
Semantic Web 0 (0) 1 1
IOS Press

Scalable RDF Stream Reasoning in the Cloud
Ren Xiangnan a,b,*, Curé Olivier b, Naacke Hubert c and Ke Li a

a Innovation Lab Atos, Bezons France
E-mails: xiang-nan.ren@atos.net, li_ke@yahoo.com
b LIGM (UMR 8049) CNRS, ENPC, ESIEE, UPEM, Marne la Vallée, France
E-mail: olivier.cure@u-pem.fr
c LIP6 (UMR 7606) CNRS, Sorbonne Universités, UPMC, Paris, France
E-mail: hubert.naacke@lip6.fr

Abstract. Reasoning over semantically annotated data is an emerging trend in stream processing aiming to produce sound and
complete answers to a set of continuous queries. It usually comes at the cost of finding a trade-off between data throughput,
latency and the cost of expressive inferences. StriderR proposes such a trade-off and combines a scalable RDF stream processing
engine with an efficient reasoning system. The main reasoning services are based on a query rewriting approach for SPARQL
that benefits from an intelligent encoding of an extension of the RDFS (i.e., RDFS with owl:sameAs) ontology elements. StriderR

runs in production at a major international water management company to detect anomalies from sensor streams. The system is
evaluated along different dimensions and over multiple datasets to emphasize its performance.

Keywords: RDF stream processing, Reasoning, Scalability

1. Introduction

This paper deals with an emerging problem in the
design of Big Data applications: reasoning over large
volumes of semantically annotated data streams. The
main goal amounts to producing sound and complete
answers from a set of continuous queries. This prob-
lem is quite important for many Big data applica-
tions in domains such as science, finance, informa-
tion technology, social networks and Internet of Things
(IoT) in general. For instance, in the Waves1 project,
we are dealing with “real-time” anomaly detection in
large water distribution networks. By working with do-
main experts, we found out that such detections can
only be performed using reasoning services over data
streams. Such inferences are performed over knowl-
edge bases (KB) about the sensors used in water net-
works, e.g., sensor characteristics together with their
measure types, locations, geographical profiles, events
occurring nearby, etc..

*Corresponding author. E-mail: xiang-nan.ren@atos.net.
1http://www.waves-rsp.org/

Tackling this issue implies to find a trade-off be-
tween high data throughput and low latency on the one
hand and reasoning over semantically annotated data
streams on the other hand. This is notoriously hard and
even though it is currently getting some attention, it
still remains an open problem. RDF Stream Process-
ing (RSP) engines are the prominent systems tackling
this problem where annotation are using the RDF (Re-
source Description Framework)2 data model, queries
are expressed in a continuous SPARQL3 dialect and
reasoning are supported by RDFS4 (RDF Schema)/
OWL5 (Web Ontology Language) ontologies. Existing
RSP engines are either not scalable (i.e., they do not
distribute data and/or processing) or do not support ex-
pressive reasoning services.

Our system, StriderR, combines our Strider RSP en-
gine with a reasoning approach. Strider [27] is a stream
processing engine for semantic data taking the form of
RDF graphs. It is designed on top of state-of-the-art

2https://www.w3.org/RDF/
3https://www.w3.org/TR/sparql11-query/
4https://www.w3.org/TR/rdf-schema/
5https://www.w3.org/TR/owl2-overview/

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:xiang-nan.ren@atos.net
mailto:li_ke@yahoo.com
mailto:olivier.cure@u-pem.fr
mailto:hubert.naacke@lip6.fr
mailto:xiang-nan.ren@atos.net

2 Article Title

Big Data components such as Apache Kafka[20] and
Apache Spark[34]. It is thus the first RSP engine capa-
ble of handling at scale high throughput with relatively
low latency. Strider is capable of processing and adap-
tively optimizing continuous SPARQL queries. Never-
theless, it was not originally designed to perform infer-
ences. Hence, a main goal of this work is to integrate
stream reasoning services that can support the main
RDFS inferences together with the owl:sameAs
property (henceforth denoted sameAs).

Intuitively, this property enables to define aliases be-
tween RDF resources. This is frequently used when
a domain’s (meta) data is described in a collaborative
way, i.e., a given object has been described with dif-
ferent identifiers (possibly by different persons) and
are later reconciled by stating their equivalence. Rea-
soning with the sameAs property is motivated by the
popularity of sameAs across many datasets, includ-
ing several domains of the Linked Open Data (LOD).
For instance, the sameAs constructor is frequently
encountered to practically define or maintain ontolo-
gies. In [16], the authors measured the frequency of
sameAs triples in an important repository of LOD.
That property was involved in more than 58 mil-
lion triples over 1,202 unique domain names with the
most popular domains being biology, e.g., Bio2rdf
and Uniprot (respectively 26 and 6 million sameAs
triples), and general domains e.g., DBpedia (4.3 mil-
lion sameAs triples). Moreover, the knowledge man-
agement of LOD, estimated to more than 100 bil-
lion triples, clearly amounts to big data issues. In our
Waves running example, we also found out that, due
to the cooperative ontology building, many sameAs
triples were necessary to re-conciliate ontology de-
signs. We discovered several of these situations in the
context of the IoT Waves project. For instance, we
found out that sensors or locations in water distribution
networks could be given different identifiers.

These sameAs triples are generally persisted in
RDF stores[11] but data streams are providing dy-
namic data streams about these resources. Such meta-
data are needed to perform valuable inferences. In
the Waves project, they correspond to the topology
of the network, characteristics of the network’s sen-
sors, etc. We consider that the presence of static meta-
data can be generalized to many domains, e.g., life sci-
ence, finance, social, cultural, and is hence important
when designing a solution that reasons over their data
streams. StriderR thus needs to reason over both static
KBs, i.e., a set of facts together with some ontologies,
and dynamic data streams, i.e., a set of facts which

once annotated with ontology concepts and properties
can be considered as an ephemeral extension of the KB
fact base. Apart from sameAs inferences, the most
prevalent reasoning services in a streaming context are
related to ontology concept and property hierarchies.
We are addressing these inferences tasks via a trade-
off between the query rewriting and materialization ap-
proaches.

The main contributions of this paper are (i) to com-
bine a scalable, production-ready RSP engine that sup-
ports reasoning services over RDFS plus the sameAs
property, (ii) to minimize the reasoning cost, and thus
to guarantee high throughput and acceptable latency,
and (iii) to propose a thorough evaluation of the system
and thus to highlight its relevance.

The paper is organized as follows. In Section 2, we
present some background knowledge in the fields of
Semantic Web and stream processing. Section 3 pro-
vides an overview of the system’s architecture. In Sec-
tion 4, we detail a running example. Then Sections 5
and 6 provide reasoning approaches with respectively
concept/property hierarchies and sameAs individuals.
Section 7 evaluates StriderR and demonstrates its rele-
vancy. Some related works are proposed in Section 8.
The paper concludes with Section 9.

2. Background knowledge

2.1. RDF and SPARQL

Resources present on the Web are generally repre-
sented using RDF, a schema-free data model. Assum-
ing disjoint infinite sets I (Internationalized Resource
Identifier (IRI) references), B (blank nodes) and L (lit-
erals), a triple (s,p,o) ∈ (I ∪ B) x I x (I ∪ B ∪ L) is
called an RDF triple with s, p and o respectively being
the subject, predicate and object.

We now also assume that V is an infinite set of vari-
ables and that it is disjoint with I, B and L. SPARQL is
the W3C query language recommendation for the RDF
format. We can recursively define a SPARQL[1] triple
pattern (tp) as follows: (i) a triple tp ∈ (I ∪V) x (I ∪V)
x (I ∪V ∪ L) is a SPARQL triple pattern, (ii) if tp1 and
tp2 are triple patterns, then (tp1.tp2) represents a group
of triple patterns that must all match, (tp1 OPTIONAL
tp2) where tp2 is a set of patterns that may extend the
solution induced by tp1, and (tp1 UNION tp2), denot-
ing pattern alternatives, are triple patterns and (iii) if tp
is a triple pattern and C is a built-in condition, then, (tp
FILTER C) is a triple pattern enabling to restrict the

Article Title 3

solutions of a triple pattern match according to the ex-
pression C. A set of tps is denoted a Basic Graph Pat-
tern (BGP). The SPARQL syntax follows the select-
from-where approach of SQL queries.

2.2. Semantic Web KBs and reasoning

We consider that a KB consists of an ontology, aka
terminological box (Tbox), and a fact base, aka as-
sertional box (Abox). The least expressive ontology
language of the Semantic Web is RDF Schema[2]
(RDFS). It allows to describe groups of related re-
sources (concepts) and their relationships (proper-
ties). RDFS entailment can be computed using 14
rules. But practical inferences can be computed with
a subset of them. The one we are using is ρdf which
has been defined and theoretically investigated in
[23]. In a nutshell, ρd f considers inferences using
rdfs:subClassOf, rdfs:subPropertyOf as
well as rdfs:range and rdfs:domain proper-
ties.

An RDF property is defined as a relation between
subject and object resources. RDFS allows to describe
this relation in terms of the classes of resources to
which they apply by specifying the class of the sub-
ject (i.e., the domain) and the class of the object (i.e.,
the range) of the corresponding predicate. The cor-
responding rdfs:range and rdfs:domain prop-
erties allow to state that respectively the subject and
the object of a given rdf:Property should be
an instance of a given rdfs:Class. The property
rdfs:subClassOf is used to state that a given
class (i.e., rdfs:Class) is a subclass of another
class. Similarly, using the rdfs:subPropertyOf
property , one can state that any pair of resources (i.e.,
subject and object) related by a given property is also
related by another property.

Other ontology languages, OWL and its fragments,
of the Semantic Web stack extend RDFS expressive-
ness, e.g., by supporting properties such as sameAs or
owl:TransitiveProperty. The deductive pro-
cess then has a higher computational cost which can
become incompatible with low latency constraints ex-
pected in a stream processing engine.

Two main approaches are generally used to support
inferences in KBs. The first approach consists in ma-
terializing all derivable triples before evaluating any
queries. It implies a possibly long loading time due to
running reasoning services during a data preprocess-
ing phase. This generally drastically increases the size
of the buffered data and imposes specific dynamic in-

ference strategies when data is updated. Besides, data
materialization also potentially increases the complex-
ity for query evaluation (e.g., longer processing to scan
the input data structure). These behaviors can seriously
impact query performance. The second approach con-
sists in reformulating each submitted query into an ex-
tended one including semantic relationships from the
ontologies. Thus, query rewriting avoids costly data
preprocessing, storage extension and complex update
strategies but induces slow query response times since
all the reasoning tasks are part of a complex query pre-
processing step.

In a streaming context, due to the possibly long life-
time of continuous queries, the cost of query rewriting
can be amortized. On the other hand, materialization
tasks have to be performed on each incoming streams,
possibly on rather similar sets of data, which implies a
high processing cost, i.e., lower throughput and higher
latency.

2.3. RDF Stream Processing (RSP)

The nature of stream processing is to run a set of op-
erations over unbounded data streams. Such process-
ing are generally performed within a windowing op-
erator that slices the incoming infinite data streams
into finite chunks. These windows can be defined over
some temporal constraints, e.g., take the last 3 min-
utes of incoming data, or over non-temporal parame-
ters, e.g., counting or session based.

In the last decade, much effort has been devoted to
improving RSP engines. In these systems, streams are
represented are as RDF graphs and queried with a con-
tinuous version of the SPARQL query language. For
instance, this amounts to introduce novel clauses that
permit to define a streaming window of different types
(e.g., sliding, tumbling) with different parameters (e.g.,
duration of a window, advancing step). Various sys-
tems have been defined (the main ones are presented
in Section 8) and they can be differentiated by their
capacity to support distribution of the data streams as
well as workload and their capacity to reason over
streams. These two dimensions have to be considered
together due to the high temporal constraints of pro-
cessing windows and the cost of reasoning (usually
performed with query rewriting or materialization). To
the best of our knowledge, StriderR is the first system
that addresses these two aspects with a being ready for
production perspective (using state-of-the art engines
such as Kafka and Spark) and expressive ontologies.

4 Article Title

In summary, although RSP engines have substan-
tially improved in recent years, none of them cover
both scalability and expressive reasoning services.

2.4. Kafka and Spark Streaming

Apache Kafka[13] is a distributed message queue
which aims to provide a unified, high-throughput, low-
latency real-time data management. Intuitively, pro-
ducers emit messages which are categorized into ad-
equate topics. The messages are partitioned among a
cluster to support parallelism of upstream/downstream
operations. Kafka uses offsets to uniquely identify the
location of each message within the partition.

Apache Spark is a MapReduce-like cluster-computing
framework that proposes a parallelized fault toler-
ant collection of elements called Resilient Distributed
Dataset (RDD) [31]. An RDD is divided into multiple
partitions across different cluster nodes such that op-
erations can be performed in parallel. Spark enables
parallel computations on unreliable machines and au-
tomatically handles locality-aware scheduling, fault-
tolerant and load balancing tasks.

Spark Streaming extends RDD to Discretized Stream
(DStream) [32] and thus enables to support near real-
time data processing by creating micro-batches of du-
ration T . DStream represents a sequence of RDDs
where each RDD is assigned a timestamp. Simi-
lar to Spark, Spark Streaming describes the comput-
ing logics as a template of RDD Directed Acyclic
Graph (DAG). Each batch generates an instance ac-
cording to this template for later job execution. The
micro-batch execution model provides Spark Stream-
ing second/sub-second latency and high throughput.

3. StriderR overview

In this section, we first give a high-level overview of
the StriderR system. Its architecture has been designed
to support the distribution the processing of RDF data
streams and to provide guarantees on fault tolerance,
high throughput and low latency. Moreover, StriderR

aims to integrate efficient reasoning services into an
optimized continuous query processing solution.

Figure 1 shows 3 vertical "columns" or groups of
functions: (a), (b), and (c). On the middle and the right,
(a) and (b) are off-line pre-processing functions. On
the left, (c) is the on-line stream processing pipeline.
We detail the three groups below, in the order they par-
ticipate to the whole workflow:

Fig. 1. StriderR Functional Architecture

(a) Off-line KB encoding. It consists in reading the
static knowledge base to get the classification of con-
cepts and properties, both organized into a hierarchy.
The knowledge base also contains sameAs predicates
from which sameAs cliques are detected. This step
generates the identifiers for each concept, property and
individual clique that is later used in steps (b) and (c).
Note that we use the GraphX library of Apache Spark
to efficiently process clique detection in parallel.

(b) Off-line query preparation. Once a SPARQL
query is registered into the system, it is parsed then
rewritten into a plan composed of basic RDF process-
ing operations. The plan is extended with dedicated
operations to support the reasoning over properties and
concepts, using the semantic identifiers generated at
step (a). The plan also relies on the sameAs cliques
information to support the sameAs reasoning for var-
ious use cases.

(c) On-line stream semantic encoding. The data
stream is encoded based on the hierarchical codes gen-
erated from the static KB at step (a). Each concept and
property is replaced by an identifier that allows for fast
reasoning over concept and property hierarchies. The
stream is also completed with sameAs clique mem-
bership information. For the purpose of ensuring high
throughput and fault-tolerance, we use Apache Kafka
to manage the data flow. The incoming raw data are
assigned to so-called Kafka topics. The Kafka broker
distributes the topics and the corresponding data over a

Article Title 5

cluster of machines to enable parallelism of upstream/-
downstream operations. Then the distributed streams
seamlessly enter the Spark Streaming layer which en-
codes them in parallel.

Continuous query processing. The logical plan ob-
tained at step (b) is pushed into the query execution
layer (i.e., the base layer of Figure 1 on which the
three "groups" (i.e., a,b and c) of previously defined
functions rely). To achieve continuous SPARQL query
processing on Spark Streaming, we bind the SPARQL
operators to the corresponding Spark SQL relational
operators that access a distributed compressed in-
memory representation of the data stream (through the
DataFrame and the RDD APIs provided by the Spark
platform). Note that, StriderR is capable of adjusting
the query execution plan at-runtime via its adaptive
optimization component.

Figure 1 also serves as a map to better outline our
main contributions:

– The green arrows highlight the contributions
about reasoning over concepts and properties
presented in Section 5: generating hierarchies
of concepts and properties (Section 5.2.1), con-
cept and property encoding (Section 5.2.2), and
the corresponding query rewriting method (Sec-
tion 5.2.3).

– The yellow arrows highlight the contributions
about reasoning over sameAs facts presented in
Section 6: sameAs clique detection (Section 6.1)
and two alternative methods (Sections 6.2 and
6.3) for sameAs encoding and query rewriting.

4. Running example with continuous queries

In this section, we present a running example that
will be used all along the remaining of the paper. A
first issue concerns the selection of a supporting bench-
mark. Two characteristics prevent us from using well-
established RSP benchmarks [3, 25, 35]: their lack of
support for the considered reasoning tasks and their
inability to cope with massive RDF streams. We thus
selected a benchmark with which the Semantic Web
community is confident with, namely the Lehigh Uni-
versity Benchmark (henceforth LUBM)[15], and ex-
tended it in two directions. First, we created a stream
generator based on the triples contained in the LUBM
Abox. Second, we extended the LUBM generator with
the ability to create individuals related by the sameAs
property. Intuitively, novel individuals are generated

and stated as being equivalent to some other LUBM
individuals. This generator is configurable and one can
decide how many sameAs cliques and how many indi-
viduals per clique are created.

The LUBM ontology has not been extended and in
Figure 2 we provide an extract of it. It contains a sub-
set of the property hierarchy (i.e., memberOf, worksOf
and headOf) as well as a subset of the concept hierar-
chy. We will emphasize in Section 5 on the encoding
of this extract of the Tbox. This figure also presents
elements of the Abox,i.e., RDF triples concerning in-
dividuals. That extract highlights the creation of indi-
viduals related by sameAs property, thus creating in-
dividual cliques. We have three cliques in this figure:
(pDoc1, pDoc2, pDoc3), (pDoc4,pDoc5,pDoc6) and
(pDoc7, pDoc8 and pDoc9). This example will be used
in Section 6 when detailing inferences concerned with
the sameAs property.

In order to evaluate our StriderR engine, we also cre-
ated a set of continues SPARQL queries (eight in to-
tal, two of them are presented here and the rest are in
Appendix A). The SPARQL query Q4 (Listing 1) re-
quires reasoning over both the concept and property
hierarchies. Intuitively, the query retrieves professor
names and the organization they are a member of. In
LUBM, no individuals are directly typed as a Professor
but many individuals are stated as a sub-concept of the
Professor concept (e.g., Associate, assistant, full pro-
fessors). Moreover, the memberOf property has one
direct (namely worksFor) and one indirect (namely
headOf) sub-properties. Hence, it is necessary to per-
form some inferences to obtain the complete answer to
this query.

As shown in Q4, we have extended the standard
SPARQL query language with some clauses for a con-
tinuous query processing (more details in Appendix
B).

STREAMING { WINDOW [10 Seconds]
SLIDE [10 Seconds]
BATCH [5 Seconds] }

REGISTER { QUERYID [Q1]
REASONING [U,SM]

SPARQL [PREFIX rdf: <http://...ns#>
PREFIX lubm: <http://..owl#>
SELECT ?o ?n WHERE {

?x rdf:type lubm:Professor;
lubm:memberOf ?o;
lubm:name ?n.} }] }

Listing 1: Query Q4 involving concept hierarchy
inference

6 Article Title

Fig. 2. LUBM’s Tbox and Abox running example

In Listing 2, we present the SPARQL part of query
Q6 (i.e., the streaming and register clauses are not pre-
sented since they do not provide any new information).
This query retrieves names and email addresses of re-
sources typed as PostDoc. It requires sameAs infer-
ences since several individuals stated as PostDoc be-
long to sameAs cliques (namely pDoc1 to pDoc9).

PREFIX rdf: <http://...ns#>
PREFIX lubm: <http://..owl#>
SELECT ?n ?e
WHERE { ?x rdf:type lubm:PostDoc;

lubm:name ?n;
lubm:emailAddress ?e.}

Listing 2: Query Q6 involving sameAs inference

5. Reasoning over concept and property
hierarchies

In the following, we consider approaches for rea-
soning over concept and property hierarchies. We first
present the classical approach consisting in the stan-

dard query rewriting. Then, we present an extension
of our LiteMat reasoner [10] which, compared to
the standard approach, provide better performances in
most queries.

In both approaches, encoding the elements of the
Tbox, i.e., concept and property hierarchies, is needed
upfront to any data stream processing. The KB Encod-
ing component encodes concepts, properties and in-
stances of registered static KBs. This aims to provide
a more compact (i.e., replacing string-based IRIs or
literals with integer identifiers) representation of the
Tbox and Abox as well as supporting more efficient
comparison operations. In the general case, each con-
cept and property is mapped to an arbitrary unique in-
teger identifier. We will emphasize that our LiteMat
approach produces a semantic encoding scheme that
supports important reasoning services. In the follow-
ing, we consider inferences pertaining to the ρdf subset
of RDFS (the sameAs property is considered in Sec-
tion 6) and the input ontology is considered to be the
union of (supposedly aligned) ontologies necessary to
operate over one’s application domain.

Article Title 7

5.1. Standard rewriting: add UNION Clauses

The standard rewriting approach to perform in-
ferences over concept and property hierarchies on
SPARQL queries consists in a reformulation according
to an analysis of the Tbox. Intuitively, for a query Q
with BGP B. For all triples t ∈ B, the system searches
in the Tbox if the property (resp. concept) in t has sub-
properties (resp. sub-concepts). In the affirmative, a set
of UNION clauses is appended to Q, thus producing a
new query Q′. A new UNION clause contains a rewrit-
ing of B where the property (resp. concept) is replaced
with a sub-property (resp. sub-concept). A UNION
clause will be added for each direct and indirect sub-
properties (resp. sub-concepts) and their combinations
if the BGP contains several of them.

In Listing 3, we provide an example of this rewrit-
ing for Q4 and the extract of the LUBM ontology
(see Figure 2). We display only six (out of the twelve,
three properties times four concepts) UNION clauses
present in the rewriting. Note that for each UNION
clause, two joins are required.

SELECT ?o ?n
WHERE {{ ?x rdf:type lubm:Professor;

memberOf ?o;
lubm:name ?n. }

UNION { ?x rdf:type lubm:Professor;
worksFor ?o;
lubm:name ?n. }

UNION { ?x rdf:type lubm:Professor;
headOf ?o;
lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;
memberOf ?o;
lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;
worksFor ?o;
lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;
headOf ?o;
lubm:name ?n. } ... }

Listing 3: Strider’s query example (Q4)

This approach guarantees the completeness of the
query result set but comes at the high cost of execut-
ing a potentially very large queries (due to an exponen-
tial increase of original query). Those constraints are
not compatible with executions in a streaming environ-
ment. In the next section, we present a much more ef-
ficient approach.

5.2. LiteMat adapted to stream reasoning

In the following, we dedicate two subsections to our
encoding scheme: one for the static KB and one for the
streaming (dynamic) data. Then a rewriting dedicated
to this encoding scheme is detailed.

5.2.1. Static encoding
In LiteMat, inferences drawn from properties such

as rdfs:subClassOf and rdfs:subPropertyOf
are addressed by attributing numerical identifiers to
ontology terms, i.e., concepts and properties. The com-
pression principle of this term encoding lies in the fact
that subsumption relationships are represented within
the encoding of each term. This is performed by pre-
fixing the encoding of a term with the encoding of its
direct parent (a workaround using an additional data
structure is proposed to support multiple inheritance).
The generation of the identifiers is performed at the bit
level.

More precisely, the concept (resp. property) encod-
ing are performed in a top-down manner, i.e., start-
ing from the top concept of the hierarchy (the clas-
sification is performed by a state-of-the-art reasoner,
e.g., HermiT[12], and hence supports all OWL2 logi-
cal concept subsumptions), such that the prefix of any
given sub-concept (resp. sub-property) corresponds to
its super-concept (resp. super-property). Intuitively, for
the entity hierarchy (i.e., concept or property), we start
from a top entity and assign it the value 1 (see the raw
id of owl:Thing in Table 1) and process its N direct
sub-entities. These sub-entities will be encoded over
dlog2(N + 1)e bits and their identifiers will be incre-
mented by 1. This approach is performed recursively
until all entities in the TBox are assigned an identi-
fier. It is guaranteed at the end of this first phase that,
for 2 entities A and B with B v A, the prefix of idB
matches with the encoding idA. Note that for the prop-
erty hierarchy, a reasoner is not needed to access the di-
rect sub-properties. Moreover, we distinguish between
object and datatype properties by assigning different
starting identifiers, respectively ’01’ and ’10’. Finally,
some RDF and OWL properties, e.g., rdf:type are
assigned identifiers in the ’00’ range.

In a second step, to guarantee a total order among
the identifiers of a given concept or property hierarchy,
the lengths of these identifiers have to be normalized.
This is performed by computing the size of the longest
branch in each hierarchy and by encoding each iden-
tifier on this length of bits (i.e., filling ’0’ on the right
most bit positions).

8 Article Title

These normalized identifiers are stored as inte-
ger values in our dictionary. The characteristics of
this encoding scheme ensures that from any concept
(resp. property) element, all its direct and indirect sub-
elements can be computed with only two bit shift oper-
ations and are comprised into a discrete interval of in-
teger values, namely its lower and upper bound (resp.
LB,UB). Table 1 presents the identifiers of Figure 2’s
LUBM concept hierarchy extract. The first step of the
encoding generates raw ids (column 1). We can ob-
serve that the Faculty’s prefix 110101 corresponds
to the Employee’s identifier, and his hence one of its
direct sub-concept. Moreover, Employee is a direct
sub-concept of Person and indirect sub-concept of
owl:Thing. These raw ids are normalized to pro-
duce column 2 of Table 1. Finally, integer values con-
tained in the id column are stored in the dictionary.

Raw ids Normalized ids id Term

1 1000000000000 4096 owl:Thing

1001 1001000000000 4608 Schedule

1010 1010000000000 5120 Organization

1011 1011000000000 5632 Publication

1100 1100000000000 6144 Work

1101 1101000000000 6656 Person

110101 1101010000000 6784 Employee

110101001 1101010010000 6800 Faculty

11010100101 1101010010100 6804 Lecturer

11010100110 1101010011000 6808 PostDoc

11010100111 1101010011100 6812 Professor

1101010011101 1101010011101 6813 AssistantProf.

1101010011110 1101010011110 6814 AssociateProf.
Table 1

Encoding for an extract of the concept hierarchy of the LUBM
ontology

The encoding scheme of individuals of static KBs
can take two forms. It depends on whether an indi-
vidual is involved in a triple with a sameAs property
or not. The encoding scheme for sameAs cliques is
detailed in Section 6.1. For non-sameAs individuals,
we apply a simple method which attributes a unique
integer identifier (starting from 1) to each individual.
In [10], we provided an efficient distributed method to
perform this encoding.

5.2.2. Dynamic partial encoding
In the previous section, we detailed the generation

of dictionaries for the elements of static KBs, i.e.,
their concepts, properties and individuals. These maps
are being used to encode, on the fly, incoming data

streams. That is concept and property IRIs of a data
stream are being replaced with their respective inte-
ger identifier. The same transformation is processed
for individual IRIs or literals. This approach permits
to drastically compress the streams without incurring
high compression costs.

In practical use cases, some entries of data streams
may not correspond to an entry in one of the dictio-
naries. For instance, due to their infinite nature, nu-
merical values, e.g., sensor measures in the IoT, can
not possibly all be stored in the individual dictionary.
Other cases are possible where a stream emits a mes-
sage where concepts and/or properties are not present
in our dictionaries. Note that such situations prevent
the system from performing any reasoning tasks upon
the missing ontology elements.

When facing the absence of a dictionary entry, we
are opting for a partial stream encoding. Intuitively,
this means that we are not trying to create a new iden-
tifier on the fly but rather decide to leave the origi-
nal data as is, i.e., as an IRI, literal or blank node.
After some experimentations, we found out that this
is good trade-off between maintaining ever growing,
distributed dictionaries and favoring an increase of in-
coming data streams rate.

Figure3 provides some details on how this partial
encoding is implemented into StriderR. Intuitively, it
uses the Discretized stream (Dstreams) [32] abstrac-
tion of Apache Spark Streaming where each RDD is
composed of a set of RDF triples. For each RDD, a
transformation is performed which takes a IRI/literal
based representation to a partially encoded form. This
transformation lookups into the TBox and Abox dic-
tionaries precomputed from static KBs. The bottom
right table of the figure emphasizes that some triple
elements are encoded while some other are not. The
dictionaries are broad-casted to all the machines in the
cluster. The encoding for each partition of data is thus
performed locally.

We briefly summarize important advantages of the
partial encoding of RDF streams: (i) an efficient par-
allel encoding to meet real-time request; (ii) no extra
overhead for dictionary generation.

5.2.3. Query rewriting: FILTER clauses and UDF
In Section 5.2.1, we highlighted that to each concept

and property corresponds a unique integer identifier.
Moreover, one characteristic of our encoding method
guarantees that all sub-concept (resp. sub-property)
identifiers of a given concept (resp. property) are in-
cluded into an interval of integer values, denoted lower

Article Title 9

Fig. 3. Parallel partial encoding over DStream

bound (LB) and upper bound (UB) of that ontology
element.

We now concentrate on the query rewriting for con-
cepts. In order to speed up the rewriting, we take ad-
vantage of the following context: since we are only
considering that data streams are representing ele-
ments of the Abox, concepts are necessarily at the ob-
ject position of a triple pattern and the property must
be rdf:type. Intuitively, if a concept has at least one
sub-concept then it is replaced in the triple pattern by a
novel variable and a SPARQL FILTER clause is added
to the query’s BGP. That filter imposes that the new
variable is included between the LB and UB values
(which have been previously computed at encoding-
time and stored in the dictionary) of that concept.

The overall approach is quite similar for the rewrit-
ing concerning the property hierarchy but no specific
context applies, i.e., all triple patterns have to be con-
sidered. For each triple pattern, we check whether the
property has some sub-properties. If it is the case then
the property is replaced by a new variable in the triple
pattern and a SPARQL FILTER clause is introduced
in the BGP. That filter clause restricts the new variable
to be included in the LB and UB of that property.

As a concrete example of this rewriting, we are us-
ing query Q4 of our benchmark since it requires infer-
ences over both the concept and property hierarchies.

The rewriting Q4’ of Q4 contains two FILTER
clauses, one for the Professor concept and one for
the memberOf property (LB() and UB() functions re-
spectively return the LB and UB of their parameter).
Given p, the parameter submitted to LB and UB, these
functions respectively return the identifier of p and an
identifier computed using two bit shift operations on
p. So, the computation of the UB function is quite
fast. Note the introduction of the ?p and ?m variables,
respectively replacing the Professor concept and
memberOf property. The lower and upper bounds for
?p correspond to the identifier of the Professor and As-
sociateProfessor, respectively (equal to 6812 and 6814
in Table 1).

SELECT ?o ?n
WHERE { ?x rdf:type ?p; ?m ?o;

lubm:name ?n.
FILTER (?p>=LB(Professor)

&& ?p<UB(Professor)).
FILTER (?m>=LB(memberOf)

&& ?m<UB(memberOf)).}

Listing 4: LiteMat query rewriting for query Q4

10 Article Title

Finally, this rewriting is much more compact and
efficient than the classical reformulation which would
require twelve UNION clauses and twenty four joins6.

6. Reasoning with the sameAs property

This section concerns inferences performed in the
presence of triples containing the sameAs property. In
Section 6.1 a distributed, parallelized approach to en-
code sameAs cliques and a naive approach to materi-
alize inferred triples are proposed. We emphasize that
this approach is not adapted to a streaming context.
Therefore, the challenge is to support sameAs reason-
ing efficiently while answering queries over streaming
data. In StriderR, we address this challenge and pro-
pose two solutions. The first one (Section 6.2) aims for
efficiency, the second one (Section 6.3) aims to han-
dle reasoning applied to a "provenance awareness" sce-
nario which is not supported by the first solution.

6.1. SameAs clique encoding

Consider, in a KB, a set of sameAs triples that rep-
resents a graph denoted Gsa. The nodes V of Gsa are set
of individuals (either at the subject or object position of
a triple) of the sameAs triples. Let x ∈ V denote such
a node. For convenience, every node x ∈ V is uniquely
identified by an integer value Id(x) ∈ [1, |V|].

Let C be the set of connected components that parti-
tion Gsa. Although a component may not be fully con-
nected, it represents a sameAs clique because of the
semantic equivalence (i.e., transitivity and symmetry)
of the sameAs property. Let Ci denote the connected
component containing the node identified by i.

In StriderR, we assume that the sameAs triples are
in the static KB. We detect the Ci using a parallel al-
gorithm to compute connected components [14].

The principle of that algorithm is to propagate
through the graph a numeric value representing a com-
ponent id, such that every connected component will
end up with a component id assigned to its members.

Initially, each node x is assigned with Id(x). Then
for each node x, the group that comprises x and its
neighbors is considered and the minimum number
among the group members is assigned to all the group
members. The algorithm ends when no more update
occurs at any group, i.e., for any group (or connected
component) all the members share the same compo-

6Rewriting available on our github page

nent id. About the computational cost of clique detec-
tion, note that it is computed in a distributed and par-
allel manner (using the GraphX library of the Apache
Spark engine). Hence it is able to scale to very large
static KBs.

Once the connected components are detected, we
define the Cl(x) mapping that associates the IRI of x
with its clique id. Table 2 summarizes the notations
used in this section.

Notation Description

Gsa The sameAs graph of individuals

Id(x) The integer ID of individual x

Ci The clique st. i is the minimal ID among the members

Cl(x) The clique ID of individual x.

IRI(i) The IRI of ID i (or set of IRIs if i is in a clique)

S The average size of a clique
Table 2

Notations used for sameAs reasoning

In order to reason over sameAs, an obvious solu-
tion is to materialize all inferences. However that is
not tractable because the number of inferred triples is
far too high in general. Consider a triple t = (x, p, y)
where x (resp. y) belongs to the sameAs clique Cx
(resp. Cy). Let S be the average size of a clique. The
number of triples inferred from t is 2× S 2. Therefore,
the number of triples inferred from the entire dataset
D (of size |D|) can grow up to 2 × |D| × S 2 in the
worst case. For instance, from Figure 2 we obtain Fig-
ure 4(a) where all dashed edges correspond to a ma-
terialization of all inferences induced by sameAs ex-
plicit triples. We can easily witness the increase of
represented triples. This naïve approach is generally
not adopted in RDF database systems storing relatively
static datasets due to its ineffectiveness. This is even
more relevant in a dynamic, streaming context. First,
it may not be feasible to generate all materialization
within the time constraint of a window execution. Sec-
ond, the execution of a continuous query over such
stream sets would be inefficient.

6.2. Representative-based (RB) reasoning

Based on the detected cliques, the principle of the
representative-based (RB) reasoning is to fuse the
dataset such that all the individuals that belong to the
same clique appear as a single (representative) individ-
ual. As a consequence, the fused graph implicitly car-
ries the sameAs semantics. Then, a regular evaluation
of any query on the fused graph is guaranteed to com-
ply with the sameAs semantics.

Article Title 11

6.2.1. Stream encoding
Stream encoding according to sameAs individuals

consists of two steps:

1. First, select a single individual per clique Ci,
which acts as the clique representative. The rep-
resentative can be any member, as long as there is
only one representative per clique. Without loss
of generality, we assume that the representative
for Ci is the member whose node number equals
to i. Therefore, given the IRI x of any individ-
ual, its representative is numbered Cl(x). In Fig-
ure 4(a) shows three cliques in dotted boxes, and
pDoc1 individual can serve as the representative
of the clique (pDoc1, pDoc2, pDoc3).

2. Second, encode the input stream: replace every
(x, p, y) triple by its corresponding representative-
based triple: (Cl(x), p,Cl(y)). Fig. 4(b) shows
the result of the encoding where individuals
pDoc1, pDoc5 and pDoc9 are the so-called rep-
resentatives of the cliques.

This approach has many advantages, especially in a
data streaming context:

(i) The inferred graph is more compact without loss
of information from the original graph,

(ii) The dictionary data structure that implements
Cl(x) is light. The dictionary size equals to the size of
Gsa which is in practice very small compared to the
number of triples to process in a streaming window.
The computing overhead of encoding the input stream
is negligible,

(iii) Clique updates (e.g., removing or adding an
individual from a clique) does not imply to update
the input stream since the data streams are ephemeral.
This assumes that an update of the static KB is
taken into account starting from the next window that
only contains data produced after the update. For in-
stance, consider the clique named C1 with 3 members
(pDoc1, pDoc2, pDoc3). At time t, the KB is updated:
pDoc4 is declared to be sameAs pDoc2 thus pDoc4
joins C1. The data already streamed before t are not
updated, i.e., the triples mentioning pDoc4 are not up-
dated. Whereas, in the window following t, pDoc4 will
be translated to Cl(pDoc4).

6.2.2. Query processing
Based on the above encoding, a standard query pro-

cessing is performed where variable bindings concern
both standard individuals and sameAs representative.

Note that because the sameAs reasoning is fully
supported by the representative-based encoding, we

can simplify the query by removing the sameAs triple
patterns that it may contain.

To evaluate a filter clause that refers to an IRI
value, e.g., FILTER {?x like ’*w3c.org*’},
we rewrite it into an expression that refers back to the
IRI value(s) instead of the encoded identifier. Let de-
fine IRI(x) as the IRI (or the set of IRIs in case of a
clique) associated with encoded ID x. Let f (x) be a
FILTER condition on variable ?x, f (x) is then rewrit-
ten into {∃e ∈ IRI(x)| f (e)}.

A final step decodes the bindings: each encoded
value is translated to its respective IRI or literal value.
If the encoded value is a clique number, then it trans-
lates to the IRI of the clique representative.

6.3. SAM reasoning

SAM stands for SAM for sameAs Materialization
and aims to handle reasoning in the case of origin-
preserving (or provenance-awareness) scenario which
are not supported by the RB solution introduced above
(Section 6.2).

SAM reasoning targets the use cases that require
to make the distinction between the original dataset
triples and the inferred triples. That distinction is nec-
essary for a user investigating which part (or domain)
of the dataset contributes to the query, i.e., brings some
piece of knowledge, when the IRIs within a clique have
different domains. In this section, we begin by moti-
vating SAM using a concrete example then we detail a
method to evaluate queries in this setting.

6.3.1. Motivation
We briefly sketch an example showing the limita-

tions of RB approach and the need for the proposed
SAM approach. For instance, consider the dataset of
Figure 2. Suppose all the triples about email addresses
come from domain1 (e.g., mail.univ.edu), then the IRIs
pDoc3, pDoc6, and pDoc9 are in that domain. Sim-
ilarly, suppose all telephone numbers come from do-
main2 (e.g., phone.com), then pDoc2 is in domain2.
Let consider a query searching the IRI and the email
of a person named Mary. We could write that query Q
as follows:

Q: select ?x, ?y where {
?x name "Mary" . ?x email ?y}

The result is ?x = pDoc2 and ?y = mary@gmail.com.
Based on that result and on the clique membership in-
formation, we know that the possible bindings for ?x
are also pDoc1 or pDoc3. However the result does not

12 Article Title

Fig. 4. sameAs representation solutions

inform us that pDoc3 as well as its domain1 were orig-
inally concerning the email triple. To get this prove-
nance information, we could write the query as Q′:

Q’: select ?x1, ?y where {
?x name "Mary" .
?x sameAs ?x1 . ?x1 email ?y}

However, through the RB approach, the result is still
?x1 = pDoc2 and ?y = mary@gmail.com because
pDoc2 is the representative of pDoc3. The goal of the
SAM approach is to make Q′ return the binding ?x1 =
pDoc3 instead of ?x1 = pDoc2. Doing this way, we
will get that the IRI pDoc3 and domain1 directly re-
late to the email information within the dataset. To sum
up, the RB approach (c.f. §6.2) does not support the
origin-preserving use case, because a query result only
binds to individuals that are clique representatives or
not member of a clique at all. The result lacks infor-
mation about which IRI originally exists in the triples
that match the query.

To overcome this drawback, we propose the SAM
approach that keeps track of the individuals that match
the query even if they are part of a sameAs clique. The
principle of the SAM approach is to explicitly handle
the sameAs equivalence such that the equivalent in-
dividuals that match a query are preserved in the query
result. From a logical point of view, this means to man-
age explicit sameAs information both in the dataset
and in the query.

– sameAs in the dataset: complete the input stream
with explicit information representing the sameAs
equivalences between IRIs.

– sameAs in the query: complete the query with
triple patterns explicitly expressing the sameAs
matching.

6.3.2. Materialize sameAs data streams
A general method consists in completing the input

stream with sameAs information. We devise an effi-
cient solution that guarantees to materialize only the
necessary triples and prevents from exploding the size
of the data stream. Moreover, the IRIs are encoded to
get a more concise representation to save on query ex-
ecution time.

We now detail the steps of our solution. Let W be
the current streaming window. The idea is to express
each clique that has at least one member in W by a
minimal set of triples. Let C be the set of cliques used
in W and a clique Ci ∈ C. For each member x of Ci
such that Id(x) 6= i (the identifier Id(x) is defined
in Table 2), add the triple < i sameAs Id(x) > into
W. For instance, consider the three sameAs cliques
of Figure 4(a). Let denote C1 the clique contain-
ing (pDoc1, pDoc2, pDoc3), the minimal Id in C1 is
Id(pDoc1) = 1. Suppose the input stream window
contains:

pDoc1 type PostDoc
pDoc2 name “Mary”
pDoc3 emailAddress “mary@gmail.com”

Article Title 13

While applying the SAM approach, the window is
completed with only two triples:

1 sameAs Id(pDoc2)
1 sameAs Id(pDoc3)

Let S be the average clique size. Notice that only
S − 1 edges of Ci out of S 2 (those with subject i) are
added into the stream. The added sameAs edges rep-
resent a directed star centered at i the member of Ci

with minimal Id. As explained below in Section 6.3.3,
that light materialization is sufficient to fully enable
the sameAs reasoning during query processing.

Cost analysis. We analyze the materialization cost in
terms of data size. The total amount of materialized
triples in W is |C| × (S − 1). The space overhead of
SAM is indeed far smaller than a full materialization
of every triple inferred from the sameAs reasoning
which would add 2 × |W| × S 2 triples (c.f. Table 2).
Moreover, our solution materializes S times less triples
compared to materializing all the clique edges. This
low memory footprint makes our solution more scal-
able.

6.3.3. Query rewriting: add sameAs patterns
Consider a BGP query represented by a graph of

triple patterns where nodes are variables, IRIs or lit-
erals. In a query, a join node is a variable that con-
nects at least two triple patterns. The query rewrit-
ing method consists in extending a BGP query with
sameAs patterns that could match the materialized
stream. The principle is to "inject" the sameAs se-
mantics into each join appearing in the query, i.e., to
decompose a direct join on one variable into an indi-
rect join through a path of two sameAs triple patterns.
Consequently, each join is decomposed into three join
operations. Intuitively, the join nodes of the BGP are
split to be replaced by a star of sameAs triple patterns
such that the join "traverses" the star center.

The shape of the added sameAs patterns is a star
because it has to match the stars sameAs triples
that have been materialized into the stream. We con-
sistently adopt a star-shaped representation of the
sameAs information both in the materialized stream
and in the query pattern. This guarantees any sameAs
relation within a clique to be expressed by a path of
length two (the diameter of a star). Besides, a star
triple pattern is guaranteed to match any path of length
two. Therefore, our proposed rewriting is guaranteed
to match any sameAs path within the stream, i.e., the
rewritten query is semantically equivalent to the initial
one.

We next detail the query rewriting algorithm. Let
V be the set of join variables of a query. For each
v ∈ V , (i) Split the join variable: replace each oc-
currence of v in the query by a distinct variable. Let
v1, · · · , vn denote the variables replacing the n occur-
rences of v. (ii) Express the indirect join: For each vi

add the (?v sameAs ?vi) triple pattern.
For example, consider the following query Q6 and

its graphical representation shown in Figure 5:

select ?x where {
?x type PostDoc.
?x name ?n.
?x emailAddress ?y.}

Fig. 5. SAM rewriting for the Q6 query

The ?x join variable is split into ?x1, ?x2, ?x3 and
these new variables are connected through sameAs
patterns. The rewritten equivalent query is:

select ?x, ?x1, ?x2, ?x3
where {
?x1 type PostDoc. ?x sameAs ?x1.
?x2 name ?n. ?x sameAs ?x2.
?x3 emailAddress ?y. ?x sameAs ?x3. }

Another example, on Figure 6, shows the rewriting
case of a join variable that appears both as an object
and as a subject position.

6.3.4. Query evaluation: join with sameAs patterns
Evaluating a rewritten sameAs query requires spe-

cial attention in order to ensure that the result is
complete. Our SAM approach minimizes the amount
of materialized sameAs triples for better efficiency.
Thus, the dataset does not contain any sameAs reflex-
ive triple x sameAs x. Remind that our solution aims
to bring sameAs reasoning capability to query en-
gines that do not support sameAs reasoning natively.
Such query engine do not infer x sameAs x for any in-
dividual. Therefore, a regular evaluation of a sameAs
query may lead to incomplete result. For instance, let
us remind the example dataset of § 6.3.2 including the
materialized sameAs triples:

14 Article Title

Fig. 6. SAM rewriting for Q8 query

Id(pDoc1) type PostDoc
Id(pDoc2) name “Mary”
Id(pDoc3) email “mary@gmail.com”
Id(pDoc1) sameAs Id(pDoc2)
Id(pDoc1) sameAs Id(pDoc3)

Consider the query:

select ?x, ?x1, ?x2 where {
?x sameAs ?x1. ?x1 type PostDoc.
?x sameAs ?x2. ?x2 name ?n. }

That query result is empty because the triple pattern
?x sameAs ?x1 does not bind to ?x = Id(pDoc1) and
?x1 = Id(pDoc1) due to the absence of the reflexive
sameAs triple in the dataset.

To overcome this limitation, while keeping the ma-
terialized data as small as possible, we devise an ex-
tended query evaluation process. The idea is to take
into account the implicit reflexive sameAs triples
while joining a non-sameAs triple pattern with a
sameAs one in order to ensure that the result is com-
plete. The key phases of the query evaluation are:

(i) Decomposition. A query containing n non-
sameAs triple patterns is decomposed into n chains
(or sub-queries). A chain contains one non-sameAs
triple pattern and the sameAs patterns it is joined
to. A chain has exactly one non-sameAs triple pat-
tern and at most 2 sameAs triple patterns. For ex-
ample, the decomposition for query Q8 in Section 6
has 6 chains, among which a chain of length 2 is ?x
sameAs ?x3. ?x3 memberOf ?o and a chain

of length 3 is ?s sameAs ?s2. ?s2 advisor
?x1. ?x sameAs ?x1.

(ii) Planning. Based on the chains that somehow
hide the sameAs patterns, the query planner assesses
a join order and generates an execution plan as usual
(ignoring the sameAs patterns).

(iii) Execution. During the query execution phase,
if a chain contains a sameAs pattern then a dedicated
operator ensures that all the bindings are produced.
More precisely, to execute the chain ?x sameAs?y.
?y p ?z consists in evaluating the triple pattern ?y
p ?z which results in a set of (?y, ?z) bindings. Then,
for each binding, produce a set of (?x, ?y, ?z) bindings
such that ?x binds to the ?y value and also to each indi-
vidual equivalent to ?y value. This ensures a complete
result.

7. Evaluation

Putting together the contributions presented in Sec-
tions 5 and 6, we are able to combine LiteMat with
one of the two methods to reason over sameAs indi-
viduals, denoted RB (representative-based) and SAM
(SameAs Materialization). It thus defines two forms of
reasoners for RDFS with sameAs:

– the LiteMat + RB approach is, in most use cases,
the best performing approach and is hence the de-
fault approach.

– the LiteMat + SAM provides additional features,
e.g., a need for origin-preserving scenario, and
improves the processing performance of BGPs
containing a single triple pattern with inference.

7.1. Computing Setup

We evaluate StriderR [28] on an Amazon EC2/EMR
cluster of 11 machines (type m3.xlarge) and manage
resources with Yarn. Each machine has 4 CPU virtual
cores of 2.6 GHz Intel Xeon E5-2670, 15 GB RAM,
80 GB SSD, and 500 MB/s bandwidth. The cluster
consists of 2 nodes for data flow management via the
Kafka broker (version 0.8.x) and Zookeeper (version
3.5.x)[18], 9 nodes for Spark cluster (1 master, 8 work-
ers, 16 executors). We use Apache Spark 2.0.2, Scala
2.11.7 and Java 8 in our experiment. The number of
partitions for message topic is 16, generated stream
rate is around 200,000 triples/second.

Article Title 15

7.2. Datasets, Queries and Performance metrics

As explained in Section 4, we can not use any exist-
ing RSP benchmarks[3, 25, 35] to evaluate the perfor-
mances of StriderR. Hence, we are using our LUBM-
based stream generator configured with 10 universi-
ties, i.e., 1.4 million triples. For the purpose of our ex-
perimentation, we extended LUBM with triples con-
taining the sameAs property. This extension requires
to set two parameters: the number of cliques in a
dataset and the number of distinct individuals per
clique. To define these parameters realistically, we ran
an evaluation over different LOD datasets. The results
are presented in Table 3. It highlights that although the
number of cliques can be very large (over a million in
Yago), the number of individuals per clique is rather
low, i.e., a couple of individuals. Given the size of
our dataset, we will run most of our experimentations
with 1,000 cliques and an average of 10 individuals per
clique, denoted 1k-10. Nevertheless, on queries requir-
ing this form of reasoning, we will stress StriderR with
up to 5,000 cliques and an average of 100 individuals
per clique (see Fig.9 for more details). More precisely,
we will experiment with the following configurations:
1k-10, 2k-10, 5k-10, 1k-25, 1k-50 and 1k-100. For the
SAM approach, the number of materialized triples can
be computed by nc ∗ ipc with nc the number of cliques
and ipc the number of individuals per clique.

We have defined a set of 8 queries7 to run our evalu-
ation (see Appendix for details). Queries Q1 to Q5 are
limited to concept or/and property subsumption rea-
soning tasks. Query Q6 implies sameAs only infer-
ences while Q7 and Q8 mix subsumptions and sameAs
inferences.

Finally, we need to define which dimensions we
want to evaluate. According to Benchmarking Stream-
ing Computation Engines at Yahoo!8, a recent bench-
mark for modern distributed stream processing frame-
work, we take system throughput and query latency
as two performance metrics. In this paper, throughput
refers to how many triples can be processed in a unit
of time (e.g., triples per second). Latency indicates the
time consumed by an RSP engine between the arrival
of the input and the generation of its output. More pre-
cisely, for a windowing buffer wi of the i-th query ex-
ecution containing N triples and executed in ti, then
throughput = N

ti
and the latency = ti.

7https://github.com/renxiangnan/strider/wiki
8https://yahooeng.tumblr.com/post/135321837876/benchmarking-

streaming-computation-engines-at

7.3. Quantifying joins and unions over reasoning
approaches

As stated before, we can not compare StriderR to
other available RSP systems. This is mainly due to the
high stream rate generated of our experiment which
can not be supported by state-of-the-art reasoning-
enabled RSPs, e.g., C-SPARQL and SparqlStream.
This is probably due to the lack of data flow manage-
ment scalability of in these RSPs. In fact, their design
was not intended for large-scale streaming data pro-
cessing. Moreover, RSP system that could handle such
rate either do not support reasoning or are not open
source, e.g., CQELS-cloud.

To assess the performance benefit of our solution
for processing complex queries, specially comprising
many joins, we compare LiteMat + RB and Lite +
SAM with a more classical query rewriting approach.
This combines SAM with UNION clauses between
combinations of BGP reformulation (this approach is
henceforth denoted UNION + SAM). Notice that the
UNION + SAM approach acts as a baseline for our
experiments. Such a rewriting comes at the cost of in-
creasing the number of joins. Table 4 sums up the join
and union operations involved in the 8 queries of our
experimentation. In particular, queries Q5, Q7 and Q8
present an important number of joins (resp. 90, 45 and
180) due to a large number of union clauses (resp. 17,
14, 29).

datasets #triples #sameAs cliques max avg

Yago* 3696623 3696622 2 2

Drugbank 4215954 7678 2 2

Biomodels 2650964 187764 2 1.95

SGD 14617696 15235 8 3

OMIM 9496062 22392 2 2
Table 3

SamesAs statistics on LOD datasets (ipc = number of distinct indi-
viduals per sameAs clique, max and avg denotes resp. the maximum
and average of ipc,*: subsets containing only sameAs triples with
DBpedia, Biomodels contains triples of the form a sameAs a

7.4. Results evaluation & Discussion

The window size for involved continuous SPARQL
queries with LiteMat reasoning support is set to 10 sec-
onds, which is large enough to hold all the data gen-
erated from the dataset. However, since the impacts
of extra data volume and more complex overheads
are introduced in SAM query processing, we have to
increase the window size (up to 60 seconds) to en-

16 Article Title

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Joins

LMRB 1 4 0 2 5 2 2 5

USAM 7 84 0 42 210 2 120 420

USAM* 3 24 0 18 90 2 60 210

Union keywords

USAM 6 20 3 20 41 0 29 59

USAM* 2 5 2 8 17 0 14 29

Filter clauses

LMRB 1 2 1 2 3 0 2 3
Table 4

Number of joins, unions and filter per query for LiteMat + RB
(LMRB) and UNION + SAM (USAM) approaches. Here, the num-
ber of UNIONs correspond to the number of UNION keywords.
USAM* relies on a simplified LUBM ontology

sure that both LiteMat and SAM approaches return the
same result. In a nutshell, we approximately adjust the
window size and the incoming stream rate by checking
the materialized data volume.

All the evaluation results include the cost of LiteMat
encoding and, for the LiteMat + SAM solution, the
cost of sameAs triple materialization. Figure 7 reports
the throughput and query latency of Q1 to Q5. Rea-
soning LiteMat + RB achieves the highest through-
put (up to 2 millions triples/seconds) and the query
latency remains at the second-level. To the best of
our knowledge, such performances have not been
achieved by any existing RSP engines. When both
original and rewritten query patterns are relatively sim-
ple, e.g., Q1 and Q2, LiteMat + RB has 30% gain
over UNION+SAM on throughput and latency. The
improvement gain of LiteMat + RB over UNION +
SAM is increasing for queries involving multiple infer-
ences, i.e., Q4 is 75% faster. For Q5, UNION + SAM
does not even terminate. This is mainly due to the in-
sufficient computing resources (e.g., number of CPU
cores, memories) on Spark driver nodes, which is not
capable of handling such intensive overheads for jobs/-
tasks scheduling and memory management. Neverthe-
less, UNION + SAM is more efficient than LiteMat +
RB on Q3 which contains a single triple pattern need-
ing to reason over a property hierarchy of length two.
In fact, a filter operator to evaluate a range predicate
(LiteMat + RB) is longer to process than evaluating
three equality predicates (UNION + SAM).

Figures 8 and 9 illustrate the impact on engine
throughput and latency of Q6 to Q8 with varying
sameAs clique sizes. As noted previously, “1K-10"
means 1,000 cliques, and 10 individuals per clique.
The number of materialized triples for sameAs rea-

soning support follows the nc ∗ ipc formula presented
in Section 7.2. The number of materialized triples
obviously increases with greater number of cliques
and/or number of individuals per clique. The data
throughput and latency can only be compared on Q6
since on Q7 and Q8, LiteMat + SAM does not termi-
nate. The same non termination issue than on Q5 is
observed (Q7 and Q8 respectively have 60 joins and
210 joins). Although stream rate is controlled at a low
level, the system quickly fails after the query execution
is triggered. Data throughput and latency is always bet-
ter for LiteMat + RB than LiteMat + SAM by up to re-
spectively two and three times. For the same comput-
ing setting, when the number of individuals per clique
increases for a given number of cliques or when the
number of cliques increases for the same number of in-
dividuals per clique, the performances of the LiteMat
approaches decrease.

The same evolution for LiteMat + RB is witnessed
on the more complex Q7 and Q8 queries. Neverthe-
less, for these queries, a throughput of over 800,000
triples per second can be achieved. Given our comput-
ing setting of 11 machines, this is still a major break-
through compared to existing RSP engines. Moreover
these systems are currently not able to support impor-
tant constructors such as sameAs.

7.5. Cost analysis of the SAM approach

The SAM approach allows for retrieving the specific
members of a clique that match the original dataset. As
explained in Section 6.3.4, we propose an evaluation
strategy that efficiently generates the result of a join
operation between a non-sameAs pattern and its ad-
jacent sameAs patterns, without actually processing
the join. For example, SAM only executes 5 out of 12
joins for query Q8, the result of each of the remaining
7 joins is directly obtained from the clique metadata,
(see Cl(x) in Table 2). The SAM approach implies to
customize the query engine and add the specific logic
for joining sameAs triple patterns. Therefore, SAM
only suits to extensible query processors and prevents
a ‘black box’ SPARQL processors from being used.

Due to the extensible Spark APIs, it is possible
to implement such an approach. It would more diffi-
cult to obtain such a behavior with an out-of-the box
SPARQL query processor.

Article Title 17

(a) Throughput Comparison for Q1 to Q5 (b) Latency Comparison for Q1 to Q5

Fig. 7. Throughput, Latency Comparison between LiteMat+RB and UNION+SAM for Q1 to Q5

(a) Throughput Comparison for Q6 (b) Latency Comparison for Q6

Fig. 8. Throughput, Latency Comparison between LiteMat+RB and UNION+SAM for Q6 by varying the size of clique.

(a) Throughput Comparison for Q7 and Q8 (b) Latency Comparison for Q7 and Q8

Fig. 9. Throughput, Latency Comparison of LiteMat+RB for Q7 and Q8 by varying the size of clique.

8. Related work

This section considers two related work fields: rea-
soning over ontologies supporting sameAs and RSP.
Most RDF stores are using a more or less advanced
form of encoding and do not adopt a full materializa-
tion approach due to its inefficiency. Concerning the
support of sameAs inferences, GraphDB Enterprise

Edition 9 and RDFox [24] are using a representative-
based approach but do not handle stream processing.
For instance, RDFox elects a representative among
elements of a sameAs clique using a naive lexico-
graphic order. Then all occurrences of individuals of a

9http://graphdb.ontotext.com/

18 Article Title

clique are replaced by the representative. This presents
drawbacks when updates are performed on the clique,
e.g., removing the representative from the clique. In
such situations, the original dataset has to be pro-
cessed again. In a streaming context, data streams are
ephemeral, i.e., do not need to be stored, and the up-
date ontology issue is not a limitation. Intuitively, if
a concept or property is updated (inserted, deleted or
modified), it is going to be considered in the next pro-
cessing window and the previous stream query an-
swer sets will still hold in the context of the previous
ontology’s state. [26] follows on the work of RDFox
but considers a distributed approach. Nevertheless, the
system is not fault tolerant and does not addresses
stream processing. The Kognac system[29] proposes
an intelligent encoding of RDF terms for large KBs. It
is designed on a combination of estimated frequency-
based encoding and semantic clustering. Nevertheless,
Kognac is not designed with inferences in mind and
its implementation is not distributed and thus can not
scale to very large KBs. Laser[6] is a stream reasoning
system based on a tractable fragment of LARS[7], i.e.,
an extension of Answer Set Programming for stream
processing). The reasoning services of Laser are sup-
ported by a set of rules which are expressed in a spe-
cific syntax. We consider that this may prevent Laser’s
adoption by end-users. Moreover, Laser is not dis-
tributed and is thus not able to process very large data
streams.

The first RSP engines [4, 5, 8, 21] have emerged
around 2009. Their original focus was on the design of
continuous query languages based on SPARQL. Scal-
ability and reasoning are now considered as primor-
dial features. [19] was among the first systems to con-
centrate on the scalability of RDFS stream reasoning.
The engine is able to reach throughputs around hun-
dreds of thousand triples/seconds within 32 computing
nodes. However, [19] does not include sameAs in the
scope of consideration. C-SPARQL [5] , CQELS [21],
SparqlStream [8] and ETALIS [4] are prominent RSP
systems. C-SPARQL and SparqlStream tackle the re-
quirements of stream reasoning via respectively data
materialization and query rewriting. The proposed
straightforward solutions, i.e., data materialization and
query rewriting show limitations on system’s scala-
bility. Moreover the centralized design of C-SPARQL
and SparqlStream can not support complex reasoning
task over massive RDF data stream. On the other hand,
distributed RSP engines, e.g., CQELS-Cloud, address
flexibility and scalability issues but do not possess
any real-time stream reasoning. Using standards such

Apache Kafka and Spark streaming enabled StriderR to
increase throughput with less computing power while
being able to reason over RDFS with sameAs.

9. Conclusion

In this paper, we have presented the integration of
several reasoning approaches for RDFS plus sameAs
within our Strider RSP engine. For most queries,
LiteMat together with the representative-based (RB)
approach for sameAs cliques is the most efficient.
Nevertheless, LiteMat + SAM proposes an unprece-
dented provenance-awareness feature that can not be
obtained in other approaches. Lite + SAM can also be
useful for very simple queries, e.g., a single triple pat-
ter in the WHERE clause. To the best of our knowl-
edge, this is the first scalable, production-ready RSP
system to support such an ontology expressiveness.
Via a thorough evaluation, we have demonstrated the
pertinence of our system to reason with low latency
over high throughput data streams.

As future work, we will investigate novel seman-
tic partitioning solutions. This could be applied to el-
ements such as dictionaries, streaming data and con-
tinuous queries. We are aiming to support data streams
that would update the ontology and thus our dictio-
naries. Finally, we are also working on increasing the
expressiveness of supported ontologies, e.g., including
transitive properties.

References

[1] Sparql 1.1 query language. http://www.w3.org/TR/sparql11-
query/, 2013.

[2] Rdf 1.1 schema. http://www.w3.org/TR/2014/REC-rdf-
schema-20140225/Overview.html, 2014.

[3] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable
benchmark to evaluate rsp engines using smart city datasets. In
ISWC, pages 374–389, 2015.

[4] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream
reasoning and complex event processing in ETALIS. Semantic
Web journal, pages 397–407, 2012.

[5] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Gross-
niklaus. C-SPARQL: SPARQL for continuous querying. In
WWW, pages 1061–1062, 2009.

[6] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive stream
reasoning with laser. ISWC, pages 87–103, 2017.

[7] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-
based framework for analyzing reasoning over streams. In
AAAI, 2015.

[8] J. Calbimonte, Ó. Corcho, and A. J. G. Gray. Enabling
ontology-based access to streaming data sources. In ISWC,
pages 96–111, 2010.

Article Title 19

[9] O. Curé and G. Blin. RDF Database Systems: Triples Storage
and SPARQL Query Processing, 1st Edition. Morgan Kauf-
mann, 2014.

[10] O. Curé, H. Naacke, T. Randriamalala, and B. Amann. Litemat:
A scalable, cost-efficient inference encoding scheme for large
RDF graphs. In IEEE Big Data, pages 1823–1830, 2015.

[11] O. Curé and G. Blin. RDF Database Systems: Triples Storage
and SPARQL Query Processing. Morgan Kaufmann Publishers
Inc., 1st edition, 2014.

[12] B. Glimm, I. Horrocks, B. Motik, and G. Stoilos. Optimising
ontology classification. In ISWC, pages 225–240, 2010.

[13] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao,
and V. Y. Ye. Building linkedin’s real-time activity data
pipeline. IEEE Data Eng. Bull., 35(2):33–45, 2012.

[14] J. Greiner. A comparison of parallel algorithms for connected
components. In ACM Symp. on Parallel Algorithms and Archi-
tectures (SPAA), pages 16–25. ACM, 1994.

[15] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl
knowledge base systems. Journal of Web Semantics, 2005.

[16] H. Halpin, P. J. Hayes, J. P. McCusker, D. L. McGuinness, and
H. S. Thompson. When owl: sameas isn’t the same: An analy-
sis of identity in linked data. In ISWC, pages 305–320, 2010.

[17] P. Hayes. RDF semantics, W3C recommendation.
http://www.w3.org/tr/rdf-mt/, 2004.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX,
2010.

[19] H. Jesper and K. Spyros. High-performance distributed stream
reasoning using s4. In Ordring Workshop at ISWC, 2011.

[20] M. Kleppmann and J. Kreps. Kafka, samza and the unix phi-
losophy of distributed data. IEEE Data Eng. Bull., 38(4):4–14,
2015.

[21] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth.
A native and adaptive approach for unified processing of linked
streams and linked data. In ISWC, 2011.

[22] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth.
Streamrule: A nonmonotonic stream reasoning system for the
semantic web. In Int’l Conf. on Web Reasoning and Rule Sys-
tems, pages 247–252, 2013.

[23] S. Muñoz, J. Pérez, and C. Gutierrez. Minimal deductive sys-
tems for rdf. In ESWC, 2007.

[24] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Baner-
jee. Rdfox: A highly-scalable RDF store. In ISWC, pages 3–20,
2015.

[25] D. L. Phuoc, M. Dao-Tran, M. Pham, P. A. Boncz, T. Eiter,
and M. Fink. Linked stream data processing engines: Facts and
figures. In ISWC, pages 300–312, 2012.

[26] A. Potter, B. Motik, Y. Nenov, and I. Horrocks. Distributed
RDF query answering with dynamic data exchange. In ISWC,
pages 480–497, 2016.

[27] X. Ren and O. Curé. Strider: A hybrid adaptive distributed
RDF stream processing engine. In ISWC, pages 559–576,
2017.

[28] X. Ren, O. Curé, L. Ke, J. Lhez, B. Belabbess, T. Randria-
malala, Y. Zheng, and G. Képéklian. Strider: An adaptive,
inference-enabled distributed RDF stream processing engine.
PVLDB, 10(12):1905–1908, 2017.

[29] J. Urbani, S. Dutta, S. Gurajada, and G. Weikum. Kognac:
Efficient encoding of large knowledge graphs. pages 3896–
3902, 2016.

[30] J. Urbani, A. Margara, C. Jacobs, F. Harmelen, and H. Bal. Dy-
namite: Parallel materialization of dynamic rdf data. In ISWC,
pages 657–672, 2013.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, pages 15–28, 2012.

[32] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Sto-
ica. Discretized streams: fault-tolerant streaming computation
at scale. In M. Kaminsky and M. Dahlin, editors, SOSP, pages
423–438. ACM, 2013.

[33] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at
scale. In SOSP, 2013.

[34] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache
spark: a unified engine for big data processing. Commun. ACM,
pages 56–65, 2016.

[35] Y. Zhang, P. M. Duc, O. Corcho, and J.-P. Calbimonte. Sr-
bench: A streaming rdf/sparql benchmark. In ISWC, pages
641–657, 2012.

Appendix A. Queries

In this Appendix section, we provide six out of eight
(Q4 and Q6 have already been presented in Section 4)
SPARQL queries evaluated in Section 7. In all of them,
we are using the rdf and lubm namespaces which re-
spectively correspond to http://www.w3.org/1999/02/22-
rdf-syntax-ns# and http://swat.cse.lehigh.edu/onto/univ-
bench.owl#.

A.1. Queries with inferences over concept hierarchies

Q1: Inferences are required on the Professor concept
which has no direct instances in LUBM datasets.

SELECT ?n WHERE {
?x rdf:type lubm:Professor;

lubm:name ?n.}

Q2: Inferences are required on both the Professor
and Student concepts.

SELECT ?ns ?nx WHERE {
?x rdf:type lubm:Professor; lubm:name ?nx.
?s lubm:advisor ?x; rdf:type lubm:Student.
?s lubm:name ?ns. }

A.2. Query with inferences over property hierarchies

Q3: Inferences are required for the memberOf prop-
erty which has on direct sub property and one indirect
sub property.

SELECT ?x ?o WHERE { ?x lubm:memberOf ?o.}

20 Article Title

A.3. Queries with inferences over both concept and
property hierarchies

Q5: This query goes further than Q4 by mixing Q2
and Q3, i.e., it requires reasoning over the Professor
and Student concept hierarchies and the memberOf
property hierarchy.

SELECT ?ns ?nx ?o WHERE {
?x rdf:type lubm:Professor; lubm:name ?nx;
lubm:memberOf ?o.
?s lubm:advisor ?x; rdf:type lubm:Student;
lubm:name ?ns. }

A.4. Queries with inferences over concept, property
hierarchies and owl:sameAs

Q7: Inferences over the Faculty concept hierarchy,
which includes PostDoc sameAs individuals and the
memberOf property.

SELECT ?o ?n WHERE {
?x rdf:type lubm:Faculty; memberOf ?o;
lubm:name ?n.}

Q8: The most complex query of our evaluation with
two inferences over concept hierarchies (Faculty and
Student), with the former containing sameAs individ-
ual cliques, and inferences over the memberOf prop-
erty hierarchy.

SELECT ?ns ?nx ?o WHERE {
?x rdf:type lubm:Faculty; lubm:name ?nx;
lubm:memberOf ?o.
?s lubm:advisor ?x; rdf:type lubm:Student;
lubm:name ?ns.}

Appendix B. Details on our continuous query
extension

The STREAMING clause is used to initialize a Spark
Streaming context. As in other RSP query languages,

the WINDOW and SLIDE keywords respectively spec-
ify the range and size of a windowing operator. Since
Spark Streaming is based on a micro-batch processing
model, we defined a BATCH clause to assign the time
interval of each micro-batch. Basically, a single micro-
batch represents a RDD, Spark’s main abstraction. For
each triggered query execution, Spark Streaming re-
ceives a segment of Dstreams which essentially con-
sists of an RDD sequence.

The STREAMING clause is used to initialize a Spark
Streaming context. As in other RSP query languages,
the WINDOW and SLIDE keywords respectively spec-
ify the range and size of a windowing operator. Since
Spark Streaming is based on a micro-batch processing
model, we defined a BATCH clause to assign the time
interval of each micro-batch. Basically, a single micro-
batch represents a RDD, Spark’s main abstraction. For
each triggered query execution, Spark Streaming re-
ceives a segment of Dstreams which essentially con-
sists of an RDD sequence.

The REGISTER clause concerns the SPARQL
queries to be processed. StriderR allows to register
multiple queries, and uses a thread pool to launch
all registered queries asynchronously. However, the
optimization of multiple SPARQL queries is beyond
the scope of this paper. Inside REGISTER, each
continuous SPARQL query possesses a query ID.
The REASONING clause enables the end-user to se-
lect a combination of concept/property hierarchy and
sameAs inferences. Once REASONING service is
triggered, StriderR automatically rewrites the given
SPARQL query to its LiteMat mapping. Moreover, in-
coming data stream will also be encoded within the
rules of LiteMat KBs.

	Introduction
	Background knowledge
	RDF and SPARQL
	Semantic Web KBs and reasoning
	RDF Stream Processing (RSP)
	Kafka and Spark Streaming

	StriderR overview
	Running example with continuous queries
	Reasoning over concept and property hierarchies
	Standard rewriting: add UNION Clauses
	LiteMat adapted to stream reasoning
	Static encoding
	Dynamic partial encoding
	Query rewriting: FILTER clauses and UDF

	Reasoning with the sameAs property
	SameAs clique encoding
	Representative-based (RB) reasoning
	Stream encoding
	Query processing

	SAM reasoning
	Motivation
	Materialize sameAs data streams
	Query rewriting: add sameAs patterns
	Query evaluation: join with sameAs patterns

	Evaluation
	Computing Setup
	Datasets, Queries and Performance metrics
	Quantifying joins and unions over reasoning approaches
	Results evaluation & Discussion
	Cost analysis of the SAM approach

	Related work
	Conclusion
	References
	Appendix A. Queries
	Queries with inferences over concept hierarchies
	Query with inferences over property hierarchies
	Queries with inferences over both concept and property hierarchies
	Queries with inferences over concept, property hierarchies and owl:sameAs

	Appendix B. Details on our continuous query extension

