
Clover Quiz: a trivia game powered by
DBpedia
Guillermo Vega-Gorgojo a,b

a Don Naipe, Oslo, Norway
b Department of Informatics, University of Oslo, Norway
E-mail: guiveg@ifi.uio.no

Abstract. DBpedia is a large-scale and multilingual knowledge base generated by extracting structured data from
Wikipedia. There have been several attempts to use DBpedia to generate questions for trivia games, but these
initiatives have not succeeded to produce large, varied, and entertaining question sets. Moreover, latency is too
high for an interactive game if questions are created by submitting live queries to the public DBpedia endpoint.
These limitations are addressed in Clover Quiz, a turn-based multiplayer trivia game for Android devices with more
than 200K multiple choice questions (in English and Spanish) about different domains generated out of DBpedia.
Questions are created off-line through a data extraction pipeline and a versatile template-based mechanism. A
back-end server manages the question set and the associated images, while a mobile app has been developed and
released in Google Play. The game is available free of charge and has been downloaded by more than 5K users
since the game was released in March 2017. Players have answered more than 614K questions and the overall rating
of the game is 4.3 out of 5.0. Therefore, Clover Quiz demonstrates the advantages of semantic technologies for
collecting data and automating the generation of multiple choice questions in a scalable way.

Keywords: knowledge extraction, DBpedia, trivia game, multiple choice question, mobile app

1. Introduction

Wikipedia is the most widely used encyclopedia
and the result of a truly collaborative content edi-
tion process.1 There are 295 editions of Wikipedia
corresponding to different languages, although the
English Wikipedia is the largest with more than
5.4 million entries. Articles do not only include free
text, but also multimedia content and different
types of structured data like so-called infoboxes
and category declarations. Wikipedia has an im-
pressive breadth of topical coverage that includes
persons, places, organisations, and creative works.
The social and cultural impact of Wikipedia is
quite significant: it is the fifth most popular web-
site according to Alexa,2 while Wikipedia’s con-
tent is extensively used in education, journalism,

1https://www.wikipedia.org/
2http://www.alexa.com/topsites

and even court cases.3 Despite the vastness and
richness of Wikipedia, its content is only accessible
through browsing and free-text searching. To over-
come this limitation, the DBpedia project builds
a knowledge base by extracting structured data
from the different Wikipedias [12]. As a result, the
latest release of the English DBpedia (2016-10) de-
scribes 6.6 million entities and contains 1.7 billion
triples [16].

DBpedia constitutes the main hub of the Se-
mantic Web [8, ch. 3] and is employed for many
purposes such as entity disambiguation in natu-
ral language processing [11]. An appealing appli-
cation case is the generation of questions for trivia
games from DBpedia. Some preliminary attempts
can be found in the literature [4, 9, 13, 14, 18],
but these initiatives have fallen short due to simple

3https://en.wikipedia.org/wiki/Wikipedia#Cultural_
impact

mailto:guiveg@ifi.uio.no
https://www.wikipedia.org/
http://www.alexa.com/topsites
https://en.wikipedia.org/wiki/Wikipedia#Cultural_impact
https://en.wikipedia.org/wiki/Wikipedia#Cultural_impact

question generation schemes that are not able to
produce varied, large, and entertaining questions.
Specifically, supported question types are rather
limited, reported sizes of the generated question
sets are relative low (in the range of thousands),
and no user base seems to exist. Moreover, some
of these works create the questions by submitting
live queries to the public DBpedia endpoint, hence
latency is too high for an interactive trivia game,
as reported in [13].
The hypothesis is that creating questions from

DBpedia can be significantly improved by split-
ting this process in a data extraction and a versa-
tile question generation stages. This approach can
produce varied, numerous, and high-quality ques-
tions by declaratively specifying the classes and
question templates of the domains of interest. The
generated questions can then be hosted in a back-
end server that meets the latency requirements
of an interactive trivia game. The target case is
Clover Quiz, a turn-based multiplayer trivia game
for Android devices in which two players compete
over a clover-shaped board by answering multi-
ple choice questions from different domains. This
paper presents the outcomes of this project, in-
cluding the mobile app and actual usage informa-
tion of the players that have downloaded the game
through Google Play.
The rest of the paper is organized as follows:

Section 2 presents the game concept of Clover
Quiz. Section 3 describes the data extraction
pipeline, while Section 4 explains the question
generation process. The design of the back-end
server and the mobile app is addressed in Section
5. Section 6 deals with the actual usage of Clover
Quiz, including user feedback and latency mea-
sures. Next, Section 7 draws some lessons learned.
The paper ends with a discussion and future work
lines in Section 8.

2. Game concept

Clover Quiz is conceived as a turn-based mul-
tiplayer trivia game for Android devices. In an
online match, two players compete over a clover-
shaped board. Each player has to obtain the 8
wedges in the board by answering questions on
different domains. The player with the floor can
choose any of the remaining wedges and then re-
spond to a question on the corresponding domain.

If the answer is correct, the player gets the wedge
and can continue playing, but if it is incorrect, the
floor goes to the opponent. Once a player obtains
the 8 wedges, there is a duel in which each player
has to answer the same 5 questions in a row. The
match is over if the player with the 8 wedges wins
the duel. In other case, this player loses all the
wedges and the match continues until there is a
duel winner with the 8 wedges.

The target audience of Clover Quiz corresponds
to casual game players with an Android phone, in
the age range of 18-54, high school/university level
education, and Spanish- or English-speaking. Im-
portantly, target users are not supposed to know
anything about the Semantic Web and do not re-
quire a background on Computer Science or In-
formation Technology. Since the game is purposed
for mobile devices, user typing should be limited
as much as possible. For this reason, Clover Quiz
employs multiple choice questions with 4 options;
note that this is also the solution adopted by
other mobile trivia games like QuizUp4 and Trivia
Crack.5

Clover Quiz includes questions from the follow-
ing domains: Animals, Arts, Books, Cinema, Ge-
ography, Music, and Technology – all of them have
a good coverage in DBpedia [12] and are arguably
of interest to the general public. About the gener-
ation of questions, an important design decision is
whether to prepare the questions beforehand or to
submit live queries to DBpedia. The latter option
was discarded due to the complexity of the ques-
tion generation process and to the stringent re-
quirements of interactive applications (like Clover
Quiz) that cannot be met by the public SPARQL
endpoint over the DBpedia dataset – queries to
the public DBpedia endpoint can easily take sev-
eral seconds and periods of unavailability are rela-
tively common, according to the tests carried out
in the inception phase of the game. Instead, the
question set of Clover Quiz is generated in advance
and deployed in a back-end server. This architec-
ture corresponds to the crawling pattern employed
in some Semantic Web applications [8, ch. 6].

4https://play.google.com/store/apps/details?id=com.
quizup.core

5https://play.google.com/store/apps/details?id=com.
etermax.preguntados.lite

https://play.google.com/store/apps/details?id=com.quizup.core
https://play.google.com/store/apps/details?id=com.quizup.core
https://play.google.com/store/apps/details?id=com.etermax.preguntados.lite
https://play.google.com/store/apps/details?id=com.etermax.preguntados.lite

Figure 1. Overview of the data extraction process.

3. Data extraction

The goal of the extraction phase is to gather
the data of interest from DBpedia and produce a
consolidated dataset that can be easily exploited
to generate multiple choice questions. This is ac-
complished through a series of steps that are
graphically depicted in Figure 1. This workflow
is supported with a collection of scripts coded
in Javascript, while all generated input and out-
put files are in JSON format [5]. In the first
stage, a Domain specification file is authored with
the instructions for retrieving data from a tar-
get endpoint – in this case, the English DBpe-
dia public endpoint.6 This specification file iden-
tifies the classes in the domain of interest, e.g.
Museum, Painting, or Painter in Arts. Each class
is associated with a SPARQL query for retrieving
the corresponding DBpedia entities. Note that the
SPARQL query is trivial if there is already a class
in the DBpedia ontology that perfectly matches
the intended concept, e.g. dbo:Museum. However,
a suitable DBpedia class is not always available or
target entities are members of other classes, thus
requiring to craft complex queries like the one in
Listing 1.

Listing 1: SPARQL query for retrieving the enti-
ties of the Painting class
select distinct ?X where {
?X dct:subject ?S .
?S skos:broader{,4} dbc:Paintings .
{ {?X a dbo:Artwork .}

UNION {?X (dbo:author | dbp:author) [] . }
UNION {?X (dbo:artist | dbp:artist) [] . }
UNION {?X (dbo:museum | dbp:museum) [] . }
UNION {[] dbp:works ?X .} } . }

A domain specification file also identifies the lit-
erals to be extracted for the entities of a target
class – like labels, years, or image URLs – by pro-
viding the corresponding datatype properties used
in DBpedia. In addition, relations between entities
of different classes are also defined; simple cases
just involve an object property, e.g. dct:subject

6http://dbpedia.org/sparql

for getting the Wikipedia categories of Painting.
Unfortunately, the structure of DBpedia is not
very regular and it is common to find alternative
properties with similar meaning. As a result, more
complicated queries are frequently needed to ex-
tract relations between DBpedia entities – see for
example the query in Listing 2.

Listing 2: SPARQL query for retrieving the cities
where museums are located
select distinct ?entA ?entB where {
?entA a dbo:Museum .
?entB a dbo:Settlement .
?entA (dbo:location | dbp:location |

dbo:city | dbp:city){1,3} ?entB . }

In the Data gathering stage, a script takes
a specification file as input and systematically
queries DBpedia to retrieve the data available of
the target domain. Essentially, the script gathers
the entities belonging to each class, their liter-
als, and their relations with other entities, as de-
fined in the domain specification file. For every
DBpedia entity found, the script also obtains the
number of triples with that individual as subject
(outlinks) and the number of triples with that in-
dividual as object (inlinks) – these measures are
employed to estimate the popularity of an individ-
ual in the question generation phase (see Section
4). All queries are paginated using the LIMIT
and OFFSET SPARQL keywords, while a pa-
rameter restricts the number of concurrent queries
sent to the endpoint. Importantly, the script runs
in an incremental way, saving the work in case of
errors such as a temporal unavailability of DBpe-
dia. The output of this stage is a file with a JSON
object for every entity found, e.g. “The Surrender
of Breda” in Listing 3.

The snippet in Listing 3 includes the URI of the
entity, the collected literal values, the outlinks
and inlinks, and the relations to entities from
other classes. The last item, painting_categories,
corresponds to the list of Wikipedia categories
that the source Wikipedia article is endowed.
Wikipedia contributors annotate articles with
suitable categories that are organized into a hier-
archy that reflects the notion of “being a subcate-
gory of” [3]. Wikipedia categories represent a pre-
cious knowledge resource that can be extremely
powerful for adding variety and uniqueness to the
question set in Clover Quiz. In this running ex-

http://dbpedia.org/sparql

Listing 3: JSON object generated in the data gathering stage for a sample entity
{ "uri": "http://dbpedia.org/resource/The_Surrender_of_Breda",
"label": [{"es": "La rendición de Breda"}, {"en": "The Surrender of Breda"}],
"image": "http://en.wikipedia.org/wiki/Special:FilePath/Velazquez-The_Surrender_of_Breda.jpg",
"outlinks": "85",
"inlinks": "2",
"painter": ["http://dbpedia.org/resource/Diego_Velázquez"],
"museum": ["http://dbpedia.org/resource/Museo_del_Prado"],
"painting_categories": ["http://dbpedia.org/resource/Category:1634_paintings",

"http://dbpedia.org/resource/Category:Velazquez_paintings_in_the_Museo_del_Prado",
"http://dbpedia.org/resource/Category:War_paintings",
"http://dbpedia.org/resource/Category:Horses_in_art"] }

Table 1
Summary of the data extraction process for the different domains

Animals Arts Books Cinema Geo Music Tech TOTAL

of classes 6 22 9 10 19 17 18 101
of entities 82,874 223,022 141,621 353,361 251,927 349,443 162,941 1,565,189
Category data (MB) 61 232 149 262 168 231 59 1,162
Annotated data (MB) 67 108 79 236 122 202 115 929

ample, the category hierarchy can be exploited to
gather the year where “The Surrender of Breda”
was completed and other relevant facts such as
being a Spanish painting, with animals, and from
the Baroque period that are derived from broader
categories. Since there are more than one million
Wikipedia categories, the aim of the Category ex-
pansion stage is to gather a relevant subset of the
category hierarchy for the domain of interest. A
script automatically generates this subset by ex-
tracting all the categories found in the data gath-
ering stage and then querying DBpedia to ob-
tain the set of broader categories for each spe-
cific one (using the property skos:broader). The
script continues recursively with each new cate-
gory found until navigating 4 levels up in the hier-
archy – this parameter was chosen because it gives
a good domain coverage with a reasonable size.
The last stage of the data extraction process

involves the authoring of a Category annotation
file in which a set of Wikipedia categories of in-
terest are specified for the target classes, e.g.
dbc:Baroque_paintings for the Painting class.
A script takes as input this file, as well as the
extracted data and the expanded category files
generated in the previous stages. For every can-
didate category, the script obtains the expanded
set of subcategories and then evaluates the in-
dividuals of the target class. In the example

above, “The Surrender of Breda” is annotated
as Baroque_paintings because dbc:Velazquez_
paintings_in_the_Museo_del_Prado is a sub-
category of dbc:Baroque_paintings. The ob-
tained annotations are added to the corresponding
JSON object, e.g. Listing 4 shows the annotations
of the running example.

Listing 4: Annotations added to the JSON object
in Listing 3 after the data annotation stage
"year": 1634,
"Baroque_paintings": true,
"Spanish_paintings": true,
"War_paintings": true,
"Animals_in_art": true

Table 1 gives some figures about the number of
classes specified, the number of entities extracted
from DBpedia, the size of the expanded category
files, and the size of the annotated data files for
each domain in Clover Quiz.

4. Question generation

A multiple choice question consists of a stem
(the question), a key (the correct answer), and
distractors (a set of incorrect, yet plausible, an-
swers) [1]. In Clover Quiz, the challenge is to pro-
duce numerous, varied, and entertaining questions

in a scalable way. Moreover, a question difficulty
estimator is required to match the questions to
the players’ skills during the game – intuitively,
novice players should get easy questions, while
experienced players should get more challenging
questions as they progress through the game. To
comply with these requirements, a template-based
question generator is devised. It consists of a script
that takes as input a list of question templates and
an annotated data file of a domain, as produced at
the end on the data extraction pipeline (see Sec-
tion 3).
The question generator supports different tem-

plate types in order to allow the creation of var-
ied questions, namely: image, e.g. Which is the
painting of the image?; boolean, e.g. Which is
the modernist building?; boolean negative, e.g.
Which is NOT an Ancient Greek sculptor?; group,
e.g. Which is the artistic style of the painter
{{painter.label}}? (options: Gothic, Renaissance,
Baroque, Mannerist, Romantic); date, e.g. When
was {{painter.label}} born?; greatest, e.g. Which
country has the largest population?; numeric,
e.g. Which is the population of {{city.label}}?;
relation, e.g. Who is the painter of “{{paint-
ing.label}}”?; and relation negative, e.g.Which
castle is NOT in {{country.label}}? – the lat-
ter two template types connect entities from two
classes, while the others just involve a single class.
A question template is just a JSON object

with a set of key-values, e.g. Listing 5. This tem-
plate can be used to generate questions in Span-
ish or English – the target languages of Clover
Quiz – by choosing the appropriate value of the
key question. The core part of a template is the
key class that defines the entities in the anno-
tated data file to which the template applies;
in Listing 5, target entities are members of the
Painting class and have to include the follow-
ing JSON keys: image, Baroque_paintings, and
Animals_in_art. A template can also specify a
min_score to filter out those candidates with a
lower popularity score – this is computed with this
formula: pop_score = outlinks + 10 ∗ inlinks.7
Inspired by the PageRank algorithm [15], the ra-

7outlinks and inlinks were obtained in the data ex-
traction pipeline (see Section 3). Note that outlinks aggre-
gates literal triples and outgoing RDF links, while inlinks
only counts incoming RDF links; inlinks is multiplied by
a factor of 10 in pop_score to stress its importance.

tionale of the employed popularity score is to dif-
ferentiate well-known entities from obscure ones.
Concerning the rest of the items in the template,
image_prop identifies the JSON key with the im-
age URL, topic is employed for classification pur-
poses, and dif_level is a subjective rating of the
difficulty of the questions generated with a tem-
plate – ranging from 0 (very easy) to 10 (very dif-
ficult).

Listing 5: Example of an image single class ques-
tion template
{ "question": [{"en": "Which is the name of this painting

with animals?"},
{"es": "¿Cuál es el nombre del cuadro con animales
de la imagen?"}],

"class": "Painting.image.Baroque_paintings.Animals_in_art",
"min_score": 50,
"image_prop": "image",
"topic": ["baroque"],
"dif_level": 1 }

When the template in Listing 5 is evaluated,
the question generator first obtains the set of
paintings that comply with the requirements, e.g.
“The Surrender of Breda”. It will then generate
a question for each occurrence by getting the im-
age URL (to support the question) and the label
of the painting (this will be the correct answer).
Finally, the script will prepare three lists of dis-
tractors that correspond to distinct difficulty lev-
els. This is performed by taking a random sam-
ple of 50 paintings in the same set, estimating
the similarity of each element to the correct an-
swer, discarding the less similar distractors, and
finally preparing the three lists. Note that a ques-
tion is more difficult if the distractors are closer
to the correct answer [2], so similarity is com-
puted with a measure based on Jaccard’s coeffi-
cient [10] that is defined for every class by pro-
viding the array keys, e.g. painting_categories,
boolean keys, e.g. Baroque_paintings, and date-
based keys, e.g. year, of the target entities. This
way, Figure 2(left) shows the question created with
the template above when applied to “The Sur-
render of Breda” painting. Variations of this tem-
plate can be created very easily, e.g. switching
from Baroque to Renaissance paintings, or from
animal to still life paintings.

All template types have a similar structure, al-
though double class templates are slightly differ-
ent. Listing 6 shows the template employed to gen-
erate the question in Figure 2(right). This tem-

Figure 2. Sample questions from the Arts domain obtained with the mobile app of Clover Quiz. The distractors correspond
to the “easy list” – this is especially evident in the second example that includes countries quite dissimilar to France, i.e.
non-members of the EU, in different continents, non-French speaking, and so on.

plate involves two classes (Museum and Country)
connected through the property country. This
property is functional, since a Museum can only
be located in one Country – entities that do not
comply with this restriction are silently filtered
out by the question generator. Note that the tem-
plate is not inverse because answers are members
of classB, i.e. Country in this case. The rest of
elements in the template are similar to the ones in
Listing 5. Again, it is very easy to prepare varia-
tions of this template, e.g. reversing the question
in order to choose the country of a particular mu-
seum (this new template will ask for members of
classA, and will thus be inverse). Figure 3 shows
additional questions from non-Arts domains.

Listing 6: Example of a relation double class
question template
{ "question": [{"en": "Where is the {{classA.label}}?"},

{"es": "¿Dónde está el {{classA.label}}?"}],
"classA": "Museum.image",
"classB": "Country.Member_states_of_the_United_Nations",
"prop": "country",
"inverse": false,
"functional": true,
"min_scoreA": 300,
"min_scoreB": 300,
"image_propA": "image",

"topic": ["museums"],
"dif_level": 0 }

After creating the questions associated to a tem-
plate, the script computes an estimator of the
questions’ difficulty. It relies on the popularity
of the involved entities (see pop_score above)
and the template difficulty level assessment (see
dif_level above). The former is employed to as-
sign a within-template difficulty score, while the
latter provides a between-template difficulty cor-
rection, e.g. a question about the completion year
of a painting is arguably more difficult than asking
the name of the same painting, so the dif_level
of the latter template should be higher. With the
computed difficulty estimator, questions are then
sorted and unique identifiers are given to facilitate
their retrieval during the game.

Table 2 presents some aggregated figures of the
question set generated for Clover Quiz. The over-
all process consisted on the creation of several
“meta-templates” for every domain (20 to 50, typ-
ically) and then preparing the specific templates,
e.g. Listings 5 and 6. The rationale is to produce
more cohesive questions related to specific topics
(like Romanesque, Gothic, Renaissance, Baroque,

Figure 3. Sample questions from the Music, Books, Animals and Technology domains obtained with the mobile app of Clover
Quiz.

Table 2
Summary of the question generation process for the different domains. There are significantly more English questions in Arts
and Books because Spanish labels were missing in many DBpedia entities in these domains

Animals Arts Books Cinema Geo Music Tech TOTAL

of templates 125 269 387 295 724 767 374 2,941
of questions (Spanish) 15,342 18,121 23,580 49,208 24,086 36,136 21,014 187,487
of questions (English) 15,347 27,523 46,403 50,199 24,484 36,075 21,017 221,048

Figure 4. System architecture of Clover Quiz.

etc. in Arts) by partitioning the space in smaller
and more coherent sets. The downside is that more
templates are needed, although the required effort
was kept low due to the massive use of copy&paste
from the “meta-templates”.

5. Back-end sever and mobile app

After generating the question set of Clover Quiz,
the next step is the system design. Figure 4 out-
lines the overall architecture, split into the mobile
app and the back-end server. This separation is
purposed to keep the mobile app as lightweight as
possible, while the server is in charge of delivering
the questions and associated images – note that
questions in Clover Quiz are supported with more
than 37K low-resolution images, totalling 1.12 GB.
To simplify the back-end, a key design decision was
to embrace the JSON format to avoid data trans-
formations of the question set, already in JSON.
Due to this, a MongoDB database is employed
– MongoDB is a scalable and efficient document-
based NOSQL system that natively uses JSON for
storage.8
The role of the application server is to handle

question requests without exposing the database
server to the mobile app directly. In this way,
the security of the database is not compromised
and an eventual upgrade or replacement of the

8https://www.mongodb.com/

database component does not require changes in
the mobile app. Since JSON was derived from
JavaScript and is commonly employed with this
language, a natural decision was to use Node.js
for the application server. Node.js is a popular
JavavaScript runtime environment for executing
server-side code.9

Application servers are purposed for handling
dynamic content, but they are not very strong
for serving static content. Since 67% of the ques-
tions in Clover Quiz have an associated image,
fast static file serving is an important require-
ment. This is addressed through the use of Ng-
inx,10 an efficient and fast performant Web server
that shines at serving static content and can also
be used as a reverse proxy [17]. Thus, Nginx was
configured to host the game images and to for-
ward question requests to the application server.
In addition, another Nginx box was set up as a
Web cache to improve performance and reduce the
back-end load.

Regarding the mobile app, an Android version of
the game described in Section 2 was coded. It can
be played in phones and tablets and the user inter-
face is built following the Material Design guide-
lines11 – see sample snapshots in Figure 5. An es-
sential functionality is the matchmaking of players
that was implemented using Google Play Games

9https://nodejs.org/
10https://nginx.org/
11https://material.io/

https://www.mongodb.com/
https://nodejs.org/
https://nginx.org/
 https://material.io/

Figure 5. Sample snapshots of the mobile app of Clover Quiz.

Services12 that provides a convenient and simple
API for turn-based multiplayer games. This way,
it is possible to initiate a match against a random
player or to invite a friend. The initial screen of
the game presents a list of pending invitations, on-
going and finished matches – see Figure 5(left) for
an example.
After selecting a match, a clover-shaped board

is displayed with 8 wedges corresponding to the
different domains – see Figure 5(right). The player
can push any of the available wedges, e.g. Music,
then select a subtopic, e.g. Heavy metal, and fi-
nally answer the question posed. The mobile app
keeps a player profile that is used as a basis to se-
lect a suitable question; specifically, there are 6 dif-
ferent expertise levels for each subtopic that con-
trols the difficulty of the questions, along with a
randomisation effect. In addition, the player pro-

12https://developers.google.com/games/services/

file keeps track of the last 5,000 questions posed to
avoid repetitions. Player profiles are saved in the
cloud through Google Play Games Services, thus
allowing to save players’ progression and continue
from any device. It is also worth mentioning that
the mobile app includes additional features such as
a single-player mode, statistics, leaderboards and
achievements. Players can also report a problem in
a question by simply pushing a “Report problem”
button that is always included in the question re-
sult screen.

6. Clover Quiz in practice

The game was released for Android devices on
March 11, 2017 under the names ‘Clover Quiz’ in
English and ‘Trebial’ in Spanish. It is available

https://developers.google.com/games/services/

Table 3
Overview of the questions answered from March 11 to August 1

Set Questions answered Correct responses Wrong responses Problem reports

Spanish 597,771 (100.0%) 382,431 (64.0%) 215,340 (36.0%) 1,915 (0.3%)
English 16,899 (100.0%) 10,106 (59.8%) 6,793 (40.2%) 20 (0.1%)

free of charge through Google Play13 and is part
of the catalogue of Don Naipe,14 a sole proprietor-
ship company specialized in Spanish card games
for mobile devices. Clover Quiz was promoted with
an in-house ad campaign that ran from March 13
to March 16, i.e. other Android games by Don
Naipe15 showed interstitial ads about Clover Quiz.
At the time of this writing (August 2017), more

than 5K users have downloaded the game. Table
3 shows some statistics of the questions answered
during this period. It can look striking that most of
the requested questions were in Spanish, but this
basically reflects the user base of Don Naipe (note
that Clover Quiz has been only promoted with in-
house ads). Approximately two thirds of the ques-
tions were correctly answered, while each player
has taken 122 questions on average, thus indicat-
ing a reasonable engagement with the game. In-
terestingly, the number of problem reports is quite
low and concentrated in a small set of questions. A
subsequent audit served to spot some problems: a
group type template with a wrong option, several
animals with misleading images, and one intrigu-
ing case in which Body louse was classified as a
Primate – the reason is that this parasite is anno-
tated in Wikipedia with the category Parasites
of humans that is a subcategory of Humans.
Clover Quiz users have also given feedback

through Google Play. Specifically, the average rat-
ing is 4.3 out of 5.0 and users’ comments are gen-
erally very supportive: there are some suggestions
of new domain areas, e.g. sports, and also a com-
plain about a server failure on April 14 – there was
a system reboot, and the question back-end was
not automatically restarted, now it is up again.
The latency of the production back-end server

was evaluated in May 2017. curl16 was employed

13https://play.google.com/store/apps/details?id=
donnaipe.trebial

14http://donnaipe.com/
15https://play.google.com/store/apps/developer?id=

Don+Naipe
16https://curl.haxx.se/

to measure the total response time of 1000 random
questions. The client machine ran the experiment
in Oslo, while the back-end is deployed in Amster-
dam. The average response time was 0.107s with a
standard deviation of 0.047s. Similarly, 1000 ran-
dom images hosted in the back-end were requested
with curl, taking 0.127s on average with a stan-
dard deviation of 0.041s. The reported latencies
are quite low and perfectly acceptable for an inter-
active trivia game. Indeed, Clover Quiz users have
not yet complained about performance.

7. Lessons learned

On the architecture of Semantic Web applica-
tions, a lesson learned is the use of the crawling ap-
proach for consuming DBpedia data and its trans-
formation to JSON to facilitate data processing. If
this process can be done off-line, – as in the case of
Clover Quiz for the generation of the question set
– consumer applications can be kept simple and
with low latency. The downside is the replication
of data and that applications may work with stale
data. Regarding DBpedia, there is already a lag
with Wikipedia, since the generation of DBpedia
is dump-based with a typical periodicity of 1–2 re-
leases per year [12]. Thus, data freshness can be
ensured by re-crawling DBpedia after a new re-
lease is available.

DBpedia is an amazingly comprehensive and
vast structured dataset, but DBpedia is also
messy: there are multiple properties with essen-
tially the same meaning, e.g. dbp:birthPlace and
dbp:placeOfBirth; entities are not always mem-
bers of the right classes, for example, dbr:Beyoncé
is not a member of dbo:MusicalArtist; classes
may be broader than expected, e.g. most of the en-
tities in dbo:Country correspond to former coun-
tries and empires. As a result, consuming DBpe-
dia data requires a thorough examination of the
target domains – indeed, Section 3 gives several
examples of complicated queries in the data ex-
traction process of Clover Quiz because of this

https://play.google.com/store/apps/details?id=donnaipe.trebial
https://play.google.com/store/apps/details?id=donnaipe.trebial
http://donnaipe.com/
https://play.google.com/store/apps/developer?id=Don+Naipe
https://play.google.com/store/apps/developer?id=Don+Naipe
https://curl.haxx.se/

messiness of DBpedia. In addition, some curation
of the extracted data may also be needed.
A substantial part of the riches of DBpedia cor-

respond to Wikipedia categories. Wikipedia edi-
tors have invested a tremendous effort on the an-
notation of categories that can be exploited with
DBpedia, although special care should be taken
to avoid pitfalls. More specifically, Wikipedia cat-
egories are a kind of “folksonomy”, so problems
can arise if they are handled as a strict class tax-
onomy – see the issue with Body louse in Section
6. In this respect, the category annotation script
employed in Clover Quiz can be configured to limit
the number of category levels considered in order
to restrict undesired consequences of the category
hierarchy. Furthermore, DBpedia users should be
aware that categorization of entities is unequal,
i.e. an entity may not be included in a category al-
though it should. This is quite challenging for the
generation of questions in Clover Quiz, e.g. a ques-
tion about Baroque paintings would be incorrect
if a Baroque painting was wrongly included as a
distractor due to an incomplete categorization. To
circumvent this problem, the target sets in Clover
Quiz templates are carefully defined to limit the
impact of missing information; in the previous ex-
ample, the corresponding template defines a tar-
get set comprised of paintings from the Gothic,
Renaissance, Baroque and Romantic movements,
hence any non-categorized painting is silently dis-
carded.
Overall, the template-based mechanism em-

ployed to generate the question set and the pop-
ularity score used to rank the difficulty of ques-
tions have worked very well. Although the number
of templates defined in Clover Quiz is not small
(see Table 2), this is mainly due to the creation of
multiple template variations. In this way, the class
space is partitioned in smaller and more coherent
sets, e.g. the template employed to generate ques-
tion Figure 2(left) is replicated for other move-
ments like Modern Art or Impressionism. About
the employed popularity score, it is a cheap mea-
sure for estimating the difficulty of questions that
generally works very well, e.g. The Beatles is the
most popular band and United States the most
popular country. However, this estimator repro-
duces similar bias as Wikipedia,17 for example, the

17https://en.wikipedia.org/wiki/Reliability_of_
Wikipedia#Susceptibility_to_bias

Ecce Homo at Borja18 is an unremarkable paint-
ing that became an Internet phenomenon due to a
failed restoration attempt – this is the most pop-
ular Spanish painting according to the employed
popularity score.

8. Discussion

There are several works in the literature that
use DBpedia to generate quiz questions, such as
[4, 9, 13, 14, 18]. Most of them are early demon-
strators that are no longer available. Perhaps the
main problem of these initiatives is the use of
a simplistic question generation process, e.g. [18]
and [9] only support one query type. In addition,
none of them exploits Wikipedia categories and
supporting images are rarely employed. A notable
exception is [4] that invests more effort in the cre-
ation of question types by defining subsets of DB-
pedia and then generating questions (even with
images). This approach for question generation is
closer to the one devised in Clover Quiz, but it
does not scale so well: each question type requires
the extraction of a DBpedia subset, as well as
changes in the quiz generation engine. In contrast,
the approach of Clover Quiz is completely declar-
ative and can be easily ported to other languages.
As a result, there are more than 200K questions (in
English and Spanish) built from 2.9K templates,
while the other initiatives report question sets in
the range of thousands.

When designing multiple choice questions, dis-
tractors have to be carefully chosen to control diffi-
culty [7, ch. 41]. However, existing DBpedia-based
question generators do not address this issue, and
just use random distractors, e.g. [18], [4], and [9].
Interestingly, [2] investigates semantics-based dis-
tractor generation mechanisms, proposing several
measures based on Jaccard’s coefficient [10] to con-
trol the difficulty of questions and running a user
study to evaluate its effectiveness. Unfortunately,
[2] is limited to ontology-based questions that ex-
ploit class subsumption, so it cannot be directly
applied to generate questions about entities in DB-
pedia. Nevertheless, Clover Quiz takes inspiration
from this work to generate different lists of dis-

18https://en.wikipedia.org/wiki/Ecce_Homo_
(Martínez_and_Giménez,_Borja)

https://en.wikipedia.org/wiki/Reliability_of_Wikipedia#Susceptibility_to_bias
https://en.wikipedia.org/wiki/Reliability_of_Wikipedia#Susceptibility_to_bias
https://en.wikipedia.org/wiki/Ecce_Homo_(Mart�nez_and_Gim�nez,_Borja)
https://en.wikipedia.org/wiki/Ecce_Homo_(Mart�nez_and_Gim�nez,_Borja)

tractors for distinct difficulty levels, as discussed
in Section 4.
On the effort required to produce the question

set in Clover Quiz, the most time-consuming tasks
correspond to the authoring of the domain speci-
fication files and the question templates. The for-
mer requires a close inspection of DBpedia to deal
with its messiness, as discussed along Section 7.
With respect to the templates, the generation of
varied and high-quality questions relies on a thor-
ough template authoring for the selected domains
of interest. The approach is indeed scalable, since
Clover Quiz is an individual pet project that has
been fully carried out during 10 months on a part-
time basis. Furthermore, an entirely automated
question generation pipeline without any configu-
ration step seems unrealistic.
Moving to system design, performance problems

are experienced when submitting live queries to
DBpedia, as in the case of [13]. To improve la-
tency, some initiatives take small snapshots of DB-
pedia and run their own triple stores, e.g. [4] and
[14], while [18] creates the question set off-line.
Clover Quiz also adopts the latter approach, but
it goes further by transforming the crawled data
into JSON to facilitate the generation of questions,
in particular to exploit Wikipedia categories. The
back-end server in Clover Quiz is able to cope with
the requirements of the mobile app, obtaining an
average response time of 0.1s in a benchmarking
experiment presented in Section 6.
With the release of Clover Quiz as an Android

app in Google Play, more than 5K users have
downloaded the game and answered more than
614K questions. User ratings are high (4.3 out of
5.0) and comments encouraging, thus suggesting
that the questions generated from DBpedia are en-
tertaining and that the game mechanics work. Fu-
ture work includes the development of an iOS ver-
sion. Furthermore, Clover Quiz could be extended
to improve DBpedia’s content through the game.
Beyond Clover Quiz and DBpedia, the proposed
data extraction pipeline and question generator
can be used with any other semantic dataset –
the only requirement is a SPARQL endpoint. As
a result, a promising future line is the generation
of multiple choice questions from other knowledge
bases; this is especially relevant in the e-learning
domain, given the importance of multiple choice
questions and the advent of Massive Online Open
Courses (MOOCs) [6].

Acknowledgements

This work has been partially funded by the Nor-
wegian Research Council through the SIRIUS in-
novation center (NFR 237898).

References

[1] T. Alsubait, B. Parsia and U. Sattler, Generating
Multiple Choice Questions From Ontologies: Lessons
Learnt., in: Proceedings of the 11th OWL: Experiences
and Directions Workshop (OWLED), Riva del Garda,
Italy, 2014, pp. 73–84.

[2] T. Alsubait, B. Parsia and U. Sattler, Ontology-based
multiple choice question generation, Künstliche Intel-
ligenz 30(2) (2016), 183–188.

[3] P. Boldi and C. Monti, Cleansing wikipedia categories
using centrality, in: Proceedings of the 25th Interna-
tional Conference Companion on World Wide Web
(WWW ’16 Companion), Montreal, Canada, 2016,
pp. 969–974.

[4] C. Bratsas, D.E. Chrysou, E. Eftychiadou, D. Kon-
tokostas, P. Bamidis and I. Antoniou, Semantic Web
game based learning: An i18n approach with Greek
DBpedia, in: Proceedings of the 2nd International
Workshop on Learning and Education with the Web of
Data (LiLe 2012), Lyon, France, 2012.

[5] T. Bray, The JavaScript Object Notation (JSON)
Data Interchange Format, Proposed Standard, RFC
7159, The Internet Engineering Task Force (IETF),
2014.

[6] E. Costello, M. Brown and J. Holland, What Questions
are MOOCs asking? – An Evidence-Based Investiga-
tion, in: Proceedings of the Fourth European MOOCs
Stakeholders Summit (EMOOCS 2016), Graz, Aus-
tria, 2016, pp. 211–221.

[7] B.G. Davis, Tools for teaching, 2nd edn, John Wiley
& Sons, 2009.

[8] T. Heath and C. Bizer, Linked Data: Evolving the Web
into a Global Data Space, Morgan & Claypool, 2011.

[9] B. Iancu, A Trivia like Mobile Game with Autonomous
Content That Uses Wikipedia Based Ontologies, In-
formatica Economica 19(1) (2015), 25.

[10] P. Jaccard, Étude comparative de la distribution flo-
rale dans une portion des Alpes et des Jura, Bulletin de
la Société Vaudoise des Sciences Naturelles 37 (1901),
547–579.

[11] H. Ji, R. Grishman, H.T. Dang, K. Griffitt and J. El-
lis, Overview of the TAC 2010 knowledge base pop-
ulation track, in: Proceedings of the 3rd Text Analy-
sis Conference (TAC 2010), Gaithersburg, MA, USA,
2010.

[12] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P.N. Mendes, S. Hellmann, M. Morsey,
P. Van Kleef, S. Auer and C. Bizer, DBpedia –
A large-scale, multilingual knowledge base extracted
from Wikipedia, Semantic Web Journal 6(2) (2015),
167–195.

[13] F. Mütsch, Auto-generated trivia questions based on
DBpedia data, 2017, URL: https://github.com/n1try/
linkeddata-trivia, last accessed August 2017.

[14] J. Mynarz and V. Zeman, DB-quiz: a DBpedia-backed
knowledge game, in: Proceedings of the 12th Inter-
national Conference on Semantic Systems (SEMAN-
TICS 2016), Leipzig, Germany, 2016, pp. 121–124.

[15] L. Page, S. Brin, R. Motwani and T. Winograd, The
PageRank Citation Ranking: Bringing Order to the
Web, Technical Report, 1999-66, Stanford InfoLab,
1999, Previous number = SIDL-WP-1999-0120.

[16] S. Praetor, New DBpedia Release – 2016-10,
2017, URL: http://blog.dbpedia.org/2017/07/04/
new-dbpedia-release-2016-10/, last accessed August
2017.

[17] W. Reese, Nginx: the high-performance web server and
reverse proxy, Linux Journal 2008(173) (2008).

[18] J. Waitelonis, N. Ludwig, M. Knuth and H. Sack, Who-
knows? Evaluating linked data heuristics with a quiz
that cleans up DBpedia, Interactive Technology and
Smart Education 8(4) (2011), 236–248.

https://github.com/n1try/linkeddata-trivia
https://github.com/n1try/linkeddata-trivia
http://blog.dbpedia.org/2017/07/04/new-dbpedia-release-2016-10/
http://blog.dbpedia.org/2017/07/04/new-dbpedia-release-2016-10/

	Introduction
	Game concept
	Data extraction
	Question generation
	Back-end sever and mobile app
	Clover Quiz in practice
	Lessons learned
	Discussion
	Acknowledgements
	References

