
Semantic Web 0 (0) 1 1
IOS Press

A Stream Reasoning System for Maritime
Monitoring
Georgios M. Santipantakis a,*, Akrivi Vlachou a, Christos Doulkeridis a, Alexander Artikis b,
Ioannis Kontopoulos b, and George A. Vouros a
a Department of Digital Systems, University of Piraeus, Greece
E-mails: gsant@unipi.gr, avlachou@aueb.gr, cdoulk@unipi.gr, georgev@unipi.gr
b Institute of Informatics and Telecommunications, N.C.S.R. “Demokritos”, Greece
E-mails: a.artikis@iit.demokritos.gr, ikon@iit.demokritos.gr

Abstract. We present a stream reasoning system for monitoring vessel activity in large geographical areas. The
system ingests a compressed vessel position stream, and performs, in real-time, spatio-temporal link discovery to
calculate proximity relations between vessels and topological relations between vessel and static areas. Capitalizing
on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous
pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate
the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate
the effects of the highly efficient spatio-temporal link discovery on performance.

Keywords: Spatio-temporal link discovery, Complex activity recognition, Complex event processing, Event Calculus

1. Introduction

Nowadays, maritime surveillance systems that
keep track of the daily operation of vessel fleets
constitute an essential tool for large shipping com-
panies, coast guards, as well as governmental agen-
cies, due to their immense effect on economy and
environment [27]. Apart from the typical applica-
tion of trajectory management and optimization,
such systems provide more advanced functionality
including optimized port operations, monitoring
emissions, improved maritime situation awareness,
monitoring regulated markets (e.g., fishing), and
increased maritime safety, opening new research
challenges for the maritime domain [14].
Advances in navigation technology enable the

real-time provision of vessel positional information
for the benefit of surveillance systems. The Auto-
matic Identification System (AIS)1, for example, is

*Corresponding author. E-mail: gsant@unipi.gr.
1http://www.imo.org/en/OurWork/Safety/Navigation/

Pages/AIS.aspx

a tracking system for identifying and locating ves-
sels at sea through data exchange. This technol-
ogy integrates a VHF transceiver with a position-
ing device (e.g., GPS), and other electronic nav-
igation sensors, such as a gyrocompass or rate of
turn indicator, thus producing a wealth of valuable
data regarding the vessel and its current status.
The acquisition of positional data is achieved ei-
ther by AIS base stations along coastlines, or even
by satellites when out of range of terrestrial net-
works. AIS messages typically contain noise and
may be delayed. As this data is streamed in a mar-
itime surveillance system, several operations need
to be performed in real-time, including data clean-
ing, data integration, as well as complex maritime
activity recognition.

We focus on complex activity recognition, which
is fundamental for maritime surveillance, since it
allows for the timely detection of various types of
dangerous, suspicious and potentially illegal ves-
sel behavior. We present a system that exploits
spatio-temporal relations between vessels, or ves-

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:gsant@unipi.gr
mailto:avlachou@aueb.gr
mailto:cdoulk@unipi.gr
mailto:georgev@unipi.gr
mailto:a.artikis@iit.demokritos.gr
mailto:ikon@iit.demokritos.gr
mailto:gsant@unipi.gr
http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx
http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx

2 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

sels and static areas of interest (e.g., protected ar-
eas), which are calculated in real-time by a dedi-
cated component for spatio-temporal link discov-
ery (stLD). These relations are provided as in-
put to a complex activity recognition component,
which is based on the ‘Event Calculus for Run-
Time reasoning’ (RTEC) [6]. This is an Event Cal-
culus [29] implementation with various optimiza-
tion techniques for continuous narrative assimila-
tion on data streams.
We address the problem of real-time spatio-

temporal link discovery over streaming and archival
data. This link discovery (LD) problem is chal-
lenging because of (a) the streaming nature of
data, and (b) the complexity of evaluating spatio-
temporal similarity functions to determine the
links between spatio-temporal entities. There ex-
ists only limited work on spatio-temporal link dis-
covery, especially in a streaming setting. Typically,
LD tasks are solved by filter-and-refine algorithms
that identify a set of candidate entities (for link-
ing) in the filtering step, which need to be verified
in the refinement step. The refinement step is the
principal cost factor that determines the overall
performance of LD, since it requires the evaluation
of distance/similarity functions on complex geo-
metrical entities. For the case of stream to static
LD, we propose a filtering technique that improves
the efficiency of the filtering step by eliminating
entities that cannot be linked, thereby reducing
the number of entities that have to be considered
during refinement. For the case of streaming data
only, we provide an efficient method for stream-
ing LD, identifying proximity relations between
moving vessels.
In earlier work, we presented a maritime moni-

toring system which employed RTEC for complex
activity recognition [45]. In that work, RTEC per-
formed spatial calculations to determine whether
a vessel is close to a port, or within an area
of interest. Furthermore, it approximated crudely
the nearby relation between vessels by checking
whether a pair of vessels is located within the same
cell of a grid. In this work, we placed emphasis
on the detection of spatial relations and developed
a separate component for highly efficient spatio-
temporal link discovery. Moreover, RTEC has at
its disposal additional spatial relations—whether
a vessel is nearby some area—and a much more
accurate account of proximity between vessels.

To summarise, this paper makes the following
contributions:

– We present a stream reasoning system inte-
grating a component for spatio-temporal link
discovery (stLD), and a component for rec-
ognizing complex activities by means of tem-
poral pattern matching. This way, we extend
earlier work [45] by optimizing the computa-
tion of spatial relations, leading to more effi-
cient and accurate activity recognition.

– We propose a technique for LD between
streaming positions of vessels and static areas,
which improves the efficiency of the filtering
step of LD, by eliminating entities that can-
not be linked, thereby reducing the number
of entities that have to be considered during
refinement.

– We tackle the problem of spatio-temporal LD
in a streaming environment, by discovering
links in real-time between moving entities
based on their proximity, an issue that has
not been addressed in the literature so far.

– We evaluate the performance of the system
by means of real datasets including AIS kine-
matic messages from vessels sailing in the At-
lantic Ocean around the port of Brest (Brit-
tany, France), spanning between 1 October
2015 to 31 March 2016.

The rest of this paper is organized as follows:
Section 2 presents the system architecture. The
key components of our prototype system are pre-
sented in Sections 3 and 4. Then Section 5 presents
the empirical analysis. Finally, Section 6 provides
an overview of related work, while Section 7 con-
cludes the paper.

2. System Architecture

Our work is performed in the context of the
datAcron (EU-funded H2020 Big Data) research
project2, which aims at advancing the manage-
ment and integrated exploitation of voluminous
and heterogeneous data-at-rest (archival data) and
data-in-motion (streaming data) sources, so as to
promote the safety and effectiveness of critical op-
erations of moving objects in large geographical
areas. The system architecture of the datAcron

2http://datacron-project.eu/

http://datacron-project.eu/

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 3

Fig. 1. The datAcron prototype architecture.

prototype for complex activity recognition is de-
picted in Figure 1. The main input is stream-
ing positions of vessels, in the form of AIS mes-
sages. As this streaming data flows in the sys-
tem, trajectory compression takes place, by an-
notating a subset of the original vessel positions
as critical points/events. Then, critical points are
linked with archival data in real-time, namely ma-
rine areas or points of interest, such as protected
areas (Natura2000) or ports (World Port Index).
Link discovery is performed at the spatio-temporal
level, thus identifying those areas (or points) that
are related to a given position of a vessel. Rela-
tions may be topological (e.g., a vessel is located
within and area) or proximity-based (e.g., a ves-
sel is nearby a port). In addition, vessel positions
are linked to each other, by processing the stream-
ing data only; this results in discovering proximity
relations between moving vessels (e.g., a vessel is
nearby another vessel) in an online fashion. Sub-
sequently, a complex activity recognition module
consumes the stream of spatial relations and criti-
cal points to recognize, in real-time, various types
of suspicious, dangerous or illegeal vessel activity.
The Synopses Generator component (see Fig-

ure 1) provides algorithms for trajectory recon-
struction and compression, by cleaning erroneous
data and eliminating vessel positions that do not
significantly affect the quality of trajectory rep-
resentation. Thus, its main role is to compress
a stream of positions of vessels, to a stream of
‘critical points/events’ i.e. ‘speed change’, ‘head-

ing change’, ‘communication gap’, ‘slow motion’
and ‘stopped’, expressing trajectory synopsis. It
has been shown that compressing trajectories this
way, i.e. keeping only the critical events, can sig-
nificantly reduce the computational cost of stream
reasoning, and at the same time allow for accurate
trajectory reconstruction [45]. The output of this
component is thus a cleansed stream of vessel po-
sitions, with a subset of them being annotated as
critical.

The Spatio-temporal Link Discovery component
operates on the stream of vessel positions and de-
rives in real-time a stream of spatial and spatio-
temporal relations between vessels and static ar-
eas (or points) of interest, but also between ves-
sels. To accomplish this online task, it capital-
izes on efficient spatial index structures and ap-
plies optimized algorithms designed specifically for
the purpose of link discovery. In the case of link-
ing streaming with archival data, the spatial index
is built on static data describing areas of inter-
est or static points, and each vessel position from
the stream is linked to areas or points by efficient
index-based search. In the case of purely streaming
data, the spatial index is built and maintained on-
line on the vessel positions, and greatly improves
the performance of spatio-temporal link discovery,
by enabling effective filtering of vessel positions
based on spatial distance. In this way, a stream of
spatial relations is derived and provided as input
for the recognition of complex activities.

4 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

The Complex Activity Recognition component
is responsible for matching patterns of suspicious
and potentially illegal activity on the stream of
spatial relations and critical points. This compo-
nent is based on the ‘Event Calculus for Run-Time
reasoning’ (RTEC) [6]. RTEC includes various op-
timization techniques for efficient pattern match-
ing. A form of caching stores the results of sub-
computations in the computer memory to avoid
unnecessary re-computations. A set of interval ma-
nipulation constructs simplify patterns and im-
prove reasoning efficiency. Moreover, a ‘window-
ing’ mechanism makes RTEC independent of the
data stream size.
The innovative feature of the proposed architec-

ture is the integration of an optimized component
for real-time discovery of spatial relations with an
activity recognition engine. In the following, we
delve into the technical details of spatio-temporal
link discovery (Section 3) and complex activity
recognition (Section 4) for maritime surveillance.

3. Spatio-temporal Link Discovery

We begin this section by providing the neces-
sary definitions and problem setting for spatio-
temporal link discovery. Then, we focus on: (a)
topological and proximity relations between the
positions of moving entities and static geographi-
cal areas of interest (Section 3.2), and (b) proxim-
ity relations between the positions of moving enti-
ties (Section 3.3). The former is a case of stream-
ing to static link discovery, while the latter is a
case of streaming to streaming link discovery.

3.1. Notation and Definitions

Let p = (p.x, p.y, p.t) denote a spatio-temporal
point corresponding to a vessel’s V position
(p.x, p.y) at a given time p.t, and A a dataset
that consists of geographical areas represented as
polygons. A polygon A ∈ A is represented as a
set of points ai, i.e., A = {a1, a2, . . . , an}, and we
write ai ∈ A to denote that ai is included in the
representation of A.
Further, let d(p, p′) denote the distance between

the spatial positions (p.x, p.y) and (p′.x, p′.y) of
two vessels, whereas t(p, p′) stands for their tem-
poral difference. Without loss of generality, we em-
ploy the Euclidean distance function d(p, p′) =

√
(p.x− p′.x)2 + (p.y − p′.y)2 to quantify the spa-

tial distance of two points, whereas t(p, p′) =
|p.t − p′.t|. Other distance functions, such as the
Haversine distance, are applicable. Also, note that
for small distances the Euclidean distance serves
as an approximation of the Haversine distance,
and the relative error is small. We abuse notation
slightly by denoting d(p,A) the distance between a
point p and an area A (polygon), which is defined
as: d(p,A) = minai∈A d(p, ai).
Below are the formal descriptions of the spatial

relations discovered by the stLD component.

Definition 1. withinArea(V ,A): Given a spatio-
temporal position p of a vessel V and an area
A ∈ A, withinArea(V ,A) is true, if p is enclosed
in A.

Definition 2. nearbyArea(V ,A, θ): Given a spatio-
temporal point p of a vessel V , an area A ∈ A,
and a distance threshold θ, nearbyArea(V ,A, θ) is
true, if d(p,A) 6 θ.

Definition 3. nearby(V1 .p,V2 .p′, θ, τ): Given two
spatio-temporal points p and p′ of vessels V1 and
V2 respectively, a distance threshold θ, and a tem-
poral threshold τ , nearby(V1 .p,V2 .p′, θ, τ) is true,
if d(p, p′) 6 θ and t(p, p′) 6 τ .

Fig. 2. Illustration of the mask of a grid cell that overlaps
five areas {A1, . . . , A5}.

3.2. Stream to Static LD

3.2.1. Discovery of Topological Relations: Within
Given a target dataset T , a source dataset S,

and a relation r, the goal of link discovery is to
detect the pairs (σ, τ) ⊆ S × T , where σ ∈ S and
τ ∈ T , s.t. (σ, τ) satisfies r. Consider the case of

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 5

relation ‘within’ between a moving entity p, whose
current spatio-temporal position is streamed into
our system, and a set of static geographical areas
of interest A = {A1, . . . , An}. The result of link
discovery is to identify all areas Ai ∈ A which
enclose the spatial position (p.x, p.y) of the moving
entity p.
A brute force link discovery algorithm would

have to perform the geometrical test between p
and all areas in A, thereby producing the result
using O(n) comparisons, where n = |A|. To avoid
this prohibitively expensive cost, the state-of-the-
art LD methods (e.g., [40, 48]) employ a space
tiling approach, which essentially partitions the
space in cells and assigns each area to its overlap-
ping cells. Then, to compute the relation “within”,
the position of a vessel is compared only against
those (say c) areas overlapping the cell, thus re-
sulting in O(c) comparisons, and typically c� n.
Practically, this method belongs to the filter-and-
refine paradigm, where in the filtering step only a
small set of c (out of n) candidate areas are identi-
fied, and in the refinement step the candidates are
examined one-by-one to discover the subset of ar-
eas actually enclosing the vessel. Since the refine-
ment step is the most costly processing part, any
efficient link discovery algorithm should minimize
the number of candidates.
In several application domains of spatial link

discovery , such as the maritime domain, quite
often grid cells contain a significant amount of
“empty space”, namely the space of the cell that
overlaps with no areas. Our observation is that
positions of moving vessels located in the empty
space of a cell induce high processing cost, as they
must be compared to all areas in the cell in vain,
since no “within” links can be produced. Moti-
vated by this observation, we propose a technique
to explicitly represent the empty space within cells
as yet another area. Thus, for each grid cell, we
construct an artificial area called mask, which is
defined as the difference between the cell and
the union of areas overlapping with the cell, i.e.
mask = c− (c∩

⋃
(A)i). Figure 2 shows an exam-

ple of the mask of a cell; the middle cell overlaps
with areas {A1, . . . , A5}, and the mask of the cell
is the area represented in orange color.
Having the mask of a cell as yet another area,

we can devise an efficient algorithm for link discov-
ery that eagerly avoids comparisons to areas for
positions located in the empty space. In practice,

Algorithm 1 Spatio-temporal LD algorithm for re-
lation “within” using mask.
1: Input: Grid cells C = {c1, . . . , cm}, Areas A =
{A1, . . . , An}, vessel position p (p.x, p.y)

2: Output: Subset of areas Aw ⊆ A that enclose
the vessel position (p.x, p.y) of p

3: Requires: Grid has been constructed and areas
have been assigned to overlapping cells

4: Aw ← ∅
5: locate cell ci that encloses p
6: if within(p, mask(ci)) then
7: return Aw

8: else
9: for each Aj ∈ ci do
10: if within(p, Aj) then
11: Aw ← Aw ∪Aj
12: return Aw

after we identify the enclosing cell of a position of
a vessel, we first compare it to the mask of the
cell, to check if it is enclosed in the empty space. If
this single comparison returns true, we stop pro-
cessing this position, thereby saving c comparisons
(c denotes the average number of areas in a cell).
For the typical case where a cell contains several
areas, this technique can save significant compu-
tational cost, as will be demonstrated in the em-
pirical analysis presented in Section 5.

Algorithm 1 presents the pseudo-code for dis-
covering a ‘within’ link between the position p of a
vessel and the areas that enclose it. As a prerequi-
site, the grid has already been constructed and the
static areas in the dataset R have been assigned
to cells. This is essentially a pre-processing step.
In the first step, the cell ci that encloses p is de-
termined (line 5). This operation is performed in
constant time O(1) in the case of equi-grids. Then,
we check if p is contained in the mask mask(ci) of
cell ci (line 6). If it is contained, no further pro-
cessing is required, and the algorithm terminates
returning the empty set. If it is not contained, then
we check for containment against all areas Aj in
cell ci (line 9). For those areas Aj that contain p,
we add them to the result set Aw (line 11) and
eventually return them as result.

The lines 9–11 of Algorithm 1 are processed in
parallel, i.e., each iteration in the for loop is carried
out by a different thread (‘worker’). The number
of concurrent workers is usually a predefined con-
stant w.r.t. system configuration, to allow uninter-

6 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

Algorithm 2 Spatio-temporal LD algorithm for re-
lation ‘nearby’ using mask.
1: Input: Grid cells C = {c1, . . . , cm}, Areas

A = {A1, . . . , An}, vessel position p (p.x, p.y),
threshold θ

2: Output: Subset of areas An ⊆ A within dis-
tance θ from the vessel position (p.x, p.y) of p

3: Requires: Grid has been constructed and areas
have been assigned to overlapping cells

4: An ← ∅
5: locate cell ci that encloses p
6: if within(p, maskθ(ci)) then
7: return An

8: P ← ∅
9: locate cells C ′ that overlap with circle at p

with radius θ
10: for each ci ∈ C ′ do
11: for each Aj ∈ ci do
12: if Aj ∈ P then
13: continue
14: if d(p,Aj) 6 θ then
15: An ← An ∪Aj
16: P ← P ∪Aj
17: return An

ruptible system operation (in our experiments we
employ 8 workers). We have enabled multi-thread
processing using a pool of tasks, populated with
the refinement tasks of within(p,Aj). As soon as a
worker is available and the pool contains tasks, the
next task is selected and assigned to the worker
for processing.
Also, the algorithm is amenable to paralleliza-

tion beyond the scope of a single machine for
high velocity streams, by simply partitioning the
stream of positions of vessels to the available pro-
cessing nodes, each of which runs an instance of
Algorithm 1 on an off-line constructed grid.

3.2.2. Discovery of Proximity Relations: Nearby
Interestingly, the above technique is applicable

also for link discovery of a proximity relation, such
as the ‘nearby’ relation, between vessel position p
and a set of static areas A. The ‘nearby’ relation
is defined using a spatial threshold θ, and retrieves
the subset of areas in A that are located at most
at distance θ from p.

The technique of using the mask needs to be
slightly adjusted to work in the case of relation
‘nearby’. The main adjustment concerns the way

the mask of each cell is computed. We expand each
area Ai by θ and then the cell’s mask is computed
as previously, only using the expanded areas (Aθi)
instead of the actual areas Ai. To differentiate this
mask of a cell ci from the one used in the previous
algorithm, we denote it by maskθ(ci).
Algorithm 2 presents the pseudo-code for LD

of relation ‘nearby’. Notice that the grid is con-
structed exactly as before, using the original areas
{Ai}. First, the cell ci that encloses p is located
(line 5). If maskθ(ci) contains p (line 6), then we
can safely stop processing, since no area is nearby
p. This is because maskθ(ci) has been constructed
based on expanded areas. If this pruning is not
successful, we need to examine all cells ci ∈ C ′

that overlap with a circle centered at p with ra-
dius θ, since they may contain results. We examine
each area Aj in ci (line 11), and if the distance of
p to Aj is lower or equal to the threshold θ, then
Aj is added to the result An (line 15). To avoid
computing the distance of p to an area Aj multi-
ple times (due to Aj assignment to multiple cells),
we maintain the already examined areas in a set
(P). In summary, the algorithm avoids processing
points that would safely produce no results, due
to the use of the mask technique.

3.3. Stream to Stream LD

Streaming link discovery of ‘nearby’ relations
between positions of moving vessels requires metic-
ulous use of the available memory, since it is not
feasible to store the complete data stream in mem-
ory. Our solution relies on the use of a grid data
structure on the spatial domain, similarly to the
case of Section 3.2. The grid is used to maintain
the positions arriving in the stream. When a new
vessel position p arrives in the stream, in the fil-
tering step, we examine the cells that intersect
with a circle centered at (p.x, p.y) with radius θ,
and retrieve all vessel positions p′i that satisfy the
spatial constraint, i.e., d(p, p′i) 6 θ. Then, in the
refinement step, we identify the subset of vessel
positions {p′i} that in addition satisfy the tem-
poral constraint, i.e., t(p, p′i) 6 τ . This solution
avoids the exhaustive comparison of p to all other
positions that have arrived before p. Algorithm 3
is invoked for each incoming p and describes this
solution.

However, in order to manage the available mem-
ory effectively, we need to find a suitable way to

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 7

Algorithm 3 Spatio-temporal LD algorithm for re-
lation ‘nearby’ between vessels.
1: Input: Grid cells C = {c1, . . . , cm}, vessel po-

sition p (p.x, p.y), thresholds θ, τ
2: Output: SetR of pairs of vessel positions (p, p′)

satisfying Definition 3
3: R← ∅
4: locate cells C that overlap with circle at p with

radius θ
5: for each cj ∈ C do
6: for each p′i ∈ cj do
7: if d(p, p′i) 6 θ then
8: if t(p, p′i) 6 τ then
9: R← R ∪ (p, p′i)
10: add p to grid C
11: return R

clean up the grid, since vessel positions that have
arrived before more than τ time units will never
produce a ‘nearby’ link to a new vessel position. A
second reason to perform this cleaning operation
is efficiency. If no cleaning were performed, then
too many (old) vessel positions would be retrieved
that satisfy the spatial constraint, but would be
eliminated due to the temporal constraint, leading
to wasteful processing.
A naive approach for cleaning would be to scan

all grid cells (set at time tnow) and delete ves-
sel positions p whose timestamp p.t is more than
τ units ago, i.e., tnow − p.t > τ . However, this
operation has linear complexity wrt. the number
of positions in the grid, and incurs non-negligible
overhead, as it must be performed during stream
processing. To address this problem, we introduce
an auxiliary, bookkeeping data structure that ef-
ficiently detects the vessel positions that need to
be deleted. For this purpose, we maintain a list of
pointers to the vessel positions in the grid. The list
is in temporal order, since vessel positions are in-
serted in the list in the order in which they arrive
in the stream. Then, cleaning can be performed ef-
ficiently, by traversing the list and deleting vessel
positions (from the grid and list) until a position
p is found with timestamp tnow − p.t 6 τ . The
maintenance cost of this list is small; insertions
have O(1) cost, whereas deletions have linear cost
to the number of vessel positions that need to be
deleted.
Figure 3 shows an example of the bookkeep-

ing structure. Assuming that tnow = t5, then the

Fig. 3. Example of grid and bookkeeping structure for
“nearby” LD between positions of moving vessels.

grid and the list contain the five vessel positions
p1, . . . , p5, as depicted. In case no cleaning is per-
formed, then p1 would be identified as candidate
for ‘nearby’ to p5, which would then be rejected
due to the temporal threshold, since p5.t−p1.t > τ .
In case cleaning has already been performed, p1
would have already been deleted from the grid,
thus we would have avoided the cost of examining
p1.
An interesting issue that deserves further dis-

cussion is the frequency of performing the clean-
ing operation. An eager strategy could invoke the
cleaning operation prior to processing every new
vessel position that arrives in the stream. This
would guarantee that all vessel positions satisfy-
ing the spatial distance threshold would be results,
without the need to check the temporal threshold.
However, the eager strategy would result in pay-
ing the overhead of grid cleanup for every new po-
sition. Another approach is to follow a lazy strat-
egy, where the cleaning operation is invoked peri-
odically, thus limiting the induced overhead at the
expense of retrieving some candidate vessel posi-
tions that may be rejected by the temporal thresh-
old. We evaluate the frequency of performing the
grid cleanup in Section 5 presenting the empirical
evaluation.

4. Complex Activity Recognition

The complex activity recognition (CAR) com-
ponent of the datAcron prototype consumes the

8 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

Table 1
Complex Activity Recognition: Input events are presented above the two horizontal lines, while the output stream is presented
below these lines. The input events above the single horizontal line are detected by stLD, while the remaining input events
are emitted by the trajectory compression component. All input events, except nearBy(V1 ,V2), are instantaneous, while all
output activities are durative.

Event/Activity Description

withinArea(V ,A) A vessel V is within some area A of interest
nearbyArea(V ,A) A vessel V is close to some area A of interest
nearPorts(V) A vessel V is close to one or more ports
nearby(V1 ,V2) Two vessels V1 and V2 are close to each other

gapStart(V) A vessel V stopped sending position signals
gapEnd(V) A vessel V resumed sending position signals
slowMotionStart(V) A vessel started moving at a low speed
slowMotionEnd(V) A vessel stopped moving at a low speed
stopStart(V) A vessel started being idle
stopEnd(V) A vessel stopped being idle
changeInSpeedStart(V) A vessel started changing its speed
changeInSpeedEnd(V) A vessel stopped changing its speed
changeInHeading(V) A vessel changed its heading

gap(V) A vessel V has a communication gap in the open sea
stopped(V) A vessel V is stopped in the open sea
slowMotion(V) A vessel V moves slowly in the open sea
illegalFishing(V) A vessel V is potentially engaged in illegal fishing
loitering(V) A vessel V is suspiciously idle
rendezVous(V1 ,V2) Two vessels V1 and V2 are having a rendez-vous
highSpeedIn(V ,AreaType) A vessel V exceeds the speed limit of an area of AreaType

stream of spatial relations detected by stLD, as
well as the critical points expressing compressed
trajectories, to detect various types of suspicious,
dangerous and illegal vessel activity (see Section
2). The upper part (above the two horizontal lines)
of Table 1 presents the input to the CAR compo-
nent. The output of this component, i.e. the list
of recognized activities, specified in collaboration
with the domain experts of datAcron, is presented
in the lower part of Table 1.

4.1. Run-Time Event Calculus

The CAR component of datAcron is based
on the ‘Event Calculus for Run-Time reasoning’
(RTEC) [6]. The Event Calculus is a logic pro-
gramming language for representing and reason-
ing about events and their effects [29]. RTEC
is a Prolog implementation of the Event Cal-
culus, designed to compute continuous narra-
tive assimilation queries for pattern matching on
data streams. RTEC has a formal, declarative
semantics—complex (vessel) activity formalisa-
tions are (locally) stratified logic programs [46].

Moreover, RTEC includes various optimisation
techniques for efficient pattern matching, such
as ‘windowing’, whereby all input events that
took place prior to the current window are dis-
carded/‘forgotten’. Details about the reasoning al-
gorithms of RTEC, including a complexity anal-
ysis, may be found in [6]. In what follows, we il-
lustrate the use of RTEC for specifying maritime
activities, focusing on the effects of stLD on CAR.

The time model in RTEC is linear and includes
integer time-points. Variables start with an upper-
case letter, while predicates and constants start
with a lower-case letter. Where F is a fluent—a
property that is allowed to have different values at
different points in time—the term F =V denotes
that fluent F has value V . An event description
in RTEC includes rules that define the event in-
stances with the use of the happensAt predicate, the
effects of events on fluents with the use of the initi-
atedAt and terminatedAt predicates, and the values
of the fluents with the use of the holdsAt and holds-
For predicates. Table 2 summarizes the main pred-
icates of RTEC. Complex activities are typically
durative (see the lower part of Table 2), thus in

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 9

Table 2
Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T
holdsAt(F =V, T) The value of fluent F is V at time T
holdsFor(F =V, I) I is the list of the maximal intervals for which F =V holds continuously
initiatedAt(F =V, T) At time T a period of time for which F =V is initiated
terminatedAt(F =V, T) At time T a period of time for which F =V is terminated
union_all(L, I) I is the list of maximal intervals produced by the union of the lists

of maximal intervals of list L
intersect_all(L, I) I is the list of maximal intervals produced by the intersection of the lists

of maximal intervals of list L
relative_complement_all(I ′,L, I) I is the list of maximal intervals produced by the relative complement of the list

of maximal intervals I′ with respect to every list of maximal intervals of list L

CAR the task generally is to compute the maximal
intervals for which a fluent expressing a complex
activity has a particular value continuously. Below,
we discuss the representation of fluents/complex
maritime activities, and briefly present the way we
compute their maximal intervals.

4.2. Maritime Pattern Representation

For a fluent F , F =V holds at a particular time-
point T if F =V has been initiated by an event
at some time-point earlier than T , and has not
been terminated at some other time-point in the
meantime. This is an implementation of the law of
inertia. The time-points at which F =V is initi-
ated are computed with the use of initiatedAt rules,
which have the following form (terminatedAt rules,
expressing the ending time-points of a fluent-value
pair, have a similar form):

initiatedAt(F =V, T)←
happensAt(E, T),
conditions[T]

The conditions[T] set includes further constraints
on time-point T , expressed as follows:

– a possibly empty set of happensAt predicates
representing constraints on the occurrence of
events;

– a possibly empty set of holdsAt predicates ex-
pressing constraints on fluents; and

– a possibly empty set of atemporal constraints.

Consider the following example:

initiatedAt(gap(V) = true, T)←
happensAt(gapStart(V), T),
not happensAt(nearPorts(V), T)

terminatedAt(gap(V) = true, T)←
happensAt(gapEnd(V), T)

(1)

gap(V) is a Boolean fluent denoting a communica-
tion gap for some vessel V , i.e. V stops transmit-
ting AIS messages in the open sea. In some cases,
the absence of AIS messages is suspicious and thus
we need to record it. gapStart(V) and gapEnd(V)
are instantaneous critical events indicating, re-
spectively, the time-points in which a vessel V
stops and resumes sending AIS messages (see Ta-
ble 2). ‘not’ is negation by failure. nearPorts(V) is
an event emitted by stLD when vessel V is close to
a port. Thus, rule-set (1) states that gap(V) = true
is initiated if the trajectory compression compo-
nent reports a gapStart event for V , and stLD does
not report that V is close to a port. Furthermore,
gap(V) = true is terminated when V resumes com-
munications.

Given rule-set (1), RTEC computes the maxi-
mal intervals I for which gap(V) = true holds con-
tinuously, i.e. holdsFor(gap(V) = true, I), by find-
ing all time-points Ts at which gap(V) = true is ini-
tiated, and then, for each Ts, computing the first
time-point Te after Ts at which gap(V) = true is
terminated.

Most of the maritime patterns (defined in col-
laboration with domain experts) concern vessel
activity close to, or within, some area of inter-
est, such a Natura area. To simplify the structure

10 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

time

I1
I2

(a) Union.
time

I1
I2

(b) Intersection.
time

I1
I2

(c) Relative Complement.

Fig. 4. A visual illustration of the three interval manipulation constructs of RTEC. In this example, there are two input
fluent streams, I1 and I2. The output of each interval manipulation construct is colored light blue.

of such patterns, we defined the auxiliary fluent
inArea as follows:

initiatedAt(inArea(V , protected) = true, T)←
happensAt(withinArea(V ,A), T),
protected(A)

terminatedAt(inArea(V , protected) = true, T)←
happensAt(nearbyArea(V ,A), T),
protected(A)

terminatedAt(inArea(V , protected) = true, T)←
happensAt(start(gap(V) = true), T)

(2)

inArea(V ,AreaType) records the maximal inter-
vals in which a vessel V is in an area of some type.
withinArea(V ,A) and nearbyArea(V ,A) are spa-
tial events emitted by stLD, stating, respectively,
that V is within, or close to area A. protected(A)
is an atemporal predicate that stores protected
areas. start(F =V) (respectively end(F =V)) is a
built-in RTEC event taking place at each start-
ing (ending) point of each maximal interval for
which F =V holds continuously. According to
rule-set (2), inArea(V , protected) = true is initi-
ated when stLD detects a withinArea(V ,A) event
for vessel V and protected area A. Furthermore,
inArea(V , protected) = true is terminated when
there is information that V has exited the area,
i.e. when a nearbyArea(V ,A) event is emitted for
the protected area A, or when V stops transmit-
ting position signals (in this case we do not know
the location of V).
Similar rule-sets define inArea for other types of

area. Moreover, inArea is represented as a Boolean
fluent since areas of different type may overlap,
and thus a vessel may be within various types of
area at the same time.
In previous work, RTEC performed both tem-

poral and atemporal reasoning for CAR [45]. For
example, RTEC performed spatial calculations to

determine whether a vessel is within some area of
interest or close to a port. In this work, all spa-
tial relations necessary for CAR are computed by
stLD. Thus, the evaluation of the initiatedAt rule
of rule-set (2), for example, is reduced to checking
for (withinArea) facts (in the input stream). This
way, RTEC is used only for temporal reasoning for
which it is optimized.

The absence of the nearbyArea relation in earlier
work [45] did not allow us to compute the intervals
during which a vessel is in some area. These inter-
vals allow us to develop more accurate patterns of
maritime activity—consider e.g. illegal fishing:

holdsFor(illegalFishing(V) = true, I)←
fishing(V),
holdsFor(slowMotion(V) = true, I1),
holdsFor(inArea(V , protected) = true, I2),
intersect_all([I1 , I2], I)

(3)

In addition to the domain-independent defini-
tion of holdsFor, an event description may in-
clude domain-specific holdsFor rules, such as rule
(3), used to define the values of a fluent F ,
e.g. illegalFishing, in terms of a Boolean func-
tion on the values of other fluents. Domain-specific
holdsFor rules make use of three interval manipu-
lation constructs: union_all, intersect_all, and rela-
tive_complement_all. These are presented in Table
2 and illustrated in Figure 4. fishing is an atem-
poral predicate recording fishing vessels. Accord-
ing to the rule (3), the list I of maximal inter-
vals during which a fishing vessel V is said to
be engaged in illegal fishing is computed by de-
termining the list I1 of maximal intervals during
which V is moving in slow motion in the open sea
(these intervals are computed given the instanta-
neous slowMotionStart and slowMotionEnd criti-

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 11

cal events), the list I2 of maximal intervals during
which V is in a protected area, and then calculat-
ing the list I representing the intersections of the
maximal intervals in I1 and I2.
The interval manipulation constructs of RTEC

support the following type of definition: for all
time-points T , F =V holds at T if and only if
some Boolean combination of fluent-value pairs
holds at T . For a wide range of fluents, this is a
much more concise definition than the traditional
style of Event Calculus representation, i.e. identi-
fying the various conditions under which the flu-
ent is initiated and terminated so that maximal
intervals can then be computed using the domain-
independent holdsFor. For instance, the represen-
tation of illegalFishing by means of initiatedAt and
terminatedAt predicates requires four rules.
Rule (3) is but one of the possible examples of

suspicious or abnormal activity. For instance, we
may want to flag communication gaps that start
within, or even close to, an area of interest (say,
a protected area). Similarly, we may want to flag
vessels that are idle in some designated area (loi-
tering). The list of activities recognized by the
CAR component of the datAcron prototype is pre-
sented in the lower part of Table 1.
In addition to patterns for individual vessels,

the knowledge base of the CAR component of dat-
Acron includes formalizations of activities for pairs
of vessels. Consider rendezVous:

holdsFor(rendezVous(V1 ,V2) = true, I)←
holdsFor(nearby(V1 ,V2) = true, I1),
holdsFor(slowMotion(V1) = true, I2),
holdsFor(stopped(V1) = true, I3),
union_all([I2 , I3], I4),
holdsFor(slowMotion(V2) = true, I5),
holdsFor(stopped(V2) = true, I6),
union_all([I5 , I6], I7),
intersect_all([I1 , I4 , I7], I)

(4)

nearby(V1 ,V2) = true is a fluent denoting whether
two vessels V1 and V2 are close to each other. This
relation is computed by stLD. stopped(V) = true
expresses that vessel V has stopped in the open
sea. The intervals of this fluent-value pair are com-
puted with the use of the instantaneous stopStart
and stopEnd critical events (see Table 1). Accord-
ing to rule (4), vessels V1 and V2 are said to have a
rendez-vous when they are close to each other, and

each of them is stopped or moving in slow motion
in the open sea.

In previous work, we approximated very crudely
the nearby(V1 ,V2) relation by checking whether
V1 and V2 are located within the same cell of a
grid. It is not surprising that this approximation
produced several false negatives (vessels located
close to each other but in different cells) as well
as false positives (vessels located within the same
cell but not close to each other). In this work, we
can avoid these issues, due to the efficient spatial
relation detection of stLD.

5. Experimental Evaluation

We present the results of our experimental study
using real-life datasets from the maritime domain.

5.1. Experimental Setup

Platform. All experiments presented below were
performed on a computer with 8 cores (Intel(R)
Core(TM) i7-7700 CPU @ 3.6GHz) and 16 GB
of RAM, running Ubuntu 16.04 LTS 64-bit with
Linux Kernel 4.8.0-53-generic, Java 8, and SWI
Prolog 7.2.3 for RTEC.

Datasets. Our main dataset is provided by our
partners in datAcron and contains AIS kinematic
messages from vessels sailing in the Atlantic Ocean
around the port of Brest (Brittany, France) span-
ning between 1 October 2015 to 31 March 2016.
AIS messages are compressed by the trajectory
synopsis module (see Figure 1), keeping only crit-
ical events, regarding the start/end of low speed
of a vessel, changes in speed/heading as well as
notifications about gaps (a vessel has not emit-
ted a message over a given time period), concern-
ing 5, 050 vessels. Each critical point is accompa-
nied by mobility information such as speed and
heading. The dataset contains 4, 765, 647 critical
points. This dataset is consumed by stLD, which
further produces 3, 204, 206 spatial events that are
additionally provided to CAR as input. Spatial
events determine whether a vessel is in or near an
area of interest, and if two vessels are close to each
other in space and time.

In addition, we employ a set of spatial datasets
describing areas and points of interest, as follows:

12 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

– Natura2000 regions: Natura 2000 is an index
of protected regions for biodiversity in the Eu-
ropean Union. It is set up to ensure the sur-
vival of Europe’s most valuable species and
habitats, indexing 3,522 polygons.

– Fishing areas: This dataset includes 5,076
polygons generated from raster images depict-
ing the fishing intensity in European waters
(as reported by European Union).

– The World Port Index (WPI) including a list-
ing of 3,685 ports throughout the world, de-
scribing their location, characteristics, known
facilities, and available services. Ports in this
dataset are represented as points, and WPI
is used for discovering proximity relations be-
tween vessel positions and ports.

Metrics.Our main metric is the achieved through-
put of the stream reasoning system, assessed by
delving into the individual performance of its two
constituent components, stLD and CER. Other
auxiliary metrics are additionally presented, in or-
der to explain performance, such as processing
time and recognition time for stLD and complex
activity recognition respectively. We also measure
the number of unrewarding comparisons of each
LD configuration, i.e., the number of comparisons
that did not result in a relation.
Parameters. In the experiments evaluating the

performance of link discovery, we vary the input
size and granularity of the grid (i.e., cell size).
In the case of stream to static LD (i.e., ‘within’
and ‘nearby’ relations between moving objects and
regions), we setup multiple equi-grid configura-
tions varying in granularity {0.5◦, 1◦, 2◦, 3◦} (de-
grees in latitude/longitude), using the datasets of
Natura2000 and fishing regions, totaling 8,599 re-
gions. An equi-grid of 0.5◦ granularity means that
the size of a cell is 0.5◦×0.5◦. Notice that we con-
struct the grid over the complete static datasets,
as typically done in link discovery tasks. We eval-
uate the performance and scalability of stLD, us-
ing subsets of critical points datasets, i.e., {10K,
200K, 400K, 600K} entries. Also, we evaluate the
gain obtained by using the mask technique (for the
stream to static link discovery method of Section
3.2), and using the bookkeeping technique (for the
stream to stream link discovery method of Section
3.3). Finally, we evaluate the effect of varying the
number of cores on CAR, as well as the effect of
increasing the window size.

Granularity

Average
Number of
Areas in
Cell

Cells Constructed

0.5◦ 5.74 2,852
1◦ 13.54 858
2◦ 36.09 272
3◦ 64.14 147

Table 3
Distribution of areas from target dataset for each grid
configuration.

5.2. Link Discovery

The first objective of the experimental study
is to evaluate the case of stream to static link
discovery (i.e., relations within and nearby), in
terms of achieved throughput, while also quantify-
ing the gain offered by the mask technique. Then,
we study the performance for the case of stream to
stream link discovery (i.e., vessel ‘nearby’ vessel),
focusing on measuring the throughput and the ef-
fect of bookkeeping.

5.2.1. Stream to Static LD
In this experiment, we refer to the areas orga-

nized in a grid as target dataset, whereas source
dataset refers to the dataset of streaming ves-
sel positions. We use as target dataset the re-
gions of Natura2000 and fishing areas, totaling
8,599 areas. This static data is organized off-line in
main-memory using grid configurations of varying
granularity for the complete geographical space
covered by the areas. For the streaming source
dataset, we employ subsets of the critical points
dataset of different sizes, in order to evaluate its
effect. The distribution of areas for each grid con-
figuration is shown in Table 3. The second col-
umn shows the average number of areas in a cell,
while the third column indicates the number of
non-empty cells that were constructed (i.e., hold
at least one of the given areas).

Figure 5 shows the benefits of using the pro-
posed technique with mask. Figure 5a depicts the
total execution time required for processing a sub-
set of critical points, whose size is indicated in the
x-axis, using two grids with granularity 0.5◦ and
1.0◦ respectively. We observe that the mask tech-
nique achieves better execution time for all grid
configurations and input sizes. Figure 5b shows
both grid configurations of granularity 2.0◦ and
3.0◦. In terms of throughput, the use of the mask

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 13

 0

 5000

 10000

 15000

 20000

 25000

10K 200K 400K 600K

E
xe

cu
tio

n
tim

e
(s

ec
)

Size of source dataset

0.5/nomask
0.5/mask

1.0/nomask
1.0/mask

(a) Total execution time.

 0

 5000

 10000

 15000

 20000

 25000

10K 200K 400K 600K
E

xe
cu

tio
n

tim
e

(s
ec

)
Size of source dataset

2.0/nomask
2.0/mask

3.0/nomask
3.0/mask

(b) Total execution time.

 0

 100

 200

 300

 400

 500

 600

10K 200K 400K 600K

G
ai

n
(%

)
m

as
k

vs
. n

om
as

k

Size of source dataset

0.5
1.0
2.0
3.0

(c) Gain (%) of using mask.

Fig. 5. Spatio-temporal LD: Stream to static.

 50
 100
 150
 200
 250
 300
 350
 400

 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

po
in

ts
/s

ec
)

Frequency of grid cleanup (seconds)

(a) Throughput.

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100P
ro

ce
ss

in
g

ov
er

he
ad

 (
m

se
c)

Frequency of grid cleanup (seconds)

(b) Overhead of grid cleanup.

Fig. 6. Spatio-temporal LD: Stream to stream.

achieves to increase the throughput up to a factor
of 5, compared to not using the mask. Figure 5c
quantifies this gain, as the ratio of unrewarding
comparisons, i.e., the number of unrewarding com-
parisons without mask, divided by the number of
unrewarding comparisons with mask. For instance,
the ratio of unrewarding comparisons for input size
200K and granularity 0.5◦ is 402.7%. This result
clearly demonstrates the advantage of using the
mask technique.

5.2.2. Stream to Stream LD
In the case of stream to stream link discov-

ery (Figure 6), the main metric is the through-
put (number of processed positions per second).
We evaluate the effect of the grid cleaning tech-
nique on throughput, using a temporal thresh-
old of 30 seconds. Figure 6a shows how through-
put is affected when varying the frequency of grid
cleanup from 10–100 sec. The chart shows that
the more frequent cleanup is performed, the higher
the achieved throughput. When the cleanup is de-
layed, the processing time spent on comparisons is

increased, affecting the total execution time, and
decreasing the average throughput.

The next question to be answered concerns the
overhead imposed by frequent grid cleanup. Fig-
ure 6b shows the average time spent for grid
cleanup in milliseconds. We observe that the over-
head is very small, and increases when the cleaning
is not performed regularly. Recall that the book-
keeping structure is a list of spatio-temporal posi-
tions of vessels ordered by their temporal values,
and the disposal of part of the list on each call al-
lows us to avoid searching every cell of the grid for
‘expired’ entries. In summary, the cleanup opera-
tion has minimum overhead (in the order of mil-
liseconds), which makes it applicable with high fre-
quency, thereby increasing the achieved through-
put.

5.3. Complex Activity Recognition

RTEC performs continuous query processing,
computing the maximal intervals of fluents repre-

14 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

A
vg

 R
ec

og
ni

tio
n

T
im

e
(s

ec
on

ds
)

Window size (hours)

1 core
2 cores
4 cores
8 cores

(a) Average recognition time.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6 7 8A
vg

 #
 o

f i
np

ut
 e

ve
nt

s
(t

ho
us

an
d)

Window size (hours)

1 core
2 cores
4 cores
8 cores

(b) Average number of input events.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

A
vg

 #
 o

f C
A

s
(t

ho
us

an
d)

Window size (hours)

1 core
2 cores
4 cores
8 cores

(c) Average number of recognised ac-
tivities.

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

T
ho

us
an

d
ev

en
ts

/s
ec

)

Window size (hours)

1 core
2 cores
4 cores
8 cores

(d) Throughput for slide step
β= 1 hour.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

T
ho

us
an

d
ev

en
ts

/s
ec

)

Window size (hours)

1 core
2 cores
4 cores
8 cores

(e) Throughput for slide step β=ω.

Fig. 7. Complex activity recognition.

senting complex maritime activities. At each query
time Qi, the input events that fall within a spec-
ified sliding window ω are taken into considera-
tion. All input events that took place before or at
Qi−ω are discarded/‘forgotten’. This way, the cost
of reasoning is independent of the data stream size.
At Qi, the complex activity intervals computed by
RTEC are those that can be derived from input
events that occurred in the interval (Qi−ω,Qi], as
recorded at time Qi. When the range ω is longer
than the slide step β, it is possible that an input
event occurs in the interval (Qi−ω,Qi−1] but ar-
rives at RTEC only after Qi−1; its effects are taken
into account at query time Qi. Window parame-
ters for ω and slide step β are defined by the do-
main experts along with the maritime patterns,
since they reflect the time horizon over which in-
teresting phenomena may be detected. Usually, ω
spans many minutes or even hours for capturing
meaningful events across a vessel’s route.
Figure 7 presents the experimental results for in-

creasing window sizes ω: 1 hour to 8 hours. Figure
7a presents the average recognition time per win-
dow ω, while Figures 7b and 7c show, respectively,

the average number of input events and recognized
activities per window. Recall that Table 1 lists the
types of input event and recognized activity. The
slide step β is set to 1 hour. The empirical analy-
sis shows that RTEC is capable of real-time mar-
itime activity recognition—e.g. RTEC recognizes
(≈ 1,500) maritime activities given a window of 8
hours (≈ 31,000 input events) in less than 3.5 sec,
even when operating on a single processing core of
the desktop computer. (The use of multiple cores
will be discussed shortly.)

Figure 7d presents the throughput. As the win-
dow size ω increases, throughput decreases since
the average recognition time per window increases
(see Figure 7a). Figure 7e presents the through-
put when the slide step is the same as the window
size (β=ω), i.e. windows are non-overlapping. In
this case, the average recognition time per win-
dow increases, but only very slightly (due to the
higher cost of ‘forgetting’ more past events), and
thus not presented here. (The average numbers
of input events and recognized activities per win-
dow are also similar to the case of β= 1 hour).
Figure 7e shows that, as the window size ω in-

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 15

creases, throughput increases. When ω increases,
the number of windows/query-times decreases (we
have significantly less windows than the case of
β= 1 hour), while the average recognition time per
window increases only slightly.
We also run RTEC in parallel, by launching dif-

ferent instances of the engine, each operating on
a different processing core. Each RTEC instance
was responsible for activity recognition in a sepa-
rate sub-area of the dataset, receiving input events
only from vessels in that sub-area. To avoid false
negatives on the borders of the sub-areas, we al-
lowed for some overlap. Figure 7 presents the re-
sults when 2, 4 and 8 processing cores are used.
Figure 7a presents the average recognition of the
worst-performing RTEC instance, while Figures
7b and 7c show the average input events and recog-
nised activities for that instance. Figures 7d and
7e present the throughput. As shown in Figure 7,
the benefits of parallelization can be significant. A
more refined segmentation of the dataset into sub-
areas, optimizing load allocation, would have had
more profound effects on performance.

6. Related Work

In earlier work, we presented a system for
maritime monitoring, which employed RTEC for
complex activity recognition [45]. In that work,
RTEC performed spatial calculations to determine
whether a vessel is close to a port, represented as a
static point, or within an area of interest. Further-
more, it approximated crudely the nearby relation
between vessels by checking whether a pair of ves-
sels is located within the same cell of a grid. In
this work, we placed emphasis on the detection of
spatial relations and developed a separate compo-
nent for highly efficient spatio-temporal link dis-
covery. Moreover, RTEC had at its disposal addi-
tional spatial relations—whether a vessel is nearby
some area—and a much more accurate account of
proximity between vessels.

6.1. Spatio-temporal Link Discovery

Even though the topic of link discovery has at-
tracted much interest and attention lately (see [37]
for a recent survey), there is not much work on the
challenging topic of spatio-temporal link discov-
ery nor on link discovery over streaming datasets.

Our work tackles explicitly these topics. In addi-
tion, our work in the context of datAcron is re-
lated to semantic integration and stream reason-
ing [17, 26], as we also employ an ontology [47]
to express the discovered relations in RDF, and
to spatio-temporal stream reasoning [25], but our
focus is on the efficiency of spatio-temporal link
discovery. Below, we provide an overview of link
discovery frameworks and techniques.

Generic LD frameworks include LIMES [41] and
SILK [28]. LIMES [41] is an LD framework for
metric spaces that uses the triangular inequality in
order to avoid processing all possible pairs of ob-
jects. For this purpose, it employs the concept of
exemplars, which are used to represent areas in the
multidimensional space, and tries to prune entire
areas (and the respective enclosed entities) from
consideration during link discovery. SILK [28] is an
LD framework proposing a novel blocking method
called MultiBlock, which uses a multidimensional
index in which similar objects are located near
each other. In each dimension the entities are in-
dexed by a different property or different similar-
ity measure. Then, the indices are combined to-
gether to form a multidimensional index, which is
able to prune more entities by taking into account
the combination of dimensions.

HR3 [39] and HYPPO [38] address LD tasks
when the property values that are to be compared
are expressed in an affine space with a Minkowski
distance. Both approaches are designed with main
objectives to be efficient and lossless. In addition,
HR3 [39] comes with theoretical guarantees on re-
duction ratio, a metric that corresponds to the per-
centage of the Cartesian product of two datasets
that was not explored before reporting the link
discovery results. However, all aforementioned ap-
proaches for LD do not explicitly focus on spatio-
temporal link discovery, nor do they tackle the
streaming nature of data sources.

The spatial LD methods [40, 48] apply grid par-
titioning (a.k.a. space tiling) on the two sources A
and B, in order to perform efficiently the filtering
step, i.e., avoid comparing all entities in A to all en-
tities in B. Then, in the refinement step, different
optimizations are employed in order to minimize
the number of computations necessary to produce
the correct result set. RADON [48] is the most re-
cent approach for discovering topological relations
between datasets of areas, and can discover effi-
ciently multiple relations using space tiling. One of

16 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

its main techniques for efficiency relies on the use
of caching to avoid recomputing distances. How-
ever this imposes non-negligible requirements for
main memory, especially for large datasets. OR-
CHID [40] studies the problem of discovering all
pairs of polygons, such that their Hausdorff dis-
tance (practically Max-Min distance) is below a
given threshold. It also employs space tiling to im-
prove the filtering step. Also, it employs bound-
ing circles as approximations of polygons together
with applying the triangular inequality and al-
ready computed distances to avoid computing new
distances, thus pruning regions without distance
computations. Smeros et al. [50] study link dis-
covery on spatio-temporal RDF data. The authors
study several topological relations that are defined
on polygons. The topological relations do not take
into account proximity nor distance of the poly-
gon, and several of those are meaningful only when
both datasets store polygons. The algorithm pro-
vided creates an equi-grid, and filters out cells that
contain polygons that cannot satisfy the relation.
In summary, most of the above papers target

spatial data, rather than spatio-temporal data,
which is the goal of our work. Moreover, the type
of relations supported is very restricted, mainly
focusing on topological relations. Instead, in this
paper, proximity relations (e.g., ‘nearby’) are
targeted, and (perhaps most importantly) in a
streaming context.

6.2. Complex Activity Recognition

Various languages and systems have been pro-
posed in the literature for complex event/activity
recognition—see [4, 7, 16] for three surveys. RTEC
has a formal, declarative semantics—activity pat-
terns in RTEC are (locally) stratified logic pro-
grams. In contrast, most complex event processing
languages, including [1], several event query lan-
guages and data stream processing languages, such
as ESL [8] which extends CQL [3], and most com-
mercial production rule systems, rely on an infor-
mal and/or procedural semantics [15, 22, 44]. The
lack of theoretical underpinnings from the view-
point of stream reasoning [18, 34] has also been
observed [10, 11, 51].
RTEC explicitly represents complex activity in-

tervals (unlike e.g. [11, 15, 21, 32]) and thus avoids
the related logical problems (see [42] for a dis-
cussion of these problems). Furthermore, RTEC

supports out-of-order event streams—in contrast
to e.g. [15, 19, 20, 24, 31]—whereby the inter-
vals of previously recognised activities may be
(partially) retracted, or extended, due to delayed
input events [6]. RTEC also supports reasoning
over background knowledge, which is important
for maritime surveillance [23, 52]. On the other
hand, several approaches to activity recognition,
such as [3, 9, 15, 21, 30, 33], lack the ability of com-
bining pattern matching with background knowl-
edge reasoning [2].

Maritime activities form hierarchies, in the
sense that the formulation of one activity is used
to define other, higher-level activities. We defined
potentially illegal fishing, for example, in terms of
slow motion (recall rule (3)). In contrast to many
state-of-the-art recognition systems, such as the
widely used Esper engine3 and SASE4, RTEC can
naturally express hierarchical knowledge by means
of well-structured specifications, and consequently
employ caching techniques to avoid unnecessary
re-computations [6].

As an Event Calculus implementation, RTEC
has built-in axioms for representing complex tem-
poral phenomena, including the formalization of
inertia, which facilitate considerably the develop-
ment of succinct activity patterns, and therefore
code maintenance. This is a key difference to re-
lated approaches [2, 10, 11, 49]. Concerning the
Event Calculus literature, an important feature
of RTEC is that it includes a windowing tech-
nique. No other Event Calculus system (including
[5, 12, 13, 35, 36, 43]) system ‘forgets’ or represents
concisely the data stream history.

7. Summary & Future Work

We presented a stream reasoning system for
maritime monitoring, which supports complex ac-
tivity recognition assisted by real-time spatio-
temporal discovery of relations between moving
vessels and areas of interest. Compared to earlier
work, the proposed system optimizes the compu-
tation of spatial relations, leading to improved sys-
tem performance. Our experimental evaluation on
real maritime datasets demonstrates the efficiency
of the proposed prototype.

3http://www.espertech.com/esper/
4http://sase.cs.umass.edu/

http://www.espertech.com/esper/
http://sase.cs.umass.edu/

Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring 17

There are several directions for further work.
With respect to link discovery, we intend to
identify more complex spatio-temporal relations
in real-time. Moreover, refined data partitioning
schemes that provide load balancing and fair work
allocation to workers deserve more attention, aim-
ing at improving performance and scalability even
further. Concerning activity recognition, we are
implementing RTEC in the Scala programming
language to pave the way for the use of frame-
works with built-in support for distributed reason-
ing, such as the Akka actors toolkit5.

References

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In Pro-
ceedings of SIGMOD, 2008.

[2] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic.
Real-time complex event recognition and reasoning.
Applied Artificial Intelligence, 26(1–2):6–57, 2012.

[3] A. Arasu, S. Babu, and J. Widom. The CQL contin-
uous query language: semantic foundations and query
execution. The VLDB Journal, 15(2):121–142, 2006.

[4] A. Artikis, A. Margara, M. Ugarte, S. Vansummeren,
and M. Weidlich. Complex event recognition lan-
guages: Tutorial. In Proceedings of DEBS, pages 7–10,
2017.

[5] A. Artikis and M. J. Sergot. Executable specification of
open multi-agent systems. Logic Journal of the IGPL,
18(1):31–65, 2010.

[6] A. Artikis, M. J. Sergot, and G. Paliouras. An event
calculus for event recognition. IEEE Trans. Knowl.
Data Eng., 27(4):895–908, 2015.

[7] A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras.
Logic-based event recognition. Knowledge Engineering
Review, 27(4):469–506, 2012.

[8] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A data stream language and system designed for power
and extensibility. In Proceedings of CIKM, pages 337–
346, 2006.

[9] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong.
Consistent streaming through time: A vision for event
stream processing. In Proceedings of CIDR, pages 363–
374, 2007.

[10] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive
stream reasoning with laser. CoRR, abs/1707.08876,
2017.

[11] H. Beck, M. Dao-Tran, and T. Eiter. LARS: A
Logic-Based Framework for Analytic Reasoning over
Streams. Technical Report INFSYS RR-1843-17-03,
Institute of Information Systems, TU Vienna, October
2017.

5https://akka.io/

[12] I. Cervesato and A. Montanari. A calculus of macro-
events: Progress report. In Proceedings of TIME, pages
47–58, 2000.

[13] L. Chittaro and A. Montanari. Efficient temporal rea-
soning in the cached event calculus. Computational
Intelligence, 12(3):359–382, 1996.

[14] C. Claramunt, C. Ray, E. Camossi, A. Jousselme,
M. Hadzagic, G. L. Andrienko, N. V. Andrienko,
Y. Theodoridis, G. A. Vouros, and L. Salmon. Mar-
itime data integration and analysis: recent progress
and research challenges. In Proceedings of EDBT,
pages 192–197, 2017.

[15] G. Cugola and A. Margara. TESLA: a formally defined
event specification language. In Proceedings of DEBS,
pages 50–61, 2010.

[16] G. Cugola and A. Margara. Processing flows of infor-
mation: From data stream to complex event process-
ing. ACM Computing Surveys, 44(3):15, 2012.

[17] D. de Leng and F. Heintz. Ontology-based introspec-
tion in support of stream reasoning. In Proceedings of
JOWO, pages 1–8, 2015.

[18] D. Dell’Aglio, E. D. Valle, F. van Harmelen, and
A. Bernstein. Stream reasoning: A survey and outlook.
Data Science, 2017.

[19] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul.
Efficiently correlating complex events over live and
archived data streams. In Proceedings of DEBS, pages
243–254, 2011.

[20] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura,
W.-P. Hsiung, and K. Candan. Runtime semantic
query optimization for event stream processing. In
Proceedings of ICDE, pages 676–685, 2008.

[21] C. Dousson and P. L. Maigat. Chronicle recognition
improvement using temporal focusing and hierarchisa-
tion. In Proceedings of IJCAI, pages 324–329, 2007.

[22] M. Eckert and F. Bry. Rule-based composite event
queries: the language xchangeeq and its semantics.
Knowledge Information Systems, 25(3):551–573, 2010.

[23] J. Garcia, J. Gomez-Romero, M. Patricio, J. Molina,
and G. Rogova. On the representation and exploitation
of context knowledge in a harbor surveillance scenario.
In Proceedings of FUSION, pages 1–8, 2011.

[24] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao,
P. Stahlberg, and G. Anderson. SASE: Complex event
processing over streams. In Proceedings of CIDR,
2007.

[25] F. Heintz and D. de Leng. Spatio-temporal stream
reasoning with incomplete spatial information. In Pro-
ceedings of ECAI, pages 429–434, 2014.

[26] F. Heintz and Z. Dragisic. Semantic information in-
tegration for stream reasoning. In Proceedings of FU-
SION, pages 1454–1461, 2012.

[27] B. Idiri and A. Napoli. The automatic identification
system of maritime accident risk using rule-based rea-
soning. In Proceedings of SoSE, pages 125–130, 2012.

[28] R. Isele, A. Jentzsch, and C. Bizer. Efficient multi-
dimensional blocking for link discovery without losing
recall. In Proceedings of WebDB, 2011.

[29] R. A. Kowalski and M. J. Sergot. A logic-based cal-
culus of events. New Generation Comput., 4(1):67–95,
1986.

https://akka.io/

18 Georgios M. Santipantakis et al. / A Stream Reasoning System for Maritime Monitoring

[30] J. Krämer and B. Seeger. Semantics and implemen-
tation of continuous sliding window queries over data
streams. ACM Transactions on Database Systems,
34(1):1–49, 2009.

[31] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin.
Complex event pattern detection over streams with
interval-based temporal semantics. In Proceedings of
DEBS, pages 291–302, 2011.

[32] K. Mahbub, G. Spanoudakis, and A. Zisman. A mon-
itoring approach for runtime service discovery. Auto-
mated Software Engineering, 18(2):117–161, 2011.

[33] Y. Mei and S. Madden. Zstream: a cost-based query
processor for adaptively detecting composite events. In
Proceedings of SIGMOD, 2009.

[34] A. Mileo, M. Dao-Tran, T. Eiter, and M. Fink. Stream
reasoning. In Encyclopedia of Database Systems.
Springer Science+Business Media, 2017.

[35] R. Miller and M. Shanahan. Some alternative formu-
lations of the event calculus. In Computational Logic:
Logic Programming and Beyond, LNAI 2408, pages
452–490. 2002.

[36] M. Montali, F. M. Maggi, F. Chesani, P. Mello,
and W. M. P. van der Aalst. Monitoring business
constraints with the event calculus. ACM TIST,
5(1):17:1–17:30, 2013.

[37] M. Nentwig, M. Hartung, A. N. Ngomo, and E. Rahm.
A survey of current link discovery frameworks. Seman-
tic Web, 8(3):419–436, 2017.

[38] A. N. Ngomo. A time-efficient hybrid approach to link
discovery. In Proceedings of OM, 2011.

[39] A. N. Ngomo. Link discovery with guaranteed reduc-
tion ratio in affine spaces with minkowski measures. In
Proceedings of ISWC, pages 378–393, 2012.

[40] A. N. Ngomo. ORCHID - reduction-ratio-optimal com-
putation of geo-spatial distances for link discovery. In
Proceedings of ISWC, pages 395–410, 2013.

[41] A. N. Ngomo and S. Auer. LIMES - A time-efficient
approach for large-scale link discovery on the web of
data. In Proceedings of IJCAI, pages 2312–2317, 2011.

[42] A. Paschke. ECA-RuleML: An approach combin-
ing ECA rules with temporal interval-based KR

event/action logics and transactional update logics.
Technical Report 11, Technische Universität München,
2005.

[43] A. Paschke and M. Bichler. Knowledge representation
concepts for automated SLA management. Decision
Support Systems, 46(1), 2008.

[44] A. Paschke and A. Kozlenkov. Rule-based event pro-
cessing and reaction rules. In Proceedings of RuleML,
LNCS 5858. 2009.

[45] K. Patroumpas, E. Alevizos, A. Artikis, M. Vodas,
N. Pelekis, and Y. Theodoridis. Online event recogni-
tion from moving vessel trajectories. GeoInformatica,
21(2):389–427, 2017.

[46] T. Przymusinski. On the declarative semantics of
stratified deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Pro-
gramming. Morgan, 1987.

[47] G. Santipantakis, G. Vouros, C. Doulkeridis, A. Vla-
chou, G. Andrienko, N. Andrienko, G. Fuchs, J. M. C.
Garcia, and M. G. Martinez. Specification of semantic
trajectories supporting data transformations for ana-
lytics: The datAcron ontology. In Proceedings of Se-
mantics, 2017.

[48] M. A. Sherif, K. Dreßler, P. Smeros, and A. N. Ngomo.
Radon - rapid discovery of topological relations. In
Proceedings of AAAI, pages 175–181, 2017.

[49] V. Shet, J. Neumann, V. Ramesh, and L. Davis.
Bilattice-based logical reasoning for human detection.
In Proceedings of CVPR, 2007.

[50] P. Smeros and M. Koubarakis. Discovering spatial and
temporal links among RDF data. In Proceedings of
LDOW, 2016.

[51] E. D. Valle, S. Ceri, F. van Harmelen, and D. Fensel.
It’s a streaming world! reasoning upon rapidly chang-
ing information. IEEE Intelligent Systems, 24(6):83–
89, 2009.

[52] J. van Laere and M. Nilsson. Evaluation of a work-
shop to capture knowledge from subject matter experts
in maritime surveillance. In Proceedings of FUSION,
pages 171–178, 2009.

	Introduction
	System Architecture
	Spatio-temporal Link Discovery
	Notation and Definitions
	Stream to Static LD
	Discovery of Topological Relations: Within
	Discovery of Proximity Relations: Nearby

	Stream to Stream LD

	Complex Activity Recognition
	Run-Time Event Calculus
	Maritime Pattern Representation

	Experimental Evaluation
	Experimental Setup
	Link Discovery
	Stream to Static LD
	Stream to Stream LD

	Complex Activity Recognition

	Related Work
	Spatio-temporal Link Discovery
	Complex Activity Recognition

	Summary & Future Work
	References

