sequences: both
the first and seconds events (at T = 10 and T = 15)
from the power-related named stream matched with
both events (t = 20 and T = 25) in the weather-
related named stream. This is due to the skip-till-any
nature of the followed-by operator and all the possible
combinations of matches are produced.

The following definition shows the evaluation of the
followed-by operator under the skip-till-next configu-
ration.

Definition 12 Given a sequence o and an BOp ex-
pression VU, the evaluation of the followed-by (;) se-
quence operator in the skip-till-next configuration over
a streamset 3 for the time boundaries [y, T, is defined
as follows:

lors W™ =
.XXY I/, TXGO'T””/\T’<T/\
() |
nY) e [U)2 ™ AX x Y #£0

vz ((,2) € IS A (7 <7 < 1)) = X % Z =0

Example 7 Consider the GPM expressions (u1, P1),
(u2, P2) and the streams from Example 6. Then for the
evaluation of the followed-by operator in the skip-till-
next configuration on these GPM expressions for the
time boundaries [10,25], i.e. [(u1, P1); (u2, P2)]s; [0, 25],
we have the mappings as given below.

[time | ?n [7p [71 [7w [?v |
20 :H1 :Pwl L1 tW1 :V11
20 :H2 | :Pw2 | :L1 tW1 :V11

Due to the skip-till-next configuration of the followed-
by operator, there are only two matches in the afore-
mentioned example. Both events (att = 10andt = 15)
from the power-related stream match with just one event
(at T = 20) from the weather-related stream. Nonethe-
less, the semantics provides a set of results for each
timestamp from the second stream even if that set is
empty. As already pointed out after Example 4, this is a
desirable feature for the definition of the immediately-
followed-by operator.

We now define the semantics of the immediately
followed-by operator, where U is a set of stream names
within a streamset 2.

Definition 13 Given a sequence o and a BOp expres-
sion U, the evaluation of the immediately followed-by

(,) sequence operator over a streamset 3. for the time
boundaries [tp, T,] is defined as follows:

lo, U] [ro.r.]
(LXxY) \ I, (7,X) € [[0']][2””“]/\
nY) e [U)P™ AT <t AX MY £DA
Yuvt' vG ((7,G) e Z(u) AT >T) =1 > 1

The semantics of the immediately followed-by oper-
ator follows the semantics of the followed-by operator,
however with one important difference: the contiguity
between the matched events. That is, an event is im-
mediately followed-by another, only if there can be no
other events between the two selected ones.

Example 8 Consider the GPM expressions and the
named streams defined in Example 6. Then the
evaluation of the immediately followed-by opera-
tor ([(u1, P1),(u2, P2) [1025]) for time boundaries
[10,25], will results in a single sequence match with
the following mappings.

[time | ?n [72p [721 [2w | ?v |
|20 [:HZ[:Pw2[:Ll[:Wl[:Vll‘

This is due to the strict ordering of the immediately
followed-by operator. That is, for first event (at T =
10) in power-related stream, there is no immediately
Jollowed-by event in the weather-related stream.

5.4. Evaluation of Kleene+ Operator

We now move towards the definitions of the unary
operator, namely Kleene+. We first define its semantics
in a standalone manner and then recursively define it
with the help of sequence o.

Definition 14 The evaluation of the standalone Kleene+
operator over the streamset Y. and for the time bound-
aries |1y, 7, is defined using auxiliary constructs -* for
integers k > 0 as follows:

[, PY' T = [, PYJE™

Mum”ﬂ”“ [(u, PY; (u, P)]

[(u, P)+]5; [rore] U (u, P k]}[T"]
eN*

The Kleene+ operator groups all the matched events
with the defined GPM expression. Notice that the evalu-
ation will not only match the longest sequence of match-

14 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

ing patterns, but will also provide results for the shorter
sequences (using followed-by operator () with the skip-
till-next configuration). The case of the Kleene+ oper-
ator with sequence o using additional followed-by and
immediately followed-by is defined as follows:

Definition 15 Let e denote either , or ;. Given a se-
quence expression o, the evaluation of the Kleene+
operator in a sequence over the streamset Y. and for
the time boundaries [y, T,] are defined as follows:

= o e (u, P)]5; [r.7]
= o o (u, PY, (u, P)]
U [o e (u, P kﬂ[T”T‘]

keN*

[o e (u, P)* [T” i3
[o o (u, P)"“]][T”)
[o o (u, P)+]5™ =

Example 9 Consider the following, a GPM expression
(u1, P1) = (u1, {(?h, pow,?p), (?h,loc,?)}) and a
power-related named stream (u1,S1) € X as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2

A GPM expression

(ug, Po) := (ug, {(?w, value, 7v), (?w, loc, 71)})

and a weather-related named stream (uz,Sz) € 3 as
follows:

| time | graph ‘
15 W1 :value :VI11
W1 :loc :L1
2 W2 :value :V12
W2 :loc :L1

The evaluation of the sequence [[(u1, P1); (12, P2)
with the Kleene+ and followed-by (skip-till-next) oper-
ators for the time boundaries [10,20] is as follows:

[fime | ?h [7p | 71 | 2w [?v |
15 :H1 | :Pwl | :L1 | :W1 | :V11
20 :H1 | :Pwl | :L1 | :W2 | :V12

Notice that the Kleene+ operator collects one or
more matches for (us, Po) from the weather-related
named stream.

+H[10,20]

5.5. The Graph Operator

The Graph operator within GPM expressions allows
one to query both static data and streams. In the previ-
ous sections, we omitted this construct because it need-
lessly makes the notations cumbersome: it would re-
quire adding an RDF dataset (in addition to a streamset)
as a parameter of the evaluation function.

However, for completeness, we present the definition
of the evaluation of the Graph operator. Now similarly
to the Definition 7, we use a function I'(«) to select an
RDF graph of name u from an RDF dataset D, such
that:

I() = { & if u is not a graph name in D

Gp if (I/l, GD) eD
Definition 16 Let D be an external RDF dataset and
(v, Pp) be a graph pattern. Let (u, P) be the GPM ex-
pression defined over the streamset ¥, and [1p,7,] be
the time boundaries. The evaluation of the GPM ex-
pression and the Graph operator is defined as follows:

[(u, P) Graph (v, PD)H[TI) Tl
Ir(r.G) € E()
ANty <1< T}

={(=.[Ple = [Pple,) |
A dGp € F(V)

The Graph operator provides a useful functionality
in the context of SCEP: it allows static knowledge to
be considered while using the graph structure of the
incoming events.

Example 10 Consider the same GPM expression
(u1, P1) and power-related named stream (u1,S1) € X
presented in Example 9. Now consider a graph pattern
(up, Pp) = (up,{(?h,owner,n), (?h,address,?a)})
defined over an external RDF graph D as follows:

Gp
:H1 :owner :john
:H1 :address :paris
:H2 :owner :smith
:H2 :address :lyon

The evaluation of the GPM expression and the Graph

operator [(u1, P1) Graph (up, Pp)] El;,i)o)] is as follows:

[time [?n [?2p | 21| 7n [7a |

l 10 [:H1 [:Pwl [:L1 [:joh.n[:paris ‘

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 15

5.6. Evaluation of SPAseQ Queries

In the previous sections, we outline the semantics of
temporal operators and Graph operator of the SPAsSEQ
query language. Herein, to sum it up, we present the
evaluation of complete SPAseqQ SELECT queries.

Definition 17 Let €2 be a mapping set, mty, be the stan-
dard SPARQL projection on the set of variables V, and
w be the duration of the window. The evaluation of
SPAseo SELECT query Q = (V, w, SeqExp) issued at
time t, over the streamset Y. is defined as follows:

‘ (r.m () |
[[Q]]z = kg {(T’ Q) e HsquXpﬂ[;kw,er(kH).w]}

where

() = 1| Juo i Ups € Q Adom(uy) C VA
v dom(uz) NV =@

The evaluation of the SPAseQ queries follows a push-
based semantics, i.e. results are produced as soon as
the sequence expression matches to the set of events
within the streamset. Thus, the resulting set of map-
pings takes the shape of a stream of mappings, where
the order within the mappings depends on the underly-
ing executional framework. Note that the definition of
[Q]% is the intended one. It could be possible to define
a continuous version of the query evaluation but we
want to stay agnostic to how the solutions are provided.
For instance, the evaluation could be performed on a
static file with time series, possibly including future
previsions; or the solutions could be provided in bulks
every w time units.

Example 11 Recall the two GPM expressions from Ex-
ample 6, (u1, P1) := (u1, {(?h, pow,?p), (?h,loc, ?1)})
and (ug, Py) := (u2, {(?w,value,?v), (?w,loc,?1)}).
Now consider the power-related and weather-related
named streams (u1,S1), (u2,S2) € X respectively as
follows:

| fime | graph |
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2

| time | graph
15 W1 :value :V11
:W1 :loc :L1
40 ;W2 :value :V12
(W2 :loc :L2

Then the evaluation of a SPAsEQ query

Q = ({?l’l, 7[), ?V},50, ((ul,Pl) 5 (MQ,PQ)))

with the followed-by operator using skip-till-next con-
figuration at time T = 20 over the streamset %, i.e.
[[Q]]ZZO, can be described as follows:

]time[?h[?p [?v[
| 15 [:H1 [:Pwl] :V1I |

In this section, we presented the detailed semantics
of SPAsEQ operators. The processing section presents
how SPAsEQ can be extended for the new operators.
The implementation details of SPAsEQ operators are
provided in Section 7.

5.7. A Note on the Extension of SPASEQ

As discussed earlier, the design of SPAseQ encour-
aged the extensibility of the language with new opera-
tors. Herein, we present two operators and discuss how
they can be integrated into the SPAsEQ query model
and their effects on the semantics of SPAsEQ.

5.7.1. The case of Negation Operator

Negation is a unary operator and is used to describe
the non-occurrence of certain events. For example, we
can extend UC 4 to determine the following sequence:
A: A surgical tool is washed/recycled B: The surgi-
cal tool is not disinfected C: The surgical tool is put
back into use. Let ‘!’ denotes a negation operator, then
the Query 5 presents a SPASEQ query with negation
operator over GPM expression B.

The standalone semantics of the negation operator
can easily be defined. However, discrepancies arise
when it is used with the followed-by and immediately
followed-by operators. For instance, the evaluation of
the negation operator for a GPM expression (u, P) over
a streamset > and the time boundaries [7,, 7.] can be
described as follows:

[PY)E™ = {(1.2) | 3w.8) €S A V1 (1.G) € S,

[Ple=2A 1, <7t<7}

O 001U A LR —

W =

14

16 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

Thus, for each event that does not match with the
GPM expression, the evaluation of the negation oper-
ator returns an empty set associated with a timestamp.
The use of the negation operator in conjunction with
the followed-by operator results in discrepancies, where
it is difficult to differentiate between the results of a
negation operator and the results of a simple GPM eval-
uation in case of non-occurrence of an event. There-
fore, the negation operator requires a new structure
such that we can differentiate between the empty set
from the evaluation of GPM expressions and the GPM
expressions with the negation operator. That is, con-
trary to the natural join of mappings with empty set
I x Q=0 x &= @, for the negation operator we
need a structure such that

TXN=0x7=0Q

An identity element from a commutative monoid
family can be employed to showcase the aforemen-
tioned behaviour of the negation operator.

PREFIX pred: <http://example/>
CONSTRUCT S2 <http://hospital.org/newStream> {
?inst pred:InRoom ?r3.

?7inst pred:status "non-disinfection"@en.

?inst pred:name ?nl.

}

WITHIN 60 MINUTES

FROM STREAM S1 <http://hospital.org/instruments>

WHERE {
SEQ (A, B!, O

DEFINE GPM A ON S1 {
?inst pred:name ?nl.
?inst pred:status "recycled"@en.

}

DEFINE GPM B ON S1 {
?inst pred:status "disinfected"@en.

}

DEFINE GPM C ON S1 {
?inst pred:InRoom ?r3.
?inst pred:name ?nl.
?inst pred:status "can use"@en.
}
}

Query 5: Inventory Management: SPAsEQ query with
Negation Operator

5.7.2. The case of Optional Operator

The optional operator selects an event if it matches
to the defined GPM expression; otherwise it ignores
the event. Since it corresponds to the zero or at-most
one occurrence of an event, it suffers from the same is-
sues as discussed for the negation operator. Hence, the
remedies for the negation operator can directly be ap-
plied to define its semantics. For instance, let us denote

the optional operator with ‘2?’; then its evaluation can
be described using the results of the negation operator
as follows:

[, PYZIE™ = [, PIE™ U [(w, PYTE™

The above discussion highlights what kinds of is-
sues arise with the integration of the negation and op-
tional operators in SPAseQ and point-outs some of the
remedies. In this paper, we do not present the complete
semantics of these operator to keep the discussion fo-
cused on the core operators of SPAseq. However, in
Section 7.7, we present some of the techniques to imple-
ment these operators. The processing section presents
the qualitative comparative analysis of SPAseq and EP-
SPARQL.

6. Qualitative Comparative Analysis

In this section, we present the qualitative comparison
between SPAsEQ and its best competitor EP-SPARQL
from the literature. While a complete formal compari-
son between both is certainly very interesting, we will
leave it for future work and focus on a use-case-based
comparison of these two languages.

6.1. Input Data Model

As discussed in Section 2.2, RSP and SCEP systems
are evolved from DSMSs and CEP systems respec-
tively. Thus, the mapping of triples to tuples seems to be
the obvious choice for existing SCEP systems, leading
to a triple stream model. However, events (within the
relational data model) do not consist of individual data
items but rather a set of them. The decomposition of
data items within an event into a set of RDF triples for
triple streams cannot directly represent the boundaries
of data items within events, and a query that observes
only a partial event may return false results. Moreover,
in order to support heterogeneous streams, the system
must be able to handle streams for which neither the
interval between events, nor the number of triples in an
event are known in advance. Hence, streaming a set of
RDF triples together as an event would not only greatly
simplify the task for event producers, since neither the
order of decomposition of event object graphs, nor the
addition of triples needs to be considered, but it can
also increase the performance of the system [26]. An-
other obvious difference between the data model of EP-

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 17

SPARQL and SPAsEQ is the streamset: SPASEQ queries
are evaluated on a streamset where a set of heteroge-
neous streams can be used, while EP-SPARQL queries
are evaluated on a single stream. For the same reason,
semantically it is not possible to support UC 1 with the
EP-SPARQL queries.

6.2. Timepoints Vs Time Intervals

As evident from the data models, the SPASEQ tem-
poral semantics is based on points in time, while EP-
SPARQL utilises time intervals. The choice of the time-
points for SPAsgQ is based on the following reasons.

1. The W3C RSP working group (as discussed ear-
lier) has been working on the standardising of
RDF stream model for the last three years or so.
Recently, they have provided a draft version of
their recommendations?. Their initial recommen-
dations include both timepoints and time-interval
based semantics. Furthermore, most of the exist-
ing RSP systems employ timepoints-based seman-
tics.

2. Due to the complexity of the RDF data model,
there are obvious and considerable performance
differences between relational CEP and SCEP sys-
tems. Our aim of providing a new SCEP language
and system is to close such gaps, while provid-
ing expressive CEP operators over the RDF data
model. Timepoint-based semantics perfectly fit in
this context and most of the performance inten-
sive CEP systems rely on it, such as SASE [4,8],
Zstream [5].

3. Existing CEP and SCEP systems are based on a
single stream model, and multiple streams have
not gained much attention. SPAseQ provides tem-
poral operators over a streamset, and thus we have
consulted various DSMSs and RSP systems to
weigh up the differences between timepoints and
time-intervals. In the case of time-intervals, the
implementation of joins between different streams
over windows is not a straight forward task and re-
quires careful considerations: Kraemer et al. have
examined such issues in detail for the DSMSs [34].

The use of timepoints results in a cleaner seman-
tics with the focus on how the RDF graph events
and temporal operators are evaluated in an optimised

RDF Stream Abstract Syntax and Semantics: https://goo.gl/
It4dtE, last accessed: February, 2017.

manner. Although the time-interval based temporal
model offers associativity of sequence operator, it can
be considered as an extension of our system to han-
dle events with duration. One of such technique is
called coalescing from the temporal database [35].
Coalescing is a unary operator for merging value-
equivalent elements with adjacent time intervals in or-
der to build larger time-intervals. For instance, con-
sider two fact-based temporal triples (:personl,
:inside-room, :rl, [15:00]) and (:personl,
:inside-room, :rl1, [15:30]), where the two
temporal triples can be replaced with a single one with
a time-interval (:personl, :inside-room, :rl,
[15:00,15:30]). The coalescing operator can be ap-
plied over the evaluation of temporal operators to ex-
tract the intervals over the matching set of mappings.
Moreover, the timestamp in each RDF graph event can
be mapped to time-intervals, i.e. an event (7,G) € S to
([, T+ k], G), while the primitive events — that have no
defined end time — can have same start and end times-
tamps. This would not affect our semantics, since time-
interval [r,7 + k| solely covers a single time, namely
T [34].

Considering aforementioned arguments, herein, the
semantics of SPAsEQ are described using timepoints.
The description of time-interval based semantics for
SPAsEQ is left for the future work.

6.3. Temporal Operators

In our previous discussion, we have emphasised on
the clear differences between the supported temporal
operators for EP-SPARQL and SPAseq. Herein, we
focus on the Kleene+ operator and show its importance.

Recall the head and shoulders pattern from UC 2,
where a V-shaped pattern is extended to determine
the predictive behaviour of certain values. Such a pat-
tern is extensively used in stock market analysis. How-
ever, it does not have a straight forward implication
in use cases related to sensor measurements. For in-
stance, consider UC 1, where the streams provide sen-
sor information about the power and the weather-related
sources. In such a use case, the events will not fol-
low a strict V-shaped pattern, instead multiple events
will entail the same values. This requires a relaxed pat-
tern, where multiple events with the same values can
be consumed. Figure 3a shows a strict V-shaped pat-
tern, where the events should follow the strict sequence
(e2.value < eq.value followed-by es3.value > es.value
followed-by e5.value > eq.value); while a relaxed V-
shaped pattern is described in Figure 3b. In order to

https://goo.gl/It4dtE
https://goo.gl/It4dtE

18 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

value

time

€2

(a)

value

el s
time

ey ey e

(b)

Figure 3. V-Shaped Patterns (a) Without Kleene+ Operator, and (b) With Kleene+ Operator

support such a pattern, SPAseQ provides the Kleene+
operator to consume one or more events with the same
value. However, EP-SPARQL, and other SCEP lan-
guages in the literature, do not provide a Kleene+ oper-
ator and thus only supports the strict V-shaped pattern.

7. Implementing the SPAseQ Query Engine

In this section, we move from the theory to the prac-
tical implementation of the SPAsEQ query engine. We
first present the NFA ., model that is utilised to com-
pile SPAsEq queries, and then provide details regarding
the various system’s blocks and optimisations used for
the SPAsEQ query engine.

In general, for a CEP language, the set of defined
temporal operators are evaluated against the incoming
events in a progressive way. That is, before a compos-
ite or complex event is detected through a full pattern
match, partial matches of the query patterns emerge
with time. These partial matches require to be taken into
account, primarily within in-memory caches, since they
express the potential for an imminent full match. There
exists a wide spectrum of approaches to track the state
of partial matches, and to determine the occurrence
of a complex event. In summary, these approaches in-
clude rule-based techniques that mostly represent a set
of rules in tree structures (such as RETE network) [36],
graph-based representations (such as Event Detection
Graphs) [37,5] to merge all the rules within a single
structure, and finally Finite State Machine representa-
tions, in particular Non-deterministic Finite Automata
(NFA) [8,38]. The choice of these representations is
motivated not only by their expressiveness measures,
but also on the performance metrics that each approach
tries to enhance. For instance, ETALIS [19], a rule-
based engine, mostly focuses on how the complex rules
are mapped and executed as Prolog objects and rules,
while SASE [4,8] and Zstream [5] focus on query-
rewriting, predicate-related optimisations and memory
management techniques.

For the efficient evaluation of SPAseQ queries, we
opt to use an NFA-based execution model. The rational
behind it is based on the following points: (i) given the
semantic similarity of SPASEQ’s sequence expressions
to regular expressions, NFA would appear to be the
natural choice; (ii) NFAs are expressive enough to cap-
ture all the complex patterns in SPAsEQ; (iii) NFAs re-
tain many attractive computational properties of Finite
State Automata (FSA) on words, hence, by translat-
ing SPAsEQ queries into NFAs, we can exploit several
existing optimisation techniques [8,38].

In addition to the NFA-based model, we use opti-
misation techniques to evaluate GPM expressions pro-
posed by our system SPECTRA [26]: SPAsEQ employs
an RDF graph model, it not only requires the efficient
management of temporal operators, but also the effi-
cient evaluation of graph patterns.

In the following, we first describe the NFA ;. model
for SPAsEQ, and later present how SPAsEQ queries are
compiled and evaluated using NFA,. The optimisa-
tion techniques for the execution of SPASEQ queries are
provided in Section 8.

7.1. The NFA., Model for SPAsEg

We extend the standard NFA model [39] in two ways.
First, given that SPAseQ matches events with GPM
expressions, we associate each automaton edge with
a predicate, and for an incoming event, this edge is
traversed iff the GPM expression is satisfied by this
event. Second, in order to handle statefulness between
GPM expressions (shared variables), we store in each
automaton instance the mappings of those events that
have contributed to the state transition of this instance.
We call such an automaton model as NFA ., and it is
defined as follows:

Definition 18 An NFA,., automaton is a tuple A =
(X, E, ©, ¢, x,, x5), where

— X: a set of states;

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 19

— E: a set of directed edges connecting states;

— ©: is a set of state-transition predicates, where
each 8 € ©, 0 = (U,op,P) is a tuple; U is a set
of stream names, op € { ‘&’, ‘+, 1, 5’} U{o}
is a temporal operator, and P is a graph pattern;

— @: is a labelling function ¢ : E — O that maps
each edge to the corresponding state-transition
predicate;

— X,: X, € X is an initial or starting state;

— xy: xp € X is a final state or acceptation state.

We define three types of states: initial (x,), ordinary
(x) and final (xy) states. These state types are analogous
to the ones used in the traditional NFA models to im-
plement the operators such as sequence, Kleene+, etc.
Each state, except the final state, has at least one forward
edge. Note that, we use a structure H = (6;, A;, Q) to
store the set of mappings €2 corresponding to the state-
transition predicate 6; and the automaton instance A;.
Hence, when an event makes an automaton instance
traverse an edge, the mappings in that event are properly
referenced.

Example 12 Figure 4 shows the compiled NFA ., for
the SPAseo Query 1 with the sequence expression
SEQ(A, B+, C). It contains four states, each having a set
of edges labelled with the state-transition predicates.
The state-transition predicate (U, op, P) consists of
three parameters: graph pattern P for the events with
stream names (U); op describes the type of operator
mapped to an edge, for instance edges of state x1 con-
tain the Kleene+ operator. The description of mapping
from the SPAseQ Query I to the NFA,, in Figure 4 is
as follows:

— The SPAseo Query | contains the sequence ex-
pression SEQ(A, B+, C), which produces one ini-
tial state, two ordinary states and a final state.

— State xq has one edge with state-transition predi-
cate (called as GPM A in Query 1) (us,, &, Py),
where Uy, = {S1} and P, is the graph pattern.
Since the sequence expression in Query I only
contains the immediately followed-by operator,
the NFA ., can simply transit to the next state on
matching the state-transition predicate.

— State x1 maps GPM B with Kleene+. Therefore, it
has two edges each with a state-transition predi-
cate (Us,, +, Pp), one with the destination state
X9, and other with itself as destination (x1) to
consume one or more same kind of events; where

U,, = {52} and Pg is the graph pattern.

— State x5 has one edge, which is used to transit to
the next state if an event matches the defined state-
transition predicate (U, &, Pc); where U, =
{83} and Pc is the graph pattern.

(Usy,+,PB)

Wy, , @, Pa) (Usy o+, P3) sy, @, P

Figure 4. Compiled NFA ;¢ for SPAseQ Query 1 with SEQ(A,B+,C)
expression

State-transition predicates are used to determine the
action taken by a state to transit to another. For in-
stance, in Figure 4 the state x(transits to xi, if (1)
the incoming event is from the defined stream name
Us,, (2) the evaluation of the graph pattern P4 does not
produce an empty set. Furthermore, the event selec-
tion strategy also determines if there is a followed-by
or immediately followed-by relation between the pro-
cessed events. Note that, in the presence of the Kleene+
operator, NFA .., will exhibit a non-determinism be-
haviour, since the state-transition predicates will not be
mutually exclusive.

Considering the vocabulary from existing NFA
works [8,38], we say that each instance of an NFA .,
is called a run. A run depicts the partial matches of de-
fined patterns, and contains the set of selected events.
Each run has a current active state. A run whose final
state has reached is a matched run, hence denoting that
all the defined patterns are matched with the set of se-
lected events. We call the output of the matched run as
a query match.

7.2. Compilation of SPAseQ Queries

As discussed earlier, the two main components of
the SPAsEQ language are sequence and GPM expres-
sions. Due to the separation of these components, one
can provide variable techniques to compile and process
them. The compilation process of graph patterns us-
ing the traditional relational operators (e.g., selection,
projection, cartesian product, join, etc.) within each
GPM expression is a straight-forward process from our

20 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

earlier work [26]. Herein, we focus on the sequence
expression and show how the temporal operators are
mapped onto the NFA .

The sequence expression sorts the execution of GPM
expressions according to its entries. Moreover, the tem-
poral operators determine the occurrence criteria of
such GPM matches and the event selection strate-
gies are utilised to select the relevant events. These
constraints or properties are mapped on the NFA,
through the compiled state-transition predicates, while
the window constraints are computed during the eval-
uation of each automaton run.

Let (u1, P1) and (ug, P2) be two GPM expressions,
the compilation of SPAsEQ temporal operators onto an
NFA ., automaton is described as follows.

— Simple GPM expression: The NFA ., for a sim-
ple GPM expression with a sequence expression
forms a state which transits to the next one with
the match of the GPM expression mapped at the
state’s edge. The NFA,., automaton for a GPM
expression (uy, Py1) is presented in Figure 5.

{ur},2,P1)

()

Figure 5. Example of Compilation of the GPM Expression (u1, P1)

— Kleene+: The Kleene+ operator selects a set of
events if they match to the defined GPM expres-
sion. Its automaton is constructed using two edges
with one edge having the same source and desti-
nation state. Thus, it can detect one or more con-
secutive events. The corresponding NFA,,, for
((u1, P1)+) is illustrated in Figure 6.

ur }, +. P1)

ur}, +. P10

Figure 6. Example of Compilation of the Kleene+ Operator
((u1, P1)+)

— Immediately Followed-by: The construction of
NFA,,, for this operator is similar to the com-
pilation of a simple GPM expression, where a
single edge for the corresponding state — having
different source and destination states — is con-
structed. The corresponding NFA,., automaton
for ((u1, P1) , (u2, P2)) is illustrated in Figure 7.

{ur},2,P1) Huz}, 2, P2)

ONROERC

Figure 7. Example of Compilation of the Immediately followed-by
Operator ((u1, P1) , (u2, P2))

— Followed-by: This operator requires the irrelevant
events to be skipped. Thus, two different edges
emanate from the corresponding state. One has
the same source and destination states: this transi-
tion matches any kind of event. The second edge
is destined for the next state with the defined state-
transition predicate. Note that the construction of
both flavours of followed-by operators (skip-till-
next and skip-till-any) is the same with the differ-
ence in the evaluation strategies. The correspond-
ing NFA ., automaton for ((u1, P1) ; (ua, P2)) is
presented in Figure 8, where U = {uy,us} is the
set of stream names.

Hur,u2},;,2)

{uz}.;.P2)

Hu1},92,P1)

Figure 8. Example of Compilation of the Followed-by operator
((u1, P1) 5 (u2, P2))

— Conjunction Operator: This operator detects the
simultaneous occurrence of two or more events.
Thus, there are two edges for the conjunction state,
each destined for the same destination state. The
NFA .., automaton for ((uy, P1)&(u2, P2)) is il-
lustrated in Figure 9, where the conjunction state
has multiple edges, each having different state-
transition predicates.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 21

{ur},&,P1)

()

{u2},&,P2)

Figure 9. Example of Compilation of the Conjunction Operator
((u1,P1)&(u2, P2))

— Disjunction operator: This operator forms a simi-
lar automaton structure as that of conjunction op-
erator, however with the difference of how it is
executed for an active run. That is, only one edge
has to be matched with the incoming event. The
NFA ;.. automaton for ((u1, P1)|(uz, P2)) is illus-
trated in Figure 10.

{u1},],P1)

()

{uz},],P2)

Figure 10. Example of Compilation of the Disjunction Operator
((u1, P1)l(u2, P2))

In the aforementioned discussion, we show the com-
pilation of SPAseQ operators independently. For the
full SPAseEQ query, these operators can be combined
together to form a complex NFA ., automaton. In or-
der to show this, let o~ be a sequence with a set of GPM
expression and binary/unary operators. The compila-
tion of sequence expression (o3 (u, P)+) with the addi-
tional followed-by and Kleene+ operators is presented
in Figure 11. Notice from Figure 11 how the concate-
nating process is simply the mapping of the last state of
sequence o onto the initial state of the GPM expression
(u, P)+.

To conclude, this section presented the mapping of
SPASEQ queries onto equivalent NFA .., automata. In
the next section, we show how NFA,.., automata are
executed while considering the window constraints de-
fined within a query.

7.3. Evaluation of NFA ., Automaton

The compiled NFA,., automaton represents the
model that a matched sequence should follow. Thus,

u},+.P)
o Hu},+,. P

(U}, @)

Figure 11. Example of Compilation of the Sequence Expression
(05 (u, P)+)

Algorithm 1: Processing streamset with NFA .,

Input: X: streamset, A: NFA ., Automaton, w:
time window
1 R < {}: list of active runs
2 H < {}: cache history
3 D « {}: conjunction edge-timestamp map
4 foreach event G, € X do
5 get the initial state xy from A
6 get the final state xy from A
7 get the stream name u from the event G,
8 PROCESSEVENT (G, u, X0, Xxs, H, R, D, A, w)

in order to match a set of events emanating from a
streamset, a set of runs is initiated at run-time. This
set of runs contains partially matched sequences and a
run that reaches to its final state represents a matched
sequence.

When a new event enters the NFA,, evaluator, it
can result in several actions to be taken by the system.
We describe them as follows:

— New runs can be created, or new runs are dupli-
cated (cloned) from the existing ones in order to
cater the Kleene+ operator, thus registering mul-
tiple matches.

— If the newly arrived events match to state-
transition predicates () of the active states, exist-
ing runs transit from one active state to another.

— Existing runs can be deleted, either because the ar-
rival of a new event invalidates the constraints de-
fined in the NFA .., model such as event selection
strategies, conjunction, etc. or the selected events
in those runs are outside the defined window.

These conditions can be generalised into an algo-
rithm that (i) keeps track of the set of active runs (R),
(ii) starts a new run or deletes the obsolete ones, (iii)
chooses the right event for the state-transition predi-
cates (6 € ©), (iv) calls the GPM evaluator to match

22 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

an event with the graph pattern (P) which is provided
in the state-transition predicate (6), and (v) keeps track
of the mappings of matched events with a structure H.

Algorithm 2: ProcessEVENT with NFA .,

Input: G,: Graph Event, u: stream name, xy:
initial state, x,: final state, 7{: cache
history, R: list of active runs, D:
conjunction edge-timestamp map, .A:
NFA., Automaton, w: time window
1 Function
PROCESSEVENT (G, 4, X0, xr, H, R, D, A, w)

2 foreach runr € R do
3 if w > initialising time of r then
4 remove r from the list of active runs R
5 L continue
6 X; < GETACTIVESTATE(r)
7 E < GETEDGESET(x;)
8 get 6 for an edge e € E s.t 6 # € and
6 = (Ug, 0py, Py)
9 if opg = ‘+’ then
10 L KLEENEPLUS (G, u, X7, H, R, 1, x;, E)
11 else if opg = ;" or opg = '@’ then
12 EVENTSELECTION (G, u, X7, H, R, 7,
X, E)
13 else if opy = ‘&’ then
14 ConyuncTtIoN(G,, u, xr, H, R, D, r,
X, E)
15 else if opg = ‘|’ then
16 DisiuncTIoN(G,, u, xf, H, R, 1, Xi,
L E)
// Check if an event G, can create
a new run from the initial state
X0
17 Eo < GETEDGESET(xp)
18 get 6 for the edge e € Ej s.t 6 # € and
6 = (Ug, 0py, Py)

19 if u € Uy and Gprm (G,, Py, H) then
20 initiate a new run r; of A with
21 active state x
22 R+ RUr

Algorithm 1 presents the initialisation process of var-
ious data structures and how a streamset X is processed
against the NFA,.,, automaton .A. The initialised data
structures include (i) a list of currently active runs (R),
where each run stores partial matches; (ii) a history

cache H to store the mappings of matched events; (iii)
an edge-timestamp map D to store the mapping of
events and their timestamps that are matched at a con-
junction operator’s state (lines 1-3). The algorithm se-
lects the initial state xp and final state x; of automa-
ton A, and the stream name u of the event to be pro-
cessed (lines 5-6). This information along-with the ini-
tialised structures is passed to the PROCESSEVENT func-
tion (see Algorithm 2), where each incoming event G,
is matched with the active automaton’s runs.

In Algorithm 2, we present the general execution of
SPAsEQ operators with the arrival of an event. The cus-
tomised execution of SPASEQ operators are provided in
the proceeding sections. Algorithm 2 begins by iterat-
ing over the list of active runs. The list of active runs R
is used to determine if (i) the existing runs are expired
or not, i.e. their initialisation time is outside the window
boundary, and hence to be deleted (lines 2-5); (ii) the
active state of the active run can be matched with the
newly arrived event (lines 9-16). The algorithm starts
by comparing the initialising time of the run r under
evaluation and the defined time window. The run r is
deleted if its outside the defined window (line 3). The
algorithm then extracts the current active state of the
run, and according to the mapped operators it selects
the appropriate function for the corresponding opera-
tor. In the end, the algorithm checks if the incoming
event can start a new run or not (lines 19-22). That is,
it matches the initial state’s (xy) edge of the automaton
A with the incoming event G, using the Gpm function
(line 22) 3. In case of a match and if the event is from
the same stream the edge is waiting for (u € Uy), it
initiates a new run r; of the automaton A with the active
state x1, i.e. it proceeds to the next state (line 23). This
new run is then added to the list of active runs R (line
24).

The proceeding sections, i.e Sections 7.4, 7.5 and
7.6, explain how the functions defined in Algorithm 2
are implemented to support Kleene+, event selection
and binary operators of SPAsEQ respectively.

7.4. Evaluation of the Kleene+ Operator

Previously we show the generic execution for
NFA .., automaton for a sequence expression. Herein,

Herein, for sake of brevity, we only show the simple option where
the complex operators are not mapped at the initial state. However, in
practice, it is implemented using the function for the defined operator
at the initial state.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 23

we present how the unary operator, i.e. Kleene+, is
evaluated. The evaluation of Kleene+ operator is de-
scribed in Algorithm 3 with details as follows.

Algorithm 3: Evaluation of the Kleene+ Operator

1 Function KLEeNEPLUS(G,, u, X7, H, R, 1, x;, E)
2 get @ for an edge e € E s.t 8 = (U, 0po, Py)
3 if u € Ugand Grm (G,, Py, H) then

4 clone a new run r, from r with active state
as x;

5 SETACTIVESTATE(r,, X;41) Where
Xit1 7 Xi

// If it is the final state

6 if x; = xy of r. then
7 a query match has been found
8 remove r from the list of active runs R
9 else
10 | R<RUr
1 else if u ¢ Uy or — Grm (G,, Py, H) then
12 L remove r from the list of active runs R

The evaluation of the Kleene+ operator is an inter-
esting one, since the state-transition predicates of the
two edges are not mutually exclusive. Thus, to cater the
non-determinism of the Kleene+ operator, a new run
is duplicated/cloned from the existing one in case of a
match. Algorithm 3 presents the evaluation of Kleene+
operator. It first uses an edge from the active state to
employ the comparison of stream names to make sure
the event is from the stream the edge is waiting for (line
3). The algorithm then uses event G,, graph pattern Py
and history cache H to execute the GPM process (line
3). If the newly arrived event G, is matched with the
graph pattern Py: (i) a new run r, is cloned from the run
under evaluation with the same active state x; (line 4);
(ii) the cloned run transits to the next state x; 1 (line
5); (iii) if the new active state of the cloned run is the
final state then a query match has been found (l/ines
6,7); (iv) otherwise the cloned run is added to the list
of active runs R (line 9). It then skips to the next run in
R, hence the run under the evaluation stays at the same
state. Otherwise, in case of no match, it removes the
run r from the list of active runs R (lines 10-11). This
way the system can keep track of one or more matched
events of the same kind (see Figure 12).

Example 13 Consider Figure 12. In this example,
ri represents run I, Xo, X1, X2, and Xy represent

the states using sequence expression SEQ (A,B+,C)
(From SPAseo Query 1), and G’e< represents an event
that occurred at time k. The arrival of G} results in a
new run r1 and the automaton transits from state xg
to x1 if Gt matches (Uy,,3,P4). Now considering the
next event G? matches (Us,,+,Pg); the automaton re-
sults in a non-deterministic move due to the Kleene+
operator at the state xo. Hence, the algorithm creates
a new run ry with active state as xs, i.e. transiting from
X1, while rq stays at the same state x1. When Gg’ arrives
and matches to (U,,, D, Pc), r2 moves to the final state
and the match for ry is complete with events G}, G>
and G3, while ry remains active to consume for future
events . Finally, after the arrival and match of events
G2 and G with the corresponding GPM expressions,
r1 reaches the final state with a match using events G,
G2 and G?.

Algorithm 4: Evaluation of the Event Selection
Strategies

1 Function EVENTSELECTION(G,, u, X7, H, R, 1,
Xi, E)
get 0 for an edge e € E s.t 0 = (Uy, opy, Py)
if u € Uyand Gprm (G,, Py, H) then
SETACTIVESTATE(Y, Xj4+1)
// If it is the final state
5 if x; = x; then
a query match has been found
L remove 7 from the list of active runs R

8 else if opy = ;" and u ¢ Uy or ~Gprm (G,,

Pg, H) then
9 ‘ skip the event for the followed-by operator
10 else
11 L remove r from the list of active runs R

7.5. Evaluation of the Event Selection Operators

This section presents the evaluation of event selec-
tion strategies. Algorithm 4 shows the evaluation of
immediately followed-by and followed-by. Herein, we
only discuss the implementation of followed-by opera-
tor with skip-till-any configuration. The optimised im-
plementation of skip-till-any operator will be the topic
of our future endeavours.

24 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

f r

G, G, G;
X0 > X1 > X2 » X; query match
WUy, ,9,Pa) Wsy,+,PB) Wsg,9,Pc)
o2
X2 » Xy query match
(Usg,9,Pc)

1) |

Figure 12. Execution of NFA,p runs for the SPAseQ Query 1, as described in Example 13

7.5.1. Immediately Followed-by Operator

The evaluation of the immediately followed-by op-
erator is rather simple due to the strictness of how an
event should follows other. That is, the incoming event
is compared with the state-transition predicate and if
there is a match the run transits to the next state; oth-
erwise it is deleted. Therefore, Algorithm 4 first gets
the set of edges for the active state and selects the
state-transition predicate (line 2). It then compares the
stream names and the incoming event G, with the graph
pattern Py using the Gem function (line 3). If there is
a match, the current active state x; transits to the next
state (line 4). In case the transited state is the last state
a query match is found (lines 5-6). Otherwise the run
under evaluation is deleted from R (line 11).

7.5.2. Followed-by Operator

From our earlier discussion, the followed-by operator
(with skip-till-next configuration) skips the irrelevant
events utill a query match is completed for the defined
sequence expression. This extended functionality is de-
scribed in Algorithm 4 (lines 8-9). That is, it first com-
pares the stream names. If the event is from the same
stream, the state’s edge is waiting for, i.e. u € Uy, it
employs the same procedure as described for the imme-
diately followed-by operator. In case the arriving event
is from a different stream, i.e. u ¢ Uy (line 8) or the
event is not matched, the algorithm skips the event (line
11). Hence, the run stays at the same state. Algorithm 4
can be extended for the skip-till-any configuration by
initiating a new run each time an event is matched with
the graph pattern Py. However, this will result in a ex-
ponential time complexity and will not be suitable for
real-world applications.

7.6. Evaluation of the Binary Operators

Finally, we present how the conjunction and disjunc-
tion operators are evaluated in an NFA ., automaton.

Algorithm 5: Evaluation of the Conjunction Oper-

ator

1 Function Coniunction(G,, u, x¢, H, R, D, 1, x;,
E)

2 7 < GETTIMESTANMP (G,)
3 AME <« {} // Already Matched Edges
4 foreach each edge e € E do
5 if (r,x;,¢) € D then
6 L | AME < AMEUe
7 get timestamp 7,4 for a € AME using D
8 if 7 # 7,, then
L remove r from the list of active runs R
10 else
1 E <+ E\AME
12 foreach edge ¢ € E do
13 get 0 from the edge e s.t
0= (U@, Opg, Pe)
14 if u € Uyand Gpm (G,, Py, H) then
15 insert (r, x;,¢) and 7 in D
16 L AME = AME Ue
17 E < GETEDGESET(x;)
18 if |AME| = |E| then
19 SETACTIVESTATE(7, Xj+1)
// If it is the final state
20 if x; = x; then
21 a query match has been found
22 remove r from the list of active
runs R

Algorithms 5 and 6 show the execution of these opera-

tors.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 25

7.6.1. Conjunction Operator

The case of the conjunction operator is rather com-
plicated: there are two or more outgoing edges — each
with a distinct state-transition predicate — and the run
should move to the next state if all the state-transition
predicates are matched with the consecutive events hav-
ing the same timestamp. This means we need to track
the edges of a conjunction state that are already been
matched and their timestamps. Therefore, we use a
mapping structure (D) to store the mapping between a
tuple (r, x, e) and a timestamp 7 of the matched events;
where r is the run, x is state with conjunction operator
and e is the edge of the state that is matched with an
event having timestamp 7. The evaluation of the con-
junction operator is presented in Algorithm 5. Its main
evaluation starts by: (i) obtaining the timestamp 7 of
the newly arrived event (line 2) and (ii) initialising a
set (AME) to store already matched edges (line 3). It
then iterates over the set of edges E and checks if any
of the edges have already been matched or not, using
the mapping structure D, while adding the matched
edges to the AME set (lines 4-6). It then extracts the
timestamp 7,;; from an element in AME set using the
mapping structure D (line 7). This timestamp 7,y is
used to check if the newly arrived event has the same
timestamp 7. Otherwise, the algorithm removes the run
r from R, since it has violated the condition of con-
junction operator (lines 8-9). If T = 7,4, it extracts the
set of already matched edges (AME). It then removes
the edges from edge set E that are already matched
with the previous events (line 11). This pruned set E is
then used to match the incoming event with the selected
edges. The algorithm iterates over E and foreache € E
it takes the state-transition predicate 6 to compare the
stream name and graph pattern using the Gpm function
(line 12-14). If there is a match it marks the edge as
matched by adding its mapping in D and inserting the
edge in the AME set (lines 15-16). In the end, the al-
gorithm again extracts all the edges for the conjunction
state and uses the AME set to check if all the edges
are matched or not (line 17-18). In case all the edges
have completed the matching procedure it transits the
run r to the next state (line 19). If the transited state is
the last state a query match is found for the conjunction
operator.

7.6.2. Disjunction Operator

The disjunction operator resembles with the con-
junction operator. However, in this case the run can
transits to the next state if the incoming event matches
to at-least one of the state’s edges. Algorithm 6 presents

Algorithm 6: Evaluation of the Disjunction Oper-
ator

1 Function DrsiyunctIion(G,, u, X7, H, R, 1, x;, E)
2 Matched < false
3 foreach edge e € E do
4 get 0 from the edge e s.t 6 = (Uy, opy, Pg)
5 if u € Uyand Grm (G,, Py, H) then
6 L Matched < true
7 if Matched then
8 SETACTIVESTATE(Y, X;41)
// If it is the final state
9 if x; = x; then
10 a query match has been found
11 remove r from the list of active runs R
12 else
// If none of the edges e€ E
match with the event G,
13 remove r from the list of active runs R

the evaluation of the disjunction operator. It starts by
initiating a variable Matched to keep track if any of
the state’s edge is matched with the incoming event.
It then iterates over each edge using its state-transition
predicate 6 (line 3-10), and compares the stream names
Uy and the graph pattern P, with the event G, (line
5). If any of the edge matches to the event, it updates
the value of the Matched variable (line 6). Next if the
value of Matched variable is true, it transits the run to
the next state (line 8). Similarly to the other algorithms,
if such transition resulted in arriving at the final state
of the automaton, a query match is found and the run
is deleted (line 9-10). Otherwise, if none of the edges
are matched with the event, it deletes the run under
evaluation (line 13).

In the previous sections, we presented the execu-
tion of the SPAseQ temporal operators and how they
use the NFA,,, automaton to implement the required
functionalities. The discussion regarding the run-time
optimisations is provided in Section 8.

7.7. Compilation and Evaluation of Negation and
Optional Operators

In Section 5.7, we discussed the case of integrat-
ing negation and optional operators in SPAsEQ. We de-
scribed the issues that can arise while integrating their
semantics with the core SPAseQ operators. Herein, we

26 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

showcase the techniques to compile and implement
these operators. To allow the expressivity of optional
(?’) and negation (‘!”) operators, we extend op and ¢ in
NFA ., definination (Definition 18), such that op € {
‘&, 4+, YU {gtand g E — O U {€},
where € denotes the instantaneous transition [40]. The
compilation process of optional and negation operators
is described as follows:

— Optional: The optional operator selects an event
if it matches to the defined GPM expression; oth-
erwise it ignores the event. Its compilation re-
sults in two edges: one with an e-transition and
the other with the defined state-transition predi-
cate. The corresponding NFA,., automaton for
((u1, P1)?) isillustrated in Figure 13. The € transi-
tion allows the transition to the next state without
a match.

Hu1},7,P1)

()

Figure 13. Compilation of the Optional Operator for ((u1, P1)?)

— Negation: This operator detects if either no match
of an event occurs or there is no occurrence of
the expected event. Thus, it behaves similarly to
the optional operators, however the GPM process
is opposite. That is, if an event matches to de-
fined GPM expression, then it violates the condi-
tion of the sequence. The corresponding NFA,,,
automata for ((u1, P1)!) is illustrated in Figure 14.

Hui}, 1, P1)

()

Figure 14. Compilation of the Negation Operator for ((u1, P1)!)

We now present the evaluation of the negation and
optional operators. The evaluation functions of these
operators can be integrated in Algorithm 2.

Algorithm 7: Optional Operator’s Evaluation

1 Function Opt10oNAL(G,, 4, x5, H, R, 7, x;, E)
2 get 0 for an edge e € E s.t 8 # € and
6 = (Ug, 0py, Py)
if u € Uy then
if Grm (G,, Py, H) then
| SETACTIVESTATE(r, Xi41)
else
if PROCEEDINGSTATE(G,, U, X;, Xf)
then
‘ SETACTIVESTATE(Y, Xj+2)
else
10 L SETACTIVESTATE(r, Xiy1)

N S BW

e e

11 else if u ¢ U, then

12 if PROCEEDINGSTATE(G,, u, X;, xs) then
13 ‘ SETACTIVESTATE(Y, Xj12)

14 else

15 L SETACTIVESTATE(Y, Xj+1)

// If it is the final state

16 if x; = x then

17 a query match has been found

18 remove r from the list of active runs R

7.7.1. Optional Operator

The main difference between the evaluation of
the optional and negation operators is to differenti-
ate between the occurrence and non-occurrence of
an event. For instance, given a sequence expression
SEQ(A,B?,C) and events G} and G2. If G matches
A then we have to match GZ with both B and C; since
it is possible that the event G2 does not match with B
but with C, and in such a case we can have a query
match. Therefore, the evaluation of the optional opera-
tor makes sure that the event that does not match with
the optional state is compared with the next state’s state-
transition predicate. The evaluation of the optional op-
erator is shown in Algorithm 7. It first employs the edge
with state-transition predicate 8 # € (lines I) and uses
the stream names to make sure the event is from the
stream the edge is waiting for (line 3). The algorithm
then uses event G,, graph pattern Py and the history
cache H to execute the GPM process (line 4). If the
event G, matches with the selected edge, it transits to
the next state (line 5). Otherwise it checks the event G,
with the next state-transition’s predicate (line 7-10) us-
ing the CHECKNEXTSTATE function in Algorithm 8. If
the event G, matches to the next state-transition pred-

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 27

icate — considering if it is not the final state — it tran-
sits the active state x; to x; o (line 8). Furthermore, if
the event is not from the desired stream, the run takes
the e-transition and compares the next state-transition
predicate to either transit to the next state x;;; or next
of the next state x;;o (lines 12-15). During the eval-
uation of the operator, if the current state reaches the
final state, the algorithm output the query match (line
16-18).

Algorithm 8: Comparing Proceeding State’s Tran-
sition Predicate

1 Function PRocEEDINGSTATE(G,, u, Xy, H, R, 1)

2 select proceeding state x; 1
3 if Xi+1 = Xy then
4 | return false

5 E < GETEDGESET(X;41)

6 get 0 for an edge e € E s.t @ # € and
6 = (Us, sfg, 0pg, Poy)

7 if u € Ugand Grm (G,, Py, H) then

8 | return true
9 else
10 | return false

7.7.2. Negation Operator

The negation operator is evaluated in a similar fash-
ion compared with the optional operator. However, in
this case, the run transits to the next state (producing an
identity element) if there is no match with the mapped
graph pattern Py. The evaluation of the negation oper-
ator is described in Algorithm 9. It begins by selecting
the state-transition predicate and compares the stream
names and graph pattern Py with the event G, using
GpwM function (lines 4). If Gpm returns false, i.e. the
event is not matched with the graph pattern, the al-
gorithm uses the CHECKNEXTSTATE function to deter-
mine if such an event can be matched with the next
state-transition predicate x; 1 (line 5), as described for
the optional operator. In case the current active state
x; is matched with the event G,, it means the run has
violated the negation operator and should be deleted
(line 10-11). If the event is from a different stream, the
evaluation of the negation operator is same as that of
optional operator (lines 12-19).

7.8. Design of the SPAseo Query Engine

Having provided the details of compiling the SPAsEQ
queries onto NFA., automata and their evaluation

Algorithm 9: Negation Operator’s Evaluation

1 Function NeGat1oN (G, u, X7, H, R, r, x;, E)
2 get 0 for an edge e € E s.t 8 # € and
6 = (Us, 5.fg, 0po, Po)

3 if u € Uy then
4 if -Grm (G,, Py, H) then
if PROCEEDINGSTATE(G,, U, X;, X5)
then
‘ SETACTIVESTATE(Y, Xj4+2)
else
8 L SETACTIVESTATE(Y, Xj+1)
9 else
10 remove r from the list of active runs R
1 return

12 else if u ¢ Uy then

13 if PROCEEDINGSTATE(G,, u, X;, x) then
14 | SETACTIVESTATE(r, Xi42)

15 else

16 L SETACTIVESTATE(Y, Xj41)

// If it is the final state

17 if x; = x; then
18 a query match has been found
19 remove r from the list of active runs R

strategies, herein we provide an overview of the system
architecture of SPAsEQ query engine.

Figure 15 shows the architecture of the SPAseQ query
engine. Its main components are input manager, queue
manager, query optimiser, NFA evaluator, and an RDF
graph processor in GPM evaluator. In the following,
we briefly discuss these components.

The queue and input managers do their usual job
of feeding the required data into the NFA evaluator.
Since our system employs streamsets, there are multiple
buffers to queue the data from a set of streams. More-
over, the newly constructed events for SPAsEQ queries
can also be fed back to the queue manager for further
processing. The incoming data from streams are first
mapped to the numeric IDs using dictionary encoding*.

Dictionary encoding is a usual process employed by a variety
of RDF-based systems [41,42]. It reduces the memory footprints
by replacing strings with short numeric IDs, and also increases the
system performance by using numeric comparisons instead of costly
string comparisons.

28 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

I I

NFA Evaluator Output

(Composite Events)
NFA @

'scep

O O O

Result Buffer

RDF Graph Streams * Composite Events
$ Y YV) e
1
ITTT1]
[inputManager]| | |q} (T
3 T
| D> | o T P9 | Cache Manager Automata
1 [}
! Dictionary ’ O
e _ ! Queue Manager —
>
Query /\\V_)\‘
Optimiser o
ey
XI

Static RDF Data

i @ ’/\I
i A=
| L

[
\¢ \
i d

GPM
Evaluator

Main Memory
Structures

Figure 15. Architecture of the SPAseQ Query Engine

The input manager also utilises an efficient parser>-° to
parse the RDF formatted data into the internal format
of the system.

At the heart of SPAsEQ query engine, the GPM eval-
uator uses the GPM expressions, events, cache history
and edge-timestamp mappings, as described in Algo-
rithms 3, 4, 5 and 6 to match the defined graph pattern
with the incoming events. We employ our SPECTRA
GPM engine [26] for this task. SPECTRA is a main
memory graph pattern processor but uses specialised
data structures and indexing techniques suitable for the
optimised evaluation of RDF graph events. We employ
two main operators of SPECTRA for SPAsEeQ and they
are described as follow:

— The SummarRYGRAPH operator enables the sys-
tem to avoid storing all the triples within an event
by exploiting the structure of the graph patterns.
That is, the graph pattern P is used to prune all
the triples within an event that do not match the
subjects, predicates or objects defined in P. The
pruned set of triples within an event, called Sum-
mary Graph, are materialised into a set of verti-
cally partitioned tables called views. Each view,

We employ the performance intensive NxParser, which is a non-
validating parser for the Nx format, where x = Triples, Quads, or any

other number.
6

NxParser: https://github.com/nxparser/nxparser, last
accessed: June, 2017.

a two-column table (s, 0) stores all the triples for
each unique predicate in a summarised event.

— The QueErYPRrROCESsOR operator employs the set
of views to implement multi-join operations using
incremental indexing. That is, for each view a sib-
ling list is used to incrementally determine the set
of joined subject/objects that belong to a specific
branch within a graph. This results in an incre-
mental solution, where the creation and mainte-
nance of the indexes are the by-product of the join
executions between views, not of updates within a
defined window.

The use of specialised indexing techniques and data
structures enables SPECTRA to outperform existing
RSP systems up to an order of magnitude [26]. Thus,
employing such optimisations also aids the evaluation
of GPM expressions in SPAseQ. Furthermore, the eval-
uated events can also be enriched using the static RDF
data, where such data are loaded into the memory using
the vertically partitioned tables.

Next comes the NFA evaluator of SPAsEqQ. It con-
tains the compiled NFAy., automata and employs
the GPM evaluator to compute the GPM expressions
mapped on the state-transition predicates. Its subcom-
ponent, the cache manager stores the mappings of
matched events and mappings for the conjunction op-
erator, i.e. cache history () and conjunction edge-
timestamp map (D). Finally, the query optimiser em-
ploys various techniques to reduce the load for GPM
evaluator and the number of active runs. The detailed

https://github.com/nxparser/nxparser

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 29

description of query optimiser is presented in the pro-
ceeding section.

8. Query Optimisations

The query optimiser is an important component of
a CEP system. Generally, the user’s query expressed
in a non-procedural language describes only the set of
constraints a matched pattern should follow. It is up to
the query optimiser to generate efficient query plans or
adaptively refresh the plans that compute the requested
pattern. The two main resources in question for the CEP
processing are CPU usage, and system memory: effi-
cient utilisation of CPU and memory resources is crit-
ical to provide a scalable CEP system. As discussed in
Section 7, many different strategies have been proposed
to find an optimal way of utilising CPU and memory in
CEP systems. One of the main benefits of using an NFA
model as an underlying execution framework is that we
can take advantage of the rich literature on such tech-
niques. These optimisation techniques can be borrowed
into the design of SCEP, while customising them for
RDF graph streams. In this section, we describe how
such techniques are applicable for SCEP, and also pro-
pose new ones considering the query processing over
a streamset. First, we review the evaluation complexity
for the main operators of the SPAsEqQ query language.

8.1. Evaluation Complexity of NFA.p

The evaluation complexity of NFA,., provides a
quantitative measure to establish the cost of various
SPAsEeq operators. Herein, we first describe the cost
of temporal operators in terms of GPM evaluation
function, and later provide the upper bound of time-
complexity in terms of number of active runs.

Incoming events are matched to the GPM expres-
sions mapped on the state’s edges and such evaluation
decides if a state can transit to the next one. Given n
number of events in a streamset, the cost of comparing
a graph pattern P with an n events for unary operators
and event selection strategies is described as follows:

n

cost, = Z c(P, Gi),

i=1

where ¢(P, G,) represents the cost of matching a graph
pattern P with an event G'.. The time complexity of such
function can be referenced from Theorem 1 in [43].
Now we extend this cost to include the cost of the binary

operators (Bop). Given n events and k Bop operators,
the cost function is extended as follows:

n k
costt = Z Z c(P;,G.),

i=1 j=1

Notice that due to the k number of Bop operator, each
event in worst case scenario has to be matched with all
the defined GPM expressions for the Bop operators.

Prior works analysing the complexity of NFA eval-
uation often consider the number of runs created by
an operator and employ upper bounds on its expected
value [8,38]. We adopt the same approach for analysing
the complexity of NFA ., evaluation. Indeed, for each
incoming event, the system has to check all the active
runs to determine if the newly arrived event results in
(i) state transition from the current active state to the
next one, (ii) duplication of a new run, (iii) deletion of
the active run. Query operators that result in creating
new runs or those which increase the number of active
runs are considered to be the most expensive ones. In
order to simplify the analysis, we make the following
assumptions:

1. Weignore the cost of evaluating a GPM expression
over each event.

2. We ignore the selectivity measures of the state-
transition predicates, i.e. the events that are not
matched, either skipped or result in deleting a run
of an NFA ., automaton. Hence, our focus is on
the worst-case behaviour.

Based on this, let us consider that n events arrive at a
current active state of a run, where the active state may
contain the following set of operators: followed-by, im-
mediately followed-by, Kleene+, conjunction and dis-
junction.

Theorem 1 The upper bound of evaluation complexity
of event selection strategies, i.e. immediately followed-
by, followed-by, is linear-time O(n), where n is the
total number of runs generated for the n input events.

Proof Sketch. None of the operators described in The-
orem | duplicate runs from the existing ones. Each has
only one GPM expression to be matched with the in-
coming events. Let us consider the case of event selec-
tion operators. Given a sequence expression ((u;, P;)
op (uj, P;)), where op = { *’, “;’}, mapped to states
x; and x;. With the arrival of an event G, at T, where

30 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

an event selection operator is mapped at state x;, it can
result in the following actions: (i) the run will transit
to the next state, (ii) the event will be skipped due to
followed-by operator, and (iii) the run will be deleted.
Since we are considering the worst-case behaviour, let
us dismiss the situations (ii) (iii). In situation (i) there
be will no extra run created for the above mentioned
operators, and each incoming event will be matched
to only one GPM expression. Thus the evaluation cost
remains linear and for n number of events there can be
only n runs. U

Although the upper bound of the operators described
in Theorem 1 has the same evaluation complexity, there
exists discrepancies when considering the real-world
scenarios. Let us consider the case of event selec-
tion operators: the followed-by operator skips irrelevant
events, while immediately followed-by is highly selec-
tive on the temporal order of the events. Thus, the du-
ration of a run is largely determined by the event selec-
tion strategy. Due to the skipping nature of followed-by
operators, the life-span of its runs can be longer on a
streamset. In particular, those runs that do not produce
matches, and instead loop around a state by ignoring
incoming events until the defined window expires. On
the contrary, the expected duration of a run is shorter
for the immediately followed-by operator, since a run
fails immediately when it reads an event that violates its
requirements. Such difference in their evaluation cost
is visible in our experimental analysis (Section 9).

The case of conjunction and disjunction operators
is slightly different, and therefore has a different upper
case bound. That is, for each conjunction/disjunction
operator: (i) more than one edge has different source
and destination states with distinct GPM expressions,
(ii) the edges do not have an e-transition. Thus, in
worst case each incoming event has to match to the
complete set of state-transition predicates. Hence, for k
such edges of a conjunction/disjunction operator, and
n input events, we can provide the upper bound on the
complexity of these operators as follows:

Theorem 2 The upper bound of evaluation complexity
of conjunction and disjunction is O(n - k), where n is
the total number of runs generated and k is number of
GPM expressions mapped to the edges of a state.

Proof Sketch. For the conjunction and disjunction op-
erators no new runs are initiated from old ones. If an
event arrives at active state x, it either matches to the set
of edges defined and moves to the next state, or it stays

at the current active states and waits for new events (in
case of the conjunction operator). However, for both
operators, each incoming event can end up traversing
the whole set of k mapped edges. Thus, even if the num-
ber of active runs remains the same, each event may
have to be matched with a number of GPM expressions
mapped at the state’s edges. For k such edges and n
events, in worst case the cost will be O(n - k). O

Theorem 3 The upper bound of evaluation complexity
of each Kleene+ operator is quadratic-time O(n?) for
n events.

Proof Sketch. Consider a sequence expression ((u;, P;)+),

which is mapped onto the state x; with the Kleene+
operator . Let us consider that x; is an active state. If
an event G, arrives at time 7, and if it matches the
GPM expression of the state-transition predicate, it will
duplicate the current active run and append the dupli-
cated one to the list of active runs. Thus, for each newly
matched event at a Kleene+ state, a new run is added
to the active list, and for n such events, there will be in
total 72 runs to be generated considering all the events
are matched to the GPM expression of the state x;, i.e.
worst case behaviour. |

The Kleene+ operator is the most expensive in the
lot, in terms of number of active runs. Hence, based on
the observations in Theorems | and 3, we adopt some
of the optimisation strategies previously proposed, and
also propose some new ones. We divide these tech-
niques into two classes from the view point of operators
and system: local, and global levels. Local-level opti-
misation techniques are targeted at the specific opera-
tors considering their attributes, while the global-level
optimisation are for all the operators, and are imple-
mented at the system level. In the following section, we
present these techniques in details.

8.2. Global Query Optimisations

The evaluation of an NFA ., automaton is driven by
the state-transition predicates being satisfied (or not)
for an incoming event. The number of active runs of an
NFA,., automaton, and the number of state-transition
predicates that each run could potentially traverse can
be very large. Therefore, the aim of global optimisa-
tion is to reduce the total number of active runs by (i)
deleting, as soon as possible, the runs that cannot pro-
duce matches, and (ii) indexing the runs to collect the
smaller number of runs that are actually affected by an
event.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 31

8.2.1. Pushing the Temporal Window

As mentioned earlier, the window defined in a
SPAsEeQ query constraints the matches to be executed
over the unbounded streams. It is thus desirable to evict
the runs that contain events outside the window bound-
aries as soon as possible. The timestamp of the newly
arrived event is used to update the boundaries of the
defined window, and to delete the runs that are outside
the window. Therefore, before processing each event,
pushing the evaluation of the temporal window at the
top of the processing stack, deletes the runs without
first evaluating the state-transition predicates. It con-
sequently decreases the size of the active runs list. In
Algorithm 2 (lines 3-5), we push the window check
before iterating over the active runs list.

8.2.2. Pushing the Stateful Predicates

Stateful predicates define the joins amoung a set of
graph patterns. These joins can be defined through the
FILTER expression or within the set of graph patterns
(see SPAseQ Query 1). With the arrival of an event,
there are two possible ways to invoke the GPM evalu-
ator. First, we can evaluate the event with the defined
GPM expression, and later use the cache manager to
perform the stateful joins. However, this issue an expen-
sive GPM process, and if the stateful joins are not fruit-
ful, GPM process would be of waste since we have to
either delete the run or skip the event (depending upon
the defined operator). Alternatively, we can first use the
cache manager to implement the stateful joins, and only
then employ the complete GPM against the event. This
would allow us to prune the irrelevant events without
initiating the complete GPM process. Moreover, this
would also result in decreasing the intermediate result
set, which consequently reduces the load over the GPM
evaluator. Our system pushes the stateful joins as early
as possible in the processing stack.

As an example of this, consider the SPAseQ Query 1.
Its GPM expressions share the stateful variables of lo-
cation (?71) and electricity fare (?£fr). Pushing these
two joins, we can easily ignore the events that would
not contain the expected mappings of these variables,
and consequently the system does not have to process
the complete GPM expressions (GPM B and C) for such
events.

8.2.3. Indexing Runs by Stream Names

SPAseQ queries are evaluated over a streamset,
where the edges from each state contain the stream
name which is used to match the graph patterns. There-
fore, each active state waits for a specific type of event

RDF Graph Streams

U
List of
Active Runs

A pm—-—,—"
<A pm—.,"

c
N
Aprmmm——
c
5

(uq,Pp) => E(UZ'PZ)H

==se
2 (ug,Py)=> (UZ’PZ):>U(U3’P3)H
TOWRT
U(ul'Pl)[]

cooo

= = =

cooo

0
4 U(ul'Pl)H

cooo

cooo

5| Py = P

Cooo

=
H .

===

0 0 Active State ——=> Followed-By/ Immediately Followed-By

cooo

Figure 16. Processing Streamset over Active Runs

RDF Graph Streams
Us

=
w

uz
List of
Active Runs

Aprmmmm———
E]

A prmm——

cooo

B] errv=>itary
e]
W)

H

. (“1'P1):>EZ‘:FT2)=["]

===
0 0 Active State |:‘> Followed-By/ Immediately Followed-By

cooo

Figure 17. Partitioning Runs by Stream Names

from a specific stream, and later invokes the GPM eval-
uator. We illustrate it through an example.

Example 14 Figure 16 shows a set of streams em-
ployed by a set of active runs. The active runs ri, 15
are waiting for an event from stream with name us,
the active run ro is waiting for an event from stream
with name us, and active runs r3 and ry are waiting

32 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

for the events from the stream with name u;1. According
to Algorithm 2, for each incoming event from the set
of streams, we have to iterate over all the active runs
and then match the stream name and GPM expressions
respectively.

Indexing runs by stream names allows to efficiently
identify the subset of runs that can be affected by an in-
coming event: although the total number of active runs
can be very large at a given time, the number of runs
affected by an event is generally lower. Thus, we index
each run by the stream name of its active state (see
Figure 17). More precisely, the index takes the stream
name as a key and the corresponding run as the value.
These indexes are simple hash tables, and for each in-
coming event it essentially returns a set of runs that
can be affected by the incoming event. These indices
proved to be a useful feature for processing events from
a streamset. Note that the naive implementation using
a single list of runs would be inefficient: each incoming
event would iterate over all the active runs, and initiate
the matching process for each of them.

8.2.4. Memory Management

Although in-memory data access is extremely fast
compared to disk access, an efficient memory manage-
ment is still required for a SCEP: the data structures
usually grow in proportion to the input stream size or
the matched results. Thus, events that are outside the
defined window, or that cannot produce a match must
be discarded in order to avoid the unnecessary memory
utilisation. The three main data structures that require
tweaking are the cache manager, the result buffer and
the indexed active run list. In this context, our first step
is to use the buy bulk design principle. That is, we allo-
cate memory at once or infrequently for resizing. This
complies to the fact that the dynamic memory alloca-
tion is typically faster when allocation is performed in
bulk, instead of multiple small requests of the same to-
tal size. Second, since the cache manager and the result
buffer are indexed with the dynamically generated run
ids, we use the expired runs — which either is complete
or not — to locate the exact expired runs to be deleted.
These runs are added to a pool: when a new runs is
created, we try to recycle the memory from such pool.
This limits the initialisation of new runs and reduces
the load over the garbage collector. Note that we use
hash-based indexing for all the data structures, which
means the position of expired runs can be found in
theoretically constant time.

Qur},sfi,],P1)

(&)

Hur},sfa,|,Pa)

Figure 18. Compilation of Disjunction Operator for ((u1,P1) |
(u1, P2) | (u1,P3) | (u1,Ps))

8.3. Local Query Optimisation

Local query optimisation is devised for the conjunc-
tion and disjunction operators, where the chief problem
is how to select the GPM expression from a set of edges
and how to reduce the load on the GPM evaluator. The
knowledge of the runs affected by an incoming event
is not sufficient, we also have to determine which edge
these runs will traverse.

To better illustrate the problem, let us start by ex-
amining the sequence expression ((u1,P1) | (u1, P2)
| (u1, P3) | (u1, Py)) for the disjunction operator. Fig-
ure 18 shows the related NFA ., automaton. Now con-
sider an input stream u;, and an event Gé at time T;
arrives at the state x;. The basic sequential way of pro-
cessing Gi would be to first match with Py then P,
P35 and finally with P,4: since all the graph patterns are
waiting for an event from the stream u;. Now the ques-
tion is how to choose the less costly graph pattern to
be selected first by the state, such that if it matches the
automaton moves to the next state, hence complying to
the optional operator.

The optimal way of processing the disjunction opera-
tor would be to sort the graph patterns according to their
cost, and select the cheapest one for the first round of
evaluation. That is, if ¢(P;, G;) is the cost of matching a
graph pattern with an event G, then we require a sorted
list such that ¢(P;, G%) < ¢(Py,G') < - -+ < ¢(Py, GL).
The question is how to determine the cost of GPM
evaluation. There can be two different ways to it.

1. Use the selective measures and structure of the
graph patterns. That is, how much the GrRAPH-
SumMmmaRyY operator be handy for them (see Sec-
tion 7.8).

2. Adaptively gather the statistics about the cost of
matching a specific graph pattern, and sort the
graph pattern accordingly.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 33

ur},sf1,&,P1)

{ur},sf2,&,P2)

Hur},sfs,&,P3)

Figure 19. Compilation of Conjunction Operator for ((u1,P1) &
(u1,P3) & (u1, P3))

Let us focus on the first approach. As according to
Theorem 1 in [44], the cost of matching a graph pat-
tern and an event is directly proportional to each of
their sizes. That is, if there are more triple patterns
tp € P, then there will be more join operations on dif-
ferent vertically-partitioned views: this can give us a
fair bit of idea about the costly graph patterns. Further-
more, due to the presence of filters, the GRAPHSUM-
MARY operator can prune most of unnecessary triples,
and consequently reduce the cost of the GPM opera-
tion. Following this reasoning, we keep a sorted set of
graph patterns (P1, Pa, ..., P;) within the state which
mapped the conjunction/disjunction operator, each as-
sociated with a stream name u;. This set is sorted by
checking the number of triple patterns, and the selec-
tivity of subjects, predicates and objects within a graph
pattern during the query compilation [26]. The state
can utilise this set to first inspect the less costly graph
patterns for the incoming events. This can lead to a less
costly disjunction operator with few calls to the GPM
evaluator.

The second approach is based on the statistics mea-
sures. That is, the system during its life-span observes
which graph pattern has been utilised successfully in
the past and is less costly compared with others. This
approach can be built on top of the technique discussed
above. Herein, the implementation of such optimisation
technique is considered as future work.

The conjunction operator, however, contains an ad-
ditional challenge on top of the one discussed above.
To illustrate this, let us consider a sequence expression
((u1,P1) & (u1, P2) & (u1, P3)) for the conjunction
operator. Figure 19 shows the NFA,,, automaton for
it. Hence, for the state x; to proceed to the next state, it
has to successfully match all the defined state-transition
predicates, such that events satisfying them should oc-
cur at the same time. Thus, if an event Gi, arrives and
matches to one of the state-transition predicate, the
automaton buffers its result, timestamp, and waits for

the remaining events. Now consider a situation, where
events Gf_, and G arrive at 7; and match with the GPM
expressions (u1,P1) and (ug, P2) respectively. Then
the automaton waits for an event to satisfy GPM ex-
pression (uy, P3). Now consider an event G' arrives at
To. It results into two constraints to be examined (i) if
T1 = T9, and (ii) if G’ matches with the GPM expres-
sion (u3, P3). Here, if any of the above mentioned con-
straints would not match, then it means the run has to
be deleted and all the previous GPM evaluations were
useless: the process of matching an event with a graph
pattern is expensive and it stresses the CPU utilisation.

Our approach to address this issue is to employ a lazy
evaluation technique. Conceptually, it delays the eval-
uation of graph patterns until it gets enough evidence
that these matches would not be useless. Its steps are
described as follow:

1. Buffer the events from streams until the number
of events with the same timestamps is equal to the
number of edges (with distinct GPM expressions)
going out from the state that maps conjunction
operator.

2. After the conformity of the above constraint,
choose graph patterns according to their costs (as
discussed for disjunction operator).

The main idea underlying our lazy evaluation strat-
egy is to avoid unnecessary high cost of the GPM, and
to start the GPM process when it is probable enough
that it would return the desired results. The idea of lazy
batch-based processing is the reminiscent of work [5]
on buffering the events and processing them as batches.

Algorithm 10 shows the lazy evaluation of the con-
junction operator and it extends Algorithm 5. It em-
ploys an event buffer B to cache the set of events hav-
ing the same timestamps. The algorithm first takes the
set of edges E for an active state and timestamp 7 of
the newly arrived event (lines [-2). It then checks if
there exists any previously buffered event in B. If so
it checks their timestamp 7,;; and the timestamp 7 of
the newly arrived event (line 5). If the timestamps do
not match it deletes the run under evaluation while re-
moving all the previously buffered events in B (lines
4-7). Otherwise it adds the event G, in the event buffer
B, which is later used to evaluate the unmatched edges
(line 10). At this stage, the algorithm prunes the edge
set E with the edges that have already been matched —
using the mapping structure D (line 11) (as described
in Algorithm 5). If the number of unmatched edges in
E is equal to the number of buffered event B, it starts

34 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

Algorithm 10: Optimised evaluation of the con-
junction operator

Input: G,: Graph Event, u: stream name, r: active
run, x;: final state, r: active run, H: cache
history, D: conjunction edge-timestamp
map, B: event buffer

1 Xx; < GETACTIVESTATE(r)
2 E < GETEDGESET(X;)
3 7 + GerTimMeSTAMP (G,)
4 if |B| # @ then
5 get T,;q from an event G € B
6 if 7 # 7, then
7 B+ o
8 remove r from the list of active runs R
9 else
10 B=BUG,
11 remove edges from E using D that are
already matched
12 if |E| = |B| then
13 sort E according to the graph patterns
14 foreach each edge e € E do
15 get 0 from the edge e
16 foreach each event G\ € B do
17 if u € Uyand
Grm(G', Py, sfs, H) then
18 remove G', from event
buffer B
19 insert (, x, ¢) and 7; in D
20 E < GETEDGESET(X;)
21 get the set of matched edges AME
from D
22 if |[E| = |AME| then
23 SETACTIVESTATE(7, Xjt1)
// If it is the final
state
24 if x; = x then
25 ‘ a query match has been found

the matching process using the lazy evaluation strategy.
Before starting the matching process, it first sorts the
edges according to the selectivity of the graph patterns
in state-transition predicates, hence using the low cost
edges first (line 13). The algorithm then iterates over the
sorted edges E and the buffered events set to match the
selected edge (lines 12-22). If an edge e € E matches
the buffered event G|, € B, its mapping is added into
D and the matched event is removed from the buffer
B (lines 18-19). In the end, the algorithm has to deter-

mine if all the edges of the active states are matched
and should it transit to the next state or not. Therefore,
it examines the number of actual edges of the state and
the number of them that have already been matched
(line 25). If all the edges are matched the run transits to
the next state. Otherwise, it waits at the same state to
receive more events having the same timestamps (/ine
28).

In this section, we presented various strategies to op-
timise the evaluation of SPAseqQ temporal operators. In
the next section, we present the quantitative analysis of
the SPAsEQ operators and the effect of our optimisation
strategies.

9. Experimental Evaluation

In this section, we present the experimental evalua-
tion that examines (i) the complexity of various SPAsEQ
temporal operators, (ii) the effect of various optimisa-
tion strategies, and (iii) the comparative analysis against
state-of-the-art systems. We first describe our experi-
mental setup, and later we analyse the system perfor-
mance in the form of questions. SPAsgq is implemented
in Java. To support reproducibility of experiments, it is
released under an open source license”.

9.1. Experimental Setup

Datasets. We used one synthetic and one real-world
dataset, and their associated queries for our experimen-
tal evaluation.

The Stock Market Dataset (SMD) contains share
trades information in the stock market. In order to sim-
ulate the real-world workload and properties of stock
prices, we use the random fractal terrain generation
algorithm [45,46]: it is based on the fractal time se-
ries and provides properties such as randomness, non-
determinism, chaos theory, etc. The SMD data gen-
erator is openly available at Github®. We generated a
dataset of more than 20 million triples and 10 million
RDF graph events.

SPAseQ: https://github.com/Gillani®/spaseq, last ac-
cessed: June, 2017.
8

Stock Market Dataset: https://github.com/spaseq/stock.
data.gen, last accessed: June, 2017.

https://github.com/Gillani0/spaseq
https://github.com/spaseq/stock.data.gen
https://github.com/spaseq/stock.data.gen

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 35

The UMass Smart Home Dataset (SHD) [47] is a
real-world dataset and provides power measurements
that include heterogeneous sensory information, i.e.
power-related events for power sources, weather-related
events from sensors (i.e. thermostat) and events for re-
newable energy sources. We use a smart grid ontology
[48] to map the raw eventual data into N-Triples format
for three different streams: the power stream (S1), the
power storage stream (Sz) and the weather stream (S3).
In total the dataset contains around 30 million triples,
8 million events.

Queries. We use two main queries for the above men-
tioned datasets: UC 1 (Query 1) and UC 2 (Query 2).
That is, a smart grid pattern and a heads and shoulder
pattern. Both queries are further extended for various
experiments.

Constraints. The execution time/throughput of the
evaluated systems includes the time needed to load and
parse the streams. It also includes the time needed to
parse the output into a uniform format, and time for
writing results to disk. For each experiment, the max-
imum execution time is limited to two hours and the
maximum memory consumption to 20 GB. The former
is enforced by external termination and the latter by
the size of the Java Virtual Machine (JVM). For ro-
bustness, we performed 10 independent runs of each
experiment and we report the median values.

Stream Configurations. We use two different config-
urations to generate streams for both datasets. These
configuration enables us to test both the worst case
performance and the real-world expected performance.

— Config. RG: Random Generation (RG) of events.
For this configuration, we randomly ordered the
generated events in the streams, which means
some events follow the defined pattern in the eval-
uated queries and some events do not. Hence, sim-
ulating the real-world characteristics.

— Config. SG: Sequence-based Generation (SG) of
events. For this configuration, we ordered the gen-
erated events according to the defined patterns in
the evaluated queries. This results in a maximum
number of matches to be produced and allows
to determine the worst-case behaviour of various
temporal operators.

Hardware. All the experiments were performed on
Intel Xeon E3 1246v3 processor with 8MB of L3 cache.
The system is equipped with 32GB of main memory
and a 256Go PCI Express SSD. The system runs a
64-bit Linux 3.13.0 kernel with Oracle’s JDK 8ull12.

9.2. Results and Analysis

We start our analysis by first describing the evalua-
tion cost of SPAsEQ operators, and how they effects the
performance of the system. Later we present the use-
fulness of various optimisation strategies, and finally
we provide the comparative analysis of SPAseqQ and
EP-SPARQL for the same dataset and use cases.

Comparative Analysis of SPAseo Operators

Question 1. How does the unary operators Kleene+,
negation and optional perform w.r.t. each other?

First we describe the setup for this set of experi-
ments. In order to compare the relative complexity of
the operators, we employ the SMD dataset, extensions
of UC 1 (Query 1), and Config. SG to generate streams.
It allows to make sure that each operator in question
has the exact number of matches. For this set of exper-
iments, we use the immediately followed-by operator
between unary operators.

2.5x10°
—_ —— Optional
° 5 —*- Negation
é 2x10°+ Kleene-+
b

3
=
5

Q
<
g’ 10°
[o
a
5x10°F
2 4 6 8 10

Window Size (seconds)

Figure 20. Performance Measures of Optional, Negation and Kleene+
Operators

Figure 20 shows the results of our experiments. As
expected, the negation and optional operators show lin-
ear scaling behaviour with the increase in the window
size. That is, the number of runs generated for each of
these operators is relatively proportional to the number
of events that result in starting a new run from its initial
state xg. However, the same is not the case with the
Kleene+ operator. If an event matches to the Kleene+
operator, the system duplicates an additional run and
adds it to the active runs list. This means, following the
same intuition from earlier, each newly arrived event
has to process a large number of active runs. This re-
sults in an extra cost for the Kleene+ operator to process
an event.

36 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

The negation and the optional operators share the
same cost and execution strategies, hence, they result
in the similar throughput measures (Figure 20). Note
that for the both of these operators, if an event does not
match to the negation/optional state’s state-transition
predicate, it is again used to check if it can match with
the next state’s state-transition predicate. Thus it results
in an extra evaluation of a GPM expression compared
with simple sequence expression. The evaluation of
the aforementioned set of experiments showcases the
result parallel to the one discussed for the evaluation
complexity of SPAsEQ operators (Section 8.1).

Question 2. How do the binary operators conjunction
and disjunction perform w.r.t. each other?

2x10°
=

o

2

5

i3

o

o

@

a

w

@ 10°
[=%

‘T

=

5

a - Conjunction
=Y 0~ Disjunction
E

o

=

=

4 L L L
1075 3 4 5 6

of Edaes
Figure 21. Comparison of Conjunction and Disjunction Operators

For this set of experiments, we again use the SMD
dataset, UC 2 queries, and Config. SG to generate
streams. Since all the events emanate from a single
stream, it results in the most complex case: all the
GPM expressions mapped at the conjunction/disjunc-
tion state’s edges expect the events with the same stream
name, hence, the system cannot be choosy and, in worst
case, all the events arrived at conjunction/disjunction
state have to be matched with all the mapped GPM ex-
pressions. Figure 21 shows the evaluation of these op-
erators while increasing the number of edges (k) for the
conjunction/disjunction states, and having a fixed win-
dow size of 5 seconds. As observed in the complexity
analysis of these operators, their performance degrades
linearly with the increase in the number of edges, such
a behaviour can be confirmed from Figure 21. As ex-
pected, the conjunction operator scales linearly with the
increase in number of edges to be matched, while the
disjunction operator scales sub-linearly, since it has to
match only one of the edges to transit to the next state.
Moreover, not surprisingly, the conjunction operator
is much more expensive than the disjunction operator.

The conjunction operator has to match the complete set
of GPM expressions mapped on the set of edges, while
the disjunction operator results in few matches and its
corresponding state transits to the next one as soon as
there is one match with either of them. Note that, for
this set of experiments, we use the lazy evaluation strat-
egy for the conjunction operator, its comparison with
the eager strategy is provided in Question 5.

Question 3. How do the event selection strategies im-
mediately followed-by and followed-by perform w.r.t.
each other?

4x10°

.5x10°F —e- Followed-By

—¥ Immediately Followed-By

3x10°F

2x10°F

Throughput (triples/second)w

,_.
<
:

5X104 L 1 L
2 4 6 8 10
Window Size (seconds)

Figure 22. Comparison of Followed-by and Immediately Followed-By
Operators

For this set of experiments, we use the SHD dataset
and UC 1 (Query 1), since the effect of the operators
in question is quite distinguishable in a multi-stream
environment. We tested both operators using only Con-
fig. RG, since Config. SG produces events according to
the defined patterns, hence no events are skipped for
the followed-by operator and both operators would have
the similar performance measures. Figure 22 shows the
evaluation of these operators using Config. RG. As we
can see the immediately followed-by operator is less
expensive compared with the followed-by operator: the
followed-by operator skips the irrelevant events (due
to the random generation of events) that are not des-
tined for the active state of a run, while the immediately
followed-by operator deletes the run as soon as it vio-
lates its defined constraint. The runs for the followed-by
operator are deleted if the timestamps of the selected
events for the run are outside the defined window. Thus,
the average life-span of runs for followed-by operator is
far more than the immediately followed-by. This means,
for each event, the system has to go through a larger list
of runs to be matched.

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 37

Effects of Optimisation Strategies

Question 4. How does the strategy for indexing runs
by stream names affect the performance of the system?

5x10°

—e— With Indexing
—&— Without Indexing

2x10°F

Throughput (triples/second)

5x10°F

2 4 6 8 10
Window Size (seconds)

Figure 23. Analysis of Indexing Runs by Stream Names

In order to determine the effectiveness of index-
ing runs by stream names, we employ the SHD and
UC 1 query with followed-by operator, and Config. RG;
since the followed-by operator is costly compared with
the immediately followed-by operator. Recall from Sec-
tion 8.2, we index runs by stream name, thus when an
event arrives, only the runs whose active state is waiting
for such an event are used. Consequently, it reduces the
overhead of going through the whole list of available
active runs. Figure 23 shows the results of our evalua-
tion with variable window sizes. According to the re-
sults, the performance differences between the indexed
and non-indexed approach is not evident at smaller win-
dows. This is due to the fact that small numbers of runs
are produced/remain active for the smaller windows,
hence indexing of runs does not results in a compara-
tively smaller set of runs to be probed for each event.
However, the effectiveness of the indexing technique
becomes quite clear with the increase in the window
size. That is, a large number of runs is produced with a
smaller set of them waiting for an event from a specific
stream.

Question 5. How does the lazy evaluation affect the
performance of the conjunction operator?

For this set of experiments, we again employ the
SMD dataset, extension of UC 2 with conjunction op-
erator containing 4 edges, and Config. RG to generates
events: Config. SG produces events according to the
defined pattern and the effects of the lazy evaluation
would not be obvious in such case. Figure 24 shows
the results of the conjunction operator with lazy and

5x10°

—& Lazy Evaluation
—e— Eager Evaluation

2x10°F

10°

Throughput (triples/second)

5x10°F

2 4 6 8 10

Window Size (seconds)

Figure 24. Lazy vs Eager Evaluation of Conjunction Operator

eager evaluation strategies. Recall from Section 8.3,
lazy evaluation delays the computation of all the state-
transition predicates until the number of the events with
the same timestamp is equal to the number of state-
transition predicates. As shown in Figure 24, the lazy
evaluation performs much better on smaller windows
and relatively better on larger ones: the eager evaluation
results in a larger number of useless calls to the GPM
evaluator, while lazy evaluation performs a batch-based
call to the GPM evaluator. Thus, with lazy evaluation,
a set of events is evaluated against a set of GPM expres-
sions, only if all the buffered events (for a conjunction
state) has the same timestamp. For the smaller window,
if the number of buffered events is not equal to the num-
ber of edges from a conjunction state, the GPM eval-
uator is not invoked. Hence, with the expiration of the
window, the runs are deleted without matching events
and without using the additional resources. Contrary to
this, the eager evaluation strategy calls the GPM eval-
uator for each incoming event and a large number of
such calls proved to be useless for smaller windows.

Comparative Analysis with EP-SPARQL

Question 6. How does the SPAsEQ engine perform
w.r.t. the EP-SPARQL engine?

Before describing the results, we first presents
some of the assumptions for our comparative analy-
sis. SPAseqQ and EP-SPARQL differ w.r.t each other in
terms of semantics and data model. Hence, they may
produce different results for the same query. Therefore,
the aim of our comparative analysis is to employ the
same use case, its queries and dataset to measure the
performance differences between the two. This strat-
egy is mostly utilised by the information retrieval sys-
tems [49].

38 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

For the dataset and queries, we used the SMD dataset,
its respective query for the V-shaped pattern (see UC 2)
and Config. SG to produce the maximum number of
matches. For the first set of experiments, we used a sim-
ple V-shaped pattern query while increasing the win-
dow size, and later we used the same pattern while
varying the number of sequence clauses or elements
in the sequence expression (making it W ot head and
should pattern) with a fixed window size of 8 sec-
onds. Note that, since we used Config. SG for this
set of experiments (sequence-based event generation),
both followed-by and immediately followed-by opera-
tors would have the same performance measures. Fur-
thermore, we used a simple V-shaped pattern query
since EP-SPARQL does not support the Kleene+ oper-

ator.

10° 3

—#- SPASEQ
—=— EP-SPARQL

10°]

Throughput (triples/second) (logy)

Window Size (seconds)

Figure 25. Comparative Analysis of SPAseqQ and EP-SPARQL over
Variable Window Size

1052"\:»\,

—%#- SPASEQ
—=— EP-SPARQL

10 1

Throughput (triples/second) (logy)

1000

4 6 8 10 12

of Sequences

Figure 26. Comparative Analysis of SPAseq and EP-SPARQL over
Variable # of Sequences

Figures 25 and 26 show the performance of both
systems. In Figure 25, both systems are evaluated by
varying the size of the window in seconds, while in Fig-
ure 26, we evaluate both systems by varying the size of

the pattern to be matched, i.e. the number of sequences.
From these results, we can see that the SPAsEqQ yields
much higher throughput compared with EP-SPARQL
for both scenarios. One simple reason for this is as fol-
lows: the results provided in [28] show that RSP sys-
tems such as CQELS outperforms ETALIS, while as
shown in [26] that SPECTRA outperforms other RSP
system. Based on this, sicce ETALIS is the underly-
ing engine of EP-SPARQL and SPECTRA of SPAsEq,
the performance of the GPM would be supirioir for
SPAsEqQ. Furthremore, the complexity introduced by
the temporal operators in SPAsEQ is well managed by
our NFA .., model and optimisation techniques com-
pared with EP-SPARQL.

From Figure 25, the performance of EP-SPARQL
degrades quadratically with the increase of the win-
dow size: EP-SPARQL uses a Prolog-wrapper based
on the event driven backward chaining rules (EDBC),
and schedules the execution via a declarative language
using backward reasoning. This first results in an over-
head of object mappings. Second, reasoning with back-
ward chaining is a complex and computing intensive
task: it uses a goal-based memory management tech-
nique, i.e. periodic pruning of expired goals using
alarm predicates, which is expensive for large windows.
On the contrary, SPAseQ employs the NFA ., model
with various optimisation strategies to reduce the cost
of triple patterns joins and the evaluation cost of the
state-transition predicates. It utilises efficient “right-
on-time” garbage collection for the deceased runs, and
optimisations such as pushing temporal windows and
stateful joins, and incremental indexing from SPEC-
TRA reduces the average computation overheads and
life-span of an active run. In addition, the NFA-based
executional model is much more immune to the in-
crease in the number of sequence operators compared
with EP-SPARQL (see Figure 26): with the increase in
sequence operators, the active life of each run also in-
creases, however, employing the above mentioned op-
timisation techniques greatly reduces the life-span and
the number of active runs.

10. Conclusion

In this paper, we presented the syntax, semantics
and implementation of a SCEP query language called
SPAseqQ. We provided the motivation behind SPAsEQ
and pointed out various qualitative differences between
other SCEP languages. Such analysis showcased the
usability and expressivity of the SPAseqQ query lan-

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation 39

guage. During the design phase of our language, we
carefully consulted existing CEP techniques and the
lessons learned. Thus, a suitable compromise between
the expressiveness of a SCEP language and how it can
be implemented in an effective way is made possible.
We also proposed an NFA (.., model to map the SPAsEQ
operators and showed how they can be evaluated over
a streamset. Furthermore, we also provided multiple
optimisation techniques to evaluate SPASEQ operators
in an optimised manner. Lastly, while utilising real-
world and synthetic datasets we showcased the usabil-
ity and performance of SPAseQ query engine. Our fu-
ture endeavours include: extension of the language with
new operators, a through semantic comparative analy-
sis with the EP-SPARQL, further optimisation strate-
gies for the Kleene+ operator and the evaluation of the
SPASsEQ operators in a distributed environment. We be-
lieve that SPAsEQ can ignite the SCEP research com-
munity and will open the doors for the new insights and
optimisation techniques in this field.

References

[1] Lukasz Golab and M. Tamer Ozsu. Issues in data stream man-
agement. SIGMOD Rec., 32(2):5-14, June 2003.
Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cher-
niack, Christian Convey, Sangdon Lee, Michael Stonebraker,
Nesime Tatbul, and Stan Zdonik. Aurora: A new model and
architecture for data stream management. The VLDB Journal,
12(2):120-139, August 2003.
Gianpaolo Cugola and Alessandro Margara. Processing flows
of information: From data stream to complex event processing.
ACM Comput. Surv., 44(3):15:1-15:62, June 2012.
Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance
complex event processing over streams. In Proceedings of the
2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pages 407-418, New York, NY, USA,
2006. ACM.
[5] Yuan Mei and Samuel Madden. Zstream: A cost-based query
processor for adaptively detecting composite events. In Pro-
ceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages 193-206, New
York, NY, USA, 2009. ACM.
David Luckham. The power of events: An introduction to com-
plex event processing in distributed enterprise systems. In Rule
Representation, Interchange and Reasoning on the Web. 2008.
[7] Barzan Mozafari and Zeng. High-performance complex event
processing over xml streams. In SIGMOD, 2012.
[8] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Im-
merman. Efficient pattern matching over event streams. In Pro-
ceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 147-160, New
York, NY, USA, 2008. ACM.
Barzan Mozafari, Kai Zeng, Loris D’antoni, and Carlo Zaniolo.
High-performance complex event processing over hierarchical

[2

—

3

—

[4

=

[6

[}

[9

[

data. ACM Trans. Database Syst., 38(4):21:1-21:39, December
2013.

[10] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng
Hong, Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit
Thatte, and Walker White. Cayuga: A high-performance event
processing engine. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’07, pages 11001102, New York, NY, USA, 2007. ACM.

[11] Thomas BERNHARDT and Alexandre VASSEUR. ESPER-
complex event processing,. In Online Article, 2010.

[12] Drool fusion. http://www.drools.org/. Accessed: 2016-
06-03.

[13] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and
Manfred Hauswirth. A native and adaptive approach for unified
processing of linked streams and linked data. In ISWC, pages
370-388. 2011.

[14] Davide Francesco Barbieri and Braga. C-SPARQL: Sparql for
continuous querying. In WWW, pages 1061-1062, 2009.

[15] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray.
Enabling ontology-based access to streaming data sources. In
ISWC, pages 96-111, 2010.

[16] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Sto-
janovic. Ep-sparql: A unified language for event processing
and stream reasoning. In Proceedings of the 20th International
Conference on World Wide Web, WWW 11, pages 635-644,
New York, NY, USA, 2011. ACM.

[17] Ozgiir L. Ozcep Veronika Thost, Jan Holste. On Implement-
ing Temporal Query Answering in DL-Lite (extended abstract).
In Diego Calvanese and Boris Konev, editors, Proceedings
of the 28th International Workshop on Description Logics,
Athens,Greece, June 7-10, 2015., volume 1350 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2015.

[18] Daniele Dell’Aglio, Minh Dao-Tran, Jean-Paul Calbimonte,
Danh Le Phuoc, and Emanuele Della Valle. A query model to
capture event pattern matching in RDF stream processing query
languages. In Knowledge Engineering and Knowledge Manage-
ment - 20th International Conference, EKAW 2016, Bologna,
Italy, November 19-23, 2016, Proceedings, pages 145-162,
2016.

[19] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Sto-
janovic. Stream reasoning and complex event processing in
etalis. Semant. web, 3(4):397-407, October 2012.

[20] Yanlei Diao and Neil Immerman. Sase+: An agile language for
kleene closure over event streams. UMASS Technical Report,
2007.

[21] Jagrati Agrawal and Yanlei Diao. Efficient pattern matching
over event streams. In SIGMOD, 2008.

[22] Raman Adaikkalavan and Sharma Chakravarthy. Snoopib:
Interval-based event specification and detection for active
databases. Data Knowl. Eng., 59(1):139-165, October 2006.

[23] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and
Henri Bal. Streaming the web: Reasoning over dynamic data.
Web Semantics: Science, Services and Agents on the World
Wide Web, 25(0):24 — 44, 2014.

[24] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave:
Continuous schema-enhanced pattern matching over RDF data
streams. In DEBS, pages 58—68, 2012.

[25] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql
continuous query language: Semantic foundations and query
execution. The VLDB Journal, 15(2):121-142, June 2006.

http://www.drools.org/

40

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

Syed Gillani, Gauthier Picard, and Frédérique Laforest. Spec-
tra: Continuous query processing for rdf graph streams over
sliding windows. In Proceedings of the 28th International Con-
ference on Scientific and Statistical Database Management,
SSDBM 16, pages 17:1-17:12, New York, NY, USA, 2016.
ACM.

Minh Dao-Tran and Danh Le Phuoc. Towards enriching CQELS
with complex event processing and path navigation. In Pro-
ceedings of the 1st Workshop on High-Level Declarative Stream
Processing co-located with the 38th German Al conference (KI
2015), Dresden, Germany, September 22, 2015., pages 2—14,
2015.

Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and
Manfred Hauswirth. A native and adaptive approach for unified
processing of linked streams and linked data. In Proceedings
of the 10th International Conference on The Semantic Web -
Volume Part I, ISWC’11, pages 370-388, Berlin, Heidelberg,
2011. Springer-Verlag.

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and
Michael Grossniklaus. An execution environment for c-sparql
queries. In Proceedings of the 13th International Conference on
Extending Database Technology, EDBT 10, pages 441-452,
New York, NY, USA, 2010. ACM.

Ozgiir Liitfii Ozgep, Ralf Moller, and Christian Neuenstadt. A
stream-temporal query language for ontology based data access.
In K7 2014: Advances in Artificial Intelligence - 37th Annual
German Conference on Al, Stuttgart, Germany, September 22-
26, 2014. Proceedings, pages 183-194, 2014.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF
1.1 Concepts and Abstract Syntax. Technical report, W3C,
January 2014.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Seman-
tics and complexity of sparql. ACM Trans. Database Syst.,
34(3):16:1-16:45, September 2009.

P. H. Kevin Chang Carol L. Osler. Head and shoulders: Not just
a flaky pattern. In FRB of New York Staff Report No. 4, 1995.
Jayant R. Haritsa and T. M. Vijayaraman, editors. Advances in
Data Management 2005, Proceedings of the Eleventh Interna-
tional Conference on Management of Data, January 6, 7, and
8, 2005, Goa, India. Computer Society of India, 2005.
Michael H. Bohlen, Richard Thomas Snodgrass, and
Michael D. Soo. Coalescing in temporal databases. In Pro-
ceedings of the 22th International Conference on Very Large
Data Bases, VLDB 96, pages 180-191, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc.

Charles L. Forgy. Expert systems. chapter Rete: A Fast Algo-
rithm for the Many Pattern/Many Object Pattern Match Prob-
lem, pages 324-341. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1990.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

S. Gatziu and K. R. Dittrich. Detecting composite events in
active database systems using petri nets. In Research Issues in
Data Engineering, 1994. Active Database Systems. Proceed-
ings Fourth International Workshop on, pages 2-9, Feb 1994.
Haopeng Zhang, Yanlei Diao, and Neil Immerman. On com-
plexity and optimization of expensive queries in complex event
processing. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’ 14,
pages 217-228, New York, NY, USA, 2014. ACM.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages, and Computation
(3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2006.

Ken Thompson. Programming techniques: Regular expression
search algorithm. Commun. ACM, 11(6):419—422, June 1968.
Thomas Neumann and Gerhard Weikum. The rdf-3x engine for
scalable management of rdf data. The VLDB Journal, 19(1):91-
113, February 2010.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds,
Andy Seaborne, and Kevin Wilkinson. Jena: Implementing the
semantic web recommendations. In Proceedings of the 13th
International World Wide Web Conference on Alternate Track
Papers &Amp; Posters, WWW Alt. *04, pages 74-83, New
York, NY, USA, 2004. ACM.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Seman-
tics and complexity of sparql. ACM Trans. Database Syst.,
34(3):16:1-16:45, September 2009.

Syed Gillani, Gauthier Picard, and Frédérique Laforest. Contin-
uous graph pattern matching over knowledge graph streams. In
Proceedings of the 10th ACM International Conference on Dis-
tributed and Event-based Systems, DEBS 16, pages 214-225,
New York, NY, USA, 2016. ACM.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case time. In
SODA, pages 1131-1142, 2013.

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and
Kun-Lung Wu. Work-efficient parallel and incremental graph
connectivity. In CoRR, volume abs/1602.05232, 2016.

David Wood, Markus Lanthaler, and Richard Cyganiak. RDF
1.1 concepts and abstract syntax. In W3C Recommendation,
Technical Report, 2014.

Syed Gillani, Frederique Laforest, Gauthier Picard, et al.
A generic ontology for prosumer-oriented smart grid. In
EDBT/ICDT Workshops, pages 134—139, 2014.

Mark Sanderson and Justin Zobel. Information retrieval system
evaluation: Effort, sensitivity, and reliability. In Proceedings
of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
’05, pages 162-169, New York, NY, USA, 2005. ACM.

