
Semantic Web 1 (0) 1–5 1
IOS Press

Enhancing the Scalability of Expressive
Stream Reasoning via input-driven
Parallelisation
Thu-Le Pham a,*,**, Muhammad Intizar Ali a and Alessandra Mileo b

a Insight Centre for Data Analytics, National University of Ireland, Galway, IDA Bussiness Park, Lower Dangan,
Galway, Ireland
E-mails: thule.pham@insight-centre.org, ali.intizar@insight-centre.org
b Insight Centre for Data Analytics, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
E-mail: alessandra.mileo@insight-centre.org

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,
Country
Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. Stream reasoning is an emerging research area focused on providing continuous reasoning solutions for data streams.
The exponential growth in the availability of streaming data on the Web has seriously hindered the applicability of state-of-the-art
expressive reasoners to be applied to streaming information in a scalable way. However, we can leverage advances in continuous
processing of Semantic Web streams to reduce the amount of data to reason upon at each iteration. Following this principle, in
previous work we have combined semantic query processing and non-monotonic reasoning over data streams in the StreamRule
system. We specifically focus on the scalability of a rule layer based on a fragment of Answer Set Programming (ASP). We
recently expanded on this approach by designing an algorithm to analyse input dependency so as to enable parallel execution
and combine the results. In this paper, we expand on this solution by providing i) a proof of correctness for the approach, ii)
an extensive experimental evaluation for different levels of complexity of the input program, and iii) a clear characterization
of all the algorithms involved in generating and splitting the graph and identifying heuristics for node duplication, as well as
partitioning the reasoning process and combining the results.

Keywords: Semantic Web, stream reasoning, non-monotonic reasoning, Answer Set Programming, parallel reasoning, data
partitioning, dependency graph

1. Introduction

The variety of real-world applications in several do-
mains, such as the Internet of Things, Social Networks
and Smart Cities, requires reasoning capabilities that
can handle incomplete and potentially inconsistent in-
put streams, and extract knowledge from them to sup-

*Corresponding author. E-mail: thule.pham@insight-
centre.org.

**Do not use capitals for the author’s surname.

port decision making. While semantic technologies for
handling data streams focus on query pattern match-
ing and have limited support for complex reasoning
capabilities, logic-based non-monotonic reasoning ap-
proaches are very expressive but can be quite costly
in terms of efficiency. Expressive stream reasoning
for the Semantic Web explores advances in semantic
stream processing technologies for representing and
processing data streams on the one hand, and non-
monotonic reasoning approaches for performing com-

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:thule.pham@insight-centre.org
mailto:ali.intizar@insight-centre.org
mailto:alessandra.mileo@insight-centre.org
mailto:thule.pham@insight-centre.org
mailto:thule.pham@insight-centre.org

2 F. Author et al. / Scalable Expressive Stream Reasoning

plex rule-based inference on the other hand. This com-
bination is based on the principle of having a 2-tier ap-
proach where: i) a semantic stream query processor is
used to filter semantic data elements (typically RDF
triples), and ii) a non-monotonic reasoner is used for
computationally intensive tasks over the filtered data.
Since the grounding phase in rule-based inference is
responsible for the size of the program to be evaluated,
such a combined approach improves the scalability of
complex reasoning over Semantic Web streams by re-
ducing the input to the non-monotonic reasoner.

Current expressive reasoning systems over RDF
data streams, like ASR [11], EP-SPARQL [2], and
StreamRule [19], support non-monotonic reasoning
over data streams in different ways. In particular,
ASR uses the DLVhex solver [13], EP-SPARQL uses
ETALIS [3] which is implemented based on SWI-
Prolog1, and StreamRule uses the Clingo solver [14] as
a subprocess to infer new knowledge from data streams
and a given rule set. SWI-Prolog is a Prolog engine
which is built on SLD-resolution and unification as the
basic mechanism to manipulate data structures while
DLVhex and Clingo are ASP systems which is based
on the stable model (answer set) semantics of logic
programming [12].

In order to support these solvers for reasoning about
RDF data streams, a middle layer is required for trans-
formation between data formats. For example, the
StreamRule system intercepts the output RDF stream
query results filtered by the RDF Stream Processing
(RSP) engine and translates them into ASP syntax be-
fore streaming them into the ASP reasoner Clingo.
Given the data transformation overhead, performance
of the reasoning subprocess should be measured by not
only the processing time of the solver but also the time
required for data transformation. Moreover, the rea-
soning component needs to return results faster than
when the new input window arrives, in order to main-
tain the stability of the whole system. This requires
optimization techniques that can further speed up the
processing[16].

We address this scalability issue by an approach to
parallelization based on splitting the input stream (not
the problem) that we have first introduced in [22]. We
extend our preliminary work from [22] in this paper
with the following key contributions:

– we propose a better characterization of our formal
algorithm for analyzing dependencies among in-

1http://www.swi-prolog.org

put data based on the structure of a given logical
program (a set of logical rules). This program is
constructed under the stratified negation fragment
of normal ASP [12], which ensures uniqueness of
the solution; the algorithm characterises different
relationships between two predicates appearing in
the input data in form of so-called input depen-
dency graph;

– we provide a process that uses this input depen-
dency graph to construct a plan for partitioning
input data; when the graph is connected, it is de-
composed into subgraphs such that the number of
common nodes is as small as possible; this par-
titioning plan will guide the reasoning process to
split input data on-the-fly;

– we fully implement our approach as an extension
of StreamRule for validation and testing our algo-
rithms;

– we provide a formal proof that the correctness for
the approach under the stable model semantics of
ASP is guaranteed;

– we conduct a detailed experimental evaluation on
the effectiveness of our approach via experiments
with different levels of expressivity of the logical
program, namely: positive rules, recursive posi-
tive rules, and stratified negation. Results show
that our approach can achive higher expressitivity
and higher scalability compared to state-of-the-
art stream processing engines.

The remainder of this paper is organized as follow.
Section 2 provides the necessary preliminaries on ASP
and the StreamRule idea and conceptual framework,
and introduces our motivating example. Section 3 de-
fines in details our input dependency analysis process,
including the generation of the graph, the heuristics for
node duplication and the process of building a parti-
tioning plan. In Section 4, we report on the extension
of the StreamRule system with components in charge
of partitioning and combining the results of the infer-
ence process, and we provide a proof of correctness
of the results for the proposed method. Section 5 pro-
vides an extensive evaluation of our approach through
three different experiments. A comprehensive discus-
sion of related work is given in Section 6, followed by
concluding remarks and directions for future work in
Section 7.

http://www.swi-prolog.org

F. Author et al. / Scalable Expressive Stream Reasoning 3

2. Preliminaries & Motivating Example

2.1. Answer set programming

Answer Set Programming (ASP) is a declarative
problem solving paradigm with a rich yet simple mod-
eling language and high performance solving capabili-
ties for computationally hard problems. ASP is rooted
in deductive databases, logic programming and con-
straint solving[12]. For this paper, we focus on ASP
with stratified negation.

Syntax.
In ASP, a variable or a constant is a term2. An atom

is p(t1, ..., tn), where p is a predicate of arity n and
t1, ..., tn are terms. A literal is either a positive literal p
or a negative literal not p, where p is an atom. Normal
logic program is a program that consists of rules of the
form:

q← p1, ..., pk, not pk+1, ..., not pm

where q1, ..., qn, p1, ..., pm are atoms and n > 0,m >
k > 0.

Given a rule r as above, we define head(r) =
{q} as the head of r, while body(r) = {p1, ..., pk

, not pk+1, ..., not pm} is the body of r. body+(r) (re-
spectively, body−(r)) denotes the set of atoms occur-
ring positively (respectively, negatively) in body(r).
A rule without head literals is usually referred to as
an integrity constraint. If the body is empty, it is
called a fact. A term, an atom, a literal, a rule, a pro-
gram is ground if no variable appears in it. Accord-
ingly with the database terminology, a predicate oc-
curring only in facts is referred to as an EDB (exten-
sional database) predicate, all others as IDB (inten-
sional database) predicates. EDB predicates are rela-
tions stored in database, while IDB ones are relations
defined by one or more rules. Thus, an IDB predicate
can appear in the body or head of a rule while an EDB
predicate is only in the body. We only allow strati-
fied negation to appear in a program, i.e. the program
should contain no recursion through negation such as
b← nota, a← notb.

Semantics.
Let P be a program. The Herbrand Universe, UP, of

P is a set of all constants appearing in P. The Herbrand
Base, BP, of P is a set of all ground atoms constructible

2We do not consider functional symbols, although they are cur-
rently allowed in some extensions of ASP.

Stream
query

processor

Query

Non-monotonic
Rule Engine

Logic
Program

Web of
Data Solutions

Data
Format

Processor

Filtered Stream

Facts

Data
Format

Processor

Stream Rule

Answer
Sets

Reasoner R

Fig. 1. Conceptual architecture of StreamRule

from the predicate symbols appearing in P and the
constants of UP. ground(P) denotes the set of all the
ground instances of the rules occurring in P. An inter-
pretation, M, for P is a subset of BP. A ground rule
r is satisfied with respect to M if body+(r) ⊆ M and
body−(r) ∩ M = ∅ only if head(r) ∩ M 6= ∅. Further-
more, M is closed under a program P (or M is a model
of P) if M satisfies all rules in P, and M is logically
closed if it is consistent or contains all literals. The
reduct, PM , of P relative to M is given by {head(r)←
body+(r)|r ∈ ground(P) and body−(r) ∩ M = ∅}. M
is an answer set of P if it is a minimal set that is both
closed under PM and logically closed. If P is stratified
then M is a unique model of P.

2.2. StreamRule

StreamRule is a framework that combines the lat-
est advances in stream query processing for Seman-
tic Web data, with non-monotonic stream reasoning.
The approach is based on the assumption that not all
raw data from the input stream might be relevant for
complex reasoning, and the stream query processing
can help to reduce the information load over the logic-
based stream reasoner. The conceptual architecture of
StreamRule is shown in Figure 1. Abstraction and fil-
tering on raw streaming data are performed by a stream
query processor using query patterns as filters. The fil-
tered stream is processed by a data format processor
and returned as input facts to a non-monotonic rule
engine together with the declarative encoding of the
problem at hand. The output of the rule engine, which
we call solutions or answer sets, is fed into the data
format processor for transformation to any other for-
mat (such as back to RDF triples) for further process-
ing.

The main limitation of StreamRule is that the sta-
bility of the system depends on the ability of the rea-
soner to produce results faster than the next input win-
dow arrives. For this reason, as a first step in targeting
the scalability challenge, we focused on a mechanism
to enhance the processing time of the logic-based rea-
soner by designing a formal strategy for input depen-
dency analysis, and using it to enable parallelism at the
reasoning layer of StreamRule (the reasoner R in Fig-

4 F. Author et al. / Scalable Expressive Stream Reasoning

ure 1). A follow-up of the proposed approach is that we
can gather information on the process at the reasoning
layer that can potentially be used to dynamically adapt
the parameters of the RSP engine for adaptive scalabil-
ity management. We do not tackle this in this paper but
it is part of our ongoing work as discussed in Section
7.

For the rest of the paper, we use RSP engine to re-
fer to the semantic stream query processing engine
(e.g. C-SPARQL), solver to refer to the non-monotonic
rule engine (eg. Clingo), reasoner R to refer to the
subprocess in StreamRule which includes the solver
and the data format processor (the dashed box in Fig-
ure 1), and reasoner PR (the grey box in Figure 6 to
refer to optimized R with parallel approach that will
be detailed in following sections . The logic program
(or program) P is a set of rules (with stratified nega-
tion) in ASP. pre(P) denotes the set of predicates in
P. inpre(P) denotes predicates of input data items of
P. The reasoner R receives the input data items from
the RSP engine. We assume that unrelated predicates
are filtered out by the RSP engine through appropriate
queries. In this way, inpre(P) ⊆ pre(P). An input win-
dow (or window), W, is a set of input data items that the
reasoner R processes per computation. From the logi-
cal point of view, the data items in W can be referred to
as ground atoms. pre(W) defines the set of predicates
of ground atoms in W. Therefore, pre(W) ⊆ inpre(P).

2.3. Motivating Example

Consider the following example: A city manager
wants to know real-time events happening in the city
in order to make informed decisions on traffic man-
agement, reaction to vandalism/crime, management of
congestions, reduction of risks for drivers/cyclists/-
pedestrians, and so on. To do that, he avails of an in-
stance of the StreamRule system that integrates and fil-
ters relevant semantic streams from different sources
(via RSP engine queries), and uses them to detect
events of interest, such as traffic_jam and car_fire
as defined in the logic program P in Listing 1. P
is given as input to the solver in StreamRule, to-
gether with inpre(P) = {average_speed, car_number,
traffic_light, car_in_smoke, car_speed, car_location}.
The reasoner R is triggered whenever a new input win-
dow W arrives from the RSP engine.

As an illustrative example, assume at time t,
a filtered input window (in ASP format) arrives
as follows: W = {average_speed(newcastle, 10),
car_number(newcastle, 55), traffic_light(newcastle),

car_in_smoke(car1,high), car_speed(car1,0),
car_location(car1,dangan)}. This is probably not
presenting issues in terms of performance, but as
the number of cars, segments, traffic lights and other
events increases, here is when the problem begins.

In order to process W faster, partition-
ing W randomly as in [16] could gener-
ate wrong results. For example W1 = {aver-
age_speed(newcastle, 10), car_number(newcastle,
55), car_in_smoke(car1,high)} and W2 =
{traffic_light(newcastle), car_speed(car1,0),
car_location(car1,dangan)}. Reasoning in parallel
over these two input partitions produces as a result
the event traffic_jam(newscastle) and the action
give_notification(newcastle) is triggered, which
is not correct. The accurate answer is the event
car_fire(dangan) detected and the notification about
the dangan road segment. Partitoning randomly the
input stream may reduce the processing time of a
logic-based reasoner but we may lose the accuracy
of the results in return. Therefore, the partitioning
process should consider the relations between ground
atoms in the input window, and distribute the com-
putation accordingly across multiple instance of the
rule-set (logic program). Note that this is a different
approach than distributing the processing by splitting
the rules, and it targets instead the input predicates.
How this input analysis is done will be detailed in the
following section.

3. Input Dependency Analysis

In this section, we discuss the problem of analysing
dependency of input elements in a window W for the
reasoner R with respect to a set of ASP rules in a pro-
gram P with stratified negation. We first introduce the
concept of input dependency graph that shows how in-
put data items in W relate to each other with respect to
the logic program P. Thereafter, we present a heuristic-
based algorithm for creating a partitioning plan which
is used to split streaming input data on the fly.

3.1. Input Dependency Graph

The concept of dependency graph has been widely
used in ASP as a tool to analyse the structure of
non-ground answer set programs [9, 21]. It has been
efficiently used in a parallel instantiation algorithm
that generates a much smaller ground program equiv-
alent to a given logic program. Note that the compu-

F. Author et al. / Scalable Expressive Stream Reasoning 5

(r1) v_s low_speed (X) :− avg_speed (X,Y) , Y<20 .
(r2) many_cars (X) :− car_number (X,Y) , Y>40 .
(r3) t r a f f i c _ j a m (X) :− v_s low_speed (X) , many_cars (X) , n o t t r a f f i c _ l i g h t (X) .
(r4) c a r _ f i r e (X) :− ca r_ in_smoke (C , h igh) , c a r _ s p e e d (C , 0) , c a r _ l o c a t i o n (C ,X) .
(r5) g i v e _ n o t i f i c a t i o n (X) :− t r a f f i c _ j a m (X) .
(r6) g i v e _ n o t i f i c a t i o n (X) :− c a r _ f i r e (X) .

Listing 1: Sample rules for detecting events

tation of most ASP systems follows a two-phase ap-
proach: an instantiation (or grounding) phase gener-
ates a variable-free program which is then evaluated by
propositional algorithms in the solving phase. The in-
stantiation process in ASP is the most expensive from
a computational viewpoint and the size of the ground
program has huge effect on the performance of the
solving process. As defined in [9], a dependency graph
G is a directed graph where nodes are IDB predicates
and arcs show the relationship between a positive IDB
predicate in the body with a predicate in the head of a
rule. This graph divides the input program P into sub-
programs, according to the dependencies among the
IDB predicates of P, and identifies which of them can
be grounded in parallel.

However, in this paper, we are not partitioning the
logic program for the grounding process. We are fo-
cusing instead on partitioning the input on-the-fly and
evaluating each partition in parallel with a copy of the
whole program P. The reasons for us to follow the
input partitioning approach are: (i) input data (or in-
put facts) have a significant impact on reasoning per-
formance in a streaming scenario and can affect re-
sults more than the complexity of the rules, and (ii)
in the context of dynamic environments, the amount
of input data at each execution varies in terms of rate
and size, thus having different effects on performance.
We assume that the input predicates can be either IDB
or EDB predicates. Therefore, besides the dependen-
cies among IDB predicates defined in the dependency
graph, other relationships should be taken into ac-
count, such as between two EDB predicates, or be-
tween an IDB predicate and an EDB predicate.

In order to deal with this, we first define an extended
dependency graph from the definition in [9]. This
graph shows different types of dependency among
predicates in P by considering: i) the (transitive) rela-
tion between two predicates (both IDB and EDB) in
the body of a rule, ii) both positive and negative liter-
als.

Definition 1. Let P be a logic program. The extended
dependency graph of P is a graph GP = 〈NP, EP〉,
where:

i) NP is a set of nodes, where each node represents
a predicate in pre(P).

ii) EP = EP1 ∪ EP2 , where:

(a) EP1
contains undirected edges eu = (pu, qu)

if pu and qu occur in the body of a rule
r in P. Moreover, (pu, pu) ∈ EP1

if pu ∈
body−(r).

(b) EP2 contains directed edges ed = 〈pd, qd〉 if
qd occurs in the head of r and pd occurs in
the body of r.

Note that pu, qu, pd, qd can be either a positive or
a negative literal.

Example 1. Consider the program P in Listing 1. The
extended dependency graph GP illustrated in Figure
2 represents different relations among predicates in P
including directed and undirected edges.

average_speed very_slow_speed

car_number

many_cars

traffic_light

traffic_jam

car_in_smoke

car_speed

car_location

car_fire

give_notification

Fig. 2. Extended dependency graph GP

Based on the extended dependency graph, we intro-
duce the input dependency graph of P with respect to
inpre(P). This input dependency graph describes how
predicates in inpre(P) depend on each other. Below,
we describe the meaning of direct path that is used to
build the input dependency graph.

6 F. Author et al. / Scalable Expressive Stream Reasoning

Definition 2. A directed path from node p1 to node pn

is a sequence of nodes p1, p2, ..., pn such that 〈p1, q2〉,
〈p2, q3〉, ..., 〈pn−1, qn〉 ∈ EP2 .

Definition 3. Let P be a logic program and inpre(P)
be a set of input predicates of P. The input depen-
dency graph of P with respect to inpre(P) is an undi-
rected graph Ginpre(P)

P = 〈N inpre(P)
P , Einpre(P)

P 〉, where
N inpre(P)

P ⊂ NP is a set of nodes and Einpre(P)
P is a set

of edges. N inpre(P)
P contains a node for each predicate

in inpre(P), and ∀p, q ∈ N inpre(P)
P , (p, q) ∈ Einpre(P)

P if
one of the following conditions is satisfied:

i) p 6= q and there is a sequence of nodes
p1, p2, ..., pn−1, pn (n > 1, p1 = p, pn = q) such
that ∃!i ∈ [1, n), (pi, pi+1) ∈ EP1 and there are
two directed paths: one is from p1 to pi if p1 6= pi

and the other is from pn to pi+1 if pn 6= pi+1.
ii) p = q and ((p, p) ∈ EP1 or ∃u ∈ NP, (u, u) ∈

EP1
, 〈p, u〉 ∈ EP2

)

Example 2. Consider the extended dependency
graph GP in Example 1 with the input predicates
inpre(P) = {average_speed, car_number, traffic_light,
car_in_smoke, car_speed, car_location}. The input
dependency graph Ginpre(P)

P is shown in Figure 3.

Definition 4. Predicates p, q ∈ inpre(P) depend on
each other if there is an edge (p,q) in the input depen-
dency graph Ginpre(P)

P .

In Definition 3, the first condition represents depen-
dency between two different predicates in inpre(P)
(predicate level) while the second condition shows de-
pendency among ground atoms of a self-loop predi-
cate (atom level). Note that a self-loop predicate is one
that has an edge connecting that predicate to itself.
When two predicates (or two ground atoms) depend
on each other, it means that they can contribute to in-
fer a new fact by firing a single rule or multiple rules.
Therefore, dependent predicates (or dependent ground
atoms) need to be processed together in order to guar-
antee that rules in P are fired properly and to ensure
correctness of results.

We will conclude this section by reporting two algo-
rithms that generate an input dependency graph with
a given extended dependency graph and a set of in-
put predicates. The algorithm for building an extended
dependency graph is not reported because it is trivial
from Definition 1.

Algorithm 1 creates an input dependency graph as
defined in Definition 3. N inpre(P)

P and Einpre(P)
P con-

tain vertexes and edges of the graph. At the begin-
ning, each predicate in inpre(P) is assigned as a vertex
(Line 2). Each vertex is checked to see if it depends on
other vertex with respect to conditions defined in Def-
inition 3. In Line 5-9, the algorithm checks condition
(i) in Definition 4 by calling the underlying function
CheckDependency which is detailed in Algorithm 2.
Line 10-17 create a self-loop for a vertex if condition
(ii) in Definition 4 holds. First, it simply takes a self-
loop in EP1 that is related to the current vertex (Line
10-12). Then, it creates a self-loop for a vertex if this
vertex implies another self-loop vertex (Line 13-17).

The goal of the function CheckDependency is to
check if two separated vertexes v1 and v2 depend on
each other as per condition (i) in Definition 3. There is
basic dependency between two predicates if there is an
undirected link between them (Line 12-13). Otherwise,
the algorithm will find if there are two direct paths con-
nected by an undirected edge between those two ver-
texes. This function is extended from the breath-first
search algorithm to discover those paths. This algo-
rithm will terminate at Line 13 or when all vertexes are
checked.

Algorithm 1 Creating input dependency graph
Input: an extended dependency graph GP and a set of
input predicates inpre(P)
Output: an input dependency graph Ginpre(P)

P

1: procedure IDG(GP, inpre(P))
2: N inpre(P)

P ← inpre(P)
3: Einpre(P)

P ← {}
4: for v1 ∈ N inpre(P)

P do
5: for v2 ∈ N inpre(P)

P do
6: if CheckDependency(v1, v2,GP) then
7: Einpre(P)

P = Einpre(P)
P ∪ {(v1, v2)}

8: end if
9: end for

10: if (v1, v1) ∈ EP1
then

11: Einpre(P)
P = Einpre(P)

P ∪ {(v1, v1)}
12: end if
13: for v ∈ NP do
14: if (v, v) ∈ EP1

& 〈v1, v〉 ∈ EP2
then

15: Einpre(P)
P = Einpre(P)

P ∪ {(v1, v1)}
16: end if
17: end for
18: end for
19: return Ginpre(P)

P = 〈N inpre(P)
P , Einpre(P)

P 〉
20: end procedure

F. Author et al. / Scalable Expressive Stream Reasoning 7

Algorithm 2 Check dependency between 2 vertexes
Input: two vertexes v1, v2 and an extended depen-
dency graph GP

Output: true/false
1: procedure CHECKDEPENDENCY(v1, v2,GP)
2: queueV1← [v1]
3: queueV2← [v2]
4: checked ← {}
5: while queueV2 6= ∅ do
6: tempV2 ← queueV2.remove(0)
7: while queueV1 6= ∅ do
8: tempV1 ← queueV1.remove(0)
9: if (tempV1, tempV2) ∈ checked then

10: continued
11: end if
12: if (tempV1, tempV2) ∈ EP1

then
13: return true
14: else
15: Add child vertexes of tempV1 into

queueV1

16: end if
17: Add (tempV1, tempV2) into checked
18: end while
19: Add v1 into queueV1

20: Add child vertexes of tempV2 into
queueV2

21: end while
22: return false
23: end procedure

3.2. Partitoning Plan

In this section, we show how to use the input depen-
dency graph for building a plan to partition streaming
data on the fly. The input dependency graph is defined
as an undirected graph. Therefore, we consider seper-
ately two cases of the graph: not connected and con-
nected3.

The input dependency graph Ginpre(P)
P that is

not connected induces naturally a subdivision of
inpre(P) into several connected components (or
components). A connected component of an undi-
rected graph is a maximal connected subgraph of the
graph. For instance, Ginpre(P)

P in Figure 3 decomposes
inpre(P) into two components {average_speed,
traffic_light, car_number} and {car_in_smoke,
car_speed, car_location}. These components are used

3An undirected graph is connected if for every pair of vertices,
there is a path in the graph between those vertices.

as a partitioning plan in the partitioning process for
splitting ground atoms in a window on-the-fly.

However, there are some cases where the input de-
pendency graph Ginpre(P)

P is connected so that it is
not straightforward to create connected components of
inpre(P). For example, consider the logic program P′

which includes P in Listing 1 and the following rule:

(r7) t r a f f i c _ j a m (X) :− c a r _ f i r e (X) ,
many_cars (X) .

Assume that inpre(P′) = inpre(P). The input de-
pendency graph Ginpre(P′)

P′ is shown in Figure 4. This
graph is connected. Our data partitioning approach can
not be applied if the input dependency graph can not
be decomposed as in this case. To cope with this issue,
we introduce the decomposing process to divide the
graph by duplicating some common nodes. Algorithm
3 describe this process. The algorithm has two main
steps: (1) finding all maximal cliques of the graph, (2)
(heuristic) merge two cliques for which the ratio be-
tween common vertexes and different vertexes is big-
ger than 0.5 (Line 8). A clique C is a subset of the
node set of a graph, such that there exists an edge be-
tween each pair of nodes in C. A maximal clique is a
clique that cannot be extended by adding more nodes.
Line 2 computes all maximal cliques of the input de-
pendency graph by using a function supported in the
Tookit class of the graphstream package 4. After that,
the algorithm checks for each pair of cliques whether
they can be merged together. This alorithm always ter-
minates when it can not find any pair of cliques that
verify the condition in Line 8.

average_speed

car_number

traffic_light

car_in_smoke

car_speed

car_location

Fig. 3. Input dependency graph Ginpre(P)
P

Example 3. Consider the input dependency graph
Ginpre(P′)

P′ in Figure 4. Step 1 of the Algorithm 3
finds two maximal cliques C1 = {traffic_light, aver-
age_speed, car_number} and C2 = {car_in_smoke,

4http://graphstream-project.org

8 F. Author et al. / Scalable Expressive Stream Reasoning

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location

Fig. 4. Input dependency graph Ginpre(P′)
P′

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location
car_number

Fig. 5. Output of the decomposing process for Ginpre(P′)
P′

Algorithm 3 Decomposing process

Input: input dependency graph Ginpre(P)
P

Output: Partitioning plan

1: procedure DECOMPOSEIDG(Ginpre(P)
P)

2: cliques← getMaximalCliques(Ginpre(P)
P)

3: while true do
4: flag← false
5: for each (C1 6= C2) ∈ cliques do
6: nCNodes← |intersect(C1,C2)|
7: nDNodes← |C1| + |C2| - 2*nCNodes
8: if nCNodes/nDNodes > 0.5 then
9: Add merge(C1,C2) into cliques

10: Remove C1,C2 from cliques
11: flag← true;
12: break
13: end if
14: end for
15: if !flag then
16: break
17: end if
18: end while
19: return cliques
20: end procedure

car_speed, car_location}. These two cliques are not
merged since the rate between common predicates and
different predicates is 1

5 < 0.5. Therefore, they are
considered as two components in the partitioning plan

Logical
Program

Find input
dependency graph

Input
predicates

Design tim
e

Run tim
e Stream

query
processor

Query

Web of
Data

Solutions

Reasoner RFiltered Stream
Partitioning

Handler
Reasoner R

Combining
Handler. .

 .

Input
dependency

graph

Partitioning
Plan

Decomposing
Process

Reasoner PR
Extended StreamRule

Fig. 6. The Extended StreamRule

(see Figure 5), which guides the parallel reasoning
process.

4. Parallel Reasoning in StreamRule

4.1. Implementation

The StreamRule framework extended with the parti-
tioning process described in this paper is shown in Fig-
ure 6. The extension consists of the partitioning han-
dler and the combining handler in the reasoning layer.
The partitioning handler splits an input window W
coming from the RSP engine into several sub-windows
taking into account the input dependency. The combin-
ing handler combines outputs from parallel instances
of the reasoner. For the realization of the partition-
ing process, the analysis of input dependency is made
available within the framework initially at design time.
To achieve this, a logic program and a set of input pred-
icates are given in advance in order to build an input
dependency graph as defined in Definition 3. Then the
graph decomposing process (see Section 3.2) builds a
partitioning plan by decomposing this graph into sev-
eral components with their duplicated predicates.

The partitioning handler. At run-time, the parti-
tioning handler starts to split an input window on-the-
fly by using the partitioning plan provided at design-
time. Algorithm 4 shows the partitioning process.
First, the group() method classifies items in the win-
dow by their predicates (Line 3). For each group of
items, the algorithm identifies a set of communities’
IDs that group belongs to based on the partitioning
plan (Line 5). Finally, it adds that group into the proper
partitions corresponding to those IDs.

The combining handler. Given a stratified negation
program P and an input window W, the answers pro-
vided by R over P and W (notated as AnsP(W)) are
computed as:

AnsP(W) =

n⋃
i=1

AnsP(Wi)

F. Author et al. / Scalable Expressive Stream Reasoning 9

Where Wi (i = 1..n) is a partition of W provided by the
partitioning handler.

Algorithm 4 Partitioning method
Input: a partitioning plan ρ and an input window W
Output: sub-windows of W

1: procedure PARTITION(ρ,W)
2: Partitions← [];
3: G← group(W);
4: for g ∈ G do
5: C← findCommunities(ρ, g.predicate);
6: for c ∈ C do
7: Add g.items into Partitions[c];
8: end for
9: end for

10: return Partitions;
11: end procedure

4.2. Correctness

In order to ensure our approach provides all and only
the expected results when the input is split and pro-
cessed in parallel, we sketch a correctness proof in this
section.

Proposition 1. Given Ginpre(P)
P that is not connected

and W is an input window such that pre(W) ⊆
inpre(P):

AnsP(W) =

n⋃
i=1

AnsP(Wi)

where W =
⋃n

i=1 Wi, and pre(Wi) are connected com-
ponents of Ginpre(P)

P .

Proof. Assume that AnsP(W) 6=
⋃n

i=1 AnsP(Wi).
This can be the case only if one of the two conditions
holds:

i) ∃a ∈ AnsP(W) such that a /∈
⋃n

i=1 AnsP(Wi)
ii) ∃a ∈

⋃n
i=1 AnsP(Wi) such that a /∈ AnsP(W)

where a is a new fact inferred from the reasoning pro-
cess.

If the condition (i) holds then there is at least one
fact a that is missing after parallel reasoning over
Wi, i ∈ [1, n]. This can happen either because a is in-
ferred from a recursive rule, or it is inferred from one
or more predicates. If a is created by firing a recur-
sive rule with a self-loop (eg. a(...) : −a(...)), then it
is impossible to have a missing when reasoning in par-

allel, since the parallel procedure is based on splitting
at predicate level, not at ground atom level. Therefore,
all ground versions of predicate a are treated together.
When a is inferred based on one predicate only, this
predicate must be in at least one of the Wi, and there-
fore it will be in the union. When a is inferred from
at least two predicates p and q where p 6= q, p and
q can either depend on each other via one rule or via
multiple rules. In both cases there is a link between p
and q in Ginpre(P)

P . Then condition (i) would hold only
when p ∈ Wi and q ∈ W j such that Wi 6= W j. This in-
validates the hypotheses that Ginpre(P)

P is not connected
and pre(Wi) are connected components of Ginpre(P)

P .
If condition (ii) holds, that means the parallel rea-

soning produces more inferred results than reason-
ing on whole window W. This can only be the case
due to the presence of negation-as-failure in a rule.
Given the way self-loops are created for a predicate
with negation-as-failure as per Definition 1, all of the
ground atoms of that predicate are going to be pro-
cessed together, which would not be the case when
condition (ii) holds.

Proposition 2. Given Ginpre(P)
P that is connected and

W is an input window such that pre(W) ⊆ inpre(P):

AnsP(W) =

n⋃
i=1

AnsP(Wi)

where W =
⋃n

i=1 Wi, and pre(Wi) are computed by
Algorithm 3.

Proof. When Ginpre(P)
P is connected, for any two

components pre(Wi) and pre(W j) (i 6= j) that have
some links connecting them, Algorithm 3 makes them
"disconnected" by duplicating common predicates that
needed to be present in two components. In this way,
all ground atoms of that common predicate will appear
in both Wi and W j. Therefore, the correctness of the
parallel reasoning process is maintained as proved in
Proposition 1.

5. Evaluation

We evaluate the performance of our proposed rea-
soner PR on input programs with different levels of
expressivity: positive rules (experiment 1), positive re-
cursive rules (experiment 2), and stratified negative
rules (experiment 3). In each experiment, we com-
pare the performance against state-of-the-art engines

10 F. Author et al. / Scalable Expressive Stream Reasoning

supporting the same level of expressivity with re-
spect to two metrics: latency and memory consump-
tion. Latency refers to the time consumed by the
engines between the input arrival and output gen-
eration while memory consumption reflects the us-
age of system memory during execution. The experi-
ments were conducted on a machine with 24-core In-
tel(R) Xeon(R) 2.40 Ghz and 96G RAM. We used
Java 1.8 with heap size from 5GB to 20GB for C-
SPAQRL and Clingo 4.5.4 for the reasoners. The ex-
periments code and data is available at https://github.
com/ThuLePham/SR_Experiments.

5.1. Experiment 1: Positive rules

In this experiment, we selected C_SPARQL as a
comparable system to handle positive rules. We did
not consider CQELS because its processing mode does
not allow certain positive rules to be expressed: both
PR and C_SPARQL process streaming data in batches
while CQELS processes every new data item immedi-
ately and therefore cannot reason about elements ap-
pearing in the same window. We compare PR against
C_SPARQL by using the well-known stream process-
ing benchmark CityBench[1]. In particular we use
query Q1, Q2, and Q10 as a representative sample in
terms of number of query patterns and presence of
join operators. Details of those queries are available at
CityBench github5. To make sure that both engines re-
turn the same result format (triple) for a fair compari-
son, we modify the SELECT statement in both queries
to a CONSTRUCT statement, and we refer to them
as to Q1C, Q2C, and Q10C respectively. We translate
queries Q1C, Q2C, and Q10C into ASP positive rule-
sets for PR. We refer to those ruleset as R1C, R2C,
and R10C respectively. Listing 2 shows the rule set
obtained by translating Q1C. We evaluate latency and
memory consumption of the two engines by increas-
ing the input streaming rate. The streaming rate can
be changed by changing the frequency parameter in
the CityBench configuration. We stream data for 10
minutes with two different frequencies f = 1 and
f = 2. Results shown in Figure 7 and Figure 9 in-
dicate that the latency for PR is minimal compared
to C_SPARQL in both frequencies. Also, it is notice-
able that the memory consumption of PR is less than
a half of C_SPARQL memory consumption (see Fig-
ure 8 and Figure 10). Notice that with those queries

5https://github.com/CityBench/Benchmark

in CityBench, the input dependency graph is strongly
connected (there is an edge between two vertexes),
therefore the parallel optimization cannot be exploited.

5.2. Experiment 2: Recursive positive rules

For the experiment with recursive positive rules that
are not supported by C_SPARQL, we compare PR
against R and Jena reasoners6 by using a widely used
benchmark for reasoning systems, the Lehigh Uni-
versity Benchmark (LUBM[18]). We select different
benchmark for the experiment 2 due to limitations re-
garding expressivity of rules in CityBench. In order
to evaluate these engines, we create a set of rules as
in Listing 3 which includes 4 recursive rules over 14
rules. We use Univ-Bench Artificial Data Generator7

to generate and stream data to the engines. Due to the
fact that the Jena reasoner does not support data stream
processing, we run this experiment in two settings:
static and streaming.

Static setting. In this setting, we evaluate PR, R and
Jena reasoners with different sizes of input data from
5k to 100k (k=1000) triples. We trigger each engine
3 times per each input data size and take the average.
Figure 11 and Figure 12 show the effect over latency
and memory consumption with increasing number of
triples for the three engines. A closer look at the re-
sults in Figure11 reveals that PR outperforms R over
subsequent increase from 10k to 100k (R can not pro-
cess for 60k and 100k triples). Compare to Jena, PR is
slightly slower when the input size is smaller than 30k.
However, PR is considerably faster than Jena when the
number of triples is bigger than 30k. For memory con-
sumption, Figure 12 shows that all engines have in-
creasing memory consumption issue but Jena seems to
be better at memory management when increasing the
number of input triples.

Streaming setting. In the streaming setting, we trig-
ger PR and R by streaming triples for 10 minutes with
various rates from 1k to 5k triples/second (k = 1000).
We use the time-based window size of 3 seconds with
sliding step of 2 seconds. Figure 13 reports latency ob-
served from PR and R. It shows that PR performs as
R at streaming rate 1k triples/second. The reason for
this is that the number of input triples is small enough
and the Clingo solver does not suffer from exponen-
tial grounding. However, we observe a benefit of par-
allel optimisation in PR at the streaming rates 3k and

6https://jena.apache.org/documentation/inference/
7https://github.com/rvesse/lubm-uba

https://github.com/ThuLePham/SR_Experiments
https://github.com/ThuLePham/SR_Experiments
https://jena.apache.org/documentation/inference/
https://github.com/rvesse/lubm-uba

F. Author et al. / Scalable Expressive Stream Reasoning 11

o b s e r v e r B y (ObId) :− s sn_obse rvedBy (ObId , " _ A a r h u s T r a f f i c D a t a 1 8 2 9 5 5 ") .
o b s e r v e r B y (ObId) :− s sn_obse rvedBy (ObId , " _ A a r h u s T r a f f i c D a t a 1 5 8 5 0 5 ") .
_ r e s u l t (ObId , V) :− o b s e r v e r B y (ObId) , s a o _ h a s V a l u e (ObId , V) ,

s s n _ o b s e r v e d P r o p e r t y (ObId , P) , r d f _ t y p e (P , " c t _ C o n g e s t i o n L e v e l ") .

Listing 2: Rules translated from query Q1 in CityBench

0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 7. Latency (f = 1)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 8. Memory consumption (f =1)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 9. Latency (f = 2)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

R1C R2C R10C Q1C Q2C Q10C

Fig. 10. Memory consumption (f =2)

0

100

200

300

400

500

600

700

800

5k 10k 30k 60k 100k

La
te
nc
y	
(s
)

Number	 of	triples

R PR Jena

Fig. 11. Latency (recursive rules with static setting)

0

500

1000

1500

2000

2500

3000

3500

5k 10k 30k 60k 100k

M
em

or
y	
(M

B)

Number	 of	triples

R PR Jena

Fig. 12. Memory consumption (resursive rules with static
setting)

5k triples/second when PR is much faster than R. For
memory consumption that is illustrated in Figure 14,
PR consumes slightly less memory than R. The figures
also show that there is a considerably increase in mem-

ory consumption when streaming rate increases from

1k to 5k triples/seconds.

12 F. Author et al. / Scalable Expressive Stream Reasoning

p r e f i x r d f : < h t t p : / / www. w3 . org /1999/02/22 − r d f−syn t ax−ns # >.
p r e f i x un i be n : < h t t p : / / www. l e h i g h . edu / ~ zhp2 / 2 0 0 4 / 0 4 0 1 / univ−bench . owl # >.

(r1) r d f _ t y p e (X, " P r o f e s o r ") :− r d f _ t y p e (X, " u n i b e n _ F u l l P r o f e s s o r ") .
(r2) r d f _ t y p e (X, " P r o f e s o r ") :− r d f _ t y p e (X, " u n i b e n _ A s s o c i a t e P r o f e s s o r ") .
(r3) r d f _ t y p e (X, " P r o f e s o r ") :− r d f _ t y p e (X, " u n i b e n _ A s s i s t a n t P r o f e s s o r ") .
(r4) canBecomeDean (X,U) :− r d f _ t y p e (X, " P r o f e s s o r ") , un iben_worksFor (X,D) ,

u n i b e n _ s u b O r g a n i z a t i o n O f (D,U) .
(r5) canBecomeHeadOf (X,D) :− un iben_worksFor (X,D) .
(r6) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :− u n i b e n _ r e s e a r c h I n t e r e s t (X, R) ,

u n i b e n _ r e s e a r c h I n t e r e s t (Y, R) .
(r7) commonPu l i ca t ion (X,Y) :− u n i b e n _ p u b l i c a t i o n A u t h o r (P ,X) ,

u n i b e n _ p u b l i c a t i o n A u t h o r (P ,Y) .
(r7) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :− commonPul i ca t ion (X,Y) .
(r8) u n i b e n _ t e a c h e r O f (Y, C) :− c o m m o n R e s e a r c h I n t e r e s t s (X,Y) , u n i b e n _ t e a c h e r O f (X, C) .
(r9) c o m m o n R e s e a r c h I n t e r e s t s (X,Y) :− u n i b e n _ a d v i s o r (X, Z) , u n i b e n _ a d v i s o r (Y, Z) .
(r10) c a n R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :− u n i b e n _ a d v i s o r (X, Z) .
(r11) c a n R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :− t e a c h e s (Z ,X) .
(r12) t e a c h e s (X,Y) :− u n i b e n _ t e a c h e r O f (X, C) , u n i b e n _ t a k e s C o u r s e (Y, C) .
(r13) t e a c h e s (X,Y) :− u n i b e n _ t e a c h i n g A s s i s t a n t O f (X, C) , u n i b e n _ t a k e s C o u r s e (Y, C) .
(r14) s u g g e s t A d v i s o r (X,Y) :− t e a c h e s (Y,X) .

Listing 3: A set of ASP rules inspired from LUBM

0

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 13. Latency (recursive rules with streaming setting)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 14. Memory consumption (resursive rules with
streaming setting)

5.3. Experiment 3: Stratified negation rules

We now focus on a ruleset which has stratified nega-
tions. We modify rules r5, r11 and r14 in the ruleset
of experiment 2 with 3 negation-as-failure atoms as in
Listing 4. As a result the experimental ruleset now in-
cludes 4 recursive rules and 3 negation-as-failure rules
over 14 rules. We compare PR against R only since
the Jena reasoner does not support negation-as-failure.
Similar to experiment 2, we evaluate two engines for
10 minutes with various streaming rates from 1k to
5k triples/second. Figure 15 and Figure 16 illustrate a
similar pattern in latency and memory consumption as
observed in the experiment 2. PR has faster reasoning

time at streaming rates 3k and 5k triples/second, but
consumes slightly higher memory compared to R at 5k
triples/seconds.

6. Related Works

Parallel strategies were important features of
database technology in the nineties in order to speed-
ing up the execution of complex queries [8]. In Seman-
tic Web, the parallelism in reasoning has been studied
in [20, 23–25] where a set of machines is assigned a
partition of the parallel computation. [20] has a dis-
tributed process over large amounts of RDF data us-

F. Author et al. / Scalable Expressive Stream Reasoning 13

(r′5) canBecomeHeadOf (X,D) :− un iben_worksFor (X,D) , un iben_headOf (Z ,D) ,
n o t c o m m o n R e s e a r c h I n t e r e s t s (X, Z) .

(r′11) c a n n o t R e q u e s t R e c o m m e n d a t i o n L e t t e r (X, Z) :− t e a c h e s (Z ,X) , n o t u n i b e n _ a d v i s o r (X, Z) .
(r′14) s u g g e s t A d v i s o r (X,Y) :− t e a c h e s (Y,X) , n o t u n i b e n _ a d v i s o r (X, Z) .

Listing 4: Negation as failure rules

-1000

1000

3000

5000

7000

9000

11000

13000

15000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 15. Latency (recursive and stratified negation rules)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Fig. 16. Memory consumption (recursive and stratified
negation rules)

ing a proposed divide-conquer-swap strategy, which
extends the traditional approach of divide-and-conquer
with an iterative procedure whose result converges to-
wards completeness over time. Similarly, [25] pro-
poses a technique for materialising the closure of an
RDF graph based on MapReduce [10]. The authors in
[24] also use MapReduce to explore the reasoning in
the form of defeasible logic. They restrict this logic to
the argument defeasible logic. Afterwards, they apply
a similar approach to systems of well-founded seman-
tics [23]. While the works in [20, 25] focus on mono-
tonic reasoning, [23, 24] examine non-monotonic rea-
soning over massive data. However, these attempts do
not consider the streaming setting and do not rely on
the stable model semantics.

In ASP, several works about parallel techniques for
the evaluation of a logic program have been proposed
[4, 9, 15, 17, 21], focusing on both phases of the ASP
computation, namely grounding and solving. Concern-
ing the parallelisation of the grounding phase, the work
in [4] is applicable only to a subset of the program
rules. Therefore, in general, this work is unable to ex-
ploit parallelism fruitfully in the case of programs with
a small number of rules. [9] explores some structural
properties of the input program via the defined depen-
dency graph in order to detect subprograms that can be
evaluated in parallel. [21] extends this work with paral-
lelism in three different steps of the grounding process:
components, rules, and single rule level. The first level

divides the input program into subprograms, accord-
ing to the dependency graph among IDB predicates of
that program. The second level allows for concurrently
evaluating the rules within each subprogram. The third
level partitions the extension of a single rule literal into
a number of subsets. This step is especially efficient
when the input program consists of few rules and two
first levels have no effects on the evaluation of the pro-
gram. For the solving step which is carried out after
the grounding step, [17] proposes a generic approach
to distribute the searching space in order to find the
answer sets, which permits exploitation of the increas-
ing availability of clustered and/or multiprocessor ma-
chines. [15] introduces a conflict-driven algorithm to
compute the answer sets based on constraint process-
ing and satisfiability checking. In short, [4, 9, 21] focus
on parallel instantiation by splitting a logic program
in order to obtain a smaller ground program, [15, 17]
compute the answer sets from that ground program in
parallel. These approaches have been implemented in
state-of-the-art ASP solvers such as Clingo and DLV.
In this paper, we are not partitioning the logic pro-
gram. We are focusing instead on partitioning the input
and evaluating each partition on a different copy of the
whole program with the intuition that this approach is
data-driven and can result in a faster run-time analysis
since it does not to consider the whole program any-
way, but only the rules that are triggered based on the
(partitioned) streaming input.

14 F. Author et al. / Scalable Expressive Stream Reasoning

7. Conclusion and Future Work

Scalability is a key challenge for the applicability of
reasoning techniques to rapidly changing information.
In this paper we consider the challenge of creating new
semantic knowledge from diverse and dynamic data
for complex problem solving, and doing that in a scal-
able way. To address this challenge, we focus on an
approach that leverages semantic technologies to inte-
grate and pre-process RDF streams on one side, and
expressive inference enhanced with parallel execution
on the other side.

Building upon our previous work, and following up
on our initial investigation of the trade-off between
scalability and expressivity of rule-based reasoning
over streaming RDF data, in this paper we provided
a clear characterization and formal definition of our
aproach to parallelization of stream reasoning by input
dependency analysis (both at the predicate and at the
atom level) that was first introduced in [22]. We imple-
mented the proposed approach as an extention of the
StreamRule reasoner, and provided a proof of correct-
ness under the assumption that no recursion through
negation is present in the rules, thus guaranteeing the
uniqueness of the solution. Furthermore, we consid-
ered the different levels of expressivity that are sup-
ported by the reasoning layer of our prototype im-
plementation, and conducted a detailed experimental
evaluation by comparison with different systems based
on their expressivity.

Our performance evaluation demonstrates that the
combination of RDF Stream Processing and ASP-
based reasoning for heterogeneous and highly dynamic
data is possible and promising, even when recursion
and default negation are used, and that the performance
does not degrade for simpler tasks, thus being compa-
rable with alternative systems.

Stream reasoning is a new and active area of re-
search within the Semantic Web community and the
Knowledge Representation and Reasoning community
in general, and there are many open questions and in-
teresting directions for investigation that we are cur-
rently working on as next steps, as discussed in the re-
mainder of this section.

In order to avail of the full power of ASP-based rea-
soning, the ability to generate multiple solutions is key,
but this requires a deeper investigation on how correct-
ness can be maintained when partitioning and merging
results in the presence of multiple answer sets. This is
a key step we are currently investigating to exploit the

full expressivity of ASP-based reasoning for semantic
streams.

Another direction for investigation is related to the
definition of multiple heuristics for splitting the graph
and duplicating node. Our current solution is based on
finding and merging cliques based on a threshold score
on the ration between common and different vertexes,
to decide where to split and duplicate. Different heuris-
tics that also consider the size of the cliques and that
aim at load balancing would contribute to the over-
all performance of the system. Leveraging information
about the distribution of ground atoms across the dif-
ferent predicates could also be a good information to
design better heuristics and for load balancing. This
could also inform the current partitioning function so
that the splitting process does not rely on predicate-
level analysis only. We believe this can have an impor-
tant effect on computation time that needs to be further
investigated.

In terms of comparison with similar systems, we
recently became aware of two engines for complex
stream reasoning we didn’t know about at the time
the paper was written and the experiments performed.
Ticker [7] relies on incremental Answer Set Program-
ming and has some support for non-stratified pro-
grams, while Laser [5] is an engine that implements
a fragment of the LARS framework [6] and it also
relies on incrementality. Ticker focuses on enhancing
the ability of ASP-based reasoning to be applied to
streams, and therefore is evaluated against the non-
incremental version of the state-of-the-art ASP solver
Clingo. Laser instead is a new implementation based
on the LARS framework, which is aimed at capturing
stream reasoning in general and is therefore compared
against state-of-the-art RSP engines for performance.

Despite incremental evaluation and parallel execu-
tion are different ways of tackling the scalability issue,
we believe a comparison with these sytems in terms of
expressivity vs. scalability trade-off will enable us to
share important insights for future work and advances
in the Stream Reasoning field, and is therefore part of
our ongoing work.

References

[1] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable
benchmark to evaluate rsp engines using smart city datasets.
In International Semantic Web Conference, pages 374–389.
Springer, 2015.

F. Author et al. / Scalable Expressive Stream Reasoning 15

[2] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. Ep-sparql:
a unified language for event processing and stream reasoning.
In Proceedings of the 20th international conference on World
wide web, pages 635–644. ACM, 2011.

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream
reasoning and complex event processing in etalis. Semantic
Web, 3(4):397–407, 2012.

[4] M. Balduccini, E. Pontelli, O. Elkhatib, and H. Le. Issues in
parallel execution of non-monotonic reasoning systems. Par-
allel Computing, 31(6):608–647, 2005.

[5] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive stream
reasoning with laser. In International Semantic Web Confer-
ence, pages 87–103. Springer, 2017.

[6] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Lars: A
logic-based framework for analyzing reasoning over streams.
In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[7] H. Beck, T. Eiter, and C. Folie. Ticker: A system for incremen-
tal asp-based stream reasoning. Theory and Practice of Logic
Programming, pages 1–20, 2017.

[8] F. Cacace, S. Ceri, and M. Houtsma. A survey of parallel exe-
cution strategies for transitive closure and logic programs. Dis-
tributed and Parallel Databases, 1(4):337–382, 1993.

[9] F. Calimeri, S. Perri, and F. Ricca. Experimenting with paral-
lelism for the instantiation of asp programs. Journal of Algo-
rithms, 63(1):34–54, 2008.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[11] T. M. Do, S. W. Loke, and F. Liu. Answer set programming for
stream reasoning. In Advances in Artificial Intelligence, pages
104–109. Springer, 2011.

[12] T. Eiter, G. Ianni, and T. Krennwallner. Answer set program-
ming: A primer. In Reasoning Web. Semantic Technologies for
Information Systems, pages 40–110. Springer, 2009.

[13] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Dlv-hex:
Dealing with semantic web under answer-set programming. In:
Proc. of ISWC, 2005.

[14] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu,
and T. Schaub. Answer set programming for stream reasoning.
CoRR, abs/1301.1392, 2013.

[15] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven an-
swer set solving: From theory to practice. Artificial Intelli-
gence, 187:52–89, 2012.

[16] S. Germano, T.-L. Pham, and A. Mileo. Web stream reasoning
in practice: on the expressivity vs. scalability tradeoff. In Web
Reasoning and Rule Systems, pages 105–112. Springer, 2015.

[17] J. Gressmann, T. Janhunen, R. E. Mercer, T. Schaub, S. Thiele,
and R. Tichy. Platypus: A platform for distributed answer set
solving. In International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 227–239. Springer, 2005.

[18] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):158–182, 2005.

[19] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth.
Streamrule: a nonmonotonic stream reasoning system for the
semantic web. In Web Reasoning and Rule Systems, pages 247–
252. Springer, 2013.

[20] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and
F. van Harmelen. Marvin: Distributed reasoning over large-
scale semantic web data. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(4):305–316, 2009.

[21] S. Perri, F. Ricca, and M. Sirianni. Parallel instantiation of asp
programs: techniques and experiments. Theory and Practice of
Logic Programming, 13(2):253–278, 2013.

[22] T.-L. Pham, A. Mileo, and M. I. Ali. Towards scalable non-
monotonic stream reasoning via input dependency analysis. In
Data Engineering (ICDE), 2017 IEEE 33rd International Con-
ference on, pages 1553–1558. IEEE, 2017.

[23] I. Tachmazidis, G. Antoniou, and W. Faber. Efficient com-
putation of the well-founded semantics over big data. arXiv
preprint arXiv:1405.2590, 2014.

[24] I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas. To-
wards parallel nonmonotonic reasoning with billions of facts.
In KR, 2012.

[25] J. Urbani, S. Kotoulas, E. Oren, and F. Harmelen. Scalable
distributed reasoning using mapreduce. In Proceedings of the
8th International Semantic Web Conference, pages 634–649.
Springer-Verlag, 2009.

	Introduction
	Preliminaries & Motivating Example
	Answer set programming
	Syntax.
	Semantics.

	StreamRule
	Motivating Example

	Input Dependency Analysis
	Input Dependency Graph
	Partitoning Plan

	Parallel Reasoning in StreamRule
	Implementation
	Correctness

	Evaluation
	Experiment 1: Positive rules
	Experiment 2: Recursive positive rules
	Experiment 3: Stratified negation rules

	Related Works
	Conclusion and Future Work
	References

