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Abstract. Similarity is one of the most straightforward ways to relate two objects and guide the human perception of the world.
It has an important role in many areas, such as Information Retrieval, Natural Language Processing (NLP), Semantic Web and
Recommender Systems. To help applications in these areas achieve satisfying results in finding similar concepts, it is important
to simulate human perception of similarity and assess which similarity measure is the most adequate.

In this work we wanted to gain some insights into Tversky’s and more specifically Jaccard’s feature-based semantic similarity
measure on instances in a specific ontology. We experimented with various variations of this measure trying to improve its per-
formance. We propose Sigmoid similarity as an improvement of Jaccard’s similarity measure. We also explored the performance
of some hierarchy-based approaches and showed that feature-based approaches outperform them on two specific ontologies we
tested. We also tried to incorporate hierarchy-based information into our measures and, even though they do bring some slight
improvement, it seems that it is not worth complicating the measures with this information, since the measures only based on
features show very comparable performance. We performed two separate evaluations with real evaluators. The first evaluation
includes 137 subjects and 25 pairs of concepts in the recipes domain and the second one includes 147 subjects and 30 pairs of
concepts in the drinks domain. To our knowledge these are some of the most extensive evaluations performed in the field.
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1. Introduction

Similarity is one of the main guiding principles
which humans use to categorise the objects surround-
ing them. Even though in psychology the focus is on
how people organise and classify objects, in computer
science similarity plays a fundamental role in informa-
tion processing and finds its application in many areas
from Artificial Intelligence to Cognitive Science, from
Natural Language Processing to Recommender Sys-
tems. Semantic similarity can be employed in many ar-
eas, such as text mining, dialogue systems, Web page
retrieval, image retrieval from the Web, machine trans-
lation, ontology mapping, word-sense disambiguation,
item recommendation, to name just a few. Due to the
widespread usage and relevance of semantic similar-
ity, its accurate calculation which closely mirrors hu-
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man judgement brings improvements in the above and
many other areas.

Usually, semantic similarity measures have been
tested on WordNet [11]. WordNet is a taxonomic hier-
archy of natural language terms developed at Prince-
ton University. The concepts are organised in synsets,
which group the words with the similar meaning. More
general terms are found at the top of the underlying
hierarchy, whereas more specific terms are found at
the bottom. Two important datasets used to test simi-
larity measures on WordNet are the ones proposed by
[28] and [20]. These datasets are manually composed
and contain rated lists of domain-independent pairs of
words.

However, with the diffusion of ontologies as knowl-
edge representation structures in many areas, there is
a need to find similar and related objects in specific
domain ontologies used in various applications, rather
than just testing the similarity of concepts in Wordnet
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. In these cases, the features of domain objects play an
important role in their description, along with the un-
derlying hierarchy which organises the concepts into
more general and more specific concepts. The experi-
ments with feature-based and hierarchy-based seman-
tic similarity measures on specific domain ontologies
are rare and without conclusive results [23,34]. Hence,
we decided to carry out some experiments with Jac-
card’s feature-based similarity measure on two spe-
cific domain ontologies, trying to draw some con-
clusions on the best use practices and case specific
characteristics. For our first experiment, we chose the
domain of recipes using the slightly modified Wiki-
taaable dataset1 used in [7]. For our second experi-
ment, we chose the domain of drinks, developed previ-
ously by our research team for different purposes. Ac-
tually, it is difficult to find a publicly available ontology
with defined properties, which is an important require-
ment for testing our approach. In addition, the domains
which could be tested with non-expert users are very
limited, since the users should be able to evaluate the
similarity of all (or at least most of) the couples pro-
posed in the test. This is the reason we could not have
used any of the medical ontologies available, since in
medical domain only expert evaluators are needed.

There are many different similarity measures around.
It is not very clear which measure is the most suit-
able in which situation and comparative studies are
rare [21,29]. Above all, the evaluation of the measures
with users is limited often to very few participants. On
the contrary, our experiments involve 137 and 147 real
evaluators respectively, which is a significant number
of participants compared to other studies.

Thus, we aimed to gain more insight into the be-
haviour of Jaccard’s feature-based similarity measure
for ontology instances calculated from property-value
pairs for compared objects and compare its perfor-
mance to hierarchy-based measures. We experimented
with various variations of Jaccard’s feature-based sim-
ilarity measure and we report here our findings. The
same variations of Jaccard’s measure (and more gen-
erally Tversky’s measure) could be applied to other
feature-based similarity measures as well. Also, we
tried to combine Jaccard’s similarity measure with hi-
erarchy based approaches.

Our aim was to avoid any dependency on the
weighting parameters which mark the contribution of
each feature (known also as relevance factors). These

1http://wikitaaable.loria.fr/rdf/

parameters can be tuned for each single domain, but
we wanted to test the contribution of each feature with
its equal share.

The main contributions of this work are the follow-
ing:

1. a proposal for new feature-based similarity mea-
sures, which could take underlying hierarchy into
account

2. new datasets which can be used for the evaluation
of feature-based similarity measures.

The paper is organised as follows. In Section 2
we provide the background on the basic concepts we
use in our work. In Section 3, we provide some de-
tails about the semantic similarity measures we will be
dealing with: feature-based semantic similarity mea-
sures and hierarchy-based semantic similarity mea-
sures. For the sake of completeness we also give some
background on Information Content similarity mea-
sures, although we will not be dealing with them in this
paper. In Section 4 we report on the semantic similarity
measures we dealt with and propose six possible im-
provements of the basic Jaccard’s similarity measure.
We also give details of the variations of each of these
six similarity measures which might include or not the
hierarchy-based similarity. The results of our exten-
sive evaluation are reported in Section 5 followed by
a Section 6 which summarises some additional works
which exploit feature-based semantic similarity mea-
sures. We conclude in Section 7 drawing some conclu-
sions and pointing some directions for future work.

2. Background on semantic knowledge
representation

This section provides a background on the main no-
tions used in this work.

2.1. Conceptual hierarchies

A conceptual hierarchy provides a taxonomy (a tree
or a lattice) of concepts organised using the partial
order IS-A relation, which specialises more general
classes into more specific classes [3,32]. The IS-A re-
lation is asymmetric and transitive and defines a hier-
archical structure of the ontology, enabling the inheri-
tance of characteristics from parent classes to descen-
dant classes. W.r.t. to similarity calculation, it enables
the employment of hierarchy-based approaches.
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2.2. Ontologies

Ontologies enable explicit specification of domain
elements and their properties, hierarchical organisation
of domain elements, exact description of any existing
relationships between them and employment of rigor-
ous reasoning mechanisms. An ontology can be seen
as a “formal, explicit specification of a shared concep-
tualisation” [12]. They are expressed with standard for-
mats and languages (e.g., OWL.2), which allow for ex-
tensibility and re-usability.

Two layers can be identified in an ontology: ontol-
ogy definition layer which contains the classes which
describe the concepts in the domain, and the instance
layer which contains all the distinct individuals in the
domain.

Relations between resources are defined by means
of properties. Two types of properties exist:

(i) object properties linking individuals among them-
selves;

(ii) data type properties linking individuals and data
type values.3

In this work, we only considered object properties,
since the treatment of data type properties (such as lit-
eral values) requires further semantic analysis.

Instances in the ontology (also called individuals)
describe concrete individuals. They are defined with
individual axioms which provide their class member-
ships (property rdf:type), individual identities and
values for their properties. All the properties of in-
stances are inherited from the classes the instances be-
long to. A specific value is associated to each prop-
erty and some properties can have more than one
value. Properties of instances enable the employment
of feature-based similarity measure to ontology in-
stances.

3. Semantic similarity measures

In this section we give some details of the three main
categories of semantic similarity measures, namely
feature-based, hierarchy-based and information content-
based. As a result of trying to improve and combine
the above approaches, many hybrid similarity mea-
sures were born. In our experiments we only dealt

2http://www.w3.org/TR/owl-ref
3In OWL, there is also the notion of annotation prop-

erty (owl:AnnotationProperty) and ontology property
(owl:OntologyProperty), used in OWL DL.

with Tversky’s feature-based measure, its improve-
ments and its combination with hierarchy-based mea-
sures. We include information-content-based measures
for the completeness sake only.

3.1. Feature-based similarity measures

Calculation of similarity based on properties goes
back to Tversky’s work on Features of Similarity [31]
where similarity between two objects O1 and O2 is a
function of their common and distinctive features:

simT (O1,O2) =

=
α(ψ(O1) ∩ ψ(O2))

β(ψ(O1) \ ψ(O2)) + γ(ψ(O2) \ ψ(O1)) + α(ψ(O1) ∩ ψ(O2))
.

(1)

In the formula above ψ(O) describes all the relevant
features of the object O, and α, β, γ ∈ R are constants
which allow for different treatment of the various com-
ponents. For α = 1 common features of the two objects
have maximal importance. For β = γ non-directional
similarity measure is obtained. Depending on the val-
ues for α, β, γ, we obtain the following variations of
Tversky’s similarity:

– Jaccard’s or Tanimoto similarity for α = β = γ =

1;
– Dice’s or Sørensen’s similarity for α = 1 and β =

γ = 0.5.
We will be using the following notation:
– common features of O1 and O2: cf(O1,O2) =

ψ(O1) ∩ ψ(O2),
– distinctive features of O1: df(O1) = ψ(O1)\ψ(O2)

and
– distinctive features of O2: df(O2) = ψ(O2)\ψ(O1).
In order to calculate the above similarities for do-

main objects O1 and O2, we need to calculate for each
property p they have in common, how much it con-
tributes to common features of O1 and O2, distinctive
features of O1 and distinctive features of O2, respec-
tively. We denote these values by cfp, df1p and df2p.

Hence, we have to compare the property-value pairs
between instances for each property they have in com-
mon. We will include in common features the cases
when the two objects have the same value for the given
property p. We will include in distinctive features of
each object the cases when the two objects have differ-
ent values for the given property p.

We consider equal the properties defined with
owl:EquivalentProperty. Repeating the above process
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for each property O1 and O2 have in common, we ob-
tain all common and distinctive features of O1 and O2:

cf(O1,O2) = Σn
i=1cfpi (O1,O2)

df(O1) = Σn
i=1df

1
pi

(O1) df(O2) = Σn
i=1df

2
pi

(O2)

where n is the number of common properties defined
for O1 and O2. Then the above similarity measures be-
come:

Jaccard’s similarity:

simJ(O1,O2) =
cf(O1,O2)

df(O1) + df(O2) + cf(O1,O2)
(2)

Dice’s similarity:

simD(O1,O2) =
2cf(O1,O2)

df(O1) + df(O2) + 2cf(O1,O2)
(3)

3.1.1. Mathematical properties
Here we provide the reader with some basic mathe-

matical properties of the Jaccard’s similarity measure
which we would deal with in the rest of the paper.

1. Boundaries
∀O1,O2, 0 ≤ simJ(O1,O2) ≤ 1.

2. Maximal similarity
If O1 ≡ O2, then simJ(O1,O2) = 1.

3. Commutativity
∀O1,O2, simJ(O1,O2) = simJ(O2,O1).

4. Monotonicity
If cf(O1,O2) ≤ cf(O1,O3) and df(O1) = df(O2),
then simJ(O1,O2) ≤ simJ(O1,O3).
If cf(O1,O2) ≤ cf(O1,O3) and df(O2) = df(O3),
then simJ(O1,O3) ≤ simJ(O2,O3).

3.2. Hierarchy-based similarity measures

Hierarchy-based or distance-based similarity mea-
sures use the underlying conceptual hierarchy directly
and calculate the distance between concepts by cal-
culating the number of edges or the number of nodes
which have to be traversed in order to reach one con-
cept from another. The hierarchy-based measure was
first introduced in [24] as a simple shortest path con-
necting the compared concepts and was the basis for
the development of many measures of semantic simi-
larity. A discussion and comparison with information
content-based approaches can be found in [5]. In this
section we give more details about three hierarchy-

based measures we used in our experiments: Leacock
and Chodorow’s measure [15], Wu and Palmer’s mea-
sure [33] and Li’s measure [16].

3.2.1. Leacock and Chodorow’s similarity measure
The first measure we will look at is Leacock and

Chodorow’s similarity measure [15] which was orig-
inally used for word sense disambiguation in a local
context classifier. The most similar nouns from the
training set are substituted for the ambiguous ones in
testing. In order to calculate the distances between
words, the authors use the normalised path length in
WordNet [11] between all the senses of the compared
words and measure the path length in nodes:

simLC(a, b) = − log
( N p
2 × max

)
. (4)

N p is the number of nodes in the path p from a to b,
whereas max is the maximum depth of the hierarchy.
The distance between two words belonging to the same
synset is 1.

If we want to express this measure as a function of
distances between nodes we obtain the following for-
mula:

simLC(a, b) = − log
(
dist(a, b)
2 × max

)
. (5)

dist(a, b) is the distance between a and b calculated as
the shortest path length between these two nodes.

The disadvantage of this similarity measure is that
many pairs of non-similar words are estimated as sim-
ilar, due to the equal edge lengths in their hierarchy.

3.2.2. Wu and Palmer’s similarity measure
Wu and Palmer’s similarity measure [33] is based

on the depths in the hierarchy of the two words being
compared and on the depth of their common subsumer,
which characterises their commonalities. If we denote
by c the first subsuming node for the two compared
nodes a and b, their similarity is calculated as follows:

simWP(a, b) =
2Nc

Na + Nb
. (6)

Nn is the number of nodes along the path from the node
n to the root.

This measure can also be expressed as a function of
distances between nodes as follows:

simWP(a, b) =
2dist(c, r)

dist(a, r) + dist(b, r)
. (7)
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dist(n, r) is the distance of n from the root, again calcu-
lated as the shortest path length between the two nodes.
In [33] this measure was used in lexical selection prob-
lems in machine translation where the performance of
inexact matches based on verb meanings is evaluated.

3.2.3. Li’s similarity measure
Li et al. [16] proposed an approach for calculating

the similarity between sentences which uses seman-
tic information and word order information in the sen-
tence. Similarity of singular words is calculated using
the shortest path length between words dist and the
depth h of their common subsumer as follows:

simL(a, b) = e−αdist(a,b) eβh − e−βh

eβh + e−βh . (8)

where α ∈ [0, 1], β ∈ (0, 1] are parameters which con-
trol the contribution of shortest path length and depth,
respectively. As β → ∞, the depth of a word in the
semantic nets is not considered. Their optimal values
depend on the knowledge base used and for WordNet
they are α = 0.2 and β = 0.45. For the proposed
benchmark dataset, the optimal values are α = 0.2 and
β = 0.6 (obtained experimentally). If the words a
and b belong to the same synset then dist(a, b) = 0, if
they do not belong to the same synset but the synsets
for a and b contain one or more common words, then
dist(a, b) = 1 and for the remaining cases the actual
path length between a and b is calculated. This mea-
sure was introduced for purely theoretical purposes, as
an improvement of the existing similarity measures.

3.3. Information content-based similarity measures

The measures seen above work on single knowl-
edge structures and they do not need external sources
for similarity calculation. In this section we present
the most important approach which uses an external
corpus to compute the similarity. The foundational
work on information content-based similarity is due to
Resnik [25,26]. His approach is based on the fact that
the more abstract classes provide less information con-
tent, whereas more concrete and detailed classes lower
down in the hierarchy are more informative. The clos-
est class that subsumes two compared classes, called
a most informative subsumer is the class which pro-
vides the shared information for both, and measures
their similarity. In order to calculate the information
content of a concept in a IS-A taxonomy, Resnik turns
to an external text corpus and calculates the probability
of occurrence of the class in this corpus as its relative

frequency (each word in the text corpus is counted as
an occurrence of each class that contains it.). The in-
formation content of a class in a taxonomy is given by
the negative logarithm of the probability of occurrence
of the class in a text corpus as follows:

simR(a, b) = maxc∈S (a,b)[− log p(C)] (9)

where p(c) is the probability of encountering an in-
stance of concept c, and S (a, b) is the set of all con-
cepts that subsume a and b. According to Resnik
this approach performs better than hierarchy-based ap-
proaches, based on human similarity judgements as a
benchmark. He used this similarity measure to resolve
the problems of ambiguity in natural language.

3.4. Advantages and disadvantages of
hierarchy-based and information content-based
similarity measures - a discussion

Since they only depend on the underlying hierarchy
of the domain ontology, the hierarchy-based similarity
measures are fairly simple and require a low computa-
tional cost. The known problem with hierarchy-based
similarity measures is that all the edges in the hierar-
chy are considered to be of the same length, so many
similarity values are not correct. The accuracy of these
measures have been surpassed by more complex ap-
proaches which exploit additional semantic informa-
tion.

The problem with Resnik’s similarity measure is the
excessive information content value of many polyse-
mous words (i.e. word senses not taken into account)
and multi-worded synsets. Also, the information con-
tent values are not calculated for individual words but
for synsets, hence the synsets containing commonly
occurring ambiguous words would have excessive in-
formation content values. To deal with the problem of
excessive information content value of many polyse-
mous words, Resnik proposes weighted word similar-
ity which takes into account all senses of the words be-
ing compared.

The main problem with information content-based
similarity measures is their dependance on external
corpora for the calculation of term frequencies. This
requires disambiguation and annotation of terms in
the corpus, very often done manually, hence affect-
ing the applicability of this approach to large corpora.
Also, with the change of corpora or the ontology, the
term frequencies have to be recalculated. One step to-
wards mitigating this problem was the introduction of
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intrinsic computation of information content [30] as
we will see in Section 6. The methods based on in-
trinsic information content outperform corpora-relying
approaches.

In this work, we particularly focus on feature-based
and hierarchy-based similarity measures since they
do not require external knowledge sources for their
application, rather they rely solely on the domain
ontology. Feature-based similarity measures evaluate
both common and distinctive features of compared ob-
jects, hence exploiting more semantic information than
hierarchy-based approaches. But this information has
to be available, which is not always the case. Otherwise
the applicability and accuracy of these measures is hin-
dered. Feature-based similarity measures can also be
applied in cross-ontology settings.

4. Variations of Jaccard’s feature-based similarity
measure

In this section we present the variations of Tver-
sky’s, or more preciselly, Jaccard’s similarity measure
from Section 3.1 which we evaluated in our experi-
ments. We experimented with 6 basic modifications of
Jaccard’s similarity (see Equation 2). For each of these
7 measures, we present 2 further variations, which aim
to take the underlying hierarchical structure into ac-
count in different ways. We actually did the same cal-
culations also with Dice’s measure (see Equation 3)
but the results were almost always worse, so we will
not tackle Dice’s measure any further.

4.1. Basic modifications of Jaccard’s similarity
measure

Our first assumption was that common features con-
tribute to the similarity calculation in more substantial
way than distinctive features. Hence, the first modifi-
cation of Jaccard’s measure, called Common-squared
Jaccard’s similarity, was to consider squares of only
the values two objects have in common, giving more
importance to common features. The following for-
mula illustrates this measure:

simCS Q(O1,O2) =
cf2(O1,O2)

df(O1) + df(O2) + cf2(O1,O2)

(10)

For comparison purposes, the second modification
of Jaccard’s measure, called Squared Jaccard’s sim-

ilarity, was to consider squares of all the values as in
the following formula:

simS Q(O1,O2) =
cf2(O1,O2)

df2(O1) + df2(O2) + cf2(O1,O2)

(11)

We also tried the following two modifications:
Normalised Jaccard’s similarity (Eq 12) and Nor-
malised common-squared Jaccard’s similarity (Eq 13),
given below:

simN(O1,O2) =

=

cf(O1,O2)
(cf(O1,O2)+df(O1))(cf(O1,O2)+df(O2))

df(O1)
cf(O1,O2)+df(O1) +

df(O2)
cf(O1,O2)+df(O2) +

cf(O1,O2)
(cf(O1,O2)+df(O1))(cf(O1,O2)+df(O2))

(12)

simNCS Q(O1,O2) =

=

cf2(O1,O2)
(cf(O1,O2)+df(O1))(cf(O1,O2)+df(O2))

df(O1)
cf(O1,O2)+df(O1) +

df(O2)
cf(O1,O2)+df(O2) +

cf2(O1,O2)
(cf(O1,O2)+df(O1))(cf(O1,O2)+df(O2))

(13)

The Normalised common-squared Jaccard’s similar-
ity measure for ontological objects was first introduced
in [6] and was further developed in [17] as a way
to calculate similarity between shapes and in [18] for
improving recommendation accuracy and diversity.

We also tried to converte Li’s similarity formula [16]
into feature based formula. Since the similarity mea-
sure increases with the increasing number of common
features, common features can be taken as an argu-
ment of the sigmoid function. Furthermore, the simi-
larity values should decrease with the increasing num-
ber of distinctive features, hence the distinctive fea-
tures should be an argument of the negative sigmoid
function translated by 1. So we obtained the following
function:

simS (O1,O2) =
ecf(O1,O2) − 1
ecf(O1,O2) + 1

(1 −
edf(O1)+df(O2) − 1
edf(O1)+df(O2) + 1

)

=
2(ecf(O1,O2) − 1)

(ecf(O1,O2) + 1)(edf(O1)+df(O2) + 1)

(14)
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This result is similar to just taking the distinctive
features as an argument to inverse exponential func-
tion since these two functions have similar graphs and
behaviour for arguments greater than 0. But the ex-
ponential in the denominator increases very fast, so
the similarity values were getting extremely small very
quickly. Hence we decided to leave just the distinc-
tive features in the denominator. Adding 1 prevents the
case of the division with zero when there are no dis-
tinctive features among the compared objects. Also,
we need to divide by 2 so that the final result is in the
interval [0, 1). So the final Sigmoid similarity has the
following formula:

simS (O1,O2) =
ecf(O1,O2) − 1

(ecf(O1,O2) + 1)(df(O1) + df(O2) + 1)

(15)

Finally, the last measure which we considered was
the sigmoid function of Jaccard’s similarity as follows:

simJS (O1,O2) =
esimJ (O1,O2) − 1
esimJ (O1,O2) + 1

(16)

We call this measure Sigmoid Jaccard’s similarity.

4.1.1. Mathematical properties
It is straightforward that the previously introduced

mathematical properties (boundaries, maximal simi-
larity, commutativity and monotonicity) are preserved
for simCS Q, simS Q, simN and simNCS Q, since they are
simple modifications of the original simJ measure.

Let us first consider simJS measure since it is sim-
pler than simS measure. The values of simJS belong to
[0, e−1

e+1 ) since the values of the sigmoid function be-
long to [0, 1), for positive arguments. Hence, its maxi-
mum value is e−1

e+1 when simJ = 1. Sigmoid function is
a monotone function so the monotonicity is preserved.
Commutativity is straightforward.

As far as simS measure is concerned, its values
belong to [0, 1) and the maximal value is obtained
when the compared objects do not have any distinctive
features. Commutativity and monotonicity are again
straightforward.

Next, we will see how we tried to include the hier-
archical information into these measures.

4.2. Feature-based similarity combined with
hierarchical information

The basic question we wanted to answer with these
experiments was how much the actual hierarchical in-

formation contributes to the similarity of two objects
and if this information can be simulated by proper-
ties. Basically, the hierarchical information could be
either integrated into the measures by considering the
rdf:type property (basic measures) or it could be in-
tegrated into the measures by excluding the rdf:type
property and including the hierarchical information in
some different way. We also tried to see how includ-
ing both would affect the performance. We decided to
distinguish the following two variations of each of the
above described basic measures:
V1: the measures without considering the property
rdf:type but including the hierarchical informa-
tion in the feature-based similarity formula. In
this case, since the greater distance between two
objects means that they are less similar, we de-
cided that the distance between objects counts as
their distinctive feature. In the following formulas
dist(O1,O2) is the number of edges along the path
connecting O1 and O2 and max is the maximum
depth of the class hierarchy.

simJnth(O1,O2) =

=
cf(O1,O2)

df(O1) + df(O2) + cf(O1,O2) +
dist(O1,O2)

2max

(17)

simS Qnth(O1,O2) =

=
cf2(O1,O2)

df2(O1) + df2(O2) + cf2(O1,O2) +
dist2(O1,O2)

(2max)2

(18)

The equations for simCS Qnth, simNnth, simNCS Qnth

are analogous to the equations above. The ones
that are worth writing out explicitly are simS nth

and simJS nth.

simS nth(O1,O2) =

=
2(ecf(O1,O2) − 1)

(ecf(O1,O2) + 1)(df(O1) + df(O2) + 1 +
dist(O1,O2)

2max )

(19)

simJS (O1,O2) =
esimJnth(O1,O2) − 1
esimJnth(O1,O2) + 1

(20)
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V2: the original measures considering the property
rdf:type and including the hierarchical infor-
mation in the feature-based similarity formula.
This approach counts the hierarchical informa-
tion twice in a way but in two subtle ways. In-
cluding the property rdf:type takes into ac-
count all the objects which are of the same
recipe type, whereas including the hierarchi-
cal information accounts for the distance be-
tween the compared objects. These measures
(simJh, simS Qh, simCS Qh, simNh, simNCS Qh, simS h

and simJS h) showed slightly better performance
results with respect to the original measures, as
we will see in Section 5. But, in our opinion,
the gained improvement does not justify the in-
creased complexity and execution times of the
proposed variants.

Let us illustrate our ideas with some simple ex-
amples. In the recipe domain, all the recipes could
be instances of the class Recipe or there could ex-
ist an underlying hierarchy of recipe types and each
recipe could be an instance of its corresponding recipe
type. In our case, instead of having all the recipes in-
stances of DishType, we made the recipes instances
of various dish types, such as BreadDish, CakeDish,
PastaDish etc. This choice has the following conse-
quences:

– instead of having the same values for the property
rdf:type for all the dishes, we can distinguish
them according to various values for the property
rdf:type;

– in case we want to take the hierarchical informa-
tion into account, we can calculate the distance
between various dishes, rather than assume that
they all have the same similarity, since they all
have the same parent. Since we deal with the in-
stances in the ontology, we decided to consider
them “descendants” of their classes, otherwise the
instances of one class would all be equal.

5. Evaluation

The most commonly used datasets to test similar-
ity measures are the ones proposed by [28] and [20].
Rubenstein and Goodenough’s experiment dates back
to 1965. They asked 51 native English speakers to as-
sess the similarity of 65 English noun pairs on a scale
from 0 (semantically unrelated) to 4 (highly related).
Miller and Charles’ experiment in 1991 considered a
subset of 30 noun pairs and their similarity was re-

assessed by 38 undergraduate students. The correlation
w.r.t Rubenstein and Goodenough results was 0.97.
[26] repeated the same experiment in 1995 with 10
subjects. The correlation w.r.t. Miller and Charles re-
sults was 0.96. Finally, [22] repeated the experiments
in 2009 with 101 participants, both English and non-
English native speakers. His average correlation w.r.t.
Rubenstein and Goodenough was 0.97, and 0.95 w.r.t.
Miller and Charles. We can see that similarity judge-
ments by various groups of people over a long period
of time remain stable.

All the experiments cited above [28,20,26,22] were
dealing with common English nouns and the correla-
tion with these results was mostly used to test similar-
ity measures on WordNet [11]. But our focus is differ-
ent. We wanted to experiment with the similarity mea-
sures on specific domain ontologies, which represents
more complex entities. We needed data representation
where features of domain objects are explicitly pro-
vided, which is not the case with WordNet.

Our experiment was conducted with the goal of
evaluating the feature-based similarity of instances in
its various forms and its comparison with hierarchy-
based approaches. In our first experiment we evalu-
ated our approach in the domain of recipes using the
slightly modified Wikitaaable dataset4 used in [7]. In
our second experiment we evaluated our approach in
the drinks domain using an ontology developed pre-
viously by our research team. We assumed that both
datasets represent information known by a wide range
of people, without the need be an expert to assess the
similarity of the proposed domain items. The datasets
used in our experiments are available here:
http://www.di.unito.it/ lombardi/SimilarityTest/

5.1. Hypotheses

We wanted to verify that:
H1: Jaccard’s feature-based similarity measure per-

forms better than hierarchy-based approaches;
H2: it is possible to improve Jaccard’s feature-based

similarity;
H3: hierarchical information is encoded better with

features than with underlying hierarchy;
H4: combining the hierarchy and feature-based ap-

proach beyond linear combination further im-
proves the Jaccard’s similarity measure and its
variations.

4http://wikitaaable.loria.fr/rdf/
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5.2. Subjects

A total of 137 people (60 female and 77 male, av-
erage age 30) took part in the first test and 147 (65
female and 82 male, average age 32) took part in the
second one.

They were selected among authors’ colleagues and
among the second and third year undergraduate stu-
dents at the Faculty of Philosophy at the University of
Torino, Italy. The participants were recruited accord-
ing to an availability sampling strategy.5 All the partic-
ipants were native Italian speakers.

5.3. Materials

We designed two experiments to test our hypothe-
ses.

In the first experiment, we designed a web ques-
tionnaire with 25 pairs of recipes, chosen from Wik-
itaaable dataset, covering a range of recipes expected
to be judged very similar to not similar at all. The orig-
inal recipes from the dataset were translated to Ital-
ian. The original dataset contains 1666 recipes. The
properties defined for the recipes are the following:
rdf:type, can_be_eaten_as, has_ingredient,
suitable_for_diet, not_suitable_for_diet and
has_origin. This dataset provided us with a good
setting to test our approach. We only made the fol-
lowing slight modifications: in the original ontology
all the recipes were instances of Recipe, whereas we
needed to use the hierarchical structure of the ontology
to test hierarchy-based similarity measures, as well as
incorporate the hierarchical information into our mea-
sures, hence we made the recipes instances of various
Dish_Type’s. In the original ontology rdf:type is
a property, whereas in our case, we once used it as a
property and once as an underlying hierarchical infor-
mation. Figure 1 shows the basic Wikitaaable taxon-
omy of recipes, but only including the top categories
and the ones from which we used the instances to test
our approach. The properties are omitted for clarity.

The main dish types are: RollDish, CrepeDish,
BakedGoodDish, BeverageDish, SoupAndStuffDish,

5Although a more suitable way to obtain a representative sample
is random sampling, this strategy is time consuming and not finan-
cially justifiable. Hence, much research is based on samples obtained
through non-random selection, such as the availability sampling, i.e.
a sampling of convenience, based on subjects available to the re-
searcher, often used when the population source is not completely
defined.

PancakeDish, MousseDish, SweetDish, SaladDish,
SaltedDish, SauceDish, WaffleDish, PreserveDish,
SpecialDietDish. The recipes we used in our eval-
uation did not belong to all recipe groups, since the
complexity of the test would have been too high and
we would have obtained random answers from the
users.

In the second experiment, we again used a web
questionnaire, this time containing 30 pairs of drinks
chosen from the ontology describing drinks. The
original ontology has 148 classes, with the main
drink classes being: Water, AlcoholicBeverage,
DrinkInACup, PlantOriginDrink and SoftDrink.
The properties defined for the drinks are the following:
has_alcoholic_content, has_caloric_content,
has_ ingredient, is_sparkling, is_suitable_for
and rdf:type. Figure 2 shows the basic taxonomy of
drinks, again only including the main categories and
omitting the properties.

In each experiment the participants were asked to
asses the similarity of these 25 pairs (respectively 30
pairs) by anonymously assigning them a similarity
value on the scale from 1 to 10 (1 meaning not similar
at all, 10 meaning very similar). The ordering of pairs
was random. The users’ similarity values were then
turned into the values from the [0, 1] interval to make
them match the similarity values produced by various
algorithms.

In each experiment, the participant group P was di-
vided into two groups: P1 was used as a reference
group and P2 was used as a control group to measure
the correlation of judgments among human subjects,
as in [25]. We experimented with different partitions of
P1 and P2 and obtained similar results.

In this paper we considered the following feature-
based similarity measures:

1. Tversky’s similarity where α = β = γ = 1, also
known as Jaccard’s or Tanimoto similarity simJ;

2. Common-squared Jaccard’s similarity simCS Q;
3. Squared Jaccard’s similarity simS Q;
4. Normalized Jaccard’s similarity simN ;
5. Normalized common-squared Jaccard’s similar-

ity simNCS Q;
6. Sigmoid similarity simS ;
7. Sigmoid Jaccard’s similarity simJS ;
For the comparison, we considered the following

edge-based similarity measures:
1. Leacock and Chodorow’s similarity simLC;
2. Wu and Palmer’s similarity simWP;
3. Li’s similarity simL.
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DISH TYPE

BAKED GOOD

BREAD

BISCUIT

SALTED

CAKE

CASSEROLE

CREPE

MOUSSE

PANCAKE

MEATPIE

ROLL

SALTED SAUCE

SEA FOOD

STEW

SAUCE

WAFFLE

SWEET

SOUP & STUFF

SOUP

RICE

PASTA

SALAD

FROZEN DESSERT

VEGETABLE

SPECIAL DIET DISH

PRESERVE

Fig. 1. Recipe taxonomy

Fig. 2. Drinks taxonomy

For each of the feature-based measures, we consid-
ered the following variants:
V1. the measure without the rdf:type property but

combined with underlying hierarchy (measures
simJnth, simS Qnth, simCS Qnth, simNnth, simNCS Qnth,
simS nth, simJS nth);

V2. the measure with the rdf:type property com-
bined with underlying hierarchy (measures simJh,
simS Qh, simCS Qh, simNh, simNCS Qh, simS h, simJS h).

For all the feature-based measures we also tested the
Dice’s similarity, but in almost all the cases it showed

worse performance than Jaccard’s similarity, so we
will not report the results here.

5.4. Measures

We used the Spearman rank correlation coefficient ρ
to measure the accuracy of similarity judgement.

The Spearman rank correlation coefficient mea-
sures statistical dependence between two ranked vari-
ables. It actually describes the relationship between
two variables using a monotonic function. It is equal
to the Pearson correlation between the ranked vari-
ables. For a sample of size n, the two sets of values
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X = {x1, . . . , xn} and Y = {y1, . . . , yn} are converted to
ranks {r(x1), . . . , r(xn)} and {r(yi), . . . , r(yn)} and then
the Pearson coefficient is calculated as follows:

ρ =
Σn

i=1(r(xi) − r(x))(r(yi) − r(y))√
Σn

i=1(r(xi) − r(x)2(r(yi) − r(y))2

where r(x) and r(y) are the sample means of the two
sets of ranked values. The value of Spearman coeffi-
cient ranges from +1 (indicating a strong similar rank)
to −1 (indicating a strong dissimilar rank). Value 0
means there is no correlation.

5.5. Implementation and performance

The test software to compare the different mea-
sures has been developed in Java, using the Apache
Jena library to extract data from the ontology. The
test has been performed on a MacBook Pro with a
2.66 GHz Intel Core i7 processor and 8 GB 1067
MHz DDR3 RAM. Tables 1 and 2 show the execu-
tion time for the different measures obtained in the
Recipes and the Drinks experiments, respectively. In
both cases, feature-based approaches significantly out-
perform hierarchy-based ones. A possible explanation
for this could be that hierarchy-based approaches need
to traverse the hierarchy to calculate the distance be-
tween two nodes, while feature-based ones simply
need to extract properties and their values for the two
nodes.

5.6. Results and discussion

For the first experiment (Recipes) Table 3 reports
the Spearman rank correlation between the reference
group P1 and control group P2, as well as the Spear-
man rank correlation between the participant group P
and the hierarchy-based approaches. Tables 4, 5, 6 re-
port the Spearman rank correlation between each of
the above measures and the participant group P for the
base case and for the 2 variations introduced in Sec-
tion 4. The best performing measure in each group is
reported in bold.

For the second experiment (Drinks) Table 7 reports
the Spearman rank correlation between the reference
group P1 and control group P2, as well as the Spear-
man rank correlation between the participant group P
and the hierarchy-based approaches. Tables 8, 9, 10 re-
port the Spearman rank correlation between each of
the above measures and the participant group P for the

base case and for the 2 variations introduced in Sec-
tion 4.

5.6.1. Participants group and the hierarchy-based
approaches

The correlation for both experiments with the hu-
man subjects, i.e. the comparison of the two groups of
participants (row P1-P2), is 0.945 (respectively 0.977)
and similar to the one reported in [25]. From this good
correlation we can conclude that the participants’ re-
sponses were coherent among themselves in both ex-
periments and that we can trust the human ratings.

Furthermore, w.r.t. the correlation of participants
group with hierarchy-based approaches we can see that
in the first experiment (Recipes) with hierarchy-based
approaches we obtained similar results for all three
measures (the best one being Wu and Palmer’s mea-
sure) and they all have a relatively weak positive cor-
relation with the human judgement. In the second ex-
periment (Drinks) the performance is better (the best
one again being Wu and Palmer’s measure).

This can be explained with the fact that the under-
lying hierarchy in the ontology of drinks is designed
mirroring better the human categorisation than the on-
tology of recipes (which was indeed flat at the begin-
ning and we performed only minimal changes to ob-
tain the main categories of recipes). But it also shows
how dependant the measure is on the ontology design.

5.6.2. Base case group of feature-based similarities
and the comparison with hierarchy-based
approaches

The first group of feature-based similarity measures
contains the original Jaccard’s similarity measure simJ

and the six basic modifications proposed in Section 4
(simCS Q, simS Q simN , simNCS Q, simS and simJS ).

Tables 4 and 8 show the results for the base case for
all 7 similarity measures in both experiments, where
the property rdf:type was included in the calcula-
tions and no further hierarchical information was taken
into account.

Looking at the Tables 4 and 8 we can see that in each
experiment there are a few measures which improve
the basic Jaccard’s similarity simJ . But the one that is
consistently better is Sigmoid similarity simS .

Hence, we confirmed our hypothesis H2 that it is
possible to improve the original Jaccard’s formulation
of similarity measure by using the Sigmoid similarity
measure simS .

Furthermore, in the first experiment (Recipes) all
the feature-based measures in Table 4 perform better
than the hierarchy-based measures from Table 3. In
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MEASURE execution time
(in seconds)

Leacock and Chodorow 0.413

Wu and Palmer 0.225

Li et al. 0.267

Jaccard 0.028

Sq. Jaccard 0.010

Comm-sq. Jaccard 0.011

Norm. Jaccard 0.008

Norm. comm-sq. Jacc. 0.010

Sigmoid 0.007

Sigmoid Jaccard 0.005

Table 1
Execution time for the Recipes ontology

MEASURE execution time
(in seconds)

Leacock and Chodorow 0.061

Wu and Palmer 0.047

Li et al. 0.064

Jaccard 0.018

Sq. Jaccard 0.008

Comm-sq. Jaccard 0.006

Norm. Jaccard 0.005

Norm. comm-sq. Jacc. 0.004

Sigmoid 0.003

Sigmoid Jaccard 0.003

Table 2
Execution time for the Drinks ontology

MEASURE ρ

P1 - P2 0.945
Leacock and Chodorow 0.583

Wu and Palmer 0.585

Li et al. 0.576

Table 3
Recipes - P1 - P2 and edge-based

MEASURE ρ

Jaccard 0.633

Sq. Jaccard 0.644

Comm-sq. Jaccard 0.639

Norm. Jaccard 0.636

Norm. comm-sq. Jacc. 0.629

Sigmoid 0.664
Sigmoid Jaccard 0.633

Table 4
Recipes - base case

MEASURE ρ

Jaccard no t. + h. 0.614
Sq. Jaccard no t. + h. 0.608

Comm-sq. Jaccard no t. + h. 0.606

Norm. Jaccard no t. + h. 0.578

Norm. comm-sq. Jacc. no t. + h. 0.605

Sigmoid no t. + h. 0.583

Sigmoid Jaccard no t. + h. 0.613

Table 5
Recipes - base case without rdf:type with hierarchy

MEASURE ρ

Jaccard + h. 0.643

Sq. Jaccard + h. 0.639

Comm-sq. Jaccard + h. 0.644

Norm. Jaccard + h. 0.636

Norm. comm-sq. Jacc. + h. 0.638

Sigmoid + h. 0.664
Sigmoid Jaccard + h. 0.643

Table 6
Recipes - base case with hierarchy

MEASURE ρ

P1 - P2

Leacock and Chodorow 0.680

Wu and Palmer 0.891

Li et al. 0.781

Table 7
Drinks - P1 - P2 and edge-based

MEASURE ρ

Jaccard 0.876

Sq. Jaccard 0.870

Comm-sq. Jaccard 0.851

Norm. Jaccard 0.899

Norm. comm-sq. Jacc. 0.877

Sigmoid 0.900
Sigmoid Jaccard 0.876

Table 8
Drinks - base case
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MEASURE ρ

Jaccard no t. + h. 0.888

Sq. Jaccard no t. + h. 0.882

Comm-sq. Jaccard no t. + h. 0.868

Norm. Jaccard no t. + h. 0.889

Norm. comm-sq. Jacc. no t. + h. 0.898

Sigmoid no t. + h. 0.900
Sigmoid Jaccard no t. + h. 0.888

Table 9
Drinks - base case without rdf:type with hierarchy

MEASURE ρ

Jaccard + h. 0.861

Sq. Jaccard + h. 0.861

Comm-sq. Jaccard + h. 0.839

Norm. Jaccard + h. 0.889

Norm. comm-sq. Jacc. + h. 0.877

Sigmoid + h. 0.900
Sigmoid Jaccard + h. 0.861

Table 10
Drinks - base case with hierarchy

the second experiment (Drinks) all the feature-based
measures in Table 8 perform better than Leacock and
Chodorow’s measure and Li et al.’s measure and simN

and simS perform better even than Wu and Palmer’s
measure.

This shows that we can obtain better similarity re-
sults by considering properties for instances in an on-
tology, rather than hierarchy underlying the ontology.
This confirms our hypothesis H1 that the feature-based
similarity shows better performance than hierarchy-
based approaches. Often, other proposed methods in
the literature do not surpass Li’s measure, even when
they surpass other hierarchy-based methods. On both
of our datasets, the best performing hierarchy-based
similarity measure is Wu and Palmer’s measure. But
all feature-based measures in the first experiment and
some of the measures in the second experiment surpass
Wu and Palmer’s measure and all surpass the other two
hierarchy-based measures. This means that properties
play more important role than the underlying hierarchy
when describing ontological instances and their mutual
similarity.

5.6.3. Substituting rdf:type with hierarchical
information

Tables 5 and 9 show the results for the 7 simi-
larity measures in both experiments, where the prop-
erty rdf:type was excluded from the calculations
and where we tried to simulate this information with
hierarchical information. We tried to incorporate the
hierarchy-based similarity by including the normalised
distance between concepts (calculated as dist

2 max ) in the
feature-based formulae as a part of distinctive features.

In the first experiment (Recipes), better results are
obtained by the simple base measure, hence by us-
ing rdf:type instead of hierarchical information (Ta-
ble 4), whereas in the second experiment (Drinks) re-
sults are mostly better with the hierarchical informa-
tion but without rdf:type (Table 9. But even in this

case, the Sigmoid measure simS nth performs better in
base case, showing consistent improvement.

But we cannot confirm our hypothesis H3 that hi-
erarchical information is encoded better with features
than with underlying hierarchy, even though in the case
of best performing Sigmoid measure simS nth it is.

5.6.4. Including both, rdf:type and hierarchical
information

Finally, we wanted to combine hierarchical informa-
tion with features to see if the similarity values could
be improved. Just a linear combination of feature-
based similarity and hierarchy-based similarity would
not yield better results, since hierarchy-based similar-
ity would just decrease the correlation. Hence, we in-
cluded the hierarchy information as in the above. The
results are reported in Table 6 and Table 10.

In the first experiment (Recipes) we obtained small
improvements for some basic measures, whereas in the
second experiment (Drinks) only the Sigmoid measure
simS h brings very small improvement.

Hence, w.r.t. the hypothesis H4 we can conclude that
combining the hierarchy and feature-based approach
beyond linear combination provides good correlation
with human judgement but sometimes better results are
obtained without incorporating the underlying hierar-
chy.

5.6.5. Concluding considerations
We can see that in both domains, the consistently

best performing measure is the Sigmoid similarity
simS . In the domain of Recipes we obtained the im-
provement of 4.9% for the base case, whereas in the
domain of Drinks we obtained the improvement of
2.74% for the base case.

In both cases very small additional improvement is
obtained by considering the underlying hierarchy to-
gether with rdf:type. Hence, there is little benefit in
adding this additional information to the basic similar-
ity measures.
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Also, in both cases, there is an improvement w.r.t.
the best hierarchy-based measure (Wu and Palmer):
13.5% in the case of Recipes and 1.01% in the
case of Drinks. This again shows how dependant the
hierarchy-based similarity measures are on the design
of the underlying conceptual hierarchy.

We can see that even with relatively small number of
properties defined for the concepts in the ontology, the
feature-based similarity outperforms hierarchy-based
approaches. Of course, the number of defined proper-
ties plays an important role in semantic similarity cal-
culation.

The dataset used also plays an important role in
the similarity calculations. To the best of our knowl-
edge, the datasets used in this work include signifi-
cantly higher number of participants than many works
in the field. Usually, the similarity measures are tested
on Wordnet [11], but we are providing the community
with yet another rich dataset to experiment with.

We summarise here our main findings as the re-
sponses to our hypotheses.
H1: Jaccard’s feature-based similarity measure per-

forms better than hierarchy-based approaches;
H2: it is possible to improve Jaccard’s feature-based

similarity. We propose Sigmoid similarity mea-
sure as the improvement of the original Jaccard’s
measure which brings the improvement of 4.9%
in the domain of recipes and of 2.74% in the do-
main of drinks;

H3: we cannot say if the hierarchical information is
encoded better with features than with underlying
hierarchy;

H4: combining the hierarchy and feature-based ap-
proach beyond linear combination further im-
proves the Jaccard’s similarity measure and its
variations but to a very small degree, hence it is
questionable if these modifications are worth im-
plementing.

5.7. Comparison with the performance on WordNet

Since most of the similarity measures in the liter-
ature have been tested on WordNet, we include here
the comparison of our results with the corresponding
results provided in [29]. We include only the results
for Miller and Charles’ dataset [20], since the ones for
[28] are not always available.

We can see that the hierarchy-based measures (Lea-
cock and Chodorow, Wu and Palmer and Li et al.) per-
form better on WordNet than on Wikitaaable dataset
but the performance is similar to the Drinks dataset.

This is due to the hierarchical structure of Wikitaaable
and Drinks datasets. The hierarchy in Wikitaaable is
rather shallow, hence the information obtained from
the underlying conceptual hierarchy is not so rich. On
the other hand, the Drinks ontology has a deeper un-
derlying hierarchy and provides more precise informa-
tion. We can see that Tversky’s similarity measure per-
forms better on Wikitaaable and Drinks datasets, since
there are more properties defined for the concepts. We
include also the results for Tversky + hierarchy, Sig-
moid Tversky + hierarchy, Norm. com. sq. Tversky,
Norm. com. sq. Tversky + hierarchy (with type) and
Norm. com. sq. Tversky + hierarchy (no type) which
perform even better than simple Tversky’s measure on
Wikitaaable and Drinks datasets.

6. Related work

In this section we give a brief summary of other
works which deal with feature-based similarity. These
approaches calculate feature-based similarity in dif-
ferent ways, starting from Tversky’s similarity mea-
sure but taking into account different aspects w.r.t. us
(antescendant classes, descendant classes etc., whereas
we compare property-value pairs). We include these
works here to have a more complete picture of feature-
based similarity measures. We did not test these mea-
sures since the scope of our work was to evaluate the
performance of Tversky’s similarity measure and its
variations calculating them from property-value pairs
for compared objects. The same variations of Tver-
sky’s measure could be applied to other feature-based
similarity measures as well. Also, some of these mea-
sures are not applicable in our context. For example,
we cannot calculate the number of descendant classes
since we deal with instances in the ontology.

An interesting approach to feature-based similarity
calculation is given in [22] and [23]. Both works
translate the feature-based model into information con-
tent (IC) model, with a slightly different formulation of
Tversky’s formula where Tversky’s function describ-
ing the saliency of the features is substituted by the
information content of the concepts. In [22] Intrinsic
Information Content iIC, introduced in [30], is used
taking into account the number of subconcepts of a
concept and a total number of concepts in a domain.
In [23] Extended Information Content EIC is used in-
stead of iIC where iIC is combined with EIC as a av-
erage iIC for all the concepts connected to a certain
concept with different relations. Both approaches use
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MEASURE WordNet Wikitaaable Drinks

Leacock and Chodorow 0.74 0.583 0.680

Wu and Palmer 0.74 0.585 0.891

Li et al. 0.82 0.576 0.781

Tversky/Jaccard 0.73 0.633 0.875

Tversky + hierarchy N/A 0.643 0.861

Sigmoid N/A 0.664 0.900

Sigmoid + hierarchy (no type) N/A 0.583 0.900

Sigmoid + hierarchy (with type) N/A 0.664 0,900
Table 11

Comparison with WordNet

the underlying ontology structure directly, where all
the defined semantic relations are used, rather than re-
lying on an external corpus. Their new similarity mea-
sure called FaITH is based on this novel framework.
Also, this new IC calculation can be used to rewrite
the existing similarity measures in order to calculate
relatedness, in addition to similarity.

An important work on feature-based similarity re-
garding ontological concepts is described by [34].
They start from Tversky’s assumption that similarity is
determined by common and distinctive features of the
compared objects and consider the relations between
concepts as their features. They linearly combine two
similarities. The first similarity is obtained from direct
connections between two objects, as well as common
features shared between both concepts (in this case the
similarity between relations is calculated using Wu and
Palmer’s measure [33]). The second similarity is based
on distinctive features of each object. Their approach
can be used to calculate similarity at the class level,
as well as the similarity of instances. Furthermore, it
is possible to take into account only specific relations
which leads to context-aware similarity. The problem
is that the proposed method is assessed only on 4 pairs
of concepts.

[29] also introduce a new feature-based approach
for calculating ontology-based semantic similarity
based on taxonomical features. They evaluate the se-
mantic distance between concepts by considering as
features the set of concepts that subsume each of them.
Practically, the degree of disjunction between their
feature sets (non-common subsumers) model the dis-
tance between concepts, whereas the degree of over-
lap (common subsumers) models their similarity. The
problem with this approach is that If the input ontology
is not deep enough or built with enough taxonomical
details or it does not consider multiple inheritance, the
knowledge needed for similarity calculation might be

scarse. The authors also provide a detailed survey of
most of the ontology-based approaches and compare
their performance on WordNet 2.0. From this analysis
they draw important conclusions about the advantages
and limitations of these approaches and give directions
on their possible usage. A slightly different version of
this measure was used by [2] on SNOMED CT ontol-
ogy to evaluate the similarity of medical terms.

[27] and [21] propose similar measures for calcu-
lating semantic similarity based on matching of their
synonym sets, semantic neighbourhoods (semantic re-
lations among classes) and features which are classi-
fied into parts, functions and attributes. This enables
separate treatment of these particular class descriptions
and introduction of specific weights which would re-
flect their importance in different contexts. In [27]
these similarities are calculated using Tversky’s for-
mula, where parameters in the denominator are cal-
culated taking into account the depth of the hierar-
chies of different ontologies. Synonym sets and seman-
tic neighbourhoods are useful when detecting equiv-
alent or most similar classes across ontologies. Fea-
tures are useful when detecting similar but not equiv-
alent classes. [21] eliminate the need for the param-
eters in the denominator in Tversky’s formula, hence
they do not rely on the depth of the corresponding on-
tologies. This leads to matching based only on com-
mon words for synset similarity calculation. Also, set
similarities are calculated per relationship type. Finaly,
their similarity does not have weights for different sim-
ilarity components. The novelty of their work is the ap-
plication of this and various other similarity measures
to MeSH ontology (Medical Subject Headings). Both
methods can be used for cross-ontology similarity cal-
culation.

A semantic similarity measure for OWL objects in-
troduced by [13] is based on Lin’s information theo-
retic similarity measure [19]. They compare semantic
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description of two services and define their semantic
similarity as a ratio between the shared and total in-
formation of the two objects. The semantic description
of an object is defined using its description sets which
contain all the statements (triples) describing the given
object and their information content is based on their
“inferencibility”, i.e. the number of new RDF state-
ments that can be generated by applying a certain set
of inference rules to the predicate. They use their mea-
sure to determine the similarity of semantic services
annotated with OWL ontologies.

Similarity can find many applications is Recom-
mender Systems. [9] developed a content-based movie
recommender system based on Linked Open Data
(LOD) in which they adapt a vector space model
(VSM) approach to compute similarities between RDF
resources. Their assumption is that two movies are
similar if they have features in common. The whole
RDF graph is represented as a 3-dimensional matrix
where each slice refers to one property in the ontol-
ogy and for each property the similarity between two
movies is calculated using their cosine similarity.

Similarity among concepts can be also automati-
cally learned. Similarity learning is an area of super-
vised machine learning, closely related to regression
and classification, where the goal is to learn from ex-
amples a similarity function that measures how similar
or related two objects are. Similarity learning is used
in information retrieval to rank items, in face identifi-
cation and in recommender systems. Moreover, many
machine learning approaches rely on some similarity
metric. This includes unsupervised learning such as
clustering, which groups together close or similar ob-
jects, or supervised approaches like K-nearest neigh-
bour algorithm. Metric learning has been proposed as
a preprocessing step for many of these approaches.

Automatic learning of similarity among concepts
in an ontology is used especially for ontology map-
ping (also known as ontology alignment, or ontology
matching) [10], the process of determining correspon-
dence between ontology concepts. This is necessary
for integrating heterogeneous databases, developed in-
dependently with their own data vocabulary or differ-
ent domain ontologies.

There are several works which have exploited ML
techniques towards ontology alignment. [14] organ-
ised the ontology mapping problem into a standard ma-
chine learning framework, exploiting multiple concept
similarity measures (i.e, synset-based, Wu and Palmer,
description-based, Lin). In [8] a multi-strategy learn-
ing was used to obtain similar instances of hierarchies

to extract similar concepts using Naïve Bayes (NB)
technique. In [1], following a parameter optimisation
process on SVM, DT and neural networks (NN) clas-
sifiers, an initial alignment was carried out. Then the
user’s feedback was used to improve the overall perfor-
mance. All these works considered concepts belong-
ing to different ontologies while we concentrated on
concepts in a same ontology.

7. Conclusions and future work

In this work we present some modifications of Jac-
card’s feature-based similarity measure based on prop-
erties defined in an ontology and their comparison
with hierarchy-based approaches. We also propose an
improvement of Jaccard’s similarity measure, namely
Sigmoid similarity measure simS .

We further proposed two variations of all the feature-
based measures, to see how much the underlying hi-
erarchical information contributes to accurate simi-
larity measurement. We came to the conclusion that
the underlying hierarchical information does provide
some additional information when calculating similar-
ity. However, the improved performance is very small,
so it might not be worth adding the complexity to the
similarity calculation.

In addition to Jaccard’s similarity measure, we
tested 6 modifications of this measure and for each
of these measures additional 2 variations on slightly
modified Wikitaaable dataset in the domain of recipes
and on Drinks ontology designed by our researchers
previously. Our first evaluation included 137 subjects
and 25 pairs of concepts and our second evaluation in-
cluded 147 subjects and 30 pairs of concepts. This is
a significant number of real evaluators compared with
other evaluations in the literature.

Our main finding is that the original Jaccard’s sim-
ilarity measure could be improved by using Sigmoid
similarity.

As a future work, it would be interesting to see
how the similarity measures would perform in the
presence of more properties or on a different dataset.
MeSH and SNOWMED are some possible candi-
date datasets, although in these cases expert opin-
ion would be needed. Also, it would be interesting
to add hierarchical structure among property values.
For example, in the present approach we consider
Fusilli and Spaghetti two different domain items
(hence, two different property values). But Fusilli
and Spaghetti are both descendants of Pasta so they
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could be considered as “almost” the same values for
properties.

Moreover, in this work we only consider object type
properties. Taking data type properties, such as liter-
als, into account might be an interesting area for fu-
ture investigation. In this case, it would be necessary
to determine when two literal values can be considered
equal.

In addition, similar experiments can be applied to
linked open data [4] or any other data structure where
the objects are described by means of their properties.
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