
Semantic Web 0 (0) 1 1
IOS Press

XMLSchema2ShEx: Converting XML
validation to RDF validation
Herminio Garcia-Gonzalez a,∗ Jose Emilio Labra-Gayo a,∗∗

a Department of Computer Science, University of Oviedo, C/ Federico García Lorca S/N 33007

Abstract. RDF validation is a new topic where the Semantic Web community is focusing attention while in other communities,
like XML or databases, data validation and quality was considered a key part of their ecosystem. On the other hand, there is
a recent trend to migrate data from different sources to semantic web formats. These transformations and mappings between
different technologies come at a price. In order to facilitate this transformation, we propose a set of mappings that can be used
to convert from XML Schema to Shape Expressions (ShEx)—one of the recent RDF validation languages—. We also present
a prototype that implements a subset of the mappings proposed, and an example application to obtain a ShEx schema from
an XML Schema one. We consider that this work and the development of other format mappings could drive to a new era of
semantic-aware and interoperable data.

Keywords: ShEx, XML Schema, Shape Expressions, formats mapping, data validation

1. Introduction

Data validation is one of the key areas when nor-
malisation and reliance are desired. Normalisation is
desired as a way of making a dataset more trustwor-
thy and even more useful to possible consumers be-
cause of its predictable schema. Validation can excel
data cleansing, querying and standardisation. In words
of P.N. Fox et.al.: “Procedures for data validation in-
crease the value of data and the users’ confidence in
predictions made from them. Well-designed data man-
agement systems may strengthen data validation itself,
by providing better estimates of expected values than
were available previously.” [12]. Therefore, validation
is a key field of data management.

XML Schema [4] was designed as a language to
make XML validation possible and with more features
than DTDs [3]. With XML Schema, developers can de-
fine the structure, constraints and documentation of an
XML vocabulary. Alongside the appearance of DTDs
and XML Schema, other alternatives (such as Relax
NG [7] and Schematron [13]) were proposed.

*Email: herminiogg@gmail.com
**Email: labra@uniovi.es

Unlike XML, RDF lacked a standard schema lan-
guage. Some alternatives were OWL and RDF Schema;
however, they do not cover completely what XML
Schema does with XML [29]. For this purpose, Shape
Expressions (ShEx) [25] was proposed to fulfill the
requirement of a validation language for RDF [26],
and SHACL has recently become a W3C recommen-
dation [16].

As many documents and data are persisted in XML,
migration and interoperability needs are nowadays
more pressing than before, many authors have pro-
posed conversions from XML to RDF [20,8,1,5],
which have the goal of transforming XML data to Se-
mantic Web formats.

Although these conversions enable users to mi-
grate their data to Semantic Web technologies, a lack-
ing process when converting XML to RDF is valida-
tion. How to be ensure that the conversion has been
done correctly and that both versions—in different lan-
guages—are defining the same type, i.e. how to mi-
grate all the effort put in validation mark-up and pre-
serve this functionality in the new platform.

Conversions between XML and RDF and between
XML Schema and ShEx are necessary to alleviate the
gap between semantic technologies and more tradi-

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 /

tional ones. With that in mind, providing migrations
from in-use technologies to semantic technologies can
enhance the migration possibilities. Although we con-
sider that generic approaches for some of these con-
versions are not going to be valid in all cases, in other
cases like small companies or low budget projects they
can make their point as initial or by-default transfor-
mations. Taking TEI [10] as an example, digital hu-
manities can take the benefit of Semantic Web ap-
proaches [28,27]. There are a lot of manuscripts tran-
scribed to XML that can be converted to RDF. But
transcribers are not going to deal with the underly-
ing technology despite they can benefit from it [19].
Those are the cases where generic approaches can of-
fer a solution and, therefore, automatic conversion of
schemata has its space when transformations can be
checked.

With that problem in mind, the questions that we
want to address in the present work are the following:

– Is a mapping between XML Schema and ShEx
reachable?

– In case this mapping is possible, how can one
be sure that both schemata are defining the same
meaning?

– How to ensure that both schemata are equivalent
and, moreover, backwards conversion can be per-
formed?

– What are the conditions to ensure a valid conver-
sion?

Therefore, a solution on how to make the conversion
from XML Schema to ShEx is described in this paper.
Detailing how each element in XML Schema can be
translated into ShEx. Moreover, a prototype that can
convert a subset of what is defined in the following
sections is also presented.

The rest of the paper is structured as follows: Sec-
tion 2 presents the background, Section 3 gives a brief
introduction to ShEx, Section 4 describes a possible set
of mappings between XML Schema and ShEx, Section
5 presents a prototype used to validate a subset of pre-
viously presented mappings and how this conversion
works against existing RDF validators. Finally, Section
6 draws some conclusions and future lines of work and
improvement.

2. Background

Conversion to Semantic Web formats is a field
that presents several previous works. In the XML

community, many conversions to RDF—and back-
wards—have been proposed using different tech-
niques. In [20] authors describe their experience on de-
veloping this transformation for business to business
industry. In [8] an ontology based transformation is
described. In [1] they try to solve the lift problem (the
problem of how to map heterogeneous data sources in
the same representational framework) from XML to
RDF and backwards by using the Gloze mapping ap-
proach on top of Apache Jena. In [5] authors describe
a transformation supported on SPARQL and in [2] a
transformation from RDF to other kind of formats, in-
cluding XML, is proposed using embedded SPARQL
into XSLT stylesheets which, by means of these exten-
sions, could retrieve, query, merge and transform data
from the Semantic Web.

Data validation is also a key question [12] as it has
been previously stated in this paper. In [23] a dictio-
nary of transformations is defined based on similari-
ties between XML and JSON schemas. In [14] authors
patented a mechanism to convert XML Schema com-
ponents to Java components. In [24] an algorithm that
converts from XML Schemata to ER diagrams is pro-
posed. And in [22], the authors propose the conver-
sion from XML Schema to XText to bring more func-
tionalities to domain specific languages based on XML
Schema.

Another approach for transformation between schemas
is to take a domain model as the main representa-
tion and then transform between that model and other
schema formats like XML Schema, JSON Schema or
ShEx. This has been the approach followed by FHIR 1.

More focused on Semantic Web technologies, other
approaches have been taken to transform XML Schema
to OWL [11] or RDF Schema [20].

RDF Schema and OWL were not designed as RDF
validation languages. Their use of Open World and
Non-Unique Name Assumptions can pose some dif-
ficulties to define the integrity constraints that RDF
validation languages require [29]. Various languages
have recently been developed for RDF validation. On
one hand Shapes Constraint Language (SHACL) [16]
has been developed by the W3C Data Shapes Work-
ing Group and Shape Expressions (ShEx) [26] is be-
ing developed by the W3C Shape Expressions Com-
munity Group. In this paper, ShEx is used to describe
the mappings due to its compact syntax and its support
for recursion whereas in SHACL recursion depends on

1https://www.hl7.org/fhir/

/ 3

the implementation. However, we consider that con-
verting the mappings proposed in this paper to SHACL
is feasible and can be an interesting line of future work
given that it has already been accepted as a W3C rec-
ommendation and that there are some ways to simulate
recursion by target declarations or property paths.

To the best of our knowledge, no conversion be-
tween XML Schema and ShEx has been proposed
to date. This might be due to the recent introduction
of ShEx. In this paper, a transformation from XML
Schema to ShEx is proposed, indicating how each ele-
ment could be translated.

3. Brief introduction to ShEx

ShEx was proposed as a language for RDF vali-
dation in 2014 [26]. It was one of the inputs for the
W3C data shapes working group which developed the
Shapes Constraint Language (SHACL) for the same
purpose. SHACL was also inspired by SPIN [15] and
although both languages can perform RDF validation
there are some differences between them like the sup-
port of recursion or the emphasis on validation vs con-
straint checking (see chapter 7 of [17] for more de-
tails). In this paper we will focus on ShEx because
it has a well-defined semantics for recursion [6] and
its semantics are more inspired by grammar-based for-
malisms like RelaxNG.

ShEx syntax was inspired by Turtle, SPARQL and
Relax NG with the aim to offer a concise and easy to
use syntax. Nowadays, version 2.0 was released with
a primer and the working group is developing the 2.1
version.

ShEx uses shapes to group different validations as-
sociated with the same node ’type’. That is, a shape
can define how a node and its triples should be in order
to be valid. In Listing 1 there is an example of a ShEx
shape.

PREFIX : <http://example.com/>
PREFIX schema: <http://schema.org>
PREFIX

xsd: <http://www.w3.org/2001/XMLSchema#>

:PurchaseOrder {
:orderId /Order\\d{2}/ ;
schema:customer @:User ;
schema:orderDate xsd:date ? ;
schema:orderedItem @:Item +

}
:Item {
schema:name xsd:string ;

:quantity xsd:positiveInteger OR
xsd:integer MININCLUSIVE 1

}
:User {

a [schema:Person] ;
:purchaseOrder @:PurchaseOrder*

}

Listing 1: ShEx shape example

Listing 1 defines a shape with a :PurchaseOrder

type. Prefixes are defined at the beginning of the snip-
pet and use the same similar syntax as in Turtle.
Triple constraints are defined inside the shape where
a purchase order must have an orderId of type that
matches the regular expression Order\d{2}, it must
have a schema:customer which must be a node that
conforms to shape :User, a schema:orderDate whose
value must be an xsd:date and can have one or more
(represented by the plus sign) schema:orderedItem

whose values must conform to the :Item shape.
The :Item shape must have a schema:name of

value string and a schema:orderQuantity of value
xsd:positiveInteger, while the :User shape de-
clares that the values must have type schema:Person,
and can contain zero or more values of :purchaseOrder
which must conform to the :PurchaseOrder shape.

Pass validation as :PurchaseOrder
:order1 :orderId "Order23" ;
schema:customer :alice ;
schema:orderDate "2017-03-02"^^xsd:date;
schema:orderedItem :item1 .
:alice a schema:Person ;

:purchaseOrder :order1 .
:item1 schema:name "Lawn" ;

:quantity 2 .

Fails validation as :PurchaseOrder
:order2 :orderId "MyOrder" ;
schema:customer :bob;
schema:orderDate 2017;
schema:orderedItem :item1.
:bob a schema:Person ;

:purchaseOrder :unknown.

Listing 2: RDF validation example

In Listing 2 there is an example of two purchase
orders defined in RDF. The first of them passes
validation and conforms to the shapes declaration
whereas :order2 fails for several reasons: the value of
:orderId does not conform to the required regular ex-
pression, the value of schema:customer does not con-

4 /

form to shape :User and the value of schema:orderDate
does not have datatype xsd:date.

ShEx supports different serialization formats:

– ShExC: a concise human readable compact syn-
tax which is the one presented in previous exam-
ple.

– ShExJ: a JSON-LD syntax which is used as an
abstract syntax in ShEx specification.

– ShExR: an RDF representation syntax based on
ShExJ.

In this paper ShExC syntax was selected because
it is intended for humans and it is more easy to read
and understand. The goal of this introduction was to
provide a basic understanding of ShEx. For more ex-
amples and a longer comparison between ShEx and
SHACL technologies readers can consult [17].

4. Mappings between XML Schema and ShEx

XML Schema defines a set of elements and datatypes
for doing the validation that need to be converted
to ShEx. In this section, we describe different XML
Schema elements and what a possible conversion to
ShEx can be. All examples use the default prefix : for
URIs. It is intended to be replaced by different pre-
fixes depending on the required namespaces. For XML
Schema elements and datatypes xs prefix is used in the
examples.

4.1. Element

Elements are treated as a triple predicate and object,
i.e., we convert them to a triple constraint whose pred-
icate is the element’s name:

XML Schema
<xs:element name="birthday" type="xs:date"/>

ShEx
:birthday xs:date ;

Listing 3: Element mapping

The name attribute is used as the fragment of the
URI in the predicate and the type is transcribed di-
rectly, as ShEx has built-in support for XML Schema
datatypes there is a direct match between them. If
the ref attribute is present, the type should be de-
fined somewhere to link the corresponding type or

shape. When an element type is a xs:complexType,
the type should be referenced to a new shape where
the xs:complexType is converted (see Section 4.3
where we explain how to convert xs:complexType to
a shape).

XML Schema
<xs:element name="purchaseOrder"

type="PurchaseOrderType"/>

<xs:complexType name="PurchaseOrderType">
...

</xs:complexType>

ShEX
:purchaseOrder @<PurchaseOrderType> ;

Listing 4: Element mapping with linked type

XML Schema
<xs:element name="item"

minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
...

</xs:complexType>
</xs:element>

ShEx
:item @<item> * ;

Listing 5: Element mapping with nested type

4.1.1. Cardinality
Cardinality in ShEx is defined with the following

symbols: ’*’ for 0 or more repetitions, ’+’ for 1 or
more repetitions, ’?’ for 0 or 1 repetitions (optional el-
ement) or ’{m, n}’ for m to n repetitions where m is
minOccurs and n maxOccurs. As in XML Schema, the
default cardinality in ShEx is 1 for lower and upper
bounds. Therefore, transformation of minOccurs and
maxOccurs in the previously defined cardinality marks
is done as showed in Listing 6.

XML Schema
<xs:element name="nameZeroUnbounded"

type="xs:string"
minOccurs="0"
maxOccurs="unbounded">

<xs:element name="nameOneUnbounded"
type="xs:string"
minOccurs="1"
maxOccurs="unbounded">

<xs:element name="nameOptional"

/ 5

type="xs:string"
minOccurs="0"
maxOccurs="1">

<xs:element name="nameFourToTen"
type="xs:string"
minOccurs="4"
maxOccurs="10">

ShEx
:nameZeroUnbounded xs:string * ;
:nameOneUnbounded xs:string + ;
:nameOptional xs:string ? ;
:nameFourToTen xs:string {4, 10} ;

Listing 6: Cardinality mapping

As presented in the previous examples, when an el-
ement has its complex type nested the shape name will
be the name of the element.

4.2. Attribute

Attributes are treated as elements in ShEx. ShEx
makes no difference between an attribute and an el-
ement because this difference is part of XML data
model and the RDF data model does not have the
concept of attributes. One possibility to transform at-
tributes is to use their name and type as performed with
elements (see Section 4.1). This allows better readabil-
ity of the corresponding RDF data, but limits roundtrip
conversions between XML to RDF and back.

4.3. ComplexType

Complex types are translated directly to ShEx
shapes. The name of the complexType will be the name
of the shape to which elements can refer to. Complex
types can be compound of different statements so we
provide a detailed transformation of each possibility
below.

XML Schema
<xs:complexType name="PurchaseOrderType">

...
</xs:complexType>

ShEx
<PurchaseOrderType> {

...
}

Listing 7: Complex type mapping

4.3.1. Sequence
While sequences in XML Schema define sequential

order of elements, in ShEx this is more complex due
to the RDF graph structure. There are several ways to
represent order in RDF, the most obvious is using RDF
lists. However, this is one of the possible ways of doing
that and there can be other ways to represent it [9,18].

The following example shows how the mapping is
done for a sequence using RDF lists:

XML Schema
<xs:complexType name="Address">

<xs:sequence>
<xs:element name="street"

type="xs:string"/>
<xs:element name="city"

type="xs:string"/>
<xs:element name="state"

type="xs:string"/>
<xs:element name="zip"

type="xs:decimal"/>
</xs:sequence>

</xs:complexType>

ShEx
<address> {

rdf:first @<street> ;
rdf:rest @<i1> ;

}
<i1> {

rdf:first @<city> ;
rdf:rest @<i2> ;

}
<i2> {

rdf:first @<state> ;
rdf:rest @<i3> ;

}
<i3> {

rdf:first @<zip> ;
rdf:rest [rdf:nil] ;

}
<street> {

:street xs:string ;
}
<city> {

:city xs:string ;
}
<state> {

:state xs:string ;
}
<zip> {

:zip xs:decimal ;
}

Listing 8: Sequence mapping

6 /

4.3.2. Choice
Choices in XML Schema are the disjunction opera-

tor to select between two options, for instance: choice
between two elements. This operator is supported in
ShEx using the oneOf operator (’|’). The object and
predicate of the RDF statement must be one of the
enclosed ones. Therefore, translation is performed as
shown in the following snippet:

XML Schema
<xs:choice>
<xs:element name="name"

type="xs:string"/>
<xs:sequence>

<xs:element name="givenName"
type="xs:string"
maxOccurs="unbounded"/>

<xs:element name="familyName"
type="xs:string" />

</xs:sequence>
</xs:choice>

ShEx
(:name xs:string |
:givenName xs:string + ;
:familyName xs:string

) ;

Listing 9: Choice mapping

4.3.3. All
While sequences are an ordered set of elements, all

is instead a set of unordered elements. Indeed, all

has a better representation using ShEx elements and
the transformation is simpler than the sequence one as
there is no need to keep track of the order of elements.

XML Schema
<xs:all>

<xs:element name="street"
type="xs:string"/>

<xs:element name="city"
type="xs:string"/>

<xs:element name="state"
type="xs:string"/>

<xs:element name="zip"
type="xs:decimal"/>

</xs:all>

ShEx
:street xs:string ;
:city xs:string ;
:state xs:string ;
:zip xs:decimal ;

Listing 10: All mapping

4.4. XSDTypes

XSD Types can be used on ShEx as they are used on
XML Schema, e.g. whenever a string type is desired
we can use xs:string. Therefore, translation is done
directly using the same types that are defined in the
XML Schema document.

4.4.1. Enumerations
Enumerations in XML Schema can be used to de-

clare the possible values that an element can have. In
ShEx, this is supported using the symbols ’[’ and ’]’.
The enclosed values are the possible values that the
RDF object can take.

XML Schema
<xs:simpleType name="PublicationType">

<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Book"/>
<xs:enumeration value="Magazine"/>
<xs:enumeration value="Journal"/>

</xs:restriction>
</xs:simpleType>

<xs:element name="pubType"
ref="PublicationType"/>

<xs:attribute name="country"
type="xs:NMTOKEN"
fixed="US"/>

ShEx
:pubType ["Book" "Magazine" "Journal"] ;
:country ["US"] ;

Listing 11: NMTokens mapping

4.4.2. Pattern
Pattern is used in XML Schema to define how a

string value should be or what type of format is al-
lowed. Pattern in ShEx uses a syntax similar to the
JavaScript language except that backslash is required
to be escaped, i.e., double backslash have to be used
to be correctly escaped. Therefore, the conversion is a
transformation between XML Schema and JavaScript
Regular Expression syntaxes.

XML Schema
<xs:simpleType name="SKU">

<xs:restriction base="xs:string">
<xs:pattern value="\d{3}-[A-Z]{2}"/>

</xs:restriction>
</xs:simpleType>
<xs:attribute name="partNum"

type="SKU"
use="required"/>

/ 7

ShEx
:partNum /\\d{3}-[A-Z]{2}/ ;

Listing 12: Pattern mapping

4.5. SimpleType

Simple types in XML Schema are based in XSD
Types (see Section 4.4) and allow some enhancements
like: restrictions, lists and unions. Translation into
ShEx will use the same XSD Types, as ShEx supports
them. Depending on the content, translation is per-
formed following a different criteria which we detail
bellow. For translation of restrictions, see Section 4.7.

4.5.1. List
Lists inside simple types define a way of creating

collections of a base XSD type in XML Schema. These
lists are supported in RDF using RDF Collections2. As
previously discussed, there can be several approaches
to represent ordered lists in RDF (see Section 4.3.1). A
commonly accepted approach is the use of RDF lists:
an edge point to the first element and another to the rest
of the list which recursively follows the same structure
until the rdf:nil element is declared to represent the
end of the list. In this way, it is possible to create the
desired list and preserve the order. Figure 1 shows how
an RDF list is constructed for a better understanding of
this section. Hence, translation into ShEx is made by
using RDF lists and the use of recursion that defines a
type with a pointer to itself in the rdf:rest edge.

XML Schema
<xs:simpleType name="IntegerList">
<xs:list itemType="xs:integer" />

</xs:simpleType>

ShEx
<IntegerList> {
rdf:first xs:integer ;
rdf:rest @<IntegerList> OR [rdf:nil];
}

Listing 13: List mapping

2https://www.w3.org/TR/rdf11-mt/#rdf-collections

Fig. 1. Example of a RDF list construction

4.5.2. Union
Unions are the mechanism that XML Schema offers

to make new types that are the union of two simple
types. With this kind of disjunction, a new type which
allows any value admitted by any of the members of
the union is created. For the translation into ShEx we
create a new type that is the combination of the types
involved in the union.

XML Schema
<xs:attribute name="fontsize">
<xs:simpleType>

<xs:union memberTypes="fontbynumber
fontbystringname"

/>
</xs:simpleType>

</xs:attribute>

<xs:simpleType name="fontbynumber">
<xs:restriction

base="xs:positiveInteger">
<xs:maxInclusive value="72"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="fontbystringname">
<xs:restriction base="xs:string">

<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="large"/>

</xs:restriction>
</xs:simpleType>

ShEx
:fontsize

@:fontbynumber OR @:fontbystringname

:fontbynumber
xs:positiveInteger MAXINCLUSIVE 72

:fontbystringname ["small"
"medium"
"large"
]

8 /

Listing 14: Union mapping

4.6. ComplexContent and SimpleContent

Complex contents and simple contents are a way
to define a new type from a base type using restric-
tions or extensions. The base type is the one that is
used as a base for the restriction (or extension) clause
and the new type is the one that is been restricted (or
extended). Complex content allows to extend or re-
strict a base complexType with mixed content or el-
ements only. Simple content allows to extend or re-
strict a complexType with character data or with a
simpleType. For the translation into ShEx, the respec-
tive restriction or extension have to be taken into
account to define the new type.

4.6.1. Restriction
Restrictions are used in XML Schema to restrict

possible values of a base type. A new type can be de-
fined using restrictions applied to a base type. Depend-
ing on how the type and the restrictions are defined,
the translation strategies vary.

– Simple Content: If simpleContent is present
XSD Facets/Restrictions must be used (see Sec-
tion 4.7 for more information). When restricting
using a simpleType, the transformation is done
using the known base type (see Section 4.4) and
putting some format restrictions depending on
the base type. Translation into ShEx will be per-
formed using the base type—ShEx supports the
built-in XSD Types defined for XML Schema,
therefore translation is done directly—and trans-
lating the XSD Facets as they are defined in every
specific case, see Section 4.7.

– Complex Content: If complexContent is present,
the base complexType is restricted using group,
all, choice, sequence, attributeGroup or attribute.
Complex content restriction will restrict allow-
able values and element type restrictions. This is
a case of inheritance by restriction. For translation
into ShEx, the restriction elements must be
taken and transformed directly into a new shape
that defines the resulting child shape3.

3Future versions of ShEx are planning to include inheritance. See:
https://github.com/shexSpec/shex/issues/50

4.6.2. Extension
With extensions in XML Schema, it is possible to

define a new type as an extension of a previously de-
fined one. This is a case of classic inheritance, where
the child inherits its parent elements that are added
to its own defined elements. Depending on the con-
tent, i.e., complexContent or simpleContent, different
translation strategies can be used.

– Simple content: If simpleContent is present ex-
tension of the base type is performed by adding
more attributes or attribute groups to the new
type. Therefore, the translation into ShEx is made
by the concatenation of both the type and its
extension to create the new shape.

– Complex content: If complexContent is present
extension of base type is performed by adding
more attributes and elements to a new base one.
Therefore, translation is done by combining the
base type and its extension to create a new shape.

Restrictions and extensions in ShEx are not sup-
ported directly in the current version (i.e., ShEx has no
support for extensions, restriction or inheritance) with
the same semantics as XML Schema. Therefore, we
use the normal syntax provided by ShEx and create the
two resulting shapes from the respective restriction

or extension as can be seen in Listing 15.

XML Schema
<xs:simpleType name="mountainBikeSize">

<xs:restriction base="xs:string">
<xs:enumeration value="small" />
<xs:enumeration value="medium" />
<xs:enumeration value="large" />

</xs:restriction>
</xs:simpleType>

<xs:complexType name="FamilyMountainBikes">
<xs:simpleContent>

<xs:extension base="mountainBikeSize">
<xs:attribute name="familyMember">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="child" />
<xs:enumeration value="male" />
<xs:enumeration value="female" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

ShEx
:MountainBikeSize ["small" "medium" "large"]

/ 9

:FamilyMountainBikes {
:mountainBikeSize @:MountainBikeSize ;
:familyMember ["child" "male" "female"];
}

Listing 15: Restrictions and extensions mapping,
where extensions and restrictions are directly trans-
formed into the equivalent shape

4.7. XSD Types Restrictions/Facets

4.7.1. Enumeration
Enumeration restrictions use a base type to restrict

the possible values of a type. It is declared using a set
of possible values. In ShEx this is defined using the
’[’ and ’]’ operators. The values that are allowed are
enclosed inside the square brackets.

XML Schema
<xs:simpleType name="Mountainbikesize">
<xs:restriction base="xs:string">

<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="large"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType
name="FamilyMountainBikeSizes">
<xs:simpleContent>

<xs:extension base="mountainbikesize">
<xs:attribute name="familyMember"

type="xs:string" />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<xs:complexType
name="ChildMountainBikeSizes">

<xs:simpleContent>
<xs:restriction

base="FamilyMountainBikeSizes" >
<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>

</xs:restriction>
</xs:simpleContent>

</xs:complexType>

ShEx
<MountainBikeSize> ["small" "medium" "large"]

<FamilyMountainBikes> {
:mountainBikeSize @:MountainBikeSize ;
:familyMember ["child" "male" "female"];
}

<ChildMountainBikeSizes>
@:FamilyMountainBikes AND {
:mountainBikeSize ["small" "medium"]

}

Listing 16: Enumeration mapping

4.7.2. Fraction digits
FractionDigits are used in XML Schema when

a decimal type is defined (e.g., xs:decimal) and the
number of decimal digits is desired to be restricted
in the representation. ShEx supports this feature in a
similar way as XML Schema. Hence, FRACTIONDIGITS
keyword is used followed by the integer number of
fraction digits that should be allowed.

XML Schema
<xs:element name="itemValue">

<xs:simpleType>
<xs:restriction base="xs:decimal">

<xs:fractionDigits value="2"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

ShEx
:itemValue xs:decimal FRACTIONDIGITS 2 ;

Listing 17: Fraction digits mapping

4.7.3. Length
Length is used to restrict the number of characters

allowed in a string type. In ShEx this is supported with
the LENGTH keyword, followed by the integer number
that defines the desired length.

XML Schema
<xs:element name="group">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:length value="1"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

ShEx
:group xs:string LENGTH 1 ;

Listing 18: Length mapping

10 /

4.7.4. Max Length and Min Length
Maximum and minimum length are used to restrict

the number of characters allowed in a text type. But
instead of restricting to a fixed number of characters,
with these features restriction to a length interval is
possible. In ShEx, the definitions of minimum and
maximum length are made by using the MINLENGTH and
MAXLENGTH keywords.

XML Schema
<xs:element name="comments">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="1000"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

ShEx
:comment xs:string

MINLENGTH 1
MAXLENGTH 1000;

Listing 19: Max length and min length mapping

4.7.5. Max-min exclusive and max-min inclusive
These features allow to restrict number types to an

interval of desired values. Exclusive restricts the use
of the given value and inclusive does not restrict the
use of given value. This is the same notion as in open
and closed intervals. In ShEx, these features are sup-
ported directly.

XML Schema
<xs:element name="cores">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minExclusive value="0"/>
<xs:maxExclusive value="9"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="coresOpenInterval">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="8"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

ShEx
:cores xs:integer

MINEXCLUSIVE 0
MAXEXCLUSIVE 9 ;

:coresOpenInterval xs:integer
MININCLUSIVE 1
MAXINCLUSIVE 8 ;

Listing 20: Max exclusive, min exclusive, min inclu-
sive and max inclusive mapping

4.7.6. Total digits
This feature allows to restrict the total number of

digits permitted in a numeric type. In ShEx this is pos-
sible using TOTALDIGITS keyword.

XML Schema
<xs:element name="age">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:totalDigits value="3"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

ShEx
:age xs:integer

TOTALDIGITS 3 ;

Listing 21: Total digits mapping

4.7.7. Whitespace
WhiteSpace allows to specify how white spaces on

strings are handled. In XML Schema, there are three
options:

– Preserve: This option will not remove any white
space character from the given string.

– Replace: This option will replace all white space
characters (line feeds, tabs, spaces and carriage
returns) with spaces.

– Collapse: This option will remove all white
spaces characters:

∗ Line feeds, tabs, spaces and carriage returns are
replaced with spaces.

∗ Leading and trailing spaces are removed.
∗ Multiple spaces are reduced to a single space.

In ShEx, whiteSpace options are not supported. Their
behaviour could be simulated using semantic actions
(see Listing 22).

XML Schema
<xs:complexType name="whiteSpaces">
<xs:all>
<xs:element name="preserve">

<xs:simpleType>

/ 11

<xs:restriction base="xs:string">
<xs:whiteSpace

value="preserve"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="replace">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:whiteSpace
value="replace"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="collapse">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:whiteSpace

value="collapse"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
</xs:all>
</xs:complexType>

ShEx
<whiteSpaces> {
:preserve xs:string ;
:replace xs:string
%js{

_.o.lex = _.o.lex
.replace("/\r|\n|\r\n|\s/g", " ");

return true;
}
% ;
:collapse xs:string
%js{

var replacedText = _.o.lex
.replace("/\r|\n|\r\n|\s/g", " ");

_.o.lex = replacedText.trim();
return true;

}
%

}

Listing 22: WhiteSpace mapping

4.7.8. Unique
Unique is used in XML Schema to define that an el-

ement of some type is unique, i.e., there can not be the
same values among elements defined in the constraint.
This is useful for cases like IDs, where a unique ID is
the way to identify an element. Nowadays, ShEx does
not support Unique function but it is expected to be
supported in future versions. As a temporal solution,
semantic actions could be used to implement this kind
of constraint.

XML Schema
<xs:element name="Person"

maxOccurs="unbounded">
<xs:complexType>

<xs:all>
<xs:element name="name"

type="xs:string" />
<xs:element name="surname"

type="xs:string" />
<xs:element name="id"

type="xs:integer" />
</xs:all>

</xs:complexType>
<xs:unique name="onePersonPerID">

<xs:selector xpath="."/>
<xs:field xpath="id"/>

</xs:unique>
</xs:element>

ShEx
%js{

var ids = [];
return true;

}
%
<Person> {

:name xs:string ;
:surname xs:string ;
:id xs:integer
%js{ if(ids.indexOf(_.o.lex) >= 0)

return false;
ids.push(_.o.lex);
return true;

}%
}

Listing 23: Unique mapping

5. XMLSchema2ShEx prototype

In addition to the proposed mappings from XML
Schema to Shape Expressions, for the sake of hypothe-
sis demonstration, a prototype has been developed that
uses a subset of the presented mappings and converts
from a given XML Schema input to a ShEx output.

The prototype has been developed in Scala and it is
available online4. It is a work-in-progress implemen-
tation, so not all the mappings are supported yet (see
Table 1).

The tool is built on top of Scala parser combina-
tors [21]. Once the XML Schema input is analysed

4https://github.com/herminiogg/XMLSchema2ShEx

12 /

Table 1
Supported and pending of implementation features in
XMLSchema2ShEx prototype. * Not supported in ShEx 2.0.

Supported features

Complex type, Simple type,
All, Attributes, Restriction,

Element, Max exclusive,
Min exclusive, Max inclusive,
Min inclusive, Enumeration,

Pattern, Cardinality

Pending implementation

Choice, List,
Union, Extension,

Fraction Digits, Length,
Max Length, Min Length,

Total digits, Whitespace*, Unique*

and verified, it is converted to ShEx based on different
elements and types declared on it. These conversions
are made recursively and printed to the ouput in ShEx
Compact Format (ShExC).

The example presented in Listing 24 is used to en-
sure that the prototype can work and do the trans-
formation as expected. This example includes com-
plex types, attributes, elements, simple types and pat-
terns among others. Therefore, complex types are con-
verted to shapes, elements and attributes to triple pred-
icates and objects, restrictions (max/minExclusive and
max/minInclusive) to numeric intervals, cardinality at-
tributes to ShEx cardinality and so on. Although it is
a small example, it has the structure of typical XML
Schemas used nowadays and the prototype can convert
it properly as it is stated in the example conversion be-
low.

XML Schema
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://tempuri.org/po.xsd"
xmlns="http://tempuri.org/po.xsd"
elementFormDefault="qualified">

<xs:element name="purchaseOrder"
type="PurchaseOrderType"/>

<xs:element name="comment"
type="xs:string"/>

<xs:complexType name="PurchaseOrderType">
<xs:all>

<xs:element name="shipTo"
type="USAddress"/>

<xs:element name="billTo"
type="USAddress"/>

<xs:element ref="comment"
minOccurs="0"/>

<xs:element name="items"
type="Items"/>

</xs:all>

<xs:attribute name="orderDate"
type="xs:date"/>

</xs:complexType>

<xs:complexType name="USAddress">
<xs:all>

<xs:element name="name"
type="xs:string"/>

<xs:element name="street"
type="xs:string"/>

<xs:element name="city"
type="xs:string"/>

<xs:element name="state"
type="xs:string"/>

<xs:element name="zip"
type="xs:integer"/>

</xs:all>
<xs:attribute name="country"

type="xs:NMTOKEN"
fixed="US"/>

</xs:complexType>

<xs:complexType name="Items">
<xs:all>
<xs:element name="item"

minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:all>
<xs:element

name="productName"
type="xs:string"/>

<xs:element
name="quantity">

<xs:simpleType>
<xs:restriction

base="xs:positiveInteger">
<xs:maxExclusive

value="100"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="USPrice"
type="xs:decimal"/>

<xs:element ref="comment"
minOccurs="0"/>

<xs:element name="shipDate"
type="xs:date" minOccurs="0"/>

</xs:all>
<xs:attribute name="partNum" type="SKU"

use="required"/>
</xs:complexType>
</xs:element>
</xs:all>

</xs:complexType>

<xs:simpleType name="SKU">
<xs:restriction base="xs:string">
<xs:pattern value="\d{3}-[A-Z]{2}"/>

</xs:restriction>
</xs:simpleType>

/ 13

</xs:schema>

ShEx
PREFIX : <http://www.example.com/>
PREFIX

xsd: <http://www.w3.org/2001/XMLSchema#>

<Items> {
:item @<item> * ;

}
<item> {
:productName xsd:string ;
:quantity xsd:positiveInteger

MAXEXCLUSIVE 100 ;
:USPrice xsd:decimal ;
:comment xsd:string ? ;
:shipDate xsd:date ? ;
:partNum /\\d{3}-[A-Z]{2}/ ;

}
<PurchaseOrderType> {
:shipTo @<USAddress> ;
:billTo @<USAddress> ;
:comment xsd:string ? ;
:items @<Items> ;
:orderDate xsd:date ;

}
<USAddress> {
:name xsd:string ;
:street xsd:string ;
:city xsd:string ;
:state xsd:string ;
:zip xsd:integer ;
:country ["US"] ;

}

Listing 24: XML Schema to ShEx example

5.1. Validation example

XML
<?xml version="1.0"?>
<purchaseOrder
xmlns="http://tempuri.org/po.xsd"
orderDate="1999-10-20">
<shipTo country="US">

<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>

Hurry, my lawn is going wild!
</comment>
<items>
<item partNum="872-AA">

<productName>
Lawnmower

</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>

Confirm this is electric
</comment>
</item>

<item partNum="926-AA">
<productName>

Baby Monitor
</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>
</purchaseOrder>

RDF
:order1

:shipTo [
:name "Alice Smith" ;
:street "123 Maple Street" ;
:city "Mall Valley" ;
:state "CA" ;
:zip 90952 ;
:country "US"

] ;
:billTo [
:name "Robert Smith" ;
:street "8 Oak Avenue" ;
:city "Old Town" ;
:state "PA" ;
:zip 95819 ;
:country "US"

] ;
:comment "Hurry, my lawn is going wild!";
:items [

:item [
:productName "Lawnmower" ;
:quantity "1"^^xsd:positiveInteger ;
:USPrice 148.95 ;
:comment "Confirm this is electric";
:partNum "872-AA"

] ;
:item [

:productName "Baby Monitor" ;
:quantity "1"^^xsd:positiveInteger ;
:USPrice 39.98 ;
:shipDate "1999-05-21"^^xsd:date ;
:partNum "926-AA"

] ;
];

14 /

:orderDate "1999-10-20"^^xsd:date .

Listing 25: XML to RDF example

Once conversion from XML Schema to ShEx is
done, it must be verified that the same validation that
was performed on XML data using XML Schema, but
now on RDF data using ShEx, is working equivalently.
Therefore, translation of a valid XML to RDF is ex-
ecuted which is presented in Listing 25. The conver-
sion presented in the snippet is a possible one that uses
blank nodes to represent the nested types. This is done
for avoiding to create a fictional node every time a
triple is pointing to another triple (in other words, ev-
ery time it has a nested type). The conversion was per-
formed following similar equivalences to those pro-
posed in the mappings. That is, complex types to triple
subjects or predicates, simple types to triple objects,
cardinality translated directly and so on.

For RDF validation using ShEx there are various im-
plementations in different programming languages that
are being developed5. One of these implementations is
made in Scala by one of the authors of this paper and
it is available online6.

Using the examples given above the validation can
be performed with the mentioned tool which allows
the RDF and the ShEx inputs in various formats and
then the option to validate the RDF against ShEx or
SHACL schema. As seen in Figure 2, validation is per-
formed trying to match the shapes with the existing
graphs, whenever the tool matches a pattern it shows
the evidence in green and a short explanation of why
this graph has matched.

This kind of transformations can work in most of
the cases. However, there is a premise—which is in
line with one of the defined research questions—that
must be satisfied before generating a valid conversion.
In case of XML files with ambiguous content mod-
els where some files can be transformed in different
ways and correct validation of converted data cannot
be guaranteed. This problem comes in two dimensions:
from XML to RDF, trying to maintain the same seman-
tics with different models; and for schema generation,
trying to create a schema that describes all the possi-
bilities. Nevertheless, if this ambiguity problem is pre-
viously solved or is not present, the conversion can be
validated using the proposed techniques.

5A list of ShEx implementations is available at: https://shex.io
6http://shaclex.herokuapp.com

6. Conclusions and Future work

In this work, a possible set of mappings between
XML Schema and ShEx has been presented. With this
set of mappings, automation of XML Schema conver-
sions to ShEx is a new possibility which is demon-
strated by the prototype that has been developed and
presented in this paper. Using an existing validator
helped to demonstrate that an XML and its correspond-
ing XML Schema are still valid when they are con-
verted to RDF and ShEx, although some ambiguity
premises must be satisfied.

One future line of work that should be tackled is
the loss of semantics: with this kind of transformations
some of the elements could not be converted back to
their XML Schema origin. Nevertheless, it is a difficult
problem due to the difference between ShEx and XML
data models and it would involve some sort of modi-
fications and additions to the ShEx semantics (like the
inheritance case).

To cover all the business cases and make this solu-
tion more compatible, there is the need to create map-
pings for Schematron and Relax NG as a future work.
This future line should be handled with structure in
mind. Relax NG is grammar based but Schematron is
rule based, which will make conversion from Relax
NG to ShEx more straightforward than from Schema-
tron, as ShEx is also based in grammars. Another line
of future work is to adapt the presented mappings to
SHACL: most of the mappings follow a similar struc-
ture. Moreover, the rule-based Schematron conversion
seems more plausible using the advanced SHACL-
Sparql features.

With the present work, validation of existing trans-
formations between XML and RDF is now possible
and convenient. This kind of validations makes the
transformed data more reliable and trustworthy and it
also facilitates migrations from non-semantic data for-
mats to semantic data formats.

However, a big path should be travelled. Conver-
sions from other formats (such as JSON Schema,
DDL, CSV Schema, etc.) should also be treated and
encouraged to permit a migration to a new set of
semantic-aware and interoperable data.

References

[1] Steve Battle. Gloze: XML to RDF and back again. In Proceed-
ings of the First Jena User Conference, 2006.

/ 15

Fig. 2. Validation result using Shaclex validator. The RDF data is entered in the left text area whereas the ShEx schema is entered on the right
text area. In the bottom, a ShapeMap is declared to make the validator know where and how to begin the validation, in this case we commanded
to validate <http://www.example.com/order1> node with <PurchaseOrderType> shape. In the top of the page, the result is shown detailing how
each node was validated and what are the evidences or failures for the validation. A link to the validation example can be found in Supplementary
Material.

16 /

[2] Diego Berrueta, Jose Emilio Labra Gayo, and Ivan Herman.
XSLT + SPARQL: Scripting the semantic web with SPARQL
embedded into XSLT stylesheets. In 4th Workshop on Scripting
for the Semantic Web, Tenerife, 2008.

[3] Geert Jan Bex, Frank Neven, and Jan den Bussche. DTDs ver-
sus XML schema: a practical study. In Proceedings of the 7th
international workshop on the web and databases: colocated
with ACM SIGMOD/PODS 2004, pages 79–84. ACM, 2004.

[4] Paul V Biron, Ashok Malhotra, World Wide Web Consortium,
et al. XML Schema part 2: Datatypes, 2004.

[5] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno
Lopes, and Axel Polleres. Mapping between RDF and XML
with XSPARQL. Journal on Data Semantics, 1(3):147–185,
2012.

[6] Iovka Boneva, Jose Emilio Labra Gayo, and Eric
Prud’hommeaux. Semantics and validation of shapes schemas
for rdf. In Claudia d’Amato, Miriam Fernandez, Valentina
Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Se-
queda, Christoph Lange, and Jeff Heflin, editors, International
Semantic Web Conference, volume 10587 of Lecture Notes in
Computer Science, pages 104–120. Springer Verlag, October
2017.

[7] James Clark and Makoto Murata. Relax NG specification,
2001.

[8] Davy Van Deursen, Chris Poppe, Gäetan Martens, Erik Man-
nens, and Rik Van de Walle. XML to RDF Conversion: A
Generic Approach. In Automated solutions for Cross Media
Content and Multi-channel Distribution, 2008. AXMEDIS ’08.
International Conference on, pages 138–144, Washington, nov
2008.

[9] Nick Drummond, Alan L Rector, Robert Stevens, Georgina
Moulton, Matthew Horridge, Hai Wang, and Julian Seiden-
berg. Putting OWL in order: Patterns for sequences in OWL.
In OWLED, 2006.

[10] TEI Consortium, eds. TEI P5: Guidelines for Electronic Text
Encoding and Interchange, 2017.

[11] Matthias Ferdinand, Christian Zirpins, and David Trastour.
Lifting XML Schema to OWL, pages 354–358. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[12] P. N. Fox, R. Mead, M. Talbot, and J. D. Corbett. Data manage-
ment and validation. In Statistical Methods for Plant Variety
Evaluation, pages 19–39, Dordrecht, 1997. Springer Nether-
lands.

[13] Rick Jelliffe. The Schematron: An XML structure validation
language using patterns in trees. 2001.

[14] Sam P. Kaipa, Ashish. Rahurkar, Pradeep C. Bollineni, and
Ashutosh Arora. Mapping XML Schema components to qual-
ified Java components, March 20 2007. US Patent 7,194,485.

[15] Holger Knublauch. SPIN - Modeling Vocabulary.
http://www.w3.org/Submission/spin-modeling/, 2011.

[16] Holger Knublauch and Dimitris Kontokostas. Shapes Con-
straint Language (SHACL). W3C Proposed Recommendation,
June 2017.

[17] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva,
and Dimitri Kontokostas. Validating RDF Data. Morgan and
Claypool Publishers, 2017.

[18] Sergei Melnik and Stefan Decker. Representing order in rdf.
January 2001.

[19] Albert Meroño-Peñuela. Semantic web for the humanities.
In The Semantic Web: Semantics and Big Data: 10th Interna-
tional Conference, ESWC 2013, Montpellier, France, May 26-
30, 2013. Proceedings, pages 645–649. Springer Berlin Hei-
delberg, 2013.

[20] Igor Miletic, Marko Vujasinovic, Nenad Ivezic, and Zoran
Marjanovic. Enabling Semantic Mediation for Business Appli-
cations: XML-RDF, RDF-XML and XSD-RDFS transforma-
tions. In Ricardo J Goncalves, Jörg P Müller, Kai Mertins,
and Martin Zelm, editors, Enterprise Interoperability II: New
Challenges and Approaches, pages 483–494. Springer London,
London, 2007.

[21] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser
combinators in Scala. 2008.

[22] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer,
Javier Troya, and Manuel Wimmer. XMLText: from XML
Schema to Xtext. In SLE, 2015.

[23] Falco Nogatz and Thom Frühwirth. From XML Schema to
JSON Schema-Comparison and Translation with Constraint
Handling Rules. Ulm, Germany, 2013.

[24] Giuseppe Della Penna, Antinisca Di Marco, Benedetto Intrig-
ila, Igor Melatti, and Alfonso Pierantonio. Interoperability
mapping from XML Schemas to ER diagrams. Data Knowl.
Eng., 59:166–188, 2006.

[25] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo,
and Gregg Kellogg. Shape expressions language 2.0, 2017.

[26] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold
Solbrig. Shape expressions: an RDF validation and transforma-
tion language. In Proceedings of the 10th International Con-
ference on Semantic Systems, pages 32–40. ACM, 2014.

[27] John Simpson and Susan Brown. From XML to RDF in the
Orlando Project. In 2013 International Conference on Culture
and Computing, Kyoto, Japan, pages 194–195, Sept 2013.

[28] Timo Sztyler, Jakob Huber, Jan Noessner, Jaimie Murdock,
Colin Allen, and Mathias Niepert. LODE: Linking digital
humanities content to the web of data. In IEEE/ACM Joint
Conference on Digital Libraries, London, UK, pages 423–424,
Sept 2014.

[29] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L McGuinness.
Integrity constraints in OWL. 2010.

Answers	to	Felix	Sasaki	
First	of	all,	we	would	like	to	thank	the	reviewer	for	his	valuable	comments	and	
concerns.		We	found	his	questions	very	interesting	and	they	made	us	think	about	some	
of	the	implications	of	the	present	work.	We	also	included	many	of	this	thoughts	in	the	
paper	because	we	think	they	are	really	rich	ones.	
	
In	the	following	points,	we	try	to	clarify	some	of	these	aspects.	
	

1) The	prototype	and	the	proposed	mappings	were	designed	with	a	conversion	
from	XML	Schema	to	ShEx	in	mind.	However,	the	opposite	conversion	is	not	
feasible	at	all	times.	For	example,	an	element	is	converted	to	a	triple	terminal	
in	our	paper.	But	an	attribute	is	also	converted	to	a	triple	terminal	because	the	
RDF	data	model	does	not	have	the	notion	of	elements	or	attributes,	only	
triples.	There	are	conversions	that	preserve	the	semantics	(e.g.	MaxInclusive,	
MaxExclusive,	etc.)	and	we	can	make	the	conversion	in	the	opposite	way.	
Unfortunately,	this	is	not	the	case	for	all	the	conversions	and	we	cannot	assure	
the	opposite	conversion.	Nevertheless,	this	is	an	interesting	research	question	
for	future	works	and	we	take	note	of	it.	From	this	thought	we	changed	the	
sentence	in	the	abstract	to	make	clear	the	proposed	conversion.	

2) Although	Semantic	Web	is	still	making	itself	a	space	in	the	technology	(even	
more	in	the	industry),	conversions	between	XML	and	RDF	and	between	XML	
Schema	and	ShEx	are	necessary	to	alleviate	the	gap	between	the	two	worlds.	
With	that	in	mind,	providing	migrations	from	in-use	technologies	to	other	
technologies	is	going	to	enhance	the	possibilities	of	a	migration	to	these	
technologies.	It	is	clear	that,	in	some	cases,	generic	approaches	for	some	of	
these	conversions	are	not	going	to	be	valid,	whereas	in	some	other	cases	(e.g.,	
small	companies,	low	budget	teams	and	projects,	etc.)	can	make	their	point.	
Linking	with	the	TEI	example,	humanities	can	take	the	benefit	of	Semantic	Web	
approaches.	However,	they	have	a	lot	of	manuscripts	transcribed	to	XML	that	
can	be	converted	to	RDF.	But	transcribers	are	not	going	to	deal	with	the	
underlying	technology	despite	they	can	benefit	from	it.	In	those	cases,	is	where	
generic	approaches	can	offer	a	solution	and,	therefore,	validation	has	its	space	
when	transformation	has	to	be	checked.	

3) This	is	indeed	a	challenge	that	we	are	concerned	about.	However,	this	kind	of	
ambiguity	does	not	affect	our	proposed	conversion.	That	is,	if	a	schema	exists	
there	is	a	possible	conversion	to	ShEx.	Nevertheless,	the	problem	arises	in	two	
ways:	firstly,	the	XML	conversion	to	RDF,	where	the	ambiguity	is	a	problem	
when	trying	to	maintain	the	same	semantics;	and	secondly,	the	schema	
generation	for	this	kind	of	ambiguous	data,	where	it	is	hard	to	generate	a	
schema	that	could	describe	all	the	possible	options	in	the	data.	If	these	two	
problems	are	previously	solved	our	proposed	conversion	could	be	performed.	

4) In	this	work,	we	only	focused	on	XML	Schema	because	it	is	a	W3C	
recommendation	and	because	of	its	adoption.	Nonetheless,	it	is	a	very	
interesting	field	to	future	researches,	trying	to	cover	the	conversion	of	the	full	
range	of	schema	validation	languages.	Relax	NG	conversion	should	be	feasible	
and	straightforward	due	to	the	similarity	with	XML	Schema.	However,	

conversion	of	Schematron	could	face	some	difficulties	because	it	is	based	in	
rules	and	not	in	grammars.	As	ShEx	is	based	in	a	grammar	the	translation	is	not	
as	straightforward	as	with	XML	Schema	and	Relax	NG.	With	the	semantics,	we	
referred	to	that	two	predicates	in	two	languages	are	describing	the	same	and	
are	interchangeable	which	refers	to	what	is	exposed	in	point	1	of	this	letter.	
We	included	a	paragraph	in	the	conclusion	section	with	this	thought.		

5) Nowadays,	the	prototype	does	not	support	partial	conversions.	However,	it	is	
technically	possible	to	add	this	feature	to	the	prototype.	As	each	mapping	is	
designed	as	an	isolated	conversion	this	may	ensure	partial	conversions.		

6) Extensions	and	restrictions	are	not	supported	in	ShEx	as	inheritance	is	not	yet	
supported	(https://github.com/shexSpec/shex/issues/50).	However,	the	
conversion	from	XML	Schema	is	indeed	supported	but	is	converted	to	an	
equivalent	predicate.	So,	to	convert	it,	we	propose	to	solve	the	inheritance	
directly	while	ShEx	does	not	support	inheritance	(see	Section	3.5.1	and	Section	
3.5.2).	Nevertheless,	feasibility	of	automatic	conversions	is	covered.	The	
problem	that	the	paper	faces	is	the	difference	in	semantics	and	that	a	
backwards	conversion	from	ShEx	to	XML	Schema	cannot	be	ensured.		

	
We	hope	that	this	revision	could	reach	and	solve	the	reviewer	concerns.	We	are	
looking	forward	to	hearing	from	him.		
	

Best	regards,	
Herminio	García-González	

José	Emilio	Labra	Gayo	
	

Answers	to	Emir	Muñoz	
First	of	all,	we	would	like	to	thank	the	reviewer	for	his	valuable	comments	and	
concerns.	Also	by	the	time	consumed	in	detailing	all	the	problems	in	the	paper	and	
giving	us	this	great	feedback.	In	almost	all	the	points	we	agree	with	the	reviewer	and	
we	think	that	this	review	has	contributed	to	elaborate	a	better	paper.	There	are	some	
points	where	we	have	a	different	point	of	view	and	we	will	try	to	explain	it	in	the	next	
paragraphs.	We	hope	the	reviewer	can	understand	our	point	of	view	and	why	we	have	
made	those	decisions.	Nevertheless,	if	the	reviewer	believes	that	some	of	these	points	
should	be	changed	anyway,	we	are	open	to	discuss	and	to	incorporate	them.	
	
The	introduction	was	rewritten	to	harbor	some	of	the	raised	research	questions	and	
the	motivation	of	why	such	a	tool	is	valuable.	To	alleviate	the	ShEx	knowledge	gap	we	
introduced	a	new	Section	with	a	brief	introduction	to	ShEx	with	its	main	parts.	By	the	
way,	we	included	some	research	questions	that	we	think	are	important	to	answer	
along	the	paper	(we	think	they	are	also	answered	in	the	two	last	sections).		
We	think	that	this	paper	does	make	a	contribution	because	it	is	not	only	offering	a	new	
tool	that	does	not	exist,	but	it	also	exposes	a	method	to	make	such	transformations	
and	what	are	the	drawbacks	or	limitations	of	them.	Moreover,	it	also	offers	some	
points	of	discussion	like	the	loss	of	semantics.	
	
We	worked	to	improve	the	readability	of	the	paper	with	improvements	like	merging	
listings	and	syntax	highlighting,	and	included	more	explanations	in	weak	points.	The	
brief	introduction	to	ShEx	contains	an	example	that	could	be	seen	as	a	running	
example.	The	paper	describes	some	content	in	RDF	and	ShEx,	and	then	somesnippets	
about	how	to	transform	XML	Schema	to	ShEx	where	we	tried	to	find	useful	examples.		
Later,	the	conversion	from	XML	Schema	to	ShEx	uses	an	example	in	the	same	domain	
as	the	example	used	to	introduce	ShEx,	so	we	think	the	reader	will	understand	better	
the	whole	process.	
	
In	the	following	points,	we	try	to	clarify	and	answer	to	the	reviewer’s	comments	and	
what	we	made	to	address	each	concern.		
	
###	Abstract	

1. We	changed	that	in	abstract	and	introduction	to	include	the	full	name	and	the	
acronym	together	in	the	first	mention.	We	also	included	a	reference	to	the	first	
paper	of	ShEx	in	the	introduction.		

2. Changed.	
3. We	referred	to	other	schema	formats	for	XML,	like:	Schematron	or	RelaxNG.	

We	opted	to	put	this	as	an	example	in	brackets.		
4. We	reduced	keywords	to	5.		

	
###	Section	1	

1. Included	
2. We	included	a	cite	from	another	author	to	motive	why	validation	is	important	

in	data	management	and	what	is	its	role.		

3. We	include	here	our	answer	to	other	reviewer	on	the	same	topic:	‘In	this	work,	
we	only	focused	on	XML	Schema	because	it	is	a	W3C	recommendation	and	
because	of	its	adoption.	Nonetheless,	it	is	a	very	interesting	field	to	future	
researches,	trying	to	cover	the	conversion	of	the	full	range	of	schema	validation	
languages.	Relax	NG	conversion	should	be	feasible	and	straightforward	due	to	
the	similarity	with	XML	Schema.	However,	conversion	of	Schematron	could	
face	some	difficulties	because	it	is	based	in	rules	and	not	in	grammars.	As	ShEx	
is	based	in	a	grammar	the	translation	is	not	as	straightforward	as	with	XML	
Schema	and	Relax	NG.	With	the	semantics,	we	referred	to	that	two	predicates	
in	two	languages	are	describing	the	same	and	are	interchangeable	which	refers	
to	what	is	exposed	in	point	1	of	this	letter.	We	included	a	paragraph	in	the	
conclusion	section	with	this	thought.	‘.	In	summary,	although	RelaxNG	served	
as	an	inspiration	for	ShEx,	due	to	its	compact	syntax,	XML	Schema	W3C	
recommendation	and	adoption	made	us	to	take	it	as	the	first	format	to	work	
with.	

4. We	changed	‘more	convenient’	for	‘with	more	features’.	
5. With	possibilities,	we	referred	to	new	approaches	to	deal	with	the	data.	In	this	

case,	possible	conversions	to	Semantic	Web	formats.	We	changed	the	word	
possibilities	with	the	word	approaches	as	it	is	more	specific.		

6. Rephrased	
7. XML	Schema	was	proposed	to	alleviate	the	learning	curve	of	DTD,	as	XML	

Schema	is	based	in	XML	(in	principle,	easier	to	learn	for	people	familiar	with	
XML).	Besides,	it	gives	some	features	that	DTD	does	not	offer	or	improve	some	
weak	areas,	e.g.:	datatypes,	constraints,	element’s	enumeration.	About	other	
languages,	we	have	already	discussed	it	on	question	number	3	of	this	same	
section.	

8. We	included	a	reference	to	XML	Schema	recommendation	document	and	
another	reference	to	Shape	Expressions	Draft	Community	Group	Report.	

9. Merged	
10. We	did	not	use	semantics	word	deliberately,	because	of	the	loss	of	semantics	

problem.	With	nature,	we	referred	to	the	type	or	model,	that	is,	the	two	
different	versions	are	modeling	the	same	type.	We	opted	to	substitute	the	
word	nature	for	type	in	an	intention	to	be	more	specific.		

11. We	included	a	list	of	research	questions	in	the	introduction.	
12. Changed	
13. Changed	

	
###	Section	2	

1. We	rephrased	the	sentence	to	be	more	specific	and	not	make	any	assumption	
without	strong	evidences.	

2. Changed	
3. In	the	background	we	tried	to	make	a	relation	of	which	are	the	works	in	XML	to	

RDF	transformations.	This	not	only	includes	its	transformation,	but	all	related	
transformations	like	our	one.	To	the	far	of	our	knowledge	there	are	no	other	
tool	or	theoretical	mapping	that	propose	this	kind	of	transformation.	
Therefore,	there	is	no	way	to	compare	our	solution	to	previous	existing	ones.	

With	this	problem	we	opted	to	make	the	mentioned	relation	of	works	and	
where	is	their	place	in	this	story.		

4. We	included	the	same	reference	that	we	previously	included	in	the	
introduction.	Reference	[10].	

5. We	included	‘for	transformation	between	schemas’	in	the	sentence.	
6. We	changed	in	for	on	and	we	included	technologies	to	be	more	specific.	
7. We	changed	the	reference	for	this	one:	‘Tao,	J.,	Sirin,	E.,	Bao,	J.,	&	McGuinness,	

D.	L.	(2010,	July).	Integrity	Constraints	in	OWL.	In	AAAI’	which	we	think	is	better	
for	its	focus	on	Open	World	and	Non-Unique	Name	Assumptions.	In	contrast	
with	suggested	references	this	work	uses	OWL	and	highlights	the	problems	
when	using	it	as	a	validation	language.		

8. We	rephrased	the	sentence	like	you	suggested.	
9. Included	

	
###	Section	3	

1. Included	
2. We	changed	‘one’	for	‘expression’.	
3. We	merged	both	listings	in	one	and	put	a	little	tittle	of	the	language	in	use	in	

the	top	of	each	one.	We	also	changed	the	font	family	to	monospace	and	we	
included	captions	on	every	listing.		

4. Cardinality	is	now	just	after	the	element	section.	Some	other	sections	were	
reorganized	to	make	the	whole	paper	clearer.	

5. We	included	a	small	introduction	to	ShEx.	However,	including	it	for	XML	
Schema	or	making	an	introduction	in	every	mapping	we	think	is	excessive.	XML	
Schema	is	well	documented	and	there	are	hundreds	of	books	and	references	
that	can	be	consulted.	This	is	not	the	same	for	ShEx	and	that	is	why	we	think	
that	including	such	an	introduction	is	a	very	good	idea.		

6. In	fact,	structure	is	a	better	word	than	schema.	We	also	included	some	
discussion	on	representing	order	in	RDF.		

7. Changed	
8. The	default	value	for	minOccurs	and	maxOccurs	is	1	as	seen	in	XML	Schema	

Part	0:	Primer	Second	Edition	(https://www.w3.org/TR/xmlschema-
0/#OccurrenceConstraints).	Therefore,	we	assumed	what	is	already	implicit	on	
XML	Schema.		

9. We	reviewed	all	mappings	explanation	and	we	changed	all	mentions	that	could	
be	problematic	and	highlighted	them.	

10. We	tried	to	mitigate	this	as	much	as	possible.	One	action	that	we	took	was	to	
move	up	sections	that	appeared	after	they	were	appear	in	other	section.	In	
that	way,	you	only	need	to	go	backwards	if	you	want	to	check	something.		

11. We	included	an	explanation	of	RDF	lists,	recursion,	shape	construction	and	an	
example	image	of	a	RDF	list	construction.	We	also	identified	an	error	in	the	
shape	where	the	rdf:rest	edge	should	also	allow	the	rdf:nil	terminal.	

12. We	changed	the	explanation	for	a	better	and	more	detailed	one.	
13. Changed	
14. There	is	an	example	in	the	listing	10	where	we	show	how	restrictions	and	

extensions	are	transformed	into	ShEx.	However,	we	are	open	to	break	it	down	
into	more	examples	if	necessary.	We	have	corrected	the	punctuation	issues.		

15. We	simplified	the	wording	of	this	section	to	only	refer	to	a	base	type	and	the	
current	type,	the	one	that	is	been	restricted	or	extended.	We	also	include	a	
sentence	to	clarify	which	type	is	each	one.		

16. The	issue	is	that	ShEx	does	not	support	extensions	and	restrictions	in	any	way,	
this	is	a	very	specific	feature	of	XML	Schema.	However,	a	workaround	could	be	
to	use	inheritance.	Unfortunately,	this	is	not	yet	supported	in	ShEx,	by	it	will	be	
supported	in	future	version	(see	https://github.com/shexSpec/shex/issues/50).	
With	this	transformation,	there	is	only	a	problem	that	is	the	loss	of	semantics,	
which	is	a	problem	that	we	are	facing	along	the	whole	paper.	This	will	hinder	
the	backwards	conversion	from	ShEx	to	original	XML	Schema.		

17. Semantic	actions	are	a	way	of	introducing	some	processing	that	is	not	yet	built-
in.	What	this	enable	is	to	incorporate	small	snippets	of	code	which	will	be	
processed	when	they	are	desired	and	the	result	will	be	used	as	another	
constraint.	We	included	an	example	with	the	implementation	of	Unique.	

18. We	omitted	the	example	because	this	is	a	very	straightforward	mapping	and	
this	is	done	in	every	other	mapping	along	the	paper.		

19. Referenced	in	the	first	paragraph	of	Section	4.	
20. Actually,	the	type	is	omitted	because	of	the	strategy	used	for	restrictions	and	

extensions.	This	was	discussed	in	previous	points	and	the	reason	for	doing	it	in	
that	way,	no	support	for	extension,	restriction	or	inheritance	in	ShEx.	In	some	
of	the	mappings	there	could	be	another	version	that	reaches	the	same	goal.	
However,	we	are	using	what	we	think	it	is	the	best	or	the	easiest	one.	

	
###	Section	4	

1. Supplementary	material	was	upload	with	the	manuscript	at	the	same	time	and	
it	may	be	accessible	as	well.	We	do	not	kwon	if	there	is	some	issue	with	this.	If	
there	is	no	solution	we	can	send	this	to	you	by	e-mail	so	you	can	review	it.		

2. A	brief	introduction	to	ShEx	section	was	included.	In	this	section	ShExC	is	
explained.	

3. Changed	
4. Already	answered	at	the	beginning	of	this	letter.		
5. 1)	Changed	on	the	XML	Schema	2)	Changed	on	ShEx	3)		maxOccurs	=	1	is	the	

default	in	XML	Schema	as	we	discussed	previously	4)	Same	as	shipDate.	
6. Included	in	the	introduction.	
7. We	added	a	footnote	with	a	link	to	a	list	with	the	existing	ShEx	

implementations.	
8. Description	included	in	the	Figure	caption.	

	
###	Section	5	

1. The	benefits	from	the	migration	to	new	formats	and	more	specifically	to	
Semantic	Web	are	the	benefits	derived	from	the	Semantic	Web:	Linked	Data,	
Graph	structure,	SPARQL,	etc.	From	the	old	formats	to	new	formats	there	is	no	
always	a	benefit,	unless	it	is	a	more	advanced	format	like	the	Semantic	Web.	
With	this	though	we	opted	to	change	the	sentence	to	put	no-semantic	data	and	
semantic	data.	This	is	a	way	of	being	more	specific	with	our	thoughts	about	this	
topic.	

	

###	References	
1. Checked	
2. Checked	
3. Checked,	however	some	references	like	specifications	do	not	include	a	venue	

of	publication.	
4. We	changed	many	references	to	complete	them.	
5. We	changed	many	references	to	complete	them.	

	
###	Minor	comments	&	Typos	

1. Changed	
2. Already	rephrased	
3. Changed	
4. Changed	
5. Changed	
6. Changed	
7. Changed	
8. Changed	
9. Already	rephrased	because	of	previous	comments.	
10. Changed	
11. Changed	
12. Changed	
13. Changed	
14. Changed	
15. Changed	
16. Changed	
17. Changed	
18. Changed	
19. Changed	
20. Changed	
21. Changed	
22. Changed	
23. Changed	
24. Changed	

	
	
We	hope	that	this	revision	could	reach	and	solve	the	reviewer	concerns.	We	are	
looking	forward	to	hearing	from	him.		
	

Best	regards,	
Herminio	García-González	

José	Emilio	Labra	Gayo	

Answers	to	Simon	Steyskal	
First	of	all,	we	would	like	to	thank	the	reviewer	for	his	valuable	comments	and	
concerns,	as	well	as	by	the	time	consumed	in	detailing	all	the	problems	across	the	
paper	and	giving	us	this	great	feedback.	In	almost	all	the	points	we	agree	with	the	
reviewer	and	we	think	that	this	review	has	contributed	to	elaborate	a	better	paper.		
	
We	included	the	requested	introduction	to	ShEx	and	we	think	this	was	a	great	idea.	
We	have	also	included	some	research	questions	in	the	introduction	and	we	think	that	
we	answer	them	in	the	last	two	sections	of	the	paper.		
	
About	the	lack	of	contribution,	we	included	the	requested	introduction	to	ShEx,	the	
discussion	about	the	loss	of	semantics.	Our	PoC	implementation	is	a	work	that	is	being	
implemented	and	we	hope	to	continue	its	implementation	it	in	the	next	months.	Note	
that	the	main	features	are	already	present.	We	included	some	mappings	that	we	have	
not	yet	implemented	to	show	some	of	the	features	that	need	extra	work	on	ShEx	like	
unique	keys	or	whitespace	handling.	Although	we	show	how	those	features	can	be	
defined	using	semantic	actions	in	the	paper,	we	think	it	would	be	better	if	ShEx	had	
support	for	them.	
	
In	the	following	points,	we	try	to	clarify	and	answer	to	the	reviewer’s	comments	on	the	
handwritten	review	and	what	we	made	to	address	each	concern.	
	
###	Abstract	

• Changed	a	for	an	
	
###	Section	1	

• It	was	posible	but	XML	Schema	makes	it	more	convenient	than	using	DTDs	
(same	syntax	as	XML	and	support	for	some	features	that	DTDs	do	not	support).	
With	that	in	mind,	we	removed	the	‘possible’	word	from	the	sentence.	

• We	changed	Semantic	Web	compatible	version	to	Semantic	Web	formats.	
• We	rephrased	the	first	sentence	of	paragraph	3.	
• We	referenced	a	paper	with	an	explanation	of	this	issue	and	we	also	

enumerate	some	of	this	problems	in	the	next	section.	
• We	agree	that	there	were	not	designed	for	that,	but	some	related	works	were	

proposing	such	conversions	for	validation	purposes.	Then,	it	was	a	gap	that	
could	not	be	fulfilled	with	the	existing	technologies.		

• We	rephrased	the	last	sentence	of	paragraph	3.	
• Is	nowadays	more	pressing	->	is	nowadays	more	pressing	than	before	
• To	newer	and	more	modern	technologies	->	to	semantic	web	technologies	
• Effectively	->	correctly	
• Nature	->	type	
• Alternative	->	solution.	Indeed,	to	the	best	of	our	knowledge	there	is	no	other	

proposed	approach.	
• RDF	->	ShEx	

	

###	Section	2	
• Changed	[1]	sentence	in	the	background.	We	explained	the	lift	problem	and	

what	their	approach	is.	
• Changed	[2]	sentence	in	the	background	with	further	explanations.	
• About	RDF/XML	is	XML	question.	Indeed,	RDF/XML	is	XML	but	it	is	not	

representing	the	same	data	model,	RDF/XML	is	a	XML	based	serialization	of	the	
RDF	graph	data	model.	Nevertheless,	we	are	not	sure	how	this	question	links	
with	the	background.	

• We	included	a	reference	in	the	sentence	where	we	say	that	data	validation	is	a	
key	question.	We	also	explained	in	the	introduction	why	it	is	important	and	we	
motivated	that	statement.		

• xtext	->	Xtext	
• We	changed	reference	[16]	to	a	different	and	more	adequate	one;	namely,	

reference	[23].	
• Transformations	->	mappings	
• Recursion	is	important	because	it	is	used	in	the	List	mapping	(Section	4.4.1)	
• We	rephrased	the	last	sentence.	

	
###	Section	3	

• We	deleted	the	‘Starting	from	an	example’	sentence	because	it	was	a	reference	
when	the	example	was	before	the	mappings.	

• We	changed	font	type	for	words	that	refer	to	XML	Schema	keywords.	
• Triple	terminal	->	triple	predicate	and	object	
• Terminal	expression	->	predicate	and	object	
• One	->	expression	
• We	included:	‘for	representing	simple	types’	in	‘as	ShEx	uses	the	XSD	types’.	
• We	grouped	listings	joining	the	XML	Schema	example	and	its	ShEx	counterpart.	
• See	3.1	section	->	see	Section	3.1	
• We	deleted	the	sequence	(unordered	version).	We	had	some	debate	on	this	

topic,	and	although	there	are	some	people	that	use	the	sequence	like	the	all	
clause	we	preferred	to	maintain	the	XML	Schema	semantics	in	this	mapping.	
With	this	decision,	we	think	that	now	it	is	more	understandable	and	less	
confusing	than	the	prior	option.		

• We	rephrased	Choice	first	sentence.	
• Showed	->	shown	
• We	moved	up	XSD	types	section	to	appear	before	simple	types.	
• We	should	support	unions	because	of	compatibility.	Although	it	is	not	

supported	in	ShEx	if	we	aim	to	do	a	mapping	from	XML	Schema	to	ShEx	we	
must	offer	a	solution	for	unions	as	well.		

• Are	the	way	->	are	the	mechanism	
• Shapes	->	types	
• Into	->	in	
• Error	on	listing	fixed	
• On	listing:	MaxExclusive	->	MAXINCLUSIVE	
• Although	restrictions	are	presented	after	union,	we	cannot	move	that	because	

this	subsection	is	inside	simple	types	section	which	is	motivated	by	unions	use	

of	only	simple	types.	Moreover,	the	two	conflicting	sections	are	one	followed	
by	the	other	so	we	think	that	this	is	the	best	and	less	disturbing	solution.	

• We	rephrased	the	whole	section	to	be	more	understandable.		
• Should	be	taken	->	have	to	be	taken	
• Strategies	vary	->	translation	strategies	vary	
• To	restrict	possible	values	in	a	base	type	->	to	restrict	possible	values	of	a	base	

type.	
• Using	a	new	type	can	be	defined	using	restrictions	applied	to	the	base	one	->	A	

new	type	can	be	defined	using	restrictions	applied	to	a	base	type.	
• Strategies	vary	->	different	translation	strategies	are	used	
• The	child	shape	->	the	resulting	child	shape	
• Extending	inheritance	->	classic	inheritance	
• The	child	inherits	its	parent	elements	plus	its	own	defined	elements	->	the	child	

inherits	its	parent	elements	which	are	added	to	its	own	defined	elements	
• Extension	of	base	type	->	extension	of	the	base	type	
• By	adding	more	attributes	or	attribute	groups	->	by	adding	more	attributes	or	

attribute	groups	to	the	new	type	
• Is	done	combining	->	is	done	by	combining	
• The	example	in	the	bottom	of	complexContent	and	simpleContent	section	is	

the	example	for	what	is	described	on	this	section.	Referenced	now	in	the	last	
paragraph.	

• Inheritance	was	supported	in	ShEx	1.0.	However,	it	was	removed	in	ShEx	2.0	
and	left	for	future	versions.	The	corresponding	issue	with	that	information	is	
linked	in	the	footnote.		

• To	restrict	the	possible	values	->	to	restrict	the	possible	values	of	a	type	
• Normally,	it	is	a	set…	->	It	is	declared	using	a	set…	
• Inside	the	square	brackets	are	the	values	that	are	allowed	->	The	values	that	

are	allowed	are	enclosed	inside	the	square	brackets.	
• ShEx	does	support	this	feature	as	XML	Schema	->	ShEx	does	support	this	

feature	in	a	similar	way	as	XML	Schema.	
• Text	type	->	string	type	
• Permitted	->	possible	
• Exclusive	and	inclusive	now	on	texttt	environment	
• The	support	for	them	is	similar,	the	only	difference	is	the	keywords	that	are	

used.		
• We	are	working	to	change	this	on	the	prototype	as	there	is	a	bug	where	this	

kind	of	restrictions	are	translated	to	cardinality.		
• Allowed	->	possible	
• We	included	an	example	on	how	to	use	semantic	actions	to	translate	

whitespaces	on	ShEx.	
• We	also	included	an	example	for	unique	where	a	semantic	action	is	used	to	

translate	the	XML	Schema	constraint.		
• Previous	defined	cardinality	->	previously	defined	cardinality	
• Added	a	reference	to	Listing	cardinality	example	in	the	text.	
• We	changed	names	of	Listing	6	to	be	unique	and	let	them	be	together	in	the	

same	shape.	

• We	rephrased	the	XSD	Types	section	to	be	more	understandable.	
• NMTokens	on	XML	Schema	->	NMTokens	in	XML	Schema	
• To	define	possible	values	that	a	type	could	take	->	to	define	possible	values	

that	an	element	could	take	
• <xs:restriction	base="xsd:NMTOKEN">	->	<xs:restriction	base="xs:NMTOKEN">	
• Table	1	is	now	referenced	on	the	text	
• Patterns	->	pattern	
• Now	pattern	is	in	texttt	environment.	

	
###	Section	4	

• Although	proposed	mappings	->	In	addition	to	proposed	mappings	
• Which	grammar	could	be	seen	->	which	grammar	can	be	seen	
• Supplementary	material	was	upload	at	the	same	time	as	the	manuscript.	

However,	for	some	reason	that	we	do	not	know,	it	is	not	visible	for	reviewers.	
This	same	concern	was	notified	by	another	reviewer.	If	the	problem	persists	in	
this	upload	we	will	contact	editors	to	try	to	solve	that.	However,	if	you	want	to	
review	it	earlier	we	can	send	it	to	you	by	email.		

• ‘Once	the	XML	Schema	input	is	analysed	[…]’	rephrased	sentence.	
• ShExC	is	one	of	the	representation	formats	for	ShEx.	It	is	a	compact	syntax	

intended	for	humans.	It	is	now	explained	in	the	‘Brief	introduction	to	ShEx’	that	
we	have	included.	

• Is	used	to	prove	->	is	used	to	ensure	
• That	the	prototype	could	work	->	that	the	prototype	can	work	
• Elements	and	attributes	to	triple	terminals	->	elements	and	attributes	to	triple	

predicates	and	objects	
• Restrictions	and	cardinality	attributes	to	triple	cardinality	->	restrictions	

(max/minExclusive	and	max/minInclusive)	to	numeric	intervals	and	cardinality	
attributes	to	triple	cardinality	

• To	triple	cardinality	->	to	ShEx	cardinality	
• Changed	cardinality	on	listing	to	MAXEXCLUSIVE.	
• We	have	added	an	explanation	of	default	cardinalities	on	ShEx	in	Cardinality	

Section.	
• Implementation	adds	{1}	for	a	matter	of	being	explicit.	However,	it	can	be	

removed	and	it	can	also	be	changed	in	the	implementation.	In	the	end,	it	has	
no	influence	on	the	result.	

• RDF	listing	fixed.	
• Once	conversion	from	XML	Schema	input	to	ShEx	output	is	done.	->	Once	

conversion	from	XML	Schema	to	ShEx	is	done.	
• Is	working	properly	->	is	working	equivalently	
• From	‘Therefore,	translation	of	a	valid	XML	[…]’	to	the	end	of	the	paragraph	we	

rephrased	all	sentences	and	we	included	more	explanation	about	the	
conversion	performed.		

• We	included	a	link	to	a	list	of	other	ShEx	validators	developed	by	the	
community.		

• Figure	1.	We	included	some	explanation	on	the	Figure	caption.	
• Is	performed	by	trying	to	match	->	is	performed	trying	to	match	

• Coincidence	->	evidence	
	
###	Section	5	

• Makes	data	more	reliable	->	makes	transformed	data	more	realiable	
• We	included	more	thoughts	about	loss	of	semantics	

	
References	

• We	changed	all	references	to	follow	the	same	criteria	excepting	the	P	N	Fox	et	
al.	new	one	for	which	we	did	not	find	another	version.	

• Venues	included	
	
Figure	1	

• Working	as	expected	with	the	whole	example	
	
We	hope	that	this	revision	could	reach	and	solve	the	reviewer	concerns.	We	are	
looking	forward	to	hearing	from	him.	
	

Best	regards,	
Herminio	García-González	

José	Emilio	Labra	Gayo	

