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Abstract. To perform meaningful analysis over multiple streams of heterogeneous data, stream processing needs to support ex-
pressive reasoning capabilities to infer implicit facts and temporal reasoning to capture temporal dependencies. However, cur-
rent stream reasoning approaches cannot perform the required reasoning expressivity while detecting time dependencies over
high frequency data streams. Cascading Reasoning was meant to solve the problem of expressive reasoning over high frequency
streams by introducing a hierarchical approach consisting of multiple layers. Each layer minimizes the processed data and in-
creases the complexity of the data processing. However, the original Cascading Reasoning vision was never fully realized. There-
fore, we propose a renewed and more generalized vision on Cascading Reasoning, serving as a blueprint for existing and future
hierarchical approaches. Furthermore, we introduce Streaming MASSIF, a new Cascading Reasoning approach, performing ex-
pressive reasoning and complex event processing over high velocity streams. We show that our approach is able to handle high
velocity streams up to hundreds of events per second, in combination with expressive reasoning and complex event processing.
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1. Introduction

RDF Stream Processing (RSP) focuses on process-
ing heterogeneous, high velocity data streams [43].
However, supporting expressive reasoning and tem-
poral relatedness over these streams is still hard to
achieve [21,19,32]. In this paper, we address this is-
sue by presenting a layered approach that combines
high velocity processing of data streams with expres-
sive reasoning and complex event processing capabili-
ties.

Due to the rise of the Internet of Things (IoT)
and the popularity of Social Media, huge amounts
of frequently changing data are continuously pro-
duced [6,10]. This data can be considered as un-
bounded streams. Many of those streams should be
combined and integrated with background knowl-
edge before they can be processed [18]. Combining

streams and integrating background knowledge intro-
duces more context and ensures more accurate results.
Semantic Web technologies proved to be an ideal tool
to fulfill these requirements [10,30,36]. Expressive
reasoning and Complex Event Processing (CEP) tech-
niques, allow to extract implicit facts in the streams,
enabling meaningful analysis [19,39,41]. For exam-
ple, a high traffic street can have many interpretations
(depending on the type of street) and requires a rich
background to model accurately.

RDF Stream processors [9,4,27] tackle the problem
of combining various streams, integrating background
knowledge and processing the data. However, they do
not integrate expressive reasoning in their processing.

Existing work on expressive reasoning, such as
Description Logic (DL) reasoning, has focused on
static [38] or slowly changing [34] data. The problem
of performing expressive reasoning over high veloc-
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ity streams is however still not resolved [21]. Further-
more, temporal DL tend to become easily undecid-
able [29], making it even harder to perform temporal
reasoning over high velocity streams. Through the use
of CEP engines, temporal dependencies can be defined
in various patterns. However, CEP engines struggle to
integrate complex domains which makes it difficult to
define complex patterns [41].

The Cascading Reasoning vision introduced by
Stuckenschmidt, et al. [39], allows to perform expres-
sive reasoning over high velocity streams by making a
trade-off between complexity and data frequency. The
vision presents various layers of processing, each with
different complexities. However, the vision was never
fully realized. Therefore, we propose a renewed and
more general vision, serving as a blueprint for existing
and future hierarchical approaches.

To tackle the challenges of performing expressive
reasoning and detecting temporal dependencies over
high velocity streams, we introduce Streaming MAS-
SIF, a layered approach, based on our renewed Cas-
cading Reasoning proposal.

Our approach combines RSP, expressive DL reason-
ing and CEP. We seamlessly combine DL and CEP en-
abling the definition of patterns using high-level con-
cepts. This enables to use complex domain models
within CEP and integrates a temporal notion in DL.
The integration of RSP tackles the high velocity aspect
of the streams. Furthermore, we introduce a query lan-
guage that bridges the gap between stream processing,
expressive reasoning and complex event processing.

We show that Streaming MASSIF is able to han-
dle expressive reasoning and complex event processing
over high velocity streams, up to hundreds of events
per second.

The paper is structured as follows: Section 2 in-
troduces an illustrative use case. Section 3 describes
all the required background knowledge to understand
the remainder of the paper. Section 4 details the orig-
inal cascading reasoning vision, while Section 5 con-
tributes our renewed and more generalized vision on
cascading reasoning. Section 6 introduces a new query
language that combines the various layers in cascad-
ing reasoning and describes the architecture of the sys-
tem. Section 7 details the evaluation of our platform.
The comparison to similar systems is described in Sec-
tion 8. Section 9 discusses the results and how our plat-
form compares to the state of the art. The conclusion
and our outlook and direction for future work is elabo-
rated in Section 10.

2. Motivating Example

In the Smart City of Aarhus [1], sensors have been
integrated in multiple aspects of the city: traffic sensors
to measure the traffic density, sensors to capture the
occupation of parking spots and pollution sensors to
measure the pollution values over the city. Since more
and more employees have flexible working hours, we
would like to notify them when it is a good time to
go home. More specifically, that is when traffic near
their offices starts decreasing. This notification should
only be considered if the office allows flexible working
hours. To achieve these kinds of notifications, we need
to be able to:

1. Combine various data streams: To make mean-
ingful analysis we need to combine streams from
various sensors.

2. Integrate background knowledge: Since the sen-
sory data typically only describes the sensor read-
ings, we need to be able to link additional data,
e.g. the type of measurement linked to the sensor,
the location of the sensor, etc.

3. Integrate complex domain knowledge: For exam-
ple, if we want to detect decreasing traffic near
offices with flexible working hours, we first need
to define what a flexible office is.

4. Detect temporal dependencies: To detect decreas-
ing levels of traffic, we need to detect a temporal
relation between low traffic observations and high
traffic observations. More specifically, we need
to detect when high traffic observations are fol-
lowed by low traffic observations within a certain
amount of time. Furthermore, we need to be able
to filter out only those traffic updates going from
high to low occurring in the same location.

Example 2.1. In the ontology used to model our do-
main, we assign each Office various Policies. Based on
these Policies an Office can be considered a Flexible-
Office or not:

NoFixedHoursOffice ≡ Office u ∃hasPolicy.FlexibleHours,

NoFixedHoursOffice v FlexibleOffice,

StartEarlyOffice ≡ Office u ∃hasPolicy.StartEarly,

StartEarlyOffice v FlexibleOffice,

StopEarlyOffice ≡ Office u ∃hasPolicy.StopEarly,

StopEarlyOffice v FlexibleOffice
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Fig. 1. Cascading Reasoning.

To model the observations that capture the various
sensor readings across the city, we use the SSN Ontol-
ogy [15].

Example 2.2. We first model observations near flexi-
ble offices and then we model observations near flexi-
ble offices that also capture congestion levels:

FlexibleOfficeObservation ≡ Observation

u (∃observedFeature.(∃isLocationO f .FlexibleOffice))

CongestionFOObservation ≡ FlexibleOfficeObservation

u ∃observedProperty.CongestionLevel

We can now model for each type of street, which is lo-
cated near a flexible office, when it should be consid-
ered congested. With the congestion level defined as
the number of detected vehicles divided by the street
length (in meters):

HighTrafficMainRoadNearFlexibleOffice ≡

CongestionFOObservation

u ∃observedProperty.MainRoad

u ∃hasValue > 0.025,

LowTrafficMainRoadNearFlexibleOffice ≡

CongestionFOObservation

u ∃observedProperty.MainRoad

u ∃hasValue < 0.01,

Note that similar constructions can be made for dif-
ferent types of streets and that all these constructs are
also subclasses of the concepts HighTrafficObserva-
tion or LowTrafficObservation.

Although this is a simplified version of the problem,
it illustrates the challenges associated with it.

3. Background

In this section, we introduce the necessary knowl-
edge to understand the content of the paper. First we
introduce the original cascading reasoning vision and
all the frameworks it contains and then we introduce
Metric Temporal Logics.

3.1. The original Cascading Reasoning Vision

In particular, we provide details about Stucken-
schmidt et al.’s vision of Cascading Reasoning [39]
and the all the frameworks that it involves, i.e., Raw
Stream Processing, RDF Stream Processing (RSP),
Logic Programming (LP) and Description Logics
(DL). The original vision is depicted in Figure 1.

3.1.1. Raw Stream Processing
This application domain comprises the bottom layer

of the Cascading Reasoning pyramid and refers to
those systems capable of processing large amounts of
information in a timely fashion.

Raw Stream processing or Information Flow Pro-
cessing (IFP) [16] describes how to timely process un-
bounded sequences of information, also called streams.
IFP systems are divided into Data Stream Manage-
ment Systems (DSMS) and Complex Event Processing
(CEP) engines.

DSMSs extend traditional Data Base Management
Systems to answer continuous queries that are reg-
istered and endlessly evaluated over time. Whereas
a standard language for continuous queries does not
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Fig. 2. Two example streams to illustrate the various event operators.

exist, the continuous query language (CQL) [5] is a
prominent formalization adopted by most of the exist-
ing DSMSs query languages.

CEP Engines [28] are able to capture time depen-
dencies between events. Complex events can be de-
fined through event patterns consisting of various event
operators. Examples of these event operators are the
time-aware extensions of boolean operators (AND,
OR) and the sequencing of events (SEQ). In the fol-
lowing, we present a list of the most prominent CEP
operators, guards and modifiers:

– AND is a binary operator: A AND B matches if
both A and B occur in the stream and turns true
when the latest of the two occurs in the stream. In
Figure 2, A AND B matches at t2 in both Stream
1 and Stream 2.

– OR is a binary operator: A OR B matches if either
A or B occurs in the stream. In Figure 2, A OR B
matches at t1 in both Stream 1 and Stream 2.

– SEQ is a binary operator that takes temporal de-
pendencies into account. A SEQ B matches when
B occurs after A, in the time-domain. In Figure 2,
A SEQ B matches at t3 in Stream 1 and at t2 in
Stream 2.

– NOT is a unary operator: NOT A matches when
A is not present in the stream. NOT A matches at
t1 in Stream 1 and t2 at Stream 2.

– WITHIN is a guard that limits the scope of the pat-
tern within the time domain. A SEQ A WITHIN
2s matches in Figure 2 at t3 in Stream 2 and not
in Stream 1.

– EVERY is a modifier that forces the re-evaluation
of a pattern once it has matched. EVERY A SEQ
B matches at t3 in Stream 1 and at t2 & t5 in
Stream 2 for (A2, B2) and (A3, B2).

Example 3.1. We can define a decreasing traffic ob-
servation as every high traffic observation followed by
a low traffic observation within a certain amount of
time, with the following event pattern:
DecreasingTraffic = EVERY HighTraffic SEQ Low-

Traffic WITHIN 10m
However, it is not straightforward in CEP to define
what a HighTraffic or LowTraffic exactly is.

For a comprehensive list of operators, we point the
reader to Luckham [28]. Note that more advanced tem-
poral relations exist, such as the ones presented in
Allen’s interval algebra [3].

3.1.2. RDF Stream Processing
RDF Stream Processing (RSP) [43] is an exten-

sion of IFP that can cope with heterogeneous data
streams by exploiting semantic technologies. Resource
Description Framework (RDF) streams are semanti-
cally annotated data streams encoded in RDF. RSP-
QL [20] is a recent query language formalization that
unifies the semantics of the existing approaches with
a special emphasis on the operational semantics. The
majority of the work on Stream Reasoning is focused
in the area of RSP [21]. Therefore, in the following, we
introduce some of RSP-QL definitions that are relevant
to understand the next sections:

Definition 3.1. An RDF Stream S is a potentially
infinite multiset of pairs (Gi, ti), with Gi an RDF

Graph and ti a timestamp:
S = (g1, t1), (g2, t2), (g3, t3), (g4, t4), ...

Since a stream S is typically unbounded, a window
is defined upon the stream in which the processing
takes place.

Definition 3.2. A Window W(S ) is a multiset of RDF
graphs extracted from a stream S. A time-based win-
dow is defined through two time instances o and c that
are respectively the opening and closing time instants
of each window: W(o,c](S ) = {(g, t)|(g, t) ∈ S ∧ t ∈
(o, c]}.

Note that physical windows, based on the number of
triples in the window, also exist [9].

Definition 3.3. A time-based sliding window W con-
sumes a stream S and produces a time-varying graph
GW. W operates according to the parameters (α, β, t0):
it starts operating at t0, it has a window width (α) and
sliding parameter (β).

We now introduce the concepts of time-varying
graphs and instantaneous graphs. The former captures
the evolution of the graph over time, while the latter
represents the content of a graph at a fixed time instant.
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Definition 3.4. A time-varying graph GW is a func-
tion that selects an RDF graph for all time instants
t ∈ T where W is defined:
GW : T → {G|Gi an RDF graph}.
The RDF graph identified by the time-varying graph ,
at the time instant t, is called an instantaneous graph
GW(t).

A dataset used within RSP-QL is defined as:

Definition 3.5. An RSP-QL dataset SDS is a set con-
sisting of an (optional) default graph and n named
graphs describing the static background data and m
named time-varying graphs resulting from applying
time-based sliding windows over o ≤ m streams, with
m, n ≥ 0.

Example 3.2. In our example the SDS is defined as:

S DS = {G0 = Gsensors, (w1,W1(S tra f f ic1)),

(w2,W2(S tra f f ic2)), ...(wn,Wn(S tra f f icn))}

Gsensors describe the domain knowledge and the static
data about the sensors such as their kinds, their lo-
cations, etc. S tra f f ici describes the traffic observations
and is windowed in Wi. wi is the window name.

To be able to query the SDS dataset, we define an
RSP-QL query:

Definition 3.6. An RSP-QL query Q is defined as
(SE, SDS, ET, QF) where:

– SE is an RSP-QL algebraic expression
– SDS is an RSP-QL dataset
– ET is a sequence of time instants on which the

evaluation of the query occurs
– QF is the Query Form (e.g. Select or Construct)

3.1.3. Description Logic Programming
The reasoning application domain consists of the

top two layers of the Cascading Reasoning pyramid. It
refers to systems capable of deriving implicit knowl-
edge from the input data combined with rules and do-
main models. The first reasoning layer in the original
Cascading Reasoning vision was Logic Programs.

Logic Programs (LP) are sets of rules of the form
head ← body that can be read as head "if" body. The
original vision of Cascading Reasoning referred to a
specific fragment of LP, called Description Logic Pro-
grams (DLP) [23], which consists of the intersection
between Description Logics and those LPs also ex-
pressible in First Order Logics. DLP can be seen of an
ontological sub-language of DL that can be encoded in
rules.

3.1.4. Description Logics
Description Logics (DL) [24] are the decidable

fragment of First Order Logics and the second reason-
ing layer in Cascading Reasoning. DLs have formal se-
mantics, ideal for many powerful reasoning tasks. DL
defines concepts to represent classes of individuals and
roles to represent binary relations between the individ-
uals. Concrete roles (or data properties) are roles with
datatype literals in the second argument. We call the
concepts assigned to an individual, the types of the in-
dividual.

A Terminological Box (TBox) T , is a finite set of
concept (C) and role (R) inclusion axioms. An Asser-
tion Box (ABox)A is a finite set of concept or role as-
sertions. A Knowledge base K = (T ,A) combines T
and A. I is an interpretation for K and I is a model
of K, if it satisfies all concept and role inclusions of T
and all concept and role assertions of A. This can be
written as I |= K.

Example 3.3. In Example 2.1 and 2.2 we already
modeled the TBox. Lets consider a minimal ABox A
describing the office, the road and their property:

O f f ice(o f f ice), hasPolicy(o f f ice, pol1),

S topEarly(pol1),MainRoad(road),

CongestionLevel(prop), propertyO f (prop, road),

isLocationO f (road, o f f ice)

The observation capturing the current congestion level
can be modeled as:

Observation(obsi), observedProperty(obsi, prop),

hasValue(obsi, 0.03)

By applying reasoning, we can infer from K = (T ,A)
that:

K |= FlexibleO f f ice(o f f ice),

K |= FlexibleO f f iceObservation(obs1),

K |= CongestionFOObservation(obs1),

K |= HighTra f f icMainRoadNearFlexibleO f f ice(obs1),

K |= HighTra f f icObservation(obs1)

3.2. Metric Temporal Logic

Metric Temporal Logic (MTL) [25] is a formalism
designed to model real-time systems and reason about
them using R as a time domain. It exploits the follow-
ing modal operators:
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– Diamond operators, i.e. refer to something happen-
ing sometimes in the past % and sometimes in the
future %.

– Box operators, i.e. always in the past �% and in the
future �%.

– Connectives, i.e. with respect to the future like since
something happened S% or with respect to the past
like until something happens U%,

% is a non-empty subset of R, more specifically an in-
terval [a, b] such that a, b ∈ Rb ≥ a.

MTL is undecidable if punctual operators ( [1,1])
are allowed and EXPSPACE-complete otherwise.

DatalogMTL [14] is a tractable fragment of MTL,
which extends the Horn1 fragment of MTL. It allows
to define rules over a continuous temporal domain, e.g.
R, that consist of: (i) terms τ, i.e. individual variables
or constants, and (ii) predicates of arbitrary arities (i.e.
number of involved terms), of the form:

A+ ← A1 ∧ · · · ∧ Ak or ⊥ ← A1 ∧ · · · ∧ Ak,

where k ≥ 1, each Ai is either an inequality between
two terms τ 6= τ′ or defined by the grammar:

A ::= P(τ1, . . . , τm) | > | �%A | �%A

| %A | %A | A U% A′ | A S% A′ (1)

where�,�, , , S, U are defined as in MTL. The
atoms A1, . . . , Ak constitute the body of the rule, while
A+ or ⊥ its head. As usual for Datalog, every variable
in the head of a rule also occurs in its body. Ranges % in
the temporal operators can be punctual [r, r], to model
the instantaneous occurrence of predicates. We focus
on the non-recursive fragment of DatalogMTL, since
query answering has a data complexity of AC02.

4. Rethinking the Cascading Reasoning Vision

In this section, we identify why the current vision
on Cascading Reasoning could never be fully realized
and we propose a renovated and more general vision.

1i.e. the ‘non-deterministic’ operators , , U ,S are forbidden in
formula’s heads.

2For the formal semantics and the relative proofs we refer to [14].

4.1. Cascading Reasoning Limitations

Since Stuckenschmidt et al.’s vision of Cascading
Reasoning was proposed, several new approaches pop-
ulated the Stream Reasoning state of the art [21]. Al-
though some of these new solutions also adopt a hi-
erarchical architecture [33,35,12,4,13], none of them
fully realize Stuckenschmidt et al.’s vision.

A first difference regards the reasoning techniques
involved in the hierarchy. The initial scope of reason-
ing frameworks was focused mainly on DL and DLP.
Recently, Temporal Logics, non-monotonic Logic Pro-
grams and technique for reasoning about time were
proposed beside the traditional Stream Reasoning re-
search areas. In the future, we also imagine the inte-
gration of on-line machine learning application, which
already showed appealing results, and the combination
of deductive and inductive reasoning [8,7].

In the original cascading reasoning pyramid, the role
of RSP was limited to streaming data integration. Al-
though this is utterly meaningful in combination with
DL reasoning, data integration is a much more gen-
eral problem to investigate when data are continuously
changing. Moreover, RSP, but also stream processing,
can support reasoning tasks (e.g. RSP under entailment
or query rewriting).

Last but not least, the original cascading reasoning
pyramid lacked the descriptive analytics aspects typi-
cal of Steam Processing (i.e. DSMS). Indeed, a com-
mon DSMS use-case is a decision-support application
that requires to compute analytical queries.

We summarize these limitations as (i) narrow scope
of reasoning frameworks; (ii) RSP-centric data inte-
gration; (iii) lack of descriptive analytics aspects.

4.2. Generalized Cascading Reasoning

Our proposed generalized cascading stream reason-
ing pyramid is depicted in Figure 3. As in the origi-
nal vision, it aims at presenting the trade-off between
expressiveness and rate of changes in the data. Practi-
cally, it forms a blueprint for existing and future hier-
archical approaches.

We now detail each of the layers.

4.2.1. Stream Processing
At the lowest level, the data streams are processed.

Different processing techniques can be used accord-
ingly to the levels above, e.g. which information inte-
gration technique is used (if any). This layer can im-
plement stream processing techniques like DSMSs and
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Fig. 3. A generalization of Cascading Reasoning.

CEPs or use RSP when dealing with semantically an-
notated data. Moreover, this level can also solve part of
the analytic needs, since it is able to compute descrip-
tive analysis of the streaming data.

4.2.2. Continuous Information Integration
In order to achieve a high-level view on the stream-

ing data, we need an information integration layer that
offers an homogeneous view over the streams.

The Continuous Information Integration layer com-
bines data from heterogeneous streams into a com-
mon semantic space by the means of mapping as-
sertions that populate a conceptual model. Two ap-
proaches are then possible to access the data: (i) Data
Annotation (a.k.a. data materialization), i.e. data are
transformed into a new format closer to the informa-
tion need (ii) Query Rewriting (a.k.a. data visualiza-
tion), i.e., the information need is rewritten into sub
tasks that are closer to each of the original data for-
mats.

4.2.3. Inference
In a cascading approach, an information need (IN)

is formulated accordingly to a high-level view on the
data. To enable efficient IN resolution, we need an
inference layer that mediates the IN with domain-
specific knowledge to the lower layers. Computational
tasks at this level have a high complexity. This reduces
the volume of data this level can actually process.
Therefore, it is necessary to select, from the lower lay-
ers, the relevant parts of the streams that this layer has
to interpret to infer hidden data. Possible inference im-
plementations range from expressive reasoning, such
as DL, Answer Set Programming (ASP), MTL or CEP
to machine learning techniques such as Bayesian Net-

Fig. 4. Hierarchical layers of the new Cascading Reasoning ap-
proach.

works (BN) or Hidden Markov Models (HMM).

Indeed, the original vision – which consists of raw
stream processing, RSP, DL, and logic programming
– fits this more general view: the raw stream process-
ing is contained in our Stream Processing layer, RSP
is contained in the continuous information integration
layer and DL & logic programming are part of the in-
ference layer.

5. A New Approach for Generalized Cascading
Reasoning

Now that we have generalized cascading reasoning,
we propose a new cascading reasoning approach con-
sisting of a combination of CEP and DL as inference
methods and RSP for continuous information integra-
tion.

5.1. Layers Design

In the following sections, we design a stream rea-
soning architecture that fulfills the requirements of our
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Fig. 5. Processing steps of the new Cascading Reasoning Approach.

motivating example and fits our proposal for cascad-
ing reasoning. As depicted in Figure 4, our approach
consists of two layers that performs four tasks, starting
from the bottom: (i) an RSP layer selects the parts of
the streams that are relevant. (ii) It also integrates data
from different streaming and static sources. (iii) An In-
ference layer enriches the output of the previous layer
by deriving implicit data using DL reasoning. It also
performs temporal reasoning via CEP on the inferred
abstractions. We now discuss each of the layers in
more detail.

5.1.1. RDF Stream Processing Layer
The RSP layer receives RDF streams (as defined

in Definition 3.1) as input and answers continuous
queries written in RSP-QL (see Definition 3.6). A
given RSP-QL query Q is evaluated against a RSP-
QL dataset SDS (as defined in Definition 3.5). The re-
sult of the defined queries are forwarded to the next
layer. Therefore, we fix the Query Form to the CON-
STRUCT query form.

5.1.2. Continuous Information Integration Layer
As we previously mentioned, we assume that data

streams arrive directly encoded as RDF streams. This
assumption allows us to perform stream processing
and continuous information integration in the RSP
layer by means of a common vocabulary.

Notably, we do not consider the annotation task
(a.k.a. data materialization task) as part of the ap-

proach. If the data are not natively RDF streams, ap-
proaches like TripleWave [31], which rely on mapping
techniques such as RML [22] and R2RML3, can be
utilized.

Example 5.1. (cont’d) Since we’re only interested in
traffic observation that can be considered as high traf-
fic observations, we select only the congestion level ob-
servations in the stream with a value above 0.03 or be-
low 0.01. However, to determine that an observation
is in fact a congestion level, we need to integrate with
static background data describing the sensors. We also
extract the information regarding the office near the
location where the observation comes from, so we can
determine later if these are flexible offices or not. List-
ing 1 shows a query Q that selects the relevant portion
of the stream.

In Figure 5 this query will select Observation(obs1)
and Observation(obs6) from the stream. It will also
add some additional data to the event, such as infor-
mation regarding the road and the offices that can be
used in the next layer for the expressive reasoning step.

Listing 1: Example of RSP-QL Query

CONSTRUCT {
? obs_X a s s n : O b s e r v a t i o n .

3https://www.w3.org/TR/r2rml/
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? obs_X s s n : observedBy ? sensor_X .
? obs_X s s n : o b s e r v e d P r o p e r t y ? p r o p e r t y _ X .
? p r o p e r t y _ X a C o n g e s t i o n L e v e l .
? obs_X hasVa lue ? v a l u e .
? p r o p e r t y _ X i s P r o p e r t y O f ? f o i .
? f o i i s L o c a t i o n O f ? l o c .
? l o c h a s P o l i c y ? p o l . }

FROM NAMED WINDOW : t r a f f i c
[RANGE 5m, SLIDE 1m] ON STREAM : T r a f f i c

WHERE {
? p r o p e r t y _ X a C o n g e s t i o n L e v e l .
? p r o p e r t y _ X i s P r o p e r t y O f ? f o i .
? f o i i s L o c a t i o n O f ? l o c .
? l o c h a s P o l i c y ? p o l .
WINDOW ?w {

? obs_X a s s n : O b s e r v a t i o n .
? obs_X s s n : observedBy ? sensor_X .
? obs_X s s n : o b s e r v e d P r o p e r t y ? p r o p e r t y _ X .
? obs_X hasVa lue ? v a l u e .
FILTER ( ? v a l u e > 0 . 0 3 | | ? v a l u e < 0 . 0 1 ) }

}

5.1.3. The Inference Layer
The Inference layer of our architecture consists of

two sub-layers: (i) Description Logics: since we want
to infer information not explicitly available in the
streams; and (ii) Temporal Logics: because we aim at
deducting information based on temporal relations be-
tween the data. In the following, we explain how we
link those sub-layers together.

First we need to make a distinction between physical
events and abstract events:

Definition 5.1. A physical event ephy is an event that
occurs directly in the input stream S or is a result of
the RSP layer. Note that in the latter, the event may
also include background data. A collections of physi-
cal events is defined as Ephy.

Example 5.2. (cont’d) In Figure 5, multiple physical
events are depicted in a stream. Four physical events
are detailed. One of these events is the following phys-
ical event that describes the first observation in the
stream:

Observation(obs1),

observedProperty(obs1, propX),

hasValue(obs1, 0.03)

In the RSP layer its enriched with the following infor-
mation:

CongestionLevel(propX),

O f f ice(o f f ice1),

MainRoad(road1),

isLocationO f (road1, o f f ice1),

S topEarly(pol1), hasPolicy(o f f ice1, pol1)

From these physical events we derive abstract
events:

Definition 5.2. An abstract event eab consists of one
or more physical events ephy and hides their low-level
details. An abstracted event eab can be inferred under
an entailment Σ from a collection of physical events
Ephy iff ∃ei ∈ Ephy : (T ,A+) |= C(ei) with C ∈ T
and K = (T ,A+), with K the knowledge based used
in the reasoning process. T is the TBox and A+ the
ABox, with A+ = A ∪ Ephy. We can now define the
abstracted event as the triple eab = (C, E′phy, t), with
E′phy the collections of physical events in Ephy that lead
to infer C(ei) and t the processing time at which the
first physical event in E′phy was produced. Eab repre-
sents a collection of abstracted events. This is the case
when multiple abstracted events can be abstracted.

Example 5.3. (cont’d) The physical events can now be
abstracted according to the defined ontology in Exam-
ple 2.2. Through reasoning we obtain that:

HighTra f f icS treet(obs1),

HighTra f f icMainRoadNearFlexibleO f f ice(obs1),

FlexibleO f f ice(o f f ice1)

This results in the following abstracted events with
ephy the physical event and ti the time ephy is produced.

(HighTra f f icS treet, ephy, ti),

(HighTra f f icMainRoadNearFlexibleO f f ice, ephy, ti),

(FlexibleO f f ice, ephy, ti)

We now want to identify temporal dependencies be-
tween the abstracted events provided by the DL sub-
layer. This reasoning task is suitable for temporal log-
ics such as MTL. However, as we stated above, MTL
is generally undecidable and intractable in most of
the cases (see Section 3). Therefore, we identified
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CEP operators Anow Bnow

A AND B A ∧ (−∞,0]B B ∧ [0,∞)A

A ∧ [0,∞)B B ∧ (−∞,0]A

A SEQ B A ∧ (0,∞)B∧
(¬A) U(0,∞) A∧
(¬B) U(0,∞) B

B ∧ (−∞,0)A∧
(¬A) U(0,∞) A∧
(¬B) U(0,∞) B

Every (A) A ∧ (¬A) U(0,∞) B B ∧ (¬B) S(−∞,0) A

SEQ B A ∧ (0,∞)B∧
(¬B) U(0,∞) B

B ∧ (−∞,0)A∧
(¬B) U(−∞,0) B

A A ∧ [0,∞]B ∧
(¬A) U(0,∞) A

B ∧ (−∞,0)A∧
(¬A) U(0,∞)

( (−∞,0)A)
SEQ Every (B)

Every(A) A ∧ (−∞,0)B B ∧ (0,∞)A

SEQ Every(B)
Table 1

Semantics of “AND” and “SEQ” combined with the modifier
“Every”.

non-recursive DatalogMTL as a proper fragment that
serves our purpose (see Section 3). Moreover, consid-
ering the relation between Temporal Logics and CEP
languages [17], a CEP engine can be used to efficiently
evaluate the non-recursive DatalogMTL formulas that
capture the semantics of CEP operators. Table 1 shows
the equivalences between the CEP operators and non-
recursive DatalogMTL formulas. For binary CEP oper-
ators we provide two DatalogMTL formulas, one form
the viewpoint of A and one from the viewpoint of B.
Thus, one that considers as “current” the time instant
at which A occurs (Anow) and one considering the time
instant at which B occurs (Bnow).

Given these equivalences, it is possible to compute
this fragment of MTL using a CEP engine. Therefore,
we can detect temporal dependencies between the ab-
stracted events provided by the DL sub-layer by defin-
ing event patterns.

Definition 5.3. An event pattern EP is a statement of
the form

[O](E1 ∧ · · · ∧ Ek)|(E1 ∨ · · · ∨ Ek)[4]

with Ei either (i) an event type or (ii) a complex event
using one of the following operators: AND, OR, NOT,
SEQ or (iii) another event pattern (recursively). O is
an optional modifier, e.g. EVERY and4 is an optional
guard, e.g. WITHIN.

We use these patterns to instantiate complex events
that represent inferred information.

Definition 5.4. A complex event ce definition is a
triple ce = (h, p,R) with

– h the complex event type,
– p is the pattern defined using operators, modifiers

and guards,
– R is a set of restrictions. Restrictions can be de-

fined on the event values, e.g. event A(speed=45)
has the property speed with a value of 45, one can
restrict to speed values above a certain threshold.
Other restrictions can be defined over events, e.g.
if each event type has a location A(location=loc1)
and B(location=loc1) then we can impose the re-
striction that event A and B should have the same
location.

h is instantiated when p and R are satisfied.

The set of abstracted events (i.e. the collection of
triples (CE , ephy, t)) is used in the event pattern match-
ing. More specifically each type CE is checked if it
matches the event types within the pattern. Addition-
ally, the restrictions R = (CRE , qS PARQL) can be de-
fined on each event type in an event pattern. CRE is an
event type (i.e. defined in E) and qS PARQL is a SPARQL
query. The SPARQL query is evaluated over each ephy

contained in the abstracted event (eab = (CE , ephy, t))
where CE == CRE . Restrictions over multiple events
in the event pattern can be achieved by creating multi-
ple restrictions R with the same variable names in the
qS PARQL. The variable bindings are extracted and used
for joining the events. This is shown in the restrictions
of Example 5.4 through the use of the reoccurring vari-
able name “?loc”.

Example 5.4. (cont’d) To detect the decreasing traffic,
we need to monitor for high amount of traffic near flex-
ible offices followed by low amounts of traffic near the
same flexible offices within a certain time-range. This
can be done by defining the complex event definition
triple: ce = (CEE , p,R) with

– CEE the complex event type DecreasingTra f f ic.
– p the pattern describing EVERY HighTra f f ic-

Abstraction S EQ LowTra f f icAbstraction
WIT HIN 10m

– R is a set of restrictions of the form (CRE , qS PARQL)
consisting of
* (HighTra f f icAbstraction, q1) with q1 =

S e l e c t ∗ WHERE {
?o s s n i o t : h a s L o c a t i o n ? l o c . }
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* (LowTra f f icAbstraction, q2) with q2 =

S e l e c t ∗ WHERE {
?o2 s s n i o t : h a s L o c a t i o n ? l o c . }

Note that the restrictions state that high and low
traffic events need to have the same location. The value
in ?loc will be used to restricts the complex events,
since its the only variable with the same name in q1

and q2.

5.2. Unified Evaluation Functions

In the following, we explain, by means of Figure 5,
how to combine the different layers into a single eval-
uation framework. At the lowest level, we have the
evaluation of the RSP layer. Let’s consider an RSP-QL
query Q. The evaluation of Q over dataset SDS is de-
fined as:

Ω(t) = eval(S DS (G), S E, t), with t ∈ ET

where ET represents all the time instances where SDS
is defined and Ω is a time-varying multiset of solution
mappings that maps time T to the set of solution map-
pings multisets [20]:

Ω : T → {ω|ω is a multiset of solution mappings}

We consider CONSTRUCTS query form only; there-
fore the solution mappings still need to be substituted
in a graph template defined in the query4.

GΩ(t) = σ(Gtemplate,Ω(t))

With σ the substitution function and Gtemplate the graph
template defined in Q. The solution GΩ(t) , for each t ∈
ET is a subset of the data in SDS and is sent to the next
layer in the cascading reasoner for further processing.
We can define the evaluation of the RSP layer as

evalRS P−QL(S DS ,Q) = GΩ(t),∀t ∈ ET

Each time the RSP layer produces results, they are
sent to the DL layer as a set of physical event Ephy =
GΩ(t). The DL layer converts the physical events Ephy

to a set of abstracted events Eab under a certain entail-
ment Σ.

4As defined in the SPARQL 1.1. specification:
https://www.w3.org/TR/sparql11-query/#construct

Eab = {CE(ei)|∃ei ∈ Ephy : (T +,A+) |= CE(ei) ∧
CE ∈ E with T + = T ∪ E and A+ = A ∪ Ephy}. The
evalDL reasoning step is defined as

evalDL(Ephy, E ,O,Σ) = Eab,

where Eab is the set of abstracted events and the
quadruple < Ephy, E ,O,Σ > comprises:

– Ephy – a set of one or more selected physical
events contained in GΩ(t).

– O – the ontology describing the domain knowl-
edge. O = (T ,A) with T the TBox and A the
ABox describing O.

– E – an ontology TBox that bridges the domain
ontology O and the physical events Ephy. It de-
scribes formally the abstraction based onO. Only
the concepts in E will be considered as abstracted
events.

– Σ – the entailment regime under which the rea-
soner has to extract the abstract events from Ephy.

Finally, we define the result of the evaluation of the
CEP layer as a set of abstract events:

evalCEP+(CE, Eab) = {(CEE ,
⋃

ephy, t)}

with CEE the complex event type of the complex event
ce ∈ CE that matched, ephy the physical events in Eab
that cause the patterns to trigger and t the processing
time at which the patterned triggered. In the resulting
complex event, the union of the underlying physical
events is taken and the complex event type is assigned.

Since complex events are still physically repre-
sented as RDF graphs, in order to evaluate restric-
tions we can simply extend evalCEP with evalS PARQL
that evaluates the restrictions describes as SPARQL
queries.

To ensure termination, we restrict to non-recursive
pattern definitions, i.e. ∀p ∈ CE,@E ∈ p : CEE ==
E. The complex event type is thus not allowed in the
definition of the pattern.

5.3. Summary

To conclude, we described a stream reasoning stack
that is able to a) select the relevant portions of the
stream using RSP, b) abstract the selected RDF graphs
using expressive reasoning techniques and selecting
only those that match the expected abstractions and
c) apply complex event processing over these abstrac-
tions to detect temporal dependencies.
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6. Realizing Cascading Reasoning

In this section, we explain how we realized the pro-
posed cascading reasoning system. In the following,
we present a Domain Specific Language (DSL) and
the architecture of Streaming MASSIF, i.e. a cascad-
ing stream reasoner that fully implements the seman-
tics explained in Section 5.

6.1. A Domain Specific Language for Cascading
Stream Reasoning

In this section, we introduce a DSL that allows users
to formulate information needs by solvable using the
proposed cascading reasoning approach.

In order to explain the DSL, we provide an example
of information need and we explain how each part of
the query maps to the different evaluations functions
described in Section 5.2.

Listing 2 describes the grammar of the proposed
query language. Note that for conciseness reasons, we
did not incorporate the following sub-grammars:

1. DLDescription: The definition of the abstract
event types (CE ) is based on the Manchester syn-
tax. For more information regarding this syntax
we refer the reader to the Manchester W3C page5.

2. BGP: In the definition of the complex events, one
can define Basic Graph Pattern (BGP) for restrict-
ing the validity of the events. We did not incorpo-
rate the explanation of the syntax of BGP in this
proposal.

3. RSPQL: For targeting the RSP module, we uti-
lize RSP-QL. The full syntax of RSP-QL has not
been incorporated in our syntax proposal, more
information regarding RSP-QL can be found in
Dell’Aglio et al. [20].

As defined in Listing 2, an information need com-
prises multiple namespaces (NameSpace), multiple
event declarations (EventDecl) and an optional RSPQL
declaration. Figure 6 a) shows an information need
from the example use-case. We now explain how this
DSL targets each module of the cascading stream rea-
soner.

6.1.1. DSL Fragment for the RSP Layer
From line 19 in Figure 6 a), the RSP-QL syntax

is used for selecting the relevant events from various
streams. Note that there is no query form defined, since

5https://www.w3.org/TR/owl2-manchester-syntax/

we restrict the use to the construct query form. The
construct query template is generated from the BGP
in the WHERE clause. Note that the definition of the
RSP-QL clause is optional in the language. In the ab-
sence of the RSP-QL clause all streaming data is di-
rectly processed by the next layer (i.e. the abstraction
layer). In this case, each event in the stream is pro-
cessed one by one.

6.1.2. DSL Fragment for the DL Sub-Layer
An information need typically requires to define

multiple events. An event declaration (EventDecl)
starts with the declaration of a NAMED EVENT, a
name for the event (EventName) and either the defini-
tion of an abstract event (AbstractEvent) or and com-
plex event (ComplexEvent). The abstract event defini-
tion start with the ‘AS’ keyword to indicate how the
event name should be interpreted, followed by a dec-
laration in Manchester DL syntax. This is shown in
Figure 6 a) on line 6 to 9. We chose the Manchester
Syntax6 for the definition of these events since its very
concise and expressive.

6.1.3. DSL Fragment for the CEP Sub-Layer
Besides the AbstractEvents, the EventDecl clause

can also define complex events (ComplexEvents).
These are declared with the ‘MATCH’ keyword, fol-
lowed by a modifier (Modifier), an event pattern
(EventPattern), a guard (Guard) and an optional re-
striction clause (IFClause). The EventPattern is con-
structed from various abstract events and event opera-
tors (EventOperators). Figure 6 a) shows an example
event pattern defined over high and low traffic abstrac-
tions on line 11 to 13.

The restrictions (IFClause) are declared using the
‘IF’ keyword, followed by the abstract event name
used in the pattern that needs to be restricted. The re-
striction itself is defined in a BGP. Both filter and join
restrictions can be modeled in this manner. An exam-
ple on how to define join restrictions over multiple
events can be found in Figure 6 a) on line 14 to 16. The
restriction states that the high and low traffic abstrac-
tions should occur in the same location. Note that the
variable name ‘loc’ is the same in both the restrictions.

We can also define restrictions to filter individual
events:

Example 6.1. Listing 3 shows a filter restriction ex-
ample over the high and low traffic abstractions that

6https://www.w3.org/TR/owl2-manchester-syntax/
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Listing 2 Syntax of the Streaming MASSIF DSL
DSL −> NameSpace∗ Even tDec l ∗ RSPQL?
Even tDec l −> ‘NAMED EVENT’ EventName ( A b s t r a c t E v e n t | ComplexEvent )
A b s t r a c t E v e n t −> ‘AS’ D L D e s c r i p t i o n
ComplexEvent −> ‘MATCH’ ( M o d i f i e r ) ? E v e n t P a t t e r n ( Guard ) ? ( I F C l a u s e ) ?
E v e n t P a t t e r n −> E v e n t P a t t e r n E v e n t O p e r a t o r E v e n t P a t t e r n | A b s t r a c t E v e n t | ‘NOT’ E v e n t P a t t e r n
I F C l a u s e −> ‘ IF ’ ‘{ ’ ( ‘EVENT’ A b s t r a c t E v e n t ‘{ ’ BGP ‘ } ’ )∗ ‘} ’
E v e n t O p e r a t o r −> ‘AND’ | ‘OR ’ | ‘SEQ’
M o d i f i e r −> ‘EVERY’ | ‘ FIRST ’ | ‘LAST’
Guard −> ‘WHITIN’ Num ‘ ( ’ TIMEUNIT ‘ ) ’
TIMEUNIT −> ‘ s ’ | ‘m’ | ‘h ’ | ‘ d ’
EventName −> S t r i n g
Num −> [0−9]+
NameSpace −> SPARQL PREFIX SYNTAX
D L D e s c r i p t i o n −> MANCHESTER SYNTAX
BGP −> SPARQL BGP SYNTAX
RSPQL −> RSP−QL SYNTAX

Input

Module
Gateway

Context

Adapter

Context

Adapter

Context

Adapter

RSP

Engine

RSP

Engine

RSP

Engine

EP

Engine

EP

Engine

EP

Engine

Semantic

Publish/

Subscribe

Annotation

Module

Selection

Module

Abstraction

Module

Event Processing

Module

Service

C

Service

B

Service

A

Service

Module

Data Stream

Legend

MASSIF
Streaming

MASSIF

a) b)

1 PREFIX : <http://streamreasoning.org/iminds/massif/>

2 PREFIX iot: <http://IBCNServices.github.io/SSNiot#>

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn/>

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

5

6 NAMED EVENT :HighTra�cEvent AS subClassOf 

7    (HighTra�cObservation) 

8 NAMED EVENT :LowTra�cEvent AS subClassOf 

9   (LowTra�cObservation)  
10

11 NAMED EVENT :DecreasingTra�cEvent {

12 MATCH every :HighTra�cEvent 

13             SEQ :LowTra�ucEvent WITHIN (10m)

14 IF {

15  EVENT :HighTra�cEvent { ?o iot:hasLocation ?loc.}

16  EVENT :LowTra�ucEvent { ?2o iot:hasLocation ?loc.}

17   }

18 }

19 FROM NAMED WINDOW :tra�c 

20 [RANGE 5m, SLIDE 1m] ON STREAM :Tra�c

21 WHERE {

22  ?property a CongestionLevel.

23  ?property isPropertyOf ?foi.

24  ?foi isLocationOf ?loc.

25  ?loc hasPolicy ?pol.

26 WINDOW ?w {

27   ?obs a ssn:Observation.

28   ?obs ssn:observedBy ?sensor.

29   ?obs ssn:observedProperty ?property.

30   ?obs hasValue ?value.

31   FILTER(?value >0.03 || ?value<0.01)

32 }

evalRSP-QL

evalCEP

evalDL

SCB

Fig. 6. a) Example of the Streaming MASSIF DSL. b) Streaming MASSIF architecture.

restricts observations to be after 3 o’clock in the after-
noon.

Note that the SPARQL FILTER clause is optional.
When the defined BGP does not match the underlying
event, i.e. no results are returned, the event is filtered

out and not considered in the complex event process-
ing.

Example 6.2. (cont’d) If we have an observation in
the morning, e.g.:
Observation(obsx),

...
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1 NAMED EVENT : D e c r e a s i n g T r a f f i c E v e n t {
2 MATCH EVERY : H i g h T r a f f i c E v e n t
3 SEQ : L o w T r a f f i c E v e n t WITHIN (10m)
4 IF {
5 EVENT : H i g h T r a f f i c E v e n t { ? o t imeStamp ? t ime .
6 FILTER ( h o u r s ( ? t ime ) > 15) }
7 EVENT : L o w T r a f f i c E v e n t { ? o2 t imeStamp ? t ime2 .
8 FILTER ( h o u r s ( ? t ime ) >15) } }
9 }

Listing 3 DSL Event Clause

timeStamp(obsx,"2017-08-20T10:00:00"^^xsd:dateTime)

Executing the query from Example 6.1 does not pro-
duce any result because the observation was not made
after 3 o’clock in the afternoon. Thus, it is dropped and
not incorporated in the complex event processing.

6.2. Architecture

In the following, we describe the architecture of a
system that implements our DSL and, realizes the cas-
cading stream reasoning approach presented in Sec-
tion 5.

Our work is based on the MASSIF platform, i.e.
a layered, even-driven platform for data integration
in the IoT domain [11] consisting of multiple mod-
ules. MASSIF facilitates the annotation of raw sen-
sor data to semantic data and allows the development
and deployment of modular semantic reasoning ser-
vices which collaborate in order to allow scalable and
efficient processing of the annotated data. Each one
of the services fulfills a distinct reasoning task and
operates on a different ontology model. The Seman-
tic Communication Bus (SCB) facilitates collaboration
between services. Services indicate in which types of
data they are interested, referring to high-level ontol-
ogy concepts, by registering filter rules, i.e., OWL ax-
ioms, on the SCB. The annotated data from the sensors
or other sources and the derived data produced by the
various services are pushed back on the SCB and for-
warded to those services that have indicated interest in
the published data. The SCB can coordinate the data
on a high-level through the use of semantic reasoning.

Although MASSIF is an event-driven platform, it
processes one event at a time and is, thus, not able to
process streams nor capture temporal dependencies be-
tween events. However, its layered architecture and the
ability to perform service composition over high-level
concepts offer a good base to extend it into our cascad-
ing reasoning approach.

To realize our cascading stream reasoning approach,
two addition modules have been added on the MASSIF
platform, as depicted by the rounded blocks in Figure 6
b). We named the resulting platform Streaming MAS-
SIF. Figure 6 also illustrates how the DSL targets each
module. We now explain each module in more detail.

6.2.1. Selection Module
The Selection Module implements both the Stream

Processing and the Continuous Information Integra-
tion Layer of the cascading reasoning approach and
selects, through RSP, those parts of the RDF stream
that are relevant. We utilized YASPER [42], i.e., an
RSP engine recently developed, that fully implements
RSP-QL [20] semantics and can consumes RSP-QL
queries. YASPER, differently from C-SPARQL [9] or
CQELS [26] consumes time-annotated graphs instead
of time-annotated triples. The selected sub-graphs
GΩ(t), i.e. selected physical events ephy, are forwarded
to the next module. Note that multiple RSP engines
can optionally run in parallel, for example to distribute
the load of various queries. Furthermore, we utilize the
Construct Quad 7 by the Jena Engine to separate the
various selected events from each other. Otherwise, all
the events are merged together and its not clear which
triples belong to which event.

6.2.2. The Abstraction Module
The Abstraction Module implements the DL infer-

ence sub-layer. It receives the selected physical events
from the Selection Module and infers them to ab-
stracted events. The Abstraction Module consists of
a semantic publish/subscribe mechanism and allows
the subscription to abstracted events. Each service in
the service module can subscribe to events by defin-
ing event descriptions in E . When one of the physical
events can be inferred to one of the descriptions in E ,
the services that defined this description are looked-up
and the abstracted event is forwarded to these services.

If an Event Processing clause is defined, it is first
forwarded to the Event Processing Module.

Technically, the Abstraction Module operates on an
OWL reasoner, i.e. the Hermit reasoner [38], which
operates on O ∪ E .8 Each time physical events have
been selected in the Selection Module, they are added
to the ontology in the Abstraction Module. Through
the use of reasoning, we check which inferred types

7https://jena.apache.org/documentation/
query/construct-quad.html

8Note that due to the modularity of the platform, other reasoners
can easily be plugged in.
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of the individuals in the physical events are defined
in E . When the types are found, the abstracted events
are constructed using the found types, the underly-
ing physical event and the processing time. The ab-
stracted event is then forwarded to those services that
subscribed to the found types. Lastly, the events are
removed from the ontology ABox. When new events
have been selected by the underlying module, they are
added to the ontology and the types of a new events
can be checked.

6.2.3. The Event Processing Module
The Event Processing Module implements the

temporal reasoning sub-layer. When an event pro-
cessing clause has been defined, the Event Process-
ing Module receives the abstracted events defined in
the query. Each of the received abstracted events is
checked if it matches an event pattern, through the
use of the Esper CEP engine9. We choose Esper since
it supports the declarative language EPL. Note that
when multiple abstracted events are inserted at once,
they are first ordered according to their timestamp.
When filter restrictions have been defined, these re-
strictions are checked first before adding the event to
the CEP engine. When a join-restriction has been de-
tected (variables over multiple AbstractEvents with the
same name), the bindings of the those variables are
used within the CEP engine to perform the joins. When
an event pattern matches, it is forwarded to the associ-
ated service.

6.2.4. The Remaining Modules
The MASSIF platform also consists of an Input

Module that serves as the entry point of the platform
and an Annotation Module, where raw data can be
semantically annotated if necessary.

Finally, the Service Module receives the processed
data and can perform additional analysis. Through the
Service Module information need formulated using
our DSL (Section 6.1) can be issued to Streaming Mas-
sif. Therefore, services can subscribe to all underlying
modules with one query.

7. Evaluation

To evaluate Streaming MASSIF, we extended the
City Bench benchmark [1] with expressive ontology
concepts, as those described in Example 2.1 and 2.2.

9http://www.espertech.com/esper/

We also extended the ABox and added various offices
located near the monitored streets, each with a set of
random policies. Among these office policies are the
possibility to start early, to stop early, having flexible
work hours and the presence of childcare. To further
increase the complexity we also added some complex
roles which are used within the high and low traffic
modeling, e.g.:

observedFeature v observedProperty ◦

isPropertyO f

For streaming the City Bench data, we utilized RSP
Lab 10 and ran the streamers on a different node. The
evaluation was conducted on a 16 core Intel Xeon
E5520 @ 2.27GHz CPU with 12GB of RAM running
on Ubuntu 16.04.

7.1. Test1: Increasing event rate

To test the scalability of the platform, we first arti-
ficially speed up the traffic streams to see how many
events the platform can handle. Each stream in City
Bench produces data every 5 minutes. We speed up
the stream to produce multiple events per second. Fig-
ure 7 visualizes for each component, the number of
processed events, and the processing time for a spe-
cific event rate. The RSP Query Time denotes the time
to select the events within the window, the Abstrac-
tion Time denotes the time to abstract the received
events from the RSP layer to high-level concepts and
the CEP Time measures how long it takes for the pat-
tern to match when the last event arrived that caused
the pattern to match. On the x-axis we plotted the
(rounded) actual event rate as they enter the platform.
Note that each time the stream produces data, 5 ob-
servations are produced: the average speed, the vehi-
cle count, the measured time, the estimated time and
the congestion level. However, its not stated explic-
itly in the stream what kind of observation is transmit-
ted. Integrating with background knowledge is, thus,
required to filter out the congestion level observations.
This is done in the RSP layer. We evaluated our re-
sults over 8 streams and calculated the averages over
the first 120000 events. For easily calculating the pro-
cessing time in each layer, we used a tumbling win-
dow (the sliding parameters is the same as the window
width) of 2 seconds for each event rate. Using a tum-

10https://github.com/streamreasoning/rsplab
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Fig. 7. The influence of increasing event rate on the platform.

bling window, each event only occurs onces and this
simplifies the processing time calculations. To perform
the evaluation, we used the example query from Fig-
ure 6 a).

From Figure 7, we can see that the biggest selection
of events happens in the RSP layer, while less events
are selected in the abstraction layer. Furthermore, the
processing time in the Abstraction layer rises more
quickly than in the other layers, what can be expected
of a expressive reasoning process. However, we see
that when abstracting even more than 50 events, the ab-
straction time is lower than 1 second. The total latency
of the abstraction stays well below 2 seconds (the size
of the window) and thus the system stays reactive even
when processing 300 events per second.

7.2. Test2: Increasing Window Size

The performance of each layer is clearly depen-
dent on the number of considered events. We inves-
tigated the processing time of each layer when the
window size in the RSP layer increases. This forces
the processing of an increasing number of events in
each layer. Figure 8 visualizes the number of processed
events and the processing time for each layer when
the window size increases from 1 second to 100 sec-
onds. We see a clear increase in the processing time
of each layer. The Abstraction time increases exponen-

tially, what can be expected of an expressive reasoning
process. However, abstracting up to 100 events takes
about 15seconds, still a lot faster then the time it takes
for the window to slide.

7.3. Test3: Comparison with MASSIF

Since we extended the MASSIF platform to imple-
ment the adapted cascading reasoning vision, we also
measured how fast the MASSIF platform could pro-
cesses the event stream. Note however that the MAS-
SIF platform needs to perform the abstraction on all
the background data, consisting of all the informa-
tion of all the sensors, the streets, the offices, etc.
The whole background data contains more than 60000
statements. In the RSP layer we select the relevant por-
tion from the stream, but also select the relevant data
from the background knowledge. This eliminates the
need for the Abstraction layer to contain the whole
background knowledge, the TBox is most important
there. Without this selection step, the abstraction of
a single event in the MASSIF platform takes up to
20seconds. This shows that the layered approach is a
lot more scalable.
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Fig. 8. The influence of increasing window size on the platform.

8. Related Work

In this section we elaborate on the related work in
the literature and how our approach distinguishes from
these previous approaches.

EP-SPARQL [4] is an RSP engine that focuses
on event processing over basic graph patterns using
Allen’s Algebra. However, the reasoning expressivity
is limited to RDFS and the definition of event patterns
over basic graph patterns is complex compared to high-
level events.

StreamRule [33] is a two-layered platform that com-
bines RSP with ASP. However, there is no support for
additional layers such as CEP and the two layers are
not integrated in an unifying query language for easy
usage.

Ali, et al.[2] proposed an IoT-enabled communica-
tion implemented on StreamRule that performs event-
condition-actions rules in ASP. This allows to define
action rules on specific events detected in the stream.

In the CityPulse project [37], the combination of
RSP, CEP and expressive reasoning is presented. The
combination of RSP and ASP (for the expressive rea-
soning) is supported by StreamRule. In order to han-
dle CEP rules, the system can be extended program-
matically. Streaming MASSIF, on the other hand, in-
tegrates CEP seamlessly by abstracting the events and
using these abstractions for the event processing. This
can all be defined in the query language, without the
need to implement any code.

To the best of our knowledge, existing Semantic
Complex Event Processing (SCEP) solutions focus on
enriching events with semantic technologies.

Teymourian, et al. [41] proposed a knowledge-based
CEP approach where events are enriched using exter-
nal knowledge bases. The enrichment is defined us-
ing multiple SPARQL queries. However, the system is
event-based, there is no support for streaming data and
reasoning is only provided in the external knowledge
base that is used for the event enrichment. Thus, no
reasoning on the events themselves is possible.

Taylor, et al. [40] proposed a SCEP approach that
allows to generalize query definition for CEP engines,
enabling interoperability. This is done by defining
the event processing operators as ontology concepts.
These generalized queries can then be translated into a
target language, for example in Event Processing Lan-
guage (EPL). However, reasoning and streaming data
is not taken into account.

Differently from SCEP our approach for cascading
reasoning exploits CEP as an efficient alternative to
perform temporal reasoning.

9. Discussion

In the evaluation, we can see that the Abstrac-
tion Module can easily become the bottleneck with
a high number of events, therefore incremental rea-
soning techniques should be further researched. Cur-
rently, there exist no efficient expressive incremental
reasoning techniques that also incorporate data prop-



18 P. Bonte et al. /

Name Stream Continuous Information Inference Unifying
Processing Integration Entailment Selection Mediation QL

EP-SPARQL [4] Etalis RSP Rewriting RDFS & Allen Algebra CEP X X

StreamRule [33] CQELS RSP Annotation ASP Window None None
Ali et al.[2] CQELS RSP Annotation Action-Rules in ASP Window None None
CityPulse [37] CQELS RSP Annotation ASP & CEP1 Window None None
Morphstream [12] SneeQL RSP Rewriting RDFS Window X X

StreamQR [13] CQELS RSP Rewriting ELHIO Window X X

STARQL [35] Exareem RSP Rewriting DL-lite Window X X

Streaming MASSIF Yasper 1.0 RSP Annotation DL & Temporal2 Window None X
Table 2

Overview of the related work and how they relate to our generalized
Cascading Reasoning vision. 1: not integrated, 2: via CEP rules

ASP+ ECA

RDF Streams

CQELS

Ali et al.

ASP+ CEP

RDF Streams

CQELS

CityPulse

ASP

RDF Streams

CQELS

StreamRule

RDFS + Allen

RDF Streams

ETALIS (CEP)

EP-SPARQL

SPARQLstream

S2O Mappings

SneeQL, Esper

MorphStream

ELHIO

RDF Streams

CQELS

StreamQR

Fig. 9. Different approaches represented in the generalized Cascading Reasoning vision.

erty reasoning. We could easily perform the abstrac-
tion in parallel and load balance various events to in-
crease the performance. This is possible in the cases
that the events are independent of each other. When
multiple physical events should be abstracted together,
the query in the lower RSP layer could be adapted to
link them together. This would allow to scale the ab-
straction module even more since the abstraction of a
low number of events is still rather quick, i.e. less than
half a second for 30 events.

Note that other reasoning approach exists, such as
ASP, but we opted for DL since it’s a web standard and
widely adopted.

One of the limitations of the DSL is the fact that
the user still manually needs to define a query over all
the layers. The query mediation and query rewriting
process is currently not researched yet.

Our Cascading Reasoning generalization can be
used to compare different hierarchical stream reason-
ing approaches. It allows to distinguish the different
parts of an approach, identifying the layers and the
transition between them. Table 2 gives an overview of
the various presented techniques, how they compare
to Streaming MASSIF and how they fit in our gener-
alized Cascading Reasoning vision. Furthermore, Fig-
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ure 9 illustrates how the different approaches fill out
the Cascading Reasoning pyramid.

We also introduce MorphStream [12], StreamQR [13]
and STARQL [35], at first sight, non-hierarchical RSP
engines to demonstrate that these also fit our general-
ized Cascading Reasoning proposal. They can be split
up in different techniques for Stream Processing, Con-
tinuous Information Integration and Inference.

10. Conclusion and Future Work

In this paper, we presented a renewed vision on
Cascading Reasoning consisting of Stream Process-
ing, Continuous Information Integration and Inference
layers. We introduced a new layered approach based
on this renewed vision, combining RSP, DL reason-
ing and CEP to enable expressive reasoning and event
processing over high velocity streams. We described
a query languages that combines these various lay-
ers, allowing easy querying of the whole reasoning
stack without the need to write any code. Our approach
can perform expressive reasoning and event processing
over high velocity streams by selecting only the rele-
vant events from the stream. However, when the RSP
layer is not able to make this selection from the stream
and huge number of events need to be abstracted, the
platform might become slow.

In our future work, we try to tackle this issue by
incorporating load balancing and caching techniques.

We will also investigate query mediation and rewrit-
ing to automatically construct the queries on the lower
levels, based on the defined concepts on the highest
layer. This will further simplify the query definition
and bring Stream Reasoning closer to the masses.
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