Semantic Web 1 (2017) 1-17
10S Press

BimSPARQL: Domain-specific functional
SPARQL extensions for querying RDF

building data

Chi Zhang®*, Jakob BeetzB!

& Department of Built Environment, Eindhoven University of Technology, P.O. box 513, Eindhoven, The

Netherlands
E-mail: c.zhang @tue.nl

b Department of Architecture, RWTH University Aachen, Schinkelstrasse 1, 52062 Aachen, Germany

E-mail: j.beetz@caad.arch.rwth-aachen.de

Abstract. In this paper, we propose to extend SPARQL functions for querying Industry Foundation Classes (IFC) building data.
The official IFC documentation and BIM requirement checking use cases are used to drive the development of the proposed
functionality. By extending these functions, we aim to 1) simplify writing queries and 2) enhance query abilities to retrieve useful
information implied in 3D geometry data according to requirement checking use cases. Extended functions are modelled as
RDF vocabularies and classified into groups for further extensions. We combine declarative rules with procedural programming
to implement extended functions. Real use cases and building models are used to demonstrate the value of this approach and
indicate query performance. Compared with query techniques developed in the conventional Building Information Modeling
domain, we show the added value of such approach by providing an extended application example of querying building and
regulatory data, where spatial and logic reasoning can be applied and data from multiple sources are required. Based on the
development, we discuss the applicability of proposed approach, current issues and future challenges.

Keywords: BimSPARQL, IFC, ifcOWL, SPARQL, function

1. Introduction

As integrating data in the architecture, engineer-
ing and construction (AEC) industry is becoming in-
creasingly important [47]], Building Information Mod-
eling (BIM) has been adopted by a growing number
of industry practitioners and has led to the specifica-
tion and standardization of the data standard Industry
Foundation Classes (IFC) [[15126]. Using BIM appli-
cations and the IFC standard to create, exchange and
process building-related data is the state-of-the-art in
the AEC industries’ day-to-day operations. As many
researchers have discussed however, the use of the data
modeling and exchange technologies underlying the

*Corresponding author. E-mail: c.zhang @tue.nl.

IFC format, the ISO 10303 family of standards, re-
ferred to as STEP (STandard for the Exchange of Prod-
uct model data) [42] has a number of limitations that
are partially rooted in the Closed World Assumption
(OWA) nature and the limited semantics of the under-
lying meta-models [4/14)36]]. Even using IFC-based
instance building models, the retrieval of domain spe-
cific information is currently challenging for industry
practitioners who are generally depending on propri-
etary, vendor-specific solutions. Building models are
used for different engineering tasks, where information
needs to be derived according to a wide range of use
case requirements. However, the IFC data model is de-
signed for the creation and exchange of product data,
but not tailored for various query and analysis tasks.
Many useful relationships and properties that are ex-

1570-0844/17/$35.00 (© 2017 —10S Press and the authors. All rights reserved

2 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

plicitly defined or implied in building models are dif-
ficult to retrieve in day-to-day processes. Furthermore,
the IFC meta-model is limited by its schema which is
not flexible enough to adapt to situations when data
from different sources needs to be integrated and pro-
cessed. Although IFC is a data model aiming to cover
the entire AEC industry, much information used in
common industry scenarios is not specified within the
scope of the IFC meta model, including e.g. product
classifications, building requirements and regulations
as well as data from neighboring industries such as ur-
ban planning and sensor networks.

Using the Resource Description Framework (RDF)
and Semantic Web technologies to represent building
data has been proposed time and again over the last
decade [4/39/46]. Unlike conventional data modeling
approaches that are limited by the scope of their under-
lying schemas, these Semantic Web technologies pro-
vide an open and common environment for sharing,
integrating and linking data from different domains
and databases. Semantics can be formally defined with
the logic basis of these technologies and shared us-
ing web-based mechanisms such as Uniform Resource
Identifiers (URIs) and the Hypertext Transfer Protocol
(HTTP). The ifcOWL ontology has been developed as
a counterpart of the IFC meta model using the Web
Ontology Language (OWL) and RDF. The ifcOWL
meta model is in the final stages of the standardization
process driven by the buildingSMART organization,
the most important industry standardization body and
forms the foundation for Semantic Web applications
for the AEC domain [39]. By transforming IFC build-
ing models to RDF data that follows the ifcOWL ontol-
ogy, using a standard query language such as SPARQL
to process them becomes possible [19]. This approach
is especially applicable for scenarios in which reason-
ing can be applied and federated data needs to be pro-
cessed.

By using plain SPARQL on ifcOWL data, how-
ever, some of the aforementioned issues still remain
to be addressed. Many query and analysis use cases
in the AEC domain are hampered by the complexity
of IFC data and many required relationships and prop-
erties e.g. property sets, product geometry quantities
and spatial and topological relations etc. are difficult
to retrieve. In this paper, we use SPARQL as a base
query language and propose to extend it with a set of
functions specific for querying ifcOWL building data.
The motivation is elaborated in section[2l We focus on
the official IFC documentation and common BIM re-
quirement checking use cases to define required func-

tions. Some of the use case examples are presented in
section [4] The strategy of extending SPARQL func-
tions for domain specific usage has also been em-
ployed in other industry domains. For example, the
Open Geospatial Consortium (OGC) has standardized
GeoSPARQL as a set of vocabularies and functions for
geospatial data [41], allowing e.g. to implement spa-
tial queries (e.g. *within distance’, "touching’ etc.). We
argue, that the standardization, implementation (e.g.
Marmotta, Stardog, Oracle, GraphDB etc.) and indus-
try adoption of GeoSPARQL provides a reasonable in-
dication for the feasibility of a similar approach for
spatial data in the AEC industry.

There are currently three major components of the
BimSPARQL project presented in this paper: 1) A
set of functions modelled as RDF vocabularies that
can be used in SPARQL queries (see section f); 2) A
set of query transformation rules to map functions to
IFC data structures to make writing queries easier (see
section [3); 3) A module for implementing geometry-
related functions for deriving implicit information (see
section [3). The official IFC specification and real-
world BIM requirement checking use cases in the
Netherlands and Norway, and some checks that have
been implemented in Solibri Model Checker (SMC)
[10J45050i51] have been used to drive the develop-
ment of the proposed and implemented functionality.
The links to the vocabularies, transformation rules and
source code repository of the prototypical reference
implementation is provided in Appendix [A]

The extended functions in this research do not re-
quire extensions for the grammar of SPARQL. With
SPARQL as a common interface language, extended
functions can be used to query building data alone or
combined with data from other sources, which in turn
may have their own domain specific functions (Fig.[T).
We believe that this is a generic approach that is us-
able in many different use cases, including e.g. multi-
model collaboration, quantity take-off and cost estima-
tion, requirement and code compliance checking etc..
As a W3C standard, SPARQL has been widely imple-
mented by a plethora of RDF Application Program-
ming Interfaces (APIs) and databases, and there are
many of them support extending functions (e.g. see
section [3.3] and section [3]), hence can be used as base
environments for implementing extended functions.

This paper is structured as follows: In section [2] the
background of IFC and ifcOWL is briefly introduced
and the motivation of this research is elaborated. In
section 3] an overview of related research is provided.
The proposed functional extensions for SPARQL are

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 3

’ SPARQL Query

|

Functions for Funtions for Functions for
building models data source 1 data source 2

Other (domain)
data sources 2

Other (domain)

Building models data sources 1

Fig. 1. SPARQL query with domain specific functional extensions

introduced and classified in section[d] followed by ex-
ample use cases. In section [5] implementation meth-
ods are described and a prototype is presented. In sec-
tion [6] real use cases and building models are used to
evaluate this prototype and demonstrate the value of
this approach in comparison with SPARQL and exiting
work. In section |/} an extended example is presented
to show the extensibility of this method. A discussion
about added value, limitations and further work con-
cludes this paper.

2. Background and motivation

In the last two decades, the IFC standard has been
developed and maintained by buildingSMART as a
standard data model for data exchanges between het-
erogeneous applications in the AEC/FM sector [10,
15]. The IFC schema is specified using the EXPRESS
modeling language [24]], while its instances are usually
serialized in IFC STEP File format [25]]. The compre-
hensiveness of the AEC domain makes IFC one of the
largest EXPRESS-based data models across engineer-
ing industries. It provides a wide range of constructs
for modeling building-related information. For exam-
ple, one of the most recent versions, IFC4_ADDI, de-
fines 768 entities and 1480 attributes on the schema
level [10]]. IFC has also provided a few mechanisms
to extend semantics in the instance level including e.g.
common property sets and external standard classifica-
tion references. At the same time however, this exten-
sibility constitutes additional difficulties for the imple-
mentation of the IFC model in software. On the other
hand, the information required in the AEC industry is
still much more than all available concepts defined in
the current IFC. Therefore, a large amount of infor-
mation is informally or implicitly represented and usu-
ally causes redundancies and ambiguities in IFC in-
stance models [52]. As an object-oriented data model,
IFC structures data mainly for the purpose of data ex-

change rather than for the understanding of the knowl-
edge domain, and information is usually represented
using relatively complex structures. All these issues
have brought about difficulties regarding data query
and management of IFC instance data.

Converting the IFC schema and its instances to
OWL and RDF was firstly proposed and implemented
in [4] to facilitate use cases of data partition, data
query and knowledge reasoning. It has been further de-
veloped by the buildingSMART Linked Data Work-
ing Group (LDWG) and has been specified as candi-
date standard status in 2015 [39]]. Using inferencing
and reasoning capabilities of RDF(S) and OWL, prac-
tical data processing scenarios in the building industry
can be adressed with off-the-shelf algorithms and tools
that would required custom tailored tools using STEP-
based modeling. For example, a simple data validation
use case requires that every building element should be
associated with a building storey, can be implemented
without hardcoding procedural validators [4558]]. The
relationship between a building element and the re-
lated building storey can be defined using an instance
of IfcRelContainedInSpatialStructure, which is an ob-
jectified relationship defined in IFC. Provided that the
building model is represented in the standardized if-
cOWL, the query provided in Listing [l| can retrieve
building elements which do not have this spatial con-
tainment relationship using common SPARQL imple-
mentations.

SELECT Ze
WHERE {
?e a ifc:IfcBuildingElement .
FILTER NOT EXISTS{
?r ifc:relatedElements ?e .
?r a ifc:IfcRelContainedInSpatialStructure

?r ifc:relatingStructure ?storey .
?storey a ifc:IfcBuildingStorey .
}
}

Listing 1: Query to retrieve building elements which
are not contained in a building storey. The query
result can be used to check the spatial containment
relationship for every building element. E]

2In this paper, all properties defined in ifcOWL are abbreviated to
compact format in query listings e.g. ifc:relatedElements is used to
represent the standardized
ifc:relatedElements_IfcRelContainedInSpatialStructure. ~ Another
simplification is that all the queries in this paper assume that they
are under RDFS entailment, hence in this case all the instances of
IfcBuildingElement subtypes are visited by the query.

4 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

As RDF and Linked Data have received increasing
attention in the AEC industry, it makes sense to use
SPARQL as a common language to process federated
data sources instead of developing custom domain spe-
cific languages. Common, real-world instance model
query scenarios that can be implemented using the cur-
rent SPARQL specification include:

— All building objects should be tagged with NL-
stb classification code, which is a building prod-
uct classification system used in Netherlands.

— The type and thickness of walls can only be mod-
elled according to the valid combinations pro-
vided in an external table X.

— Retrieve all geo-locations of companies which
produce the materials used in the walls placed in
space X.

All these tasks not only need to query building models
captured in e.g IFC, but also require data from other
sources. We argue that they can be more easily imple-
mented with RDF and SPARQL technologies without
relying on proprietary systems.

The conversion from IFC instances to ifcOWL RDF
data is a straightforward process, and the data struc-
tures in IFC instances are reflected in the output RDF
data [39]. Since standard SPARQL queries are only
processed by matching the data graph patterns in RDF,
the resulting queries are usually more complex than the
high-level abstractions provided in use cases. For ex-
ample, in the query case of Listing[T] it is better to have
a shortcut relationship between a building element and
a storey rather than the objectified solution of the regu-
lar schema. There are many commonly used structures
that can be simplified all over the IFC meta model to
simplify query and make properties and relationships
closer to the understanding of knowledge domains.

Another problem that motivates this research and
development work is that SPARQL can hardly re-
trieve useful information in scenarios where geomet-
ric computations and spatial reasoning is needed. Ge-
ometry data usually constitutes the largest sections
in building models (see Table [T0) and contains large
amounts of information that currently can only be in-
terpreted by human domain end users. Although the
IFC meta-model provides many ways to explicitly
model geometry-related properties and topological re-
lationships (e.g. property sets and explicit relation-
ships such as the IfcRelContainedInSpatialStructure
relationship used in Listing [I)), they are not manda-
tory and not always reliable due to lack of rigidness
in the IFC meta model and the ad-hoc nature of de-

Fig. 2. A model that has incorrect semantic information with re-
spect to its geometric data. The left one shows two walls which are
stated as "contained in" (using IfcRelContainedInSpatialStructure)
in a storey are actually located on the storey above. The second one
shows three walls (the light grey ones) which are labelled as "is ex-
ternal” are actually internal.

sign processes in the AEC domain. In practice, IFC
building models often miss required semantic relation-
ships and properties or contain incorrect or inconsis-
tent information. Figure 2] shows two examples of in-
consistencies between semantic relationships and ge-
ometric representations in real building models. Di-
rectly deriving information from geometric represen-
tations of building models provides another option to
enrich data and ensure consistency. Furthermore, much
geometry-related information is impractical or impos-
sible to be explicitly provided in IFC data. For exam-
ple, there are specific topological relationships such as
the "touching" relationship between the bottom surface
of a wall to the upper surface of the floor slab (see List-
ing[8) [50], or properties such as distances between el-
ements (see Listing[7).

Across the different use cases analyzed in the con-
text of the research presented here [SO0U45U10US1]], there
are many commonly used concepts that are frequently
reused. Using the query in Listing[I]as an example, the
spatial containment relationship is required in data val-
idation use cases, and is also important in many cases
including e.g. cost estimation. By wrapping them as
functions used in a standard language (see section [)),
we are able to reuse them in many different cases.

3. Related work
3.1. BIM query techniques

Many past developments have been aimed at the
query and analysis of IFC instance data. Some com-

mercial platforms such as Solibri Model Checker
(SMC) provide functions for querying IFC data [51]].

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 5

However, the semantics of query functions in these
proprietary systems are not transparent and the usage
of them is limited by the user interfaces provided to
end users.

Standard query languages have been used for query-
ing IFC data in the past. As the IFC data model is based
on EXPRESS, the standard languages EXPRESS and
EXPRESS-X can be used for queries [24]. However,
the EXPRESS language family has not gained popu-
larity outside the STEP initiative in either engineering
or software development communities, and there is a
very limited set of tools to support them. Some other
attempts have used the generic Structured Query Lan-
guage (SQL) to query IFC data that has been mapped
into relational databases [28/30]. These attempts either
have severe performance and scalability issues due to
the vast amount of tables, or are not intuitive enough
for end users.

BimQL is among the first implemented and open
source domain specific query language for querying
IFC data [34]]. It is implemented in the open source
bimserver.org platform [4]. It provides create, retrieve,
update and delete (CRUD) functionalities to manip-
ulate IFC data. Besides using concepts in the IFC
schema, BimQL also provides a few shortcut functions
for handling common use cases such as deriving infor-
mation from common modeling constructs in the IFC
model referred to as property sets and quantity sets.
However, these functions are very limited and BimQL
has not been further developed.

Geometry and spatial information in building mod-
els is especially focused by a spatial query language
introduced in [8]. This approach is further developed
as a query language named QL4BIM for querying IFC
data [[L1]]. It has provided a few topological and spatial
operators and use R-Tree [17] spatial indexes to opti-
mize query performance.

There are also query languages tailored for specific
use cases such as building code compliance check-
ing. The Building Environment Rule and Analysis
(BERA) Language is a domain-specific language ded-
icated to evaluate building circulation and spatial pro-
grams [32]. For this purpose, it has defined an inter-
nal data model containing a small subset of IFC with
related concepts such as floor, space and door, etc.
Path-finding algorithms are developed to generate cir-
culation routes between spaces. As a language, how-
ever, BERA has limited expressive power and only
supports some specific cases on building circulation
rules. BIM Rule Language (BimRL) is a more recent
research project [13]. It is a domain specific query lan-

guage designed to facilitate accessing information for
use cases of regulatory compliance checking. BimRL
has provided a suite of components including a simpli-
fied data schema and a light-weight geometry engine.
IFC building models are loaded through an Extract-
Transform-Load (ETL) process into data warehouse.
The language has an SQL-like syntax to check build-
ing models in terms of the defined data schema and im-
plemented functions. It is currently implemented based
on a relational database.

The above technologies have provided inspiring do-
main specific algorithms for querying building data.
Currently, however, no query language has been stan-
dardized or widely adopted by the research commu-
nity and AEC industry. We argue that this might be be-
cause these technologies are limited by the closed con-
ventional data modeling approaches that are not sus-
tainable in the AEC domain, which continuously needs
changes, extensions and customizations according to
different contexts and use cases. All these domain spe-
cific BIM query languages are designed based on fixed
internal data models (usually an IFC equivalent or a
simplified subset of it) and additional functions are
hard-wired on top of them. Although some of them
have provided programming interfaces for further ex-
tensions, the development work is usually limited by
the data captured in its internal data model.

3.2. Applying Semantic Web technologies for
querying BIM models

In recent years, Semantic Web and Linked Data
technologies have received increasingly more attention
as a knowledge modeling approach in the AEC in-
dustry and a number of research prototypes have been
developed. A recent and comprehensive overview of
them is provided in [40]. Here, we only briefly describe
cases related to data query and knowledge reasoning
tasks.

Regarding data query for use cases in the AEC do-
main, one of the early examples is described in [56].
Conformance constraints are interpreted and formal-
ized as SPARQL queries in that paper. A similar
method is developed in [9], which has introduced a
semi-automatic process to transform regulatory texts
to SPARQL queries. A limitation of both efforts is that
they mainly focus on formalizing building regulations
into a query language without specifying on how to
map the used terminologies to building data models.

A number of researchers have applied Semantic
Web technologies in different sub-domains in the con-

6 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

text of the AEC industry to facilitate knowledge mod-
eling and rule checking. In [36], a remarkable ap-
proach for facilitating regulatory compliance check-
ing has been introduced based on N3Logic and EYE
reasoning engine [3]], and a test case of an acoustic
performance checking is presented. In [33]], an OWL
ontology has been used for reasoning tasks in cost
estimation cases. There are also cases regarding en-
ergy management and simulation, construction man-
agement, and job hazard analysis etc. [2157060]. All
these examples have proved that different knowledge
reasoning tasks in the AEC industry can be facilitated
by properly using Semantic Web technologies.

Currently however, a systematic way to query data
from building models using Semantic Web technolo-
gies is still missing. One of the possible reasons is that
an authorized and stable standard ifcOWL ontology
has only been established very recently and its adop-
tion in suitable use cases will likely take a few more
years. The most similar work that has overlaps with
this research are the IfcWoD and SimpleBIM [16.38]]
ontologies. They both attempt to transform ifcOWL
data to a more compact graph to ease query and im-
prove runtime performance. The difference is that they
mainly focus on developing a standard ontology as
an alternative to ifcOWL to simplify the data graph,
while this research is a framework that mainly con-
siders the query functions with respect to semantics in
common use cases and further extensions of them. A
major enhancement of the approach introduced here is
that functions related to geometry data are provided.
To our knowledge, it is the first time to combine an-
alyzing IFC geometry data with rule-based reasoning
technologies.

3.3. Functional extensions of SPARQL

Extending SPARQL with additional functions has
been proposed and implemented in other fields. The
most inspiring ones are geospatial and geographical
domains as they share many requirements, concepts
and processes with the AEC industry. The stSPARQL
in Strabon and the GeoSPARQL standard from Open
Geospatial Consortium (OGC) have specified many
topological and geospatial functions for 2D geome-
try data [31/41]. They have been implemented by spa-
tial database systems including Strabon, Parliament
and uSeekM [18]]. Some other RDF APIs and triple
stores like the Apache Jena framework, Allegrograph
and OpenLink Virtuoso have also implemented some
geospatial functions. To our knowledge, these vocab-

ularies and functions developed in the Semantic Web
world have mainly considered 2D geometry and can-
not be directly reused for building models.

The AEC industry also has significant differences
to e.g. the geospatial field. There are many disci-
plines and use cases in different contexts, in which the
amounts of required properties and relationships are
almost unlimited. There are much more sophisticated
reasoning tasks related to 3D geometry. Therefore, the
systems needed in the AEC domain must go beyond
a fixed set of vocabularies but should rather provide a
flexible framework that can relatively easy to reuse and
extend functions to process data and adapt with differ-
ent situations.

From the implementation perspective, there are
many technologies can be used to extend functions
for SPARQL. Besides existing open source and com-
mercial platforms (e.g. Apache Jena, OpenLink Virtu-
oso and Allegrograph) that support customizing func-
tions by coding them with full fledged programming
languages, there are some technologies that provide
more transparent and portable methods for extending
functions. For example, SPARQL Inferencing Nota-
tion (SPIN) can be used to define and execute func-
tions by issuing SPARQL queries. A meta vocabulary
is provided by SPIN to serialize SPARQL queries into
RDF graphs to maintain implemented functions (see
section[5). The VOLT proxy provides a similar method
that utilizes SPARQL fragments and graph patterns
to define functions [44]]. It has been applied on some
geospatial cases and a plugin to include functions for
spatial computation is provided based on the PostGIS
API. Recently, an approach is presented in [12]] to de-
fine functions by extending Triple Pattern Fragments
(TPF) [53]] on the client side, hence extended functions
are compatible with any SPARQL server. As showed
in [[12]], it however might have issues regarding perfor-
mance and data traffics since additional functions are
computed in web browsers and raw data needs to be
retrieved to the client side. All these approaches can
potentially be undertaken for implementing extended
SPARQL functions for querying IFC building models
and data in the AEC domain.

4. Vocabularies

Building data captured by the IFC data model is
the focus for developing functions. The IFC docu-
mentation and requirement checking use cases from
the Dutch Rgd BIM Norm, the Norwegian Statsbygg

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 7

BIM Manual and some checks that have been imple-
mented in the Solibri Model Checker (SMC) are re-
viewed to determine the structure of needed vocabu-
laries [10U45)50!51]]. Most of the referenced cases are
BIM data quality validation requirements, which are
associated with the IFC data model and are the most
fundamental and commonly-used requirement check-
ing cases. From reviewing the above sources, we have
extracted many properties and relationships that are re-
quired in use cases (see section .1} 4.2] .3] and [.4).
The implemented functions are wrappers of modular
low-level code to derive such information and to coher-
ently use them in different scenarios. Due to the com-
plexity of the AEC industry however, it is not possible
for a single organization to list all required functions
for all common task scenarios. Instead, they are clas-
sified based on required data inputs from IFC build-
ing models since they are very much related to further
implementations and extensions (see section [3).
Information in IFC-based building models can be
roughly grouped into 1) domain semantics that are usu-
ally explicitly represented by e.g. object types, rela-
tionships, and properties, and 2) geometric data, which
is a low-level technical description captured by geom-
etry objects associated with IfcProduct instances. Due
to the lack of support for parametric geometry descrip-
tion on the levels of the meta model and the implemen-
tation, these two kinds of information are almost in-
dependent from each other. In fact, building models in
real practices often contain information that is incon-
sistent between these two subsets [48] (also see Fig-
ure [2). We thus argue that query functions should be
categorized to identify which subsets of the model are
used to derive data from. As shown in Figure [3] and
listed in Table[T] the proposed domain vocabularies are
classified into four groups to derive data from these
two subsets of either geometric or non-geometric in-
formation in IFC models. Sections K.l and [4£.2] de-
scribe functions used to extract information only from
domain semantic subset of models, while sections [£.3]
and [4.4] describe functions to mainly analyse geomet-
ric aspects. Besides these four vocabularies that are de-
fined for building objects, we also propose a vocabu-
lary in section[4.5]to materialize and process geometry
data. It is considered as an additional lower level layer
independent from domain information and can provide
additional functions for some use cases e.g. the exam-
ple in Listing [§] For each category and subcategory,
some function examples are provided to show how to
apply them on an ifcOWL instance data set and query
examples are provided to demonstrate a use case.

There are generally two ways to extend SPARQL
with domain specific functionality. The first method is
to add operators in expressions (e.g. FILTER expres-
sion). The second one is to define a function as an RDF
property, which is known as a computed property or
property function to be used in triple patterns to gener-
ate or evaluate bindings based on its bound subject and
object [54]. The differences are: 1) a property function
is also an RDF property that can have domain(s) and
range(s); 2) a property function can generate new bind-
ings for triple patterns beyond simply computing val-
ues based on inputs. The syntactic sugar of using RDF
collections in triple patterns also provide the possibil-
ity for a property function to have multiple inputs and
outputs (see an example in Listing [7). In the research
presented in this paper, most of the extended functions
are defined as property functions. We argue, that they
are more flexible and intuitive and can potentially be
materialized into RDF graphs for specific applications
in order to improve runtime performance [37]. Func-
tions are modelled as RDF vocabularies with their re-
spective URIs. Due to the flexibility and openness of
the RDF technology, additional vocabularies can al-
ways be added.

4.1. Functions for schema level semantics

Functions in this group are defined to wrap com-
monly used structures specified on the IFC schema
level. We model these functions mainly from the fun-
damental concepts and assumptions specified in the
official IFC documentation [10]. These fundamental
concepts describe recommended and commonly used
structures in IFC instances as the general guideline for
usage and implementation of IFC. Each of the fun-
damental concepts defines how a domain concept or
relationship should be represented in IFC. Many of
them have relatively complex structures to represent
semantics. By reviewing these fundamental concepts
and comparing them with use cases, shortcuts can be
constructed to simplify writing queries and adapt to the
high level abstractions in the AEC domain. They are
defined for the following situations.

The most basic functions are related to objectified
relationships. Many relationships in IFC data are re-
alized by objectified relationships that are instances
of IfcRelationship subtypes. An example is IfcRelCon-
tainedInSpatialStructure, which is used in Listing E}
Most of these objectified relationships and their us-
age are described by the fundamental concepts in IFC
documentation. In general, each of the objectified re-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

Function for Function for Function for Function for
schema semantics instance semantics product geometry spatial reasoning
o g% o o
1 1 1
I /' \ I I

Il Il
| schm: | | pset | | qto: | | pdt: |
T > -
\\ I’ 7 /// \\\ - /
\ | , - NPt s
\ d X /
\, ! / e N /
\ ! s/ s e X 2
\ 1 7/ - P
\ I 4 -7 - :
\ | J - - geom:
\ 1 / e -
N\ I e
\ o/ Pl e
S5 -

A

—|> Generalization
——L> Realization

geometry data

ifcOWL data

———> Dependency

——<> Aggregation

Fig. 3. Conceptual relationships between vocabularies and IFC data

Table 1

Vocabulary prefixes used in this paper and descriptions

Lower level geometry library for materializing geometry data and computations on geometry objects (see sec-

a set of IfcElement instances (e.g. wall, door) to de-
fine a spatial containment relationship. In the current
vocabulary, functions are defined as shortcuts to wrap
such structures and create direct relationships between
the objects that are associated. For example, the func-
tion schm:isContainedIn is created to retrieve the re-
lationship between an IfcElement and the containing
IfcSpatialElement instance (see Figure [). With the

Prefix Description
schm: Shortcut properties and relationships for IFC schema level semantics (see section i
pset: Short cut properties for instance level property sets (see section |
gto: Shortcut properties for instance level quantity sets (see section |
pdt: Properties for single product based on geometry data (see section
spt: Properties and relationships based on geometry data of multiple products (see section i
geom:
tion[A.5)
ifc:lfcWindow I(—' ifc:IfcRelFillsElement l—)l ifc:lfcOpeningElement |
Y YN\ SN 7 A
// AN R - Ve
A AN schmchasElementFiling
7/ .
/ e schmehasVoiding | [ife:fcReivoidsElement
/ ~S \
7 i S A\,
{ schm:isContainedin schm:isPlacedin N AN
' ~ N
1\ S A 4
\ S R
AN ifc:IfcRelContainedIr uoture > ifc:IfcWall
\\ 7
AN schm:isContainedw///

~o v i
ifc:IfcBuildingStorey |(””””

Fig. 4. Example of shortcut functions for schema level semantics

lationships can be used to associate an object with
another object or a set of objects. For example, an
IfcRelContainedInSpatialStructure can be used to as-
sociate an [fcSpatialElement (e.g. storey, space) with

same approach, functions are created for all the fun-
damental concepts which describe semantic structures
containing IfcRelationship subtypes (see anther exam-
ple schm:hasSpaceBoundary in Table [2)). This type of
shortcuts are also proposed in [16] and [38]].

Another requirement is that some relationships need
additional specification or generalization. For exam-
ple, the spatial composition relationship between spa-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 9

tial objects (e.g. site, building, space) is semantically
different from the aggregation relationship between
building elements (e.g. wall, slab, stair). The former
one only represents a hierarchical spatial relationship,
while the latter one implies geometry compositional
relationship. In IFC, however, they are represented
using the same structure (IfcRelAggregates). These
two structures are defined as two different functions
(see one of them schm:isDecomposedByElement in Ta-
ble [2). On the contrary, sometimes more generalized
relationships are required for different structures. A
typical example is the relationship of material associ-
ation. There are several means to associate a material
with a building object (e.g. single material, layered ma-
terial), while in many use cases, it requires direct rela-
tionship between an object and its associated material.
In this case, besides functions for each different struc-
tures, an additional function is created to retrieve a di-
rect relationship between an object and its associated
material regardless of which representation it is taken
(see schm:hasMaterial in Table 2).

The third situation is functions for additional short-
cuts. They are defined only based on experiences and
referenced use cases. A typical example is the relation-
ship between a filling element (e.g. doors, windows)
and a voided element (e.g. walls that have openings).
If we need to assert such relationship, it is realized in
IFC with two objectified relationships and an opening
element as illustrated in Figure [As such relationship
is frequently required, a function is created as a direct
relationship between the filling element and voided el-
ement (see Figure [and Listing[2).

SELECT ?window ?wall
WHERE {
?window a ifc:IfcWindow .
?window schm:isPlacedIn ?wall
?wall a ifc:IfcWall .
FILTER NOT EXISTS {
?wall schm:isContainedIn ?storey .
?window schm:isContainedIn ?storey .
?storey a ifc:IfcBuildingStorey .
}
}

Listing 2: Query to retrieve pairs of a window and a
wall, with the condition that the window is placed in
the wall but they are not contained in the same storey.

Following these approaches, over 40 relationships
are currently wrapped as functions (see Appendix A).
Some frequently used examples are listed in Table
Listing [2 shows an example query to apply two func-

Table 2

Example functions for schema level semantics

Function Description

Generates or evaluates a re-
lationship between an object
occurrence and its type object

schm:hasType

Generates or evaluates a re-
lationship an object with its
associated material instances
regardless of which struc-
tures are taken for associating
materials in IFC

schm:hasMaterial

Generates or evaluates a re-
lationship between a space
with its boundary elements
(e.g. wall, door or virtual
boundary)

schm:hasSpaceBoundary

schm:isDecomposedByElement ~ Generates or evaluates a rela-
tionship between an element
and its child elements

tions for a use case from Statsbygg BIM Manual [50],
which requires to check whether every window and the
wall it is placed in are contained in the same building
storey. This query uses the functions schm:isPlacedIn
and schm:isContainedIn. A comparison with a query
using plain SPARQL to realize this use case is pre-
sented in section

4.2. Functions for instance level semantics

Functions in this group are provided to represent
IFC instance level semantics. As mentioned in sec-
tion [2] IFC instances can be semantically extended
by property sets and quantity sets. These extended
properties are modelled as instances of IfcProperty or
IfcElementQuantity in IFC models, which are associ-
ated with IfcObject instances using certain structures.
For example, Figure [3] illustrates two common struc-
tures for associating IfcProperty with IfcObject [10].
An extended property that is modelled as an instance
of IfcProperty with a related IfcPropertySet is asso-
ciated with an IfcObject through either an IfcRelDe-
finesByProperties or an IfcTypeObject, which in turn
is associated with the IfcObject through an IfcRelDe-
finesByType. The semantics of extended properties are
identified by their names defined in external documen-
tations. A property which is modelled using the former
structure overrides a property modelled using the latter
one if they have the same name.

This structure leads to complex declarations in
SPARQL even for simple use cases. In this research,
shortcut functions are defined to directly connect ob-

10 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

ifc:IfcProperty

3

| ifc:lfcObject |<—| ifc:IfcRelDefinesByProperties l—)i ifc:IfcPropertySet |

[3

ifc:lfcRelDefinesByType »| ifc:lfcTypeObject

Fig. 5. Two common structures for associating IfcProperty with If-
cObject

jects (IfcObject instances) with property values instead
of using complex structures in IFC instances for writ-
ing queries. These functions are identified with pre-
fixes pset: and gto: for property sets and quan-
tity sets respectively. A typical example is illustrated
in Figure [6] where a wall that has a "LoadBearing"
property is represented as an [fcWall associated with
an IfcProperty instance in ifcOWL data. A shortcut
property pset:loadBearing is defined to associate the
wall and value of the property instance. All the proper-
ties of primary data types (instances of IfcPropertySin-
gleValue and IfcPhysicalSimpleQuantity) can use the
same mechanism to define functions. They are the ma-
jority in property sets and quantity sets and are also
most frequently required in use cases. In our work,
the property sets and quantity sets officially defined by
buildingSMART are considered as examples. In total,
there are 2519 properties and 257 quantities grouped
within 415 property sets and 93 quantity sets in the
official IFC 4 documentation [[10]. Within them, 1548
properties and 257 quantities have the value range of
primary data types and have been defined as functions.

schm:hasObjectProperty ifc:name
dfeWall_1 p================-) ﬂ :IfcProperty_1 }—P{ :IfcLabel_1
schm:hasTypeProperty

\
\
\

expr:hasString

A
"LoadBearing"

ifc:nominalValue

\ Y

\
\ :IfcBoolean_1
\ pset:loadBearing
\

N expr:hasBoolean

Fig. 6. Example of short cut functions for property sets. The
schm:hasObjectProperty and schm:hasTypeProperty are two short-
cut functions defined in the vocabulary schm: to wrap the two dif-
ferent structures (see Figure[5) for associating an extended property
with an object.

Functions are automatically extracted from the offi-
cial Ifcdoc document, which is a file in SPF format re-

leased by buildingSMART for storing IFC documenta-
tion. Additional, third-party property sets and quantity
sets can be extended by processing e.g. simple XML
or tabular structures with a trivial tool.

Listing 3 shows a query for a realistic quantity take
off example, which is to count the load bearing walls
on each building storey. By only using plain SPARQL,
a query with the same semantics can also be written
but with a much more complex structure (see the com-
parison in section [6] and Listing [T3).

SELECT ?storey (COUNT (?wall) AS ?q)
WHERE {
?wall a ifc:IfcWall
?wall pset:loadBearing true .
?wall schm:isContainedIn ?storey .
?storey a ifc:IfcBuildingStorey .
} GROUP BY ?storey

Listing 3: Query to count load bearing walls for each
building storey.

4.3. Functions for product geometry

Functions in this category are introduced to derive
properties based on the geometric representations of a
single building product. The vocabulary is identified
by the prefix pdt :. In IFC model instances, geom-
etry data is represented by geometry objects associ-
ated with related building products. Large amounts of
properties are implied in geometric representations of
building products including e.g. height, area, length.
Although many of these properties can be represented
by property sets and quantity sets (see section 4.2)),
they are not mandatory and are not always reliable in
real building models [48] . In fact, a typical example of
BIM requirement checking is to check the consistency
between property sets (or quantity sets) and properties
derived from geometric representations [SOUS1]].

The IFC meta model offers a number of means to
represent geometry for building products. The most
common way is the Body representation, which de-
fines 3D volumetric shape of products. However, there
are many geometry types to describe a Body geometry
in IFC including e.g. Boundary Representation (Brep),
Constructive Solid Geometry (CSG) or Non Uniform
Rational B-Splines (NURBS). In our work so far, they
are unified as triangulated boundary representation to
ease developing analysis algorithms, but can be tai-
lored to different representation forms in future. The
3D geometry representation of a product is either rep-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 11

Table 3

General product geometry function examples that are applicable for
all types of product

Function Ilustration Description

pdt:hasBodyGeometry ~— Returns the geometry form of a product represented as a WKT literal (see sec-
tion[E3). It either retrieves a WKT literal (see section[f.3)) to represent a 3D triangu-
lated surface (TIN Z), or a geometry collection (GeometryCollection Z) in WKT.

pdt:hasAABB r/ Returns the axis-aligned bounding box of a product as a WKT literal (see sectioﬂ'

pdt:hasMVBB / Returns the oriented minimum volume bounding box of a product as a WKT literal
(see section @

pdt:hasOverallHeight ‘/ l Returns the height of axis aligned bounding box of a product as a numerical value.

pdt:hasSurface Returns all plain surfaces of a product. Each of the surfaces is generated as a new
binding for the triple pattern which uses this function.

pdt:hasUpperSurface / Returns the upper surface of a product, which is defined as surfaces that have the
highest elevation and have normals of nearly (0,0,1), represented as a WKT literal
(see section @ A use case of it is shown in Listing@

pdt:hasVolume Returns the volume of the product as a numerical value.

resented by a single triangulated surface, a collection Table 4

of triangulated surfaces or represented by triangulated Example functions to derive geometry properties for specific

surfaces associated with its composing elements. product types
Based on the triangulated representation, many gen- Prefix Description
eral geometry properties are derived using existing pdt:hasSpaceArea Returns the area of bottom surface of
or simple algorithms (see section [3), including axis- a space.
aligned bounding box, oriented minimum volume pdt:hasWindowArea ~ Returns the area of the largest sur-

face of the oriented minimum bound-
ing box of a window.

bounding box, basic dimensions (e.g. height, volume,
area of surfaces) and partial geometry (e.g. surfaces
facing to certain directions). These properties are de-
fined as general product geometry functions that are
applicable for all products which have 3D representa-
tions. Table |§| lists examples of them, their 3D show-
cases and semantics. Listing] shows a use case: com-

pdt:hasGrossWallArea Returns the area of the largest surface
of the wall plus area of openings on it.

thickness), many more specific product properties can
be retrieved. These properties include some defined ex-

pare the height of a wall derived from its geometric
representation with its height quantity with a tolerance
value [51].

Combined with product types and some common as-
sumptions (e.g. a wall length is greater than the wall

amples in Table @ They can be applied for more do-
main related use cases such as design assessment. List-
ing [5] shows an example, which is defined to find out
spaces which have too small window-to-floor area ra-
tios. It is a common use case that can be additionally

12 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

customized (e.g. add conditions for space types) to val-
idate the design plan according to regulations or pro-
grammatic requirements.

SELECT 72w

WHERE {
?w a ifc:IfcWall
?w pdt:hasOverallHeight ?hg
FILTER NOT EXISTS {
?w gto:height ?h
FILTER (?hg>?h-0.01 && ?hg<?h+0.01)
}

}

Listing 4: Query to retrieve walls
that do not have height quantity or have inconsistent
information between its height quantity and geometric
representation.

SELECT ?space ?ratio
WHERE {
?space a ifc:IfcSpace
?space pdt:hasSpaceArea ?area
{
SELECT ?space (SUM(?windowArea) AS ?
totalWindowArea)
WHERE {
?space schm:hasSpaceBoundary ?w .
?w a ifc:IfcWindow .
?w pdt:hasWindowArea ?windowArea
} GROUP BY ?space }
BIND ((?totalWindowArea/?area) AS ?ratio)
FILTER (?ratio<0.3)
}

Listing 5: Query to retrieve spaces which have
window-to-floor area ratios less than 0.3.

4.4. Functions for spatial reasoning

Functions in this group are provided to derive infor-
mation related to spatial reasoning, which needs geo-
metric and location data of multiple building products.
This vocabulary is identified by the prefix spt :. They
are additionally classified and described in following
sections.

4.4.1. Relationships between products

Functions in this category are used to derive rela-
tionships between two products. We have defined some
general topological relationships that belong to this
group, which are applicable for all building products.
They are related to many use cases including e.g. ge-
ometric clash detection and quantity take-off. Defined

functions are listed in Table [5] with their counterparts
defined in OGC Simple Features and example scenar-
ios for using such functions [21]]. Each of these func-
tions retrieve products that have such relationships, or
evaluate the relationship between two products. In the
GeoSPARQL standard, these topological relationships
are defined to process 2D geometry data, while in our
cases 3D geometry data is the focus.

Listing [6] shows an example to retrieve walls which
intersect with slabs in order to detect clashes between
walls and slabs.

Table 5
Functions for relationships between products
Function Simple Feature Use case scenario
counterpart

spt:touches touches Identify connection rela-
tionships between building
elements

spt:disjoints disjoints Evaluate interferences be-
tween building elements

spt:intersects overlaps Detect clashes between
building elements

spt:contains contains Identify containment re-
lationships between e.g.
space and elements

spt:within within Identify containment re-
lationships between e.g.
space and elements

spt:equals equals Detect duplicate building

elements in coordination
phases

SELECT ?wall
WHERE {
?wall a ifc:IfcWall
?slab a ifc:IfcSlab
?wall spt:intersects ?slab

}

Listing 6: Query to retreive all walls intersect with
slabs. The result of query is used to detect clashes
between walls and slabs.

4.4.2. Property for groups of products

Functions in this group are used to derive properties
for groups of products. Querying the distance between
products is a typical example. Many building codes
and BIM requirement manuals constrain the minimal,
maximal or exact distance between building compo-
nents, such as interference between building elements,
clearance before openings, heights of floors etc. The

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 13

exact semantics of the notion "distance" can vary be-
tween contexts. We have currently defined the con-
cepts provided in Table [6]

Table 6
Functions as properties for groups of products

Function Description

Returns the shortest distance be-
tween two products in 3D space

spt:distance

Returns the vertical shortest dis-
tance between bounding boxes of
two products

spt:distanceZ

Returns the shortest distance be-
tween the projections of two prod-
ucts on a horizontal plane

spt:distanceXY

An example query is provided in Listing [/ to de-
tect suspended ceilings that are too close to the floor
slab and may e.g. interfere mechanical, electrical, and
plumbing components (MEP) by selecting ceilings
which have the vertical distance shorter than 0.4 me-
ter with floor slab in the above floor [[50]. The function
spt:distanceZ requires two products as the inputs for
the computation.

SELECT DISTINCT ?ceiling

WHERE {
?ceiling a ifc:IfcCovering .
?ceiling ifc:predefinedType ifc:CEILING .
?ceiling schm:isContainedIn ?storeyl
?storeyl spt:hasUpperStorey ?storey2
?slab schm:isContainedIn ?storey?2
?slab a ifc:IfcSlab .
?slab ifc:predefinedType ifc:FLOOR .
(?slab ?ceiling) spt:distanceZ ?distance .
FILTER (?distance<0.4)

}

Listing 7: Query to retrieve ceilings that are too close
to the floor slabs in the above floor.

4.4.3. Property and relationships based on spatial
relationships

In the considered use cases, there are also examples
that not only require geometry data of referenced prod-
ucts, but also require to process geometry data of other
specific types of related building products. For exam-
ples, spatially identifying whether a building storey is
located right above another one requires geometry and
location data of floor slabs of all the building stories,
and retrieving a walking path between two spaces re-
quires geometry data of all the related spaces, obstruc-
tions and openings. The exact semantics of these prop-

erties often require knowledge from AEC sub-domains
for their specification. We currently only provide two
example functions listed in Table [7]for this group. Be-
sides referenced products (building storey and building
elements), they both require to process geometry data
of floor slabs of all building storeys.

Table 7

Implemented example functions as properties based on spatial
relationships

Function Description

spt:hasUpperStorey Generates or evaluates bindings
betwteen a building storey and the

storey right above it

spt:isLocatedInStorey Generates or evaluates bindings
between an element and the build-
ing storey which spatially con-

tains it

An example query which uses the function spt:has-
UpperStorey is shown in Listing

4.5. Geometry library

This vocabulary includes geometry related con-
cepts that are materialized in RDF graphs. They are
considered as general geometry concepts that pro-
vide additional layers independent from domain in-
formation. Similar with GeoSPARQL, we define the
geom:Geometry as the class for geometry objects. As
mentioned in section [4.3] triangulated representations
are used to represent Body geometry data. As geome-
try data for a product is usually processed as a whole,
Well Known Text (WKT) string literals that have been
defined in Simple Feature Access [21]] are adopted to
keep materialized triples in small size. The geometry
data of an element (instances of IfcElement subtypes)
that is decomposed by other elements is represented
by geometry data of its composing elements. Figure
illustrates the basic structure for materializing product
geometry data. Table [T0] lists a comparison between
triple count of building models in ifcOWL, geome-
try subsets of them and the triple count of geometry
data represented in this format. Besides the triangu-
lated representations that are by default always materi-
alized, the axis aligned bounding boxes and minimum
volume bounding boxes for products are also provided
in this vocabulary. In future research, other types of
geometry representations can also be extended if they
are required.

Another requirement that can be addressed by WKT
and this vocabulary is to represent and process tem-

14 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

geom:hasGeometry,

ifc:IfcProduct geom:Geometry

geom:asBody

Y

| xsd:String |

N 7

schm:isDecomposedByElement

Fig. 7. SPARQL query with domain specific functional extensions

porarily generated geometry data at query runtime. In
many tasks, analysis on IFC building models not only
requires geometry data of building products, but also
needs temporarily defined or derived geometry data.
Figure [shows some use cases of them. Such geom-
etry can be manually added or automatically derived
in query runtime with the WKT literals and expression
functions used in e.g. FILTER expressions can be de-
fined for additional manipulation on them. An initial
set of expression functions for manipulating WKT data
are defined. The query example in Listing [§] demon-
strates an example of using them. In this example, the
bottom surface and upper surface are derived at query
runtime (see Table [3) as partial geometries of a wall
and a slab, and they are additionally evaluated by the
function geom:touches3D to identify their topological
relationships.

SELECT ?wall
WHERE {
?wall a ifc:IfcWall .
FILTER NOT EXISTS({
?wall schm:isContainedIn ?storey .
?slab a ifc:IfcSlab .
?slab schm:isContainedIn ?storey .
?slab ifc:predefinedType ifc:FLOOR .
?wall pdt:hasBottomSurface ?ws .
?slab pdt:hasUpperSurface ?ss .
FILTER (geom:touches3D (?ws, ?ss)
}
}

Listing 8: Query to select all walls which do not have
bottom surface touching the upper surface of any floor
slab on the same floor

5. A prototype implementation

In our prototype implementation of the proposed
functions, we attempt to minimize hardcoding to make
defined functions more portable, more transparent for

Fig. 8. Use case examples that require temporarily added or gen-
erated geometry objects to analyse properties and relationships of
building objects: The first one requires "upper surface" and "lower
surface”" of walls and slabs to evaluate their topological relation-
ships; The second one requires extruded boxes to evaluate clearance
in front of windows.

public reviews and easier to be extended by the re-
search and development community. Table [] lists the
current amount of defined and implemented functions.

Table 8

Count of currently defined and implemented functions

Prefix Property function Expression function
schm: 46 -

pset: 1548 -

gto: 257 -

pdt: 15 -

spt: 11 -

geom: - 19

Functions defined in section 1] and 2] can be im-
plemented by a range of methods including those de-
scribed in section [3.3] and declarative rule languages
like e.g. Semantic Web Rule Language (SWRL) and
N3Logic [5122]. We choose SPIN for the implementa-
tion, as it uses SPARQL and already has a few open
source implementations which enhance future compat-
ibility. SPIN provides a set of vocabularies to wrap
SPARQL queries as functions and allows their cascad-
ing use. For example, the function schm:isContainedIn
in Listing [2] is mapped to ifcOWL with the query in
Listing 0] As presented in Listing this function
is maintained as an instance of spin:MagicProperty,
and the query is transformed to RDF and associated
with the function using spin:body property. The sys-
tem will trigger the query as a subquery when the func-
tion schm:isContained is called as the predicate in a
triple pattern. In this process, the subject and object of
this triple pattern will be passed to ?arg/ and the out-
put (in this case the ?a2) of the query respectively to
generate or evaluate bindings. An advantage of using
such method for implementing functions is that devel-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 15

opment work is more portable. For example, this func-
tion can run in any environments where SPIN is imple-
mented.

SELECT ?a2
WHERE {
?al ifc:relatedElements ?argl
?al ifc:relatingStructure ?a2
?al a ifc:IfcRelContainedInSpatialStructure

}

Listing 9: Query that is used in SPIN to map the
function schm:isContainedIn

schm:isContainedIn
rdf:type spin:MagicProperty ;
rdfs:subClassOf spin:MagicProperties ;
rdfs:domain ifc:IfcElement ;
rdfs:range ifc:IfcSpatialStructureElement ;
spin:body
[rdf:type sp:Select ;
sp:resultVariables ([sp:varName "a2" 1) ;
sp:where
(L
sp:object spin:_argl ;
sp:predicate ifc:relatedElements ;
sp:subject [sp:varName "al"]
11
sp:object [sp:varName "a2"] ;
sp:predicate ifc:relatingStructure ;
sp:subject [sp:varName "al"]
10
sp:object ifc:
IfcRelContainedInSpatialStructure ;
sp:predicate rdf:type ;
sp:subject [sp:varName "al"]
1)
1
spin:constraint
[
rdf:type spl:Argument ;
spl:predicate sp:argl ;
spl:valueType rdfs:Resource

1

Listing 10: SPIN listing (Turtle syntax) for the query in
Listing 0] which is used in SPIN to register and define
the function schm:isContainedIn

When dealing with geometry related reasoning
tasks, these declarative methods are usually not suf-
ficiently expressive to implement sophisticated and
computational intensive algorithms. Geometry data in
IFC or ifcOWL is preprocessed and transformed to
RDF data represented by the vocabulary described in

section [4.3] Functions described in section 4.3} 4]
and [4.3] are implemented using low-level procedural
programming. Many existing general purpose geome-
try algorithms and domain specific algorithms can be
reused. For example, functions in section@ are im-
plemented by computing on triangles of both products
to determine their relations, similar with algorithms
described in [1T]. Table[Q]lists the key procedurals and
algorithms that are used. They are coded in Java in the
current prototype.

Table 9

Procedurals for implementing geometry-related functions and used
existing algorithms

procedural algorithm

WKT IO SFCGAL library [7]
MVBB (see section|4.3) Jylanki [27]]

volume (see section [4.3)) Zhang and Chen [59]
topology operators (see Daum and Borrmann [11]

section @)

distance (see section|é_1.4.2i SFCGAL library [[7]

WebGL-based User Interface

SPIN API Coded Functions
Geometry
Jena ARQ Module

Jena Core

—
e~ A

RDF Function Function
data Vocabularies Mappings

ifcOWL

Fig. 9. Implementation architecture (blank blocks are added mod-
ules)

The functional extensions introduced here are im-
plemented based on the Open Source Apache Jena
framework and SPIN API (see Fig. [9). In this imple-
mentation, all the extended functions are processed
at query runtime in a backward chaining order. The
data flow is illustrated in Figure [I0} The ifcOWL in-
stances or IFC files and SPARQL queries are the in-
put of the system. The ifcOWL data or IFC files are
preprocessed to generate additional triples that capture
geometry data using the vocabulary described in sec-
tion 3] and WKT literals. Depending on the size of
ifcOWL files, we can choose to load them into mem-

16 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

’ SPARQL query interface
A

A
ARQ query engine > Customized
& SPIN engine cometry engine
&Jena reasoning engine < 9 Ty eng
. ifcOWL data Other RDF data
ifcOWL data —>» with additional SPIN lrule repository
or IFC data N repository N
geometry triples (Optional)

Fig. 10. Data flow of querying and reasoning process

Fig. 11. The Web-based query interface with 3D graphical visualiza-
tion of this prototype implementation

ory or materialize them into a graph persisted into a
Jena TDB triple store. When a property function is
referred to during a query execution, a SPIN rule as
a subquery or a snippet of programming code to re-
trieve related values is triggered. Since a SPIN rule is
also a SPARQL query that can call extended functions,
this process iteratively continues until no functions are
left to be called. This process is compatible with other
reasoning technologies. For example, in this prototype
an Jena RDF Schema (RDFS) reasoner is used un-
derneath of the SPARQL query engine. A prototype
Web-based user interface with a 3D visualization en-
vironment is implemented to input queries and visu-
alize query results (Figure [TT). For example, it high-
lights retrieved building products in order to report e.g.
building products that under certain conditions or vio-
late constraints.

6. Evaluation and comparison

In this section, a validation of the work is presented
using three IFC building models employing queries
taken from real-world use cases. They are compared
with processes realized by standard SPARQL. We also

compare our approach with existing proposals for sim-
plifying ifcOWL data and writing queries. Through
this work, we aim to 1) demonstrate the added value
as well as the differences of this approach, 2) evalu-
ate this approach and implementation, and 3) provided
indicative measurements of query performance.

The models selected for the test are open IFC mod-
els commonly used as a reference in literature. They
are converted to ifcOWL RDF data and loaded into
named graphs persisted in a Jena TDB triple store.
Additional WKT geometry triples that capture trian-
gulated boundary representations of building products
are generated with the IfcOpenShell package [29]]. The
size of the different models as well as their specifica-
tions are listed in Table @[For example, the model
M1 is 2.25 MB in size in its SPF representation, and
the ifcOWL version contains 298,085 triples. 546 ad-
ditional triples have been generated to capture trian-
gulated boundary representations with the geom: vo-
cabulary using WKT literals. All datasets are available
at https://doi.org/10.17605/OSF.IO/VSENM (see also
Appendix [A). In this test, WKT geometry triples are
not used to replace the original geometry triples but
are simply added and processed along with original if-
cOWL models, hence the model M1 that is processed
by the query engine contains 298,085 plus 546 triples.

Example queries presented in Listing 2} [3| 4 5] [6} [7]
and [§] in section [] are used in this evaluation and the
results of their execution are presented in this section.
Each of the queries addresses a real use case that has
been specified e.g. in BIM manuals or implemented
as standard model checks in proprietary model check-
ing software tools. They are summarized in Table [IT}
which lists use case types and requirements. Q1 and
Q2 are only related to non-geometric data, while Q3 to
Q7 are geometry related.

The hardware used for the evaluation is a mid-range
laptop with a Quadcore i7 2670 processor and 4 GB
memory allocated for the Java Virtual Machine (JVM).
Each of the queries is executed 10 times to derive the
average query time.

6.1. Results

Table [T2] documents the results and average query
execution times for Q1 to Q7 on models M1, M2 and
Ma3. All queries except Q2 are used to address require-
ment checking use cases by retrieving building objects
which violate defined constraints. Thus, in these cases
returning zero results means no violation in the build-
ing model was detected.

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 17

Table 10

Statistics of tested building models M1, M2 and M3.

id model name SPF size (MB) ifcOWL triples geometry triples WKT geometry
in ifcOWL triples
M1 Duplex_A_20110505.ifc 2.25 298,085 222,212 546
M2 Office_20110811_Combined.ifc 12.8 1,787,763 1,680,645 3,164
M3 091210Med_Dent_Clinic_Combined.ifc 107 14,487,725 12,580,688 15,052
Table 11
Query tested in the evaluation study
id query body use case types description of the query including reference to provenance of real-world use case
Q1 Listing model structure check Find out windows and walls with the condition that the window is placed in the
wall but they belong to different building storeys (Statsbygg, p. 66) [S0].
Q2 Listing quantity take-off Count load bearing walls for each building storey (Solibri example) [S1].
Q3 Listing data consistency check Retrieve walls which do not have the height quantity or height is inconsistent
with its geometry representation (Solibri example) [51].
Q4 Listing design check Find out spaces which have the window-to-floor area ratio smaller than 0.3
(Solibri example) [S1].
Q5 ListinglEI design check Find geometry clashes (intersections) between walls and slabs (Rgd 2.1.6, p.
9) [45].
Q6 Listing design check Retrieve suspended ceilings that are too close (with the distance less than 0.4
meter) to the floor slabs in the above building storey (Statsbygg 56, p. 35) [50] .
Q7 Listing design check Find out walls that have bottom surfaces not touching upper surfaces of any floor
slabs on the same building storey (Statsbygg 41 and 43, p. 30 and 31) [50] .
Table 12
Query results and performance of Q1 to Q8 (see Table E])on M1, M2, M3, M4 (see Table ['115])
query model triple count (total) avg. querying (s) stand. derivation result count
Ql (Listing Ml 298,631 0.033 0.053 0
M2 1,790,927 0.059 0.054 0
M3 14,502,777 0.110 0.190 31
Q2 (Listing Ml 298,631 0.169 0.033 1
M2 1,790,927 1.437 0.062 1
M3 14,502,777 1.610 0.221 1
Q3 (Listing Ml 298,631 0.023 0.00064 49
M2 1,790,927 0.345 0.0051 495
M3 14,502,777 0.679 0.0079 750
Q4 (Listing) M1 298,631 0.250 0.025 2
M2 1,790,927 0.067 0.026 0
M3 14,502,777 2.377 0.672 41
Q5 (Listinglgl) Ml 298,631 1.044 0.188 8
M2 1,790,927 3.720 0.071 6
M3 14,502,777 35.471 0.460 10
Q6 (Listinglzl) M1 298,631 0.647 0.03 10
M2 1,790,927 1.127 0.061 0
M3 14,502,777 37.152 1.276 0
Q7 (Listing M1 298,631 0.637 0.103 34
M2 1,790,927 0.678 0.098 495
M3 14,502,777 32.386 3.769 65

18 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

Table 13
Comparison with a procedural using plain SPARQL

query triple patterns results M1 time(s) M1 results M2 time(s) M2 results M3 time(s) M3
QI (Listing i 6 0 0.033 0 0.059 31 0.110

Q1* (Listing 15 0 0.026 0 0.043 31 0.069

Q2 (Listing|3) 4 1 0.169 1 1.437 1 1.610

Q2* (Listing i 40 1 0.207 1 1.89 1 1.70

QI and Q2 only depend on functions that are imple-
mented based on the SPIN framework, which in turn
is dependent on the Jena ARQ query engine, while
Q3 to Q8 also depend on additional computations in
external Java code. Q3 and Q4 are related to func-
tions in the group introduced in section {.3] and their
query execution time mainly depends on the algo-
rithms used for deriving properties from the geome-
try data of a single product. For example, in Q3 when
the function pdt:hasOverAllHeight is called, an axis-
aligned bounding box is generated on the fly from the
underlying WKT representation to generate an axis-
aligned bounding box in order to derive the overall
height of a wall. In Q4, the most computationally
expensive part is the function pdt:hasWindowArea,
which needs to compute a minimum volume bounding
box for each window object. These processes can be
optimized by materializing additional geometry rep-
resentations for building products. Q5, Q6 and Q7
have relatively longer execution times, especially for
the largest model M3. This is expected since these
three queries are all related to spatial reasoning func-
tions, which involve geometry data of multiple build-
ing products. For example, the current procedural of
the function spt:intersects, which is used in Q5, needs
to compute the topological relationship for each com-
bination of a wall and a slab. This procedure needs to
run 750*19 times for the model M3, which contains
750 walls and 19 slabs. This can be optimized further
by mechanisms like adding spatial indices to reduce
computation time.

6.2. Comparison

We first compare the results with a procedural that
only uses SPARQL to query ifcOWL data. The same
query environment is set up with the exception that all
the extended functions are not activated. By just us-
ing SPARQL and ifcOWL data, only the use cases that
are addressed by Q1 and Q2 can be realized, hence
the comparison is limited in these two queries. Queries
with the same semantics of Q1 and Q2 are written in
SPARQL and presented in Listing [I2] and Listing [I3]

in Appendix B. They have complex query bodies that
contain more triple patterns. They are documented as
Q1* and Q2* in Table [T3] which also compares them
with Q1 and Q2 with respect to triple pattern count
in WHERE clauses, query results and average query
time. It shows that with significantly simplified query
bodies, Q1 and Q2 have the same query results with
Q1* and Q2* respectively without sacrificing much
performance. This topic is further discussed in sec-
tion 8.3

As mentioned in section 3] there have been a few
ontologies developed to simplify ifcOWL data includ-
ing those introduced in [16] and [38]. All these ex-
isting efforts have not considered processing geome-
try data, hence only the use cases addressed by Ql
and Q2 can be addressed. Functions defined in sec-
tion {.1] and [4.2] can be compared with those simpli-
fied ontologies. The difference is that those existing
simplified ontologies tend to preprocess ifcOWL data
(or IFC data) and transform it to a more compact data
graph and improve query performance, while the ap-
proach presented in this paper treats simplified proper-
ties and relationships as functions, which are used in
query runtime. An advantage of this approach is that
simplified queries can run on any ifcOWL data with-
out additional materializations (for functions defined
in section [4.1] and [4.2)). This provides a more flexible
paradigm that users do not have to adopt the entire vo-
cabulary but can reuse a subset of them or extend them
to adapt with more specific use cases. If some simpli-
fied IFC ontologies are standardized, this approach can
also be compatible with them by defining additional
mapping rules.

Regarding use cases addressed by Q3 to Q7, to our
knowledge there is no open and off-the-shelf query
system in the Semantic Web field can be compared
with. Some of them might be supported by BIM query
languages which support geometry features like those
introduced in [[L1] and [13]. However, we argue that
these query languages either have limited expressive
power or do not have precisely defined or standard-
ized semantics, while this approach is based on a stan-
dard and expressive query language [1L19]. More im-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 19

portantly, with this approach RDF and other Semantic
Web technologies can be leveraged to facilitate knowl-
edge reasoning and data integration and partition tasks.
With these capabilities, defined functions can more
easily be reused and extended for specific applications.
An example is presented in section|[7}

7. An extended application example

An application example is presented in this section
in a regulatory compliance checking scenario that re-
quires to extend case specific functions to query both
building models and regulatory data.

The example provided here is taken from the Inter-
national Building Code (IBC), which is developed by
the International Code Council (ICC) and used as a
base code standard in United States [23]]. This rule ex-
ample is from Chapter 7 Fire and Smoke Protection
Features, and is used to check opening areas on exter-
nal walls to evaluate their fire performance. This exam-
ple requires to process domain specific semantic data
and geometry data in building models and external tab-
ular data defined in the IBC document.

— 705.8.4 Where both unprotected and protected
openings are located in the exterior wall in any
story of a building, the total area of openings
shall be determined in accordance with the fol-
lowing:

(Aplap) + (Aufau) < 1 (1)

where:

Ap = Actual area of protected openings.

ap = Allowable area of protected openings.
Au = Actual area of unprotected openings.

au = Allowable area of unprotected openings.

Additionally, the allowable opening areas for pro-
tected and unprotected openings (ap and au) are deter-
mined by the Table 705-8 in IBC that describes their
relations with fire separation distance. This table has
three columns and twenty-four rows. Table [14] shows
one row of it, which defines that when the fire separa-
tion distance is between 15 to 20 feet and the opening
is unprotected and the space is non-sprinklered, the al-
lowed ratio (au in the equation) between opening area
and external wall area is up to 25 percent.

In this example, external wall instances in a dataset
have to be checked and analysed to derive related prop-

Table 14
One row of Table 705-8 in International Building Code [23]

Fire separation Degree of open- Allowable area

distance ing protection

15 toless than 20 Unprotected, 25%
Non-sprinklered

Algorithm 1. procedure for checking rule 705.8.4

1: for each external wall w do

2: compute the area ratio between protected open-
ings and gross wall area Ap;

3: compute the area percentage of unprotected
openings and gross wall area Au;

4: compute the fire separation distance for the wall
fsd;

5: find the sprinkler status of related space sp;
find the allowable area of protected and unpro-
tected openings ap and au from Table 705.8
with fsd and sp;

7. check the equation (1) with Ap, Au, ap, au and
return result for w;

8: end for

erties and relationships. In addition to the data cap-
tured in the IFC building data sets, the referenced table
in this example can be considered as a small dataset
that needs to be processed to derive allowable pro-
tected openings and unprotected openings for each
wall. It is transformed to the RDF format with the
approach described in [55] and processed along with
the building model. A general algorithm in a procedu-
ral pseudo-code notation is specified in Algorithm []
to check building models and find out external walls
which violate this requirement.

Case specific functions are extended for deriving
some of these properties based on provided functions.
For example, the value Ap used in Algorithm 1 is
specified as the proportion between all the protected
windows in the wall and the gross area of the wall.
Based on predefined functions and SPIN rules, this
function can be extended with the query provided in
Listing [T4] (see Appendix [C). The value fsp of an ex-
ternal wall used in Algorithm 1 is defined as the hor-
izontal distance between the wall and lot line. Us-
ing the same method, functions are extended for this
case and listed in Table [I5] SPIN rules for defining
these case specific functions based on ifcOWL and
BimSPARQL functions are listed in Appendix [C] As
the Table 705-8 in IBC is also processed, a function
ibc:allowableArea_T705-8 is also defined to process

20 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

this external dataset. With all these functions extended
for this case, the query in Listing 10 is used to check
the opening area of all external walls.

Table 15
Extended functions for the rule case 705.8.4 in IBC

Function Description

ibc:hasAp Retrieves the ratio between all
the protected windows in the
wall and the gross area of the
wall.

ibc:hasAu Retrieves the ratio between all

the unprotected windows in
the wall and the gross area of
the wall.

ibc:hasFireSeparationDistance ~ Retrieves the shortest horizon-
tal distance between a wall
and lot lines.

ibc:allowableArea_T705-8 Retrieves allowable area (au
or ap) from Table705-8 based
on fire separation distance and

sprinkler protection status.

SELECT ?wall

WHERE {
find external wa
?wall a ifc:IfcWall
?wall pset:isExternal true
compute Ap and Au values
?wall ibc:hasAp ?Ap .
?wall ibc:hasAu ?Au .

compute fire separation distance
?wall ibc:hasFireSeparationDistance ?d .
find sprinkler status of related st

?wall schm:isContainedIn ?storey .

?storey pset:sprinklerProtection ?bool

find ap and au values from the table

BIND (ibc:allowableArea_T705-8(?d,true,?
bool) AS ?ap)

BIND (ibc:allowableArea_T705-8(?d, false,?
bool) AS ?au)

filter out walls that have i

FILTER ((?Ap/?ap+?Au/?au)>1)

}

Listing 11: Query to retrieve external walls which
violate the constraint defined in this building code.

As a proof of concept, a building model is created,
which contains required building elements and lot line
(modelled as an IfcAnnotation instance) with related
properties. It is a small model that contains 189,778
triples. With all the additional SPIN functions loaded,
it is checked using the query in Listing [TT} This pro-
totype implementation generates a visualization of the
result that is provided in Figure[I2]

Fig. 12. Snapshot of the query result of the GUI
8. Discussion

It is shown in section [6] that many BIM require-
ment checking use cases can be addressed by using
SPARQL with these functions, which either simplify
queries or enhance query abilities. In section 7, we
also demonstrate an example to discuss the possibility
of extending this framework for specific applications,
where more specific functions are required and addi-
tional data needs to be processed. Some issues of the
work presented here are discussed in this section.

8.1. Flexibility and portability

In comparison with domain specific query lan-
guages that are developed from scratch, the approach
introduced in this paper leverages Semantic Web tech-
nologies and existing implementations to provide a
more interoperable, modular and flexible mechanism
to extend functionality in order to address a wide range
of use cases for information extraction and validation
of the AEC industry. As shown in section [/} query
functions for specific use cases can be extended by
adding additional declarative rules based on proce-
dural functionality. They are modular and flexible to
adapt to the various possible forms to present facts in
IFC data sets. For example, a protected opening in an-
other building case, created by another author using a
different BIM authoring tool might be different from
how it is defined in Listing [T4] It is easier to change
or replace this rule without affecting other rules. Ex-
ternal, linked datasets can be addressed using the same
technology as long as they are captured as RDF or pro-
vide SPARQL endpoint services [6420].

Declarative methods can also enable more portable
implementations for functions. As many functions are
defined using SPIN rules, they can be reused by query
environments which have implemented SPIN (e.g.
Topbraid SPIN API or Eclipse RDF4J) and potentially

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 21

be reused by those which have implemented SPARQL.
The main issue that affect portability here is functions
implemented by procedural programming, which still
needs geometry libraries to be integrated.

8.2. Coverage

The full list of implemented functions are published
in the link of Appendix A. They are defined based
on referenced BIM requirement checking use cases.
There are various use cases in the AEC industry and
almost unlimited properties and relationships are re-
quired. IFC also provides rich methods to represent in-
formation to adapt with different contexts and projects.
As stated in section [4] it is not our aim to provide a
complete set of functions, but to suggest a bottom-up
approach to define modular functions and then gradu-
ally extend to cover more use cases. In this approach,
each function should be considered as a module to re-
trieve a view from IFC building models. A general
classification of them is provided as a framework for
further extending functions and a set of functions are
provided as foundational examples for this approach.

Functions introduced in section [.1] and E.2] cover
all the commonly used semantic structures and all the
simple data properties and quantities defined in the of-
ficial IFC documentation. In real practices, these two
groups of functions can be extended according to var-
ious application concepts in AEC sub-domains and
third-party property sets and quantity sets. Functions
introduced in section {.3] and 4.4 mainly focus on tri-
angulated boundary representation, which is a funda-
mental geometric representation that can be used to
represent any 3D physical shapes. A set of general
geometry and spatial reasoning functions that are ap-
plicable for all building products and some example
functions related to specific product types are defined.
There are indeed use cases that require particular ge-
ometry forms (e.g. deriving the flange thickness for a
I-shape beam requires parametric I-shape profile ob-
jects), they can be extended by providing multiple rep-
resentations for specific products.

From the perspective of use cases, a current limi-
tation of this approach is related to requirements of
instantiating resources with additional triples based
on procedural computations. For example, identifying
the shortest path between two rooms usually needs to
instantiate a path object, which might have geomet-
ric representations and relationships with e.g. passed
spaces and doors. Even with procedural coding, ex-
tended functions are not suitable to create such addi-

tional data graphs in query runtime as they have side
effect for the original data. WKT literals might be used
to represent additional geometry objects in query time,
but more investigations are still required to properly
adapt this type of query functions in an RDF and Se-
mantic Web environment.

8.3. Query performance

At present optimizing query performance is not in
the main focus of the research presented here. Query
performance depends on the implementation of used
technologies and geometry analysis algorithms that are
used. The prototype implementation has used the SPIN
framework, which is based on the Jena ARQ query en-
gine and Jena TDB triple store. In section|[6] it is shown
that for some cases, simplified queries can have similar
performance with equivalent plain SPARQL queries.
This implementation method has also taken part in
a performance benchmark with comparisons to other
rule languages [37]. That research shows that this im-
plementation method is a reliable approach, but there
is still room for optimizing its performance in compar-
ison with some commercial databases like Stardog. In
the current SPIN framework, when a function is called
in a triple pattern, it is considered as a separate query
that is executed based on assigned arguments and then
joints with the temporary results of outer query. It lacks
a query rewriting mechanism to flatten queries and
preferentially execute the most selective triple patterns
considering all the triple patterns defined in functions.

As shown in section [6] the current performance
short-coming can be mainly attributed to geometry-
related functions, especially spatial reasoning related
functions. With a plain RDF triple store like Jena
TDB without additional optimization mechanisms,
spatial reasoning functions have relatively long run-
ning time. In future developments, this process can
be optimized by e.g. integrating spatial indices and
caching mechanisms, which have been proved to have
significant impact for spatial reasoning in the geospa-
tial domain [35]. This might lead to creating special-
ized databases in the future.

As RDF graphs are flexible, another direction for
optimizing performance might be to materialize re-
quired triples into RDF graphs for specific applica-
tions. As described in section[6] besides ifcOWL data
only the triangulated boundary representation of prod-
ucts are currently materialized and all the functions are
processed at query runtime. If some related function
are frequently required for specific applications, it is

22 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

recommended to materialize them as properties. The
effect of materialization has been discussed in [?].
Since it is usually a trade-off between storing and com-
puting data, a dynamic approach to automatically ma-
terialize triples with regards of use cases, query perfor-
mance and storage cost needs additional investigation
and future research.

9. Conclusion

This research provides a general framework to de-
fine and extend functions for querying IFC-based
building data. A set of functions are classified and in-
troduced and two different approaches are used to im-
plement them. The work presented here should be re-
garded as a general framework and proof of concept
for a modular, scaleable approach to address the large
amounts of domain specific query requirements in the
AEC domain. As more and more data is represented
by RDF and Linked Data technologies, this approach
has considerable advantages over the current practices
to process building related data in proprietary informa-
tion silos using one-of-a-kind island solutions.

The links to the vocabularies, transformation rules
and source code repository of the prototypical refer-
ence implementation is provided in Appendix [A] As
discussed in section [§] the current performance short-
comings of the solutions introduced here are mainly re-
lated to the implementation issues. More efficient algo-
rithms e.g. to preprocess datasets according to spatial
indices need to be developed. In future research, more
use cases should be investigated and implemented to
gradually extend the functionality for specific sub-
domains in AEC industry and to combine data from
different sources. From a technical perspective, opti-
mization for query performance is necessary as it is
important for the applications of this approach.

References

[1] R. Angles and C. Gutierrez, (2008). The expressive power of
SPARQL. The Semantic Web-ISWC 2008, pp.114-129.

[2] K. Baumgartel, M. Kadolsky and R.J. Scherer, (2014). An on-
tology framework for improving building energy performance by
utilizing energy saving regulations. In Proceedings of European
Conference on Product and Process Modelling (pp. 519-526).

[3] J. Beetz, L. Van Berlo, R. De Laat and P. Van Den Helm, (2010).
BIMserver.org-An open source IFC model server. In Proceedings
of the CIB-W78 conference.

[4] J. Beetz, J.P. Van Leeuwen and B. De Vries, (2009). "IfcOWL:
A case of transforming EXPRESS schemas into ontolo-gies." Ar-
tificial Intelligence for Engineering Design, Analysis and Manu-
facturing. vol. 23. no. Special Issue 01. 89-101.

[5] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J.
Hendler, (2008). N3logic: A logical framework for the world
wide web. Theory and Practice of Logic Programming, 8(03),
Pp-249-269.

[6] C. Bizer and R. Cyganiak, (2006). D2r server-publishing rela-
tional databases on the semantic web. In Poster at the 5th Interna-
tional Semantic Web Conference (pp. 294-309).

[7] M. Borne, H. Mercier, V. Mora, O. Courtin, (2013). SFCGAL.
Available on: http://sfcgal.org/.

[8] A. Borrmann and E. Rank, (2009). Topological analysis of 3D
building models using a spatial query language. Advanced Engi-
neering Informatics, 23(4), 370-385.

[9] K.R. Bouzidi, B. Fies, C. Faron-Zucker, A. Zarli and N.L.
Thanh, (2012). Semantic web approach to ease regulation com-
pliance checking in construction industry. future internet, 4(3),
pp-830-851.

[10] buildingSMART International, (2013). Industry
Foundation Classes Release 4 (IFC4). Available on:
http://www.buildingsmart-tech.org/ifc/IFC4/final/html/.

[11] S. Daum and A. Borrmann, (2014). Processing of topological
BIM queries using boundary representation based methods. Ad-
vanced Engineering Informatics, 28(4), 272-286.

[12] C. Debruyne, E. Clinton, D. O’Sullivan, (2017). Client-side
Processing of GeoSPARQL Functions with Triple Pattern Frag-
ments. LDOW@WWW 2017.

[13] J. Dimyadi, W. Solihin, C. Eastman, R. Amor, (2016). Integrat-
ing the BIM Rule Language into Compliant Design Audit Pro-
cesses. Proceedings of 34th CIB W78 conference, October 31st
to November 2nd, Brisbane, Australia.

[14] C. Eastman, (1994). Out of STEP?. Computer-Aided Design,
26(5), pp.338-340.

[15] C. M. Eastman, P. Teicholz, R. Sacks and K. Liston, (2011).
BIM handbook: A guide to building information modeling for
owners, managers, designers, engineers and contractors. John Wi-
ley & Sons.

[16] T. M. Farias de, A. Roxin and C. Nicolle, (2015). IfcWoD, se-
mantically adapting IFC model relations into OWL proper-ties.
arXiv preprint arXiv:1511.03897.

[17] A.Guttman, (1984). R-trees: a dynamic index structure for spa-
tial searching (Vol. 14, No. 2, pp. 47-57). ACM.

[18] G. Garbis, K. Kyzirakos and M. Koubarakis, (2013). Geo-
graphica: A benchmark for geospatial rdf stores (long ver-sion).
In The Semantic Web-ISWC 2013 (pp. 343-359). Springer Berlin
Heidelberg.

[19] S. Harris, A. Seaborne and E. Prudhommeaux, (2013).
SPARQL 1.1 query language. W3C Recommendation.

[20] T. Heath and C. Bizer, (2011). Linked data: Evolving the web
into a global data space. Synthesis lectures on the semantic web:
theory and technology, 1(1), 1-136.

[21] J. Herring, (2011). OpenGIS Implementation Standard for Ge-
ographic information-Simple feature access-Part 1: Common ar-
chitecture. OGC Document, 4(21), pp.122-127.

[22] 1. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean, (2004). SWRL: A semantic web rule language
combining OWL and RuleML. W3C Member submission, 21,
p.79.

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 23

[23] IBC. (2006). International building code. International Code
Council, Inc.(formerly BOCA, ICBO and SBCCI), 4051,
pp.60478-5795.

[24] ISO, (1994). ISO 10303-11: Industrial automation systems and
integration-Product data representation and exchange-Part 11:
Description methods: The EXPRESS language reference manual.
International Organization for Standardization.

[25] 1ISO, (2002). ISO 10303-21: Industrial automation systems and
integration - Product data representation and exchange - Part 21:
Implementation methods: Clear text encoding of the exchange
structure. International Organization for Standardization.

[26] ISO, (2013). ISO 16739:2013 Industry Foundation Classes
(IFC) for data sharing in the construction and facility manage-
ment industries. International Organization for Standardization.

[27] J. Jylanki, (2015). An Exact Algorithm for Find-
ing Minimum Oriented Bounding Boxes. Available on
https://pdfs.semanticscholar.org/a76f/7da5f8bae7b1fb4e85a65bd-
3812920c6d142.pdf. Last access: December 2016.

[28] H.S. Kang, and G. Lee, (2009). Development of an object-
relational IFC server. Proceedings of ICCEM/ICCPM, 2009.

[29] T. Kijnen, (2011). IfcOpenShell. Available on
http://ifcopenshell.org/.

[30] A. Kiviniemi, M. Fischer and V. Bazjanac, (2005). Integration
of multiple product models: Ifc model servers as a potential solu-
tion. In Proc. of the 22nd CIB-W78 Conference on Information
Technology in Construction.

[31] K. Kyzirakos, M. Karpathiotakis and M. Koubarakis, (2012).
Strabon: a semantic geospatial DBMS. In International Semantic
Web Conference (pp. 295-311). Springer Berlin Heidelberg.

[32] J.K. Lee, C.M. Eastman and Y.C. Lee, (2015). Implementation
of a BIM domain-specific language for the building environment
rule and analysis. Journal of Intelligent & Robotic Systems, 79(3-
4), p.507.

[33] S.K. Lee, K.R. Kim and J.H. Yu, (2014). BIM and ontology-
based approach for building cost estimation. Automation in con-
struction, 41, pp.96-105.

[34] W. Mazairac and J. Beetz, (2013). BIMQL-An open query lan-
guage for building information models. Advanced Engi-neering
Informatics, 27(4), 444-456.

[35] K. Patroumpas, G. Giannopoulos, S. Athanasiou, (2014). To-
wards GeoSpatial semantic data management: strengths, weak-
nesses, and challenges ahead. SIGSPATIAL/GIS 2014. 301-310.

[36] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De
Meyer, R. Van de Walle and J. Van Campenhout, 2011. A seman-
tic rule checking environment for building performance checking.
Automation in Construction, 20(5), pp.506-518.

[37] P. Pauwels, T. M. de Farias, C. Zhang, A. Roxin, J. Beetz, J.
De Roo and C. Nicolle, (2017). A performance benchmark over
semantic rule checking approaches in construction industry, Ad-
vanced Engineering Informatics, Volume 33, 2017, Pages 68-88.

[38] P. Pauwels and A. Roxin, (2016). SimpleBIM: From full if-
cOWL graphs to simplified building graphs. eWork and eBusi-
ness in Architecture, Engineering and Construction: ECPPM
2016: Proceedings of the 11th European Conference on Product
and Process Modelling (ECPPM 2016), Limassol, Cyprus, 7-9
September 2016.

[39] P. Pauwels and W. Terkaj, (2016). EXPRESS to OWL for con-
struction industry: towards a recommendable and usable ifcOWL
ontology. Automation in Construction, 63, 100-133.

[40] P. Pauwels, S. Zhang, Y.C. Lee, (2017) .Semantic web tech-
nologies in AEC industry: A literature overview, Automation in

Construction, Volume 73, January 2017, Pages 145-165.

[41] M. Perry and J. Herring, (2012). OGC GeoSPARQL-A ge-
ographic query language for RDF data. OGC Implementa-tion
Standard. Sept.

[42] M. J. Pratt, (2001). Introduction to ISO 10303aATthe STEP
standard for product data exchange. Journal of Computing and
Information Science in Engineering, 1(1), pp.102-103.

[43] J. De Roo, (2011). Euler Yet another proof Engine. Avail-
able online: http://eulersharp.sourceforge.net/. Last accessed on
12 June 2015.

[44] B. Regalia, K. Janowicz and S. Gao, (2016). VOLT: A
Provenance-Producing, Transparent SPARQL Proxy for the On-
Demand Computation of Linked Data and its Application to Spa-
tio temporally Dependent Data. ESWC 2016: 523-538.

[45] D. Rillaer van, J. Burger, R. Ploegmakers and V. Mitossi,
(2012). Rgd BIM Standard, version 1.0.1. 1-29.

[46] H. Schevers and R. Drogemuller, (2005). Converting the Indus-
try Foundation Classes to the Web Ontology Language, in: Se-
mantics, Knowledge and Grid, 2005. SKG’05. First International
Conference on. Beijing, China Nov. 27, 2005 to Nov. 29, 2005

[47]1 W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickin-
son, R. Thomas, A. Pardasani, H. Xue, (2010). Systems integra-
tion and collaboration in architecture, engineering, construction,
and facilities management: A review, Advanced Engineering In-
formatics, Volume 24, Issue 2, 2010, pp. 196-207.

[48] W. Solihin, C. Eastman, Y.C. Lee, (2015). Toward robust and
quantifiable automated IFC quality validation. Advanced Engi-
neering Informatics, Volume 29, Issue 3, pp. 739-756.

[49] SPIN. (2011). SPARQL Inferencing
http://spinrdf.org/.

[50] Statsbygg, (2011). Statsbygg Building Information Modelling
Manual Versionl.2. Available at: http://www.statsbygg.no/bim,
accessed January 2014.

[51] Solibri, (2000) . Solibri Model Checker . Available at:
https://www.solibri.com/products/solibri-model-checker/, ac-
cessed January 2016.

[52] M. Venugopal, C.M. Eastman, R. Sacks, J. Teizer, (2012). Se-
mantics of model views for information exchanges using the in-
dustry foundation class schema, Advanced Engineering Informat-
ics, Volume 26, Issue 2, April 2012, Pages 411-428.

[53] R. Verborgh, M. V. Sande, O. Hartig, J. Van Herwegen, L.
De Vocht, B. De Meester, G. Haesendonck, P. Colpaert, (2016).
Triple Pattern Fragments: A low-cost knowledge graph interface
for the Web. Web Semantics: Science, Services and Agents on the
World Wide Web. 37-38: 184-206 (2016).

[54] W3C (2014). SPARQL Extensions Computed Properties.

Notation.

https://www.w3.org/wiki/SPARQL/Extensions/Computed_Properties.

[55] W3C (2015). Generating RDF from Tabular Data on the Web.
https://www.w3.0rg/TR/2015/WD-csv2rdf-20150416.

[56] A. Yurchyshyna and A. Zarli, (2009). An ontology-based ap-
proach for formalisation and semantic organisation of confor-
mance requirements in construction. Automation in Construction,
18(8), pp.1084-1098.

[57] B.T. Zhong, L.Y. Ding, H.B. Luo, Y. Zhou, Y.Z. Hu, H.M. Hu,
(2012). Ontology-based semantic modeling of regulation con-
straint for automated construction quality compliance checking,
Automation in Construction, Volume 28, Pages 58-70.

[58] C. Zhang, J. Beetz, M. Weise (2015). Interoperable validation
for IFC building models using open standards, ITcon Vol. 20,
Special issue ECPPM 2014 - 10th European Conference on Prod-
uct and Process Modelling, pg. 24-39.

24 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

[59] C. Zhang, and T. Chen (2001). Efficient feature extraction
for 2D/3D objects in mesh representation. In Image Processing,
2001. Proceedings. 2001 International Conference on (Vol. 3, pp.
935-938). IEEE.

[60] S. Zhang, F. Boukamp and J. Teizer, (2015). Ontology-based
semantic modeling of construction safety knowledge: Towards
automated safety planning for job hazard analysis (JHA). Au-
tomation in Construction, 52, pp.29-41.

Appendix
A. Resources

The vocabularies, rules and models are published
with DOI: |https://doi.org/10.17
Related source code for the backend is published on:
[https://github.com/BenzclyZhang/BimSPARQLL

B. Compared SPARQL queries

SELECT ?storey (COUNT (?wall) AS ?q)
WHERE {
?window a ifc:IfcWindow
?r ifc:relatedBuildingElement ?window
?r ifc:relatingOpeningElement ?opening
?r a ifc:IfcRelFillsElement
?rel ifc:relatedOpeningElement ?opening
?rel ifc:relatingBuildingElement ?wall.
?rel a ifc:IfcRelVoidsElement
?wall a ifc:IfcWall
FILTER NOT EXISTS {
?rl ifc:relatedElements ?window
?rl ifc:relatingStructure ?storey.
?rl a ifc:
IfcRelContainedInSpatialStructure
?r2 ifc:relatedElements ?wall
?r2 ifc:relatingStructure ?storey.
?r2 a ifc:
IfcRelContainedInSpatialStructure
?storey a ifc:IfcBuildingStorey

}

Listing 12: Query to count load bearing walls for each
storey

SELECT ?storey (COUNT (?wall) AS ?2q)
WHERE {
?storey a ifc:IfcBuildingStorey
?rel ifc:relatingStructure ?storey
?rel a ifc:
IfcRelContainedInSpatialStructure

?rel ifc:relatedElements ?wall
?wall a ifc:IfcWall
{
?r ifc:relatedObjects ?wall.
?r a ifc:IfcRelDefinesByProperties
?r ifc:relatingPropertyDefinition ?pset
?pset a ifc:IfcPropertySet
?pset ifc:name ?n
?n expr:hasString "Pset_WallCommon"
?pset ifc:hasProperties ?property
?property a ifc:IfcPropertySingleValue
?property ifc:name ?name
?name expr:hasString "LoadBearing"
?property ifc:nominalValue ?value
?value expr:hasBoolean true
}JUNION{
?r ifc:relatedObjects ?wall.
?r a ifc:IfcRelDefinesByType
?r ifc:relatingType ?type
?type ifc:hasPropertySets ?pset
?pset a ifc:IfcPropertySet
?pset ifc:name ?n
?n expr:hasString "Pset_WallCommon"
?pset ifc:hasProperties ?property
?property a ifc:IfcPropertySingleValue
?property ifc:name ?name
?name expr:hasString "LoadBearing"
?property ifc:nominalValue ?value
?value expr:hasBoolean true
FILTER NOT EXISTS{
?r2 ifc:relatedObjects ?wall.
?r2 a ifc:IfcRelDefinesByProperties
?r2 ifc:relatingPropertyDefinition ?pset2

?pset2 a ifc:IfcPropertySet

?pset2 ifc:name ?n2

?n2 expr:hasString "Pset_WallCommon"
?pset2 ifc:hasProperties ?property2
?property2 a ifc:IfcPropertySingleValue
?property2 ifc:name ?name?2

?name2 expr:hasString "LoadBearing"

}

}

}GROUP BY ?storey

Listing 13: Query to count load bearing walls for each
storey

C. SPIN rules for implementing functions for case
in section 7]

SELECT (?a/?wallArea AS ?Ap)

WHERE {

?argl pdt:hasGrossWallArea ?wallArea
{ SELECT (SUM(?windowArea) AS Zarea) {
?window schm:isPlacedIn ?argl

?window pset:fireRating "OH-45"
?window pdt:hasWindowArea ?windowArea

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 25

} GROUP BY ?argl }
}

Listing 14: Query to implement the function ibc:hasAp
referenced in Listing [TT]

SELECT (?a/?wallArea AS ?Au)
WHERE {
?argl pdt:hasGrossWallArea ?wallArea
{ SELECT (SUM(?windowArea) AS ?area) {
?window schm:isPlacedIn ?argl
FILTER NOT EXISTS{
?window pset:fireRating "OH-45"
}
?window pdt:hasWindowArea ?windowArea
} GROUP BY ?2argl }
}

Listing 15: Query to implement the function ibc:hasAu
referenced in Listing[TT]

SELECT (MIN(?d) AS ?distance)
WHERE {

?line a ifc:IfcAnnotation
?line ifc:name ?name

?name expr:hasString "Lot Line"
(?argl ?line) spt:distanceXY ?d
}GROUP By ?2argl

Listing 16: Query to implement the
function ibc:hasFireSeparationDistance referenced in

Listing TT]

SELECT ?ap

WHERE {

?bl ibc:minFSDistance ?min

?bl ibc:maxFSDistance ?max

?bl ibc:openingProtection ?arg2

?bl ibc:sprinklerProtection ?arg3

?bl ibc:allowableArea ?ap

FILTER ((qudtspin:convert (?argl, unit:Meter,
unit:Foot) >= xsd:double (?min)) && (
qudtspin:convert (?argl, unit:Meter, unit:
Foot) < xsd:double(?max)))

}

Listing 17: Query to implement the function
ibc:allowableArea_T705-8 referenced in Listing ﬂ;fl

