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Abstract. This paper investigates how to support a user’s exploration through a data graph in a way leading to expanding the
user’s domain knowledge. To be effective, approaches to facilitate exploration of data graphs should take into account the utili-
ty from a user’s point of view. Our work focuses on knowledge utility — how useful exploration paths through a data graph are
for expanding the user’ s knowledge. We propose a new exploration support mechanism underpinned by the subsumption theo-
ry for meaningful learning, which postulates that new knowledge is grasped by starting from familiar entities in the data graph
which serve as knowledge anchors from where links to new knowledge are made. A core agorithmic component for adopting
the subsumption theory for generating exploration paths is the automatic identification of knowledge anchors in a data graph
(KAbg). Several metrics for identifying KApc and the corresponding algorithms for implementation have been developed and
evaluated against human cognitive structures. A subsumption algorithm which utilises KApc for generating exploration paths
for knowledge expansion is presented and applied in the context of a data browser in amusic domain. The resultant exploration
paths are evaluated in a controlled user study to examine whether they increase the users' knowledge as compared to free ex-
ploration. The findings show that exploration paths using knowledge anchors and subsumption lead to significantly higher
increase in the users' conceptual knowledge. The approach can be adopted in applications providing data graph exploration to
facilitate learning and sensemaking of layman users who are not fully familiar with the domain presented in the data graph.
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1. Introduction

In the recent years, linked data (in the form of
RDF graphs) has emerged as the de facto standard for
sharing data on the Web. Consequently, data graphs
have become widely available on the Web and are
being adopted in a range of user facing applications
that provide search and exploration tasks. In contrast
to regular search where the user has a specific need
in mind and an idea of the expected search result [1],
exploratory search is open-ended requiring signifi-
cant amount of exploration [2], has an unclear infor-
mation need [3], and is used to conduct learning and
investigative tasks [4]. For example, when people
explore resources in a new domain (like in academic

research tasks) or browse through large information
spaces with many options (like exploring job oppor-
tunities, travel and accommodation offers, videos,
music). In many cases, the users will have no (or
limited) familiarity with the specific domain. When
the users are novices to a domain, the users cogni-
tive structures about that domain are unlikely to
match the complex knowledge structures of data
graphs that represent the domain. This can have a
negative impact on the user exploration experience
and effectiveness. Users can find themselves in situa-
tions where they are not able to formulate knowledge
retrieval queries (users do not know what they do not
know [3]). Users can face an overwhelming amount
of exploration options, not being able to identify
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which exploration paths are most useful; this can lead
to confusion, high cognitive load, frustration and a
feeling of being lost.

To overcome these challenges, appropriate ways to
facilitate user exploration through data graphs are
required. Research on exploration of data graphs has
come a long way from initial works on presenting
linked data in visua or textual forms [5,6]. Recent
studies on data graph exploration have brought to-
gether research from diverse, but related, areas such
as Semantic Web, personalisation, adaptive hyper-
media, and human-computer interaction; with the aim
of reducing user cognitive load and providing support
for knowledge exploration and discovery [7-9]. Sev-
eral attempts addressed supporting layman users, i.e.
users who are novices to the domain. Examples in-
clude: personalising the exploration path tailored to
the user’s interests [10], presenting RDF patterns to
give an overview of the domain [11], or providing
graph visualisations to support navigation [12].

Although a significant amount of work addresses
the problem of facilitating user exploration through
data graphs, this has been applied mainly in investi-
gative tasks. There is limited research on supporting
learning through data graph exploration. The learning
perspective has been studied with regard to providing
generic tools for exploration of interlinked open edu-
cational resources [13]. We address an important
outstanding challenge by focusing on the learning
effect of user exploration, i.e. expanding the user’'s
domain knowledge while he/she is exploring a data
graph in an unfamiliar or partialy familiar domain.
Supporting learning through search is an emerging
research area in information retrieval [14,15]. It ar-
gues that “searching for data on the Web should be
considered an areain its own right for future research
in the context of search as a learning activity” [16].
Motivated by this vision, we investigate how learning
can be supported through exploration of data graphs.

The work presented in this paper opens a new ave-
nue in semantic data exploration, which looks at the
knowledge utility, i.e. expanding one’s domain
knowledge while exploring a data graph. This builds
on earlier work showing that while exploring data
graphs in unfamiliar (or partialy familiar) domains,
users serendipitously learn new things that they were
unaware of [17-19]. However, not al exploration
paths can be beneficia for knowledge expansion, e.g.
paths may not bring new knowledge to the user or
may bring too much unfamiliar things so that the user
becomes confused and frustrated [18].

The main goal of our research is to develop auto-
matic ways to generate exploration paths that can

expand the user’s domain knowledge. A scoping user
study which investigated several exploration strate-
gies for knowledge expansion [20] pointed us to the
adoption of Ausubel’s subsumption theory for mean-
ingful learning [21] as the underpinning model for
the generation of exploration paths. This theory pos-
tulates that human cognitive structures are hierarchi-
cally organised with respect to levels of abstraction,
generality, and inclusiveness of concepts; hence, fa-
miliar and inclusive entities are used as knowledge
anchors to subsume new knowledge into the users’
cognitive structures. Such entities are crucia for ex-
panding one's domain knowledge.

Adopting Ausubel’s meaningful learning theory,
our work addressed the following research questions:

RQ1. How to develop automatic ways to identify
knowledge anchors in a data graph? This means
finding graph entities which correspond to domain
concepts that can be familiar to layman users.

RQ2. How to use knowledge anchors to generate
exploration paths to facilitate domain knowledge
expansion? This means suggesting to the user graph
entity sequences for exploration, which can result in
learning new things about the domain.

To address RQ1, we utilise Rosch’s notion of
basic level objects (BLO) [22] in the context of data
graphs. We devise aforma framework that maps
Rosch’s definitions of BLO and cue validity to data
graphs, and develop several metrics and the corre-
sponding algorithms to identify knowledge anchors
in a data graph (KApg). These anchors represent con-
cepts which are likely to be familiar to layman users,
and hence can be used as knowledge bridges of fa-
miliar entities from where links to new knowledge
can be made. To evaluate the KApg agorithms, we
compare the derived KApg against human cognitive
structures. Using an experimental approach that
adapts Cognitive Science methods to derive BLO ina
domain, we identify human basic level objects in a
data graph (BLOpg) used to benchmark the KApg
algorithms. Based on the evaluation, we identify hy-
bridisation heuristics to improve precision and recall.

To address RQ2, we develop an algorithm that is
underpinned by the subsumption theory for meaning-
ful learning [21] to generate exploration paths for
knowledge expansion. This involves two steps —
identifying the most appropriate knowledge anchor to
start the path, and iterative introduction of new
knowledge through subsumption to connected enti-
ties. We have conducted a controlled task-driven user
study with a semantic data browser in the Music do-



main to examine the effectiveness of the suggested

paths to increase the users domain knowledge. The

study shows that the generated paths have signifi-
cantly higher knowledge utility and provide better
exploration experience than free exploration paths.

The main contributions of this work are:

e formal description and implementation of metrics
and the corresponding algorithms for identifying
KAbpg;

e formal description and implementation of an a-
gorithm for identifying BLOpg which correspond
to human cognitive structures over a data graph;

e analysis of the performance of KApg metrics, and
suggested hybridization heuristics, using BLOpg
identified by humans applied to a data graph in
the Music domain;

e formal description and implementation of an a-
gorithm for generating exploration paths using
KApc by adopting the subsumption theory for
meaningful learning; and

e analysis of the knowledge utility and usability of
automatically generated exploration paths based
on knowledge anchors and subsumption against
free exploration of a data graph; using a semantic
data browser in the Music domain.

The paper is structured as follows. Section 2 posi-
tions the work in the relevant literature and compares
to similar approaches. Section 3 presents the research
context for experimentation — a semantic data brows-
er and describes its data graph. Section 4 provides
preliminaries with key definitions, followed by a
formal description of metrics for identifying KApg,
and the corresponding algorithms for applying these
metrics over a data graph (Section 5). Sections 6 de-
scribes an experimental study to validate the KApg
algorithms against human BLOpg. A subsumption
algorithm used to generate exploration paths for
knowledge expansion is described in Section 7, while
Section 8 presents an experimental study to evaluate
the knowledge utility of the generated paths against
free exploration. Section 9 discusses the findings,
followed by conclusionsin Section 10.

2. Related Work

In the context of the research presented in this pa-
per, we review relevant research on data graph explo-
ration approaches to justify the main contributions of
this work. We also compare to existing approaches
for identifying key entities and generating paths in

data graphs. Since our work involves several evalua-
tion steps, we review relevant eval uation approaches.

2.1. Exploration through Data Graphs

Semantic data exploration approaches are divided
into two broad categories: (i) visualisation approach-
es for data graph exploration [23-26] and (ii) text-
based semantic data browsers [27-30]. Visualisation
provides an important tool for exploration that lever-
ages the human perception and analytical abilities to
offer exploration trajectories. These approaches, in
addition to intuitiveness, focus on the need for man-
aging the dimensions in semantic data represented as
properties, similarity and relatedness of concepts.
The text-based browser approaches operate on se-
mantically augmented data (e.g. tagged content) with
layout browsing trajectories using relationships in the
underpinning ontologies. These are adopting tech-
nigues and knowledge from learning, human-
computer interaction and personalisation to enhance
the data exploration experience of users.

2.1.1. Visualisation Approaches for Data Graph
Exploration

The state of the art in approaches that harness vis-
ualisation as a tool for exploratory discovery and
analysis of linked data graphs is presented in [23].
They use Sheiderman’s seminal work on visual in-
formation seeking (overview first, zoom and filter,
then details-on-demand) [31] to evaluate the usability
and utility of these approaches and focus on: (i) how
well these approaches generate summary of data; (ii)
how well they focus on finding relevant and im-
portant data; and (iii) what visualisation techniques
are used. In [32] the authors utilise cartographic met-
aphor and visual information seeking principles to
offer overview of data based on instance types, and
then automatically generating SPARQL queries
based on search and interaction with a map. The fo-
cus of their work is the entry point of the vast data
graph the users have to explore. There are numerous
approaches to support visual SPARQL query con-
struction and many of these works [33—-35] have sim-
ilar target audience, i.e. a layman user who is unfa-
miliar with the domain of the data graph. These
works use visualisation techniques to help layman
users browse through large data graphs. For example
the work in [33] introduced a graphical interface
(called NITELIGHT) for semantic query construction
which is based on the specification of SPARQL que-
ry language. The interface alows users to create



SPARQL queries using a set of graphical notations
and editing action. The state of the art approaches to
support visual SPARQL query construction is pre-
sented in [36]. The focus of their work isin support-
ing layman users to perform exploratory querying of
RDF graphs in space, time, and theme with interac-
tive visual query construction methods. The authors
present a number of design principles to counter the
challenges and evaluate them in a usability study on
finding maps in a historical map repository [36]. Alt-
hough these approaches hide complexity of graph
terminologies, their primarily focus on helping lay-
man users to generate SPARQL queries instead of
focusing on the properties of data graphs to guide
user exploration. [37] is such a work that manipulate
the data graph properties to guide exploration with a
system called Aemoo that helps users to focus on the
most important bit of information about an entity first
and then explore other related information. Aemoo
utilises encyclopaedic knowledge patterns as rele-
vance criteria for selecting, organising, and visuais-
ing knowledge. They are discovered by mining the
linking structure of Wikipedia to build entity-centric
summaries that can be exploited to help the usersin
exploratory search tasks. However, this approach is
feasible in multi-knowledge domains that are built by
humans (e.g. Wikipedia) and may not be feasible in
specific domains with complex structures. Further-
more, the system considers one level below the root,
and does not cover different entities at different level
of abstractions.

These visudization efforts are geared towards
helping layman users explore the complex graph
structures by hiding the complexity of semantic ter-
minology from the users. However, the effectiveness
of the visualizations depends on the user’s ability to
make sense of the graphical representation which in
many cases can be rather complex. Users who are
new to the domain may struggle to grasp the com-
plexity of the knowledge presented in the visualisa-
tion. Our approach to automatically identify entities
that are close to the human cognitive structures can
be used as complementary to visualisation approach-
es to simplify the data graph by pointing at entities
that layman users can be familiar with. The prime
focus of our approach is on augmenting text-based
data browsers by offering exploration paths.

2.1.2. Text-based Semantic Data Browsers

Two types of linked data browsers had emerged
since the early days— (i) pivoting (or set-oriented
browsing) browsers and (ii) multi-pivoting browsers.

In a pivoting browser, a many-to-many graph brows-
ing technique is used to help a user navigate from a
set of instances in the graph through common links
[27]. Exploration is often restricted to a single start
point in the data and uses ‘a resource at a time' to
navigate anywhere in a dataset [28]. This form of
browsing is aso referred as uni-focal browsing. A
second type of browsers supports multi-pivoting that
allows a user to start from multiple points of interest.
For example, PolyZoom enables multi-focus explora-
tion of maps for a user to zoom various parts of the
map at the same time [35]. Different multi-pivoting
interfaces have also been proposed, including Paral-
lax [29], VisiNav [38], PepeSearch [30].

A noteworthy variation of the pivoting approach is
the use of facets for text-based data browsing of
linked datasets. Faceted browsing is the main ap-
proach for exploratory search in many applications.
The approach employs classification and properties
features from linked datasets as a mean to offer facets
and context of exploration. Facet Graphs [39], gFacet
[40], and tFacet [41], are early efforts in this area.
More recent attempts include Rhizomer [42] that
combines navigation menus and map to provide flex-
ible exploration between different classes, Facete
[43] a visualization-based exploration tool that offers
faceted filtering functionalities, Hippalus [44] alows
users to rank the facets according to preferences de-
fined directly by the user, Voyager [45] is a mixed-
initiative system that couples faceted browsing with
visualization recommendation to support users explo-
ration, and SynopsViz [46] a tool that offers multi-
level visual exploration and analysis over RDF and
provides faceted browsing and filtering over classes
and properties. Although these approaches provide
support for user exploration, layman users who are
performing exploratory search tasks to learn or inves-
tigate new topic, can be cognitively overloaded espe-
cially when facets provide lengthy options (i.e. mul-
tiple links) for users to explore. The authors in [11]
proposed Sview, abrowser that utilises a link pattern-
based mechanism for entity-centric exploration over
Linked Data. Link patterns describe explicit and im-
plicit relationships between entities and are used to
categorise linked entities. A link pattern hierarchy is
constructed using Formal Concept Analysis (FCA),
and three measures are used to select the top-k pat-
terns from the hierarchy. However, the approach
lacked considering the user preference in identifying
the link patterns in supporting exploratory search
tasks such as learning, which would be challenging
especialy when the domain is not familiar to the user.



These initial approaches have become more so-
phisticated, personalising the exploration in order to
not only hide the complexity of semantics, but also to
take into consideration the user’s profile and interests.
An approach that explicitly targets personalisation in
semantic data exploration using users interests is
presented in [47]. Linked dataset concepts are dy-
namically categorised into upper mapping and bind-
ing exchange layer concepts using a fuzzy retrieval
model. Results with the same concepts are grouped
together to form categories, later used during con-
cept-based browsing to align the exploration space to
the users' interests. Recent approaches aimed to im-
prove search efficiency over Linked Data graphs by
considering user interests [48], or to diversify the
user exploration paths with recommendations based
on the browsing history [49]. A method for personal-
ised access to Linked Data has been suggested in [50]
based on collaborative filtering that estimates the
similarity between users, and then produces resource
recommendations from users with similar tastes.
Similarity between users is calculated by taking into
account the commonalities, the informativeness and
the connectiveness of the shared resources between
the users. More recently, a graph-based recommenda-
tion methodology based on a personalised PageRank
algorithm has been proposed in [51]. This adopts a
personalisation vector that assignes different weights
to different nodes to get a bias towards nodes closer
to user preferences. The personalisation approach in
[52] alows the user to rate semantic associations
represented as chains of relations that may reveal
interesting and unknown connections between differ-
ent types of entities for personalised.

The above approaches stress the importance of tai-
loring the exploration to the users. None of them in-
vestigates the user’'s familiarity with the domain,
which is the main focus of the approach we present
here where familiarity is related to understanding and
knowledge expansion. Moreover, conventional per-
sonalization approaches suffer from the ‘cold start’
problem — for a reliable user model to be obtained,
the user should have to spend time interacting with
the system to provide sufficient information about
their interests. Instead, we exploit the structure of the
knowledge graph to identify entities that are likely to
be familiar to users, which overcomes the cold start
problem. Strictly considered our approach is not per-
sonalisation, because we do not dynamically adapt to
the user’s knowledge as it expands while the user
browses through the graph. However, knowledge
anchors can be seen as a way to approximate what
entities in the domain may be familiar to the user

which is used in the algorithms we propose for gen-
erating exploration paths.

2.2. ldentifying Key Entitiesin Data Graphs

The most recent statistics® show that there are
3360 interlinked, heterogeneous datasets containing
approximately 3.9 billion facts. The volume and het-
erogeneity of such datasets makes their processing
for the purpose of exploration a daunting challenge.
Utilisation of various computational models makes it
possible to handle this challenge in order to offer
fruitful exploration of semantic data. Finding key
entities in a data graph is an important aspect of such
computational models and is generally implemented
using ontology summarization [53] and formal con-
cept analysis [54] techniques.

Ontology summarisation has been seen as an im-
portant technology to help ontology engineers to
make sense of an ontology, in order to understand,
reuse and build new ontologies [24,55,56]. The pro-
cess of summarising an ontology involves identifying
the key concepts in an ontology, and then hid-
ing/missing concepts that are not key concepts [57].
A good summary should be concise, yet it needs to
convey enough information to enable a decent under-
standing of the original ontology, yet provide an ex-
tensive coverage of the entire ontology [58]. Cen-
trality measures have been used in [53] to identify
key concepts and produce RDF summaries. The no-
tion of relevance based on the relative cardinality and
the in/out degree centrality of a node has been used
in [59] to produce graph summaries. The state of the
art ontology summarization approach is presented in
[58]. The approach exploits the structure and the se-
mantic relationships of a data graph to identify the
most important entities using the notion of relevance,
and then select edges connecting the entities by max-
imising either locally or globally the importance of
the selected edges. The notion of relevance is based
on the relative cardindity (i.e. judging the im-
portance of an entity from the instances it contains)
and the infout degree centrality (i.e. the number and
type of the incoming and outgoing edges) of an entity.

The closest ontology summarisation approaches to
the context of our work relates to extracting key con-
cepts as the best representatives of ontology [60,61].
It highlights the value of cognitive natural categories
for identifying key concepts in an ontology to aid
ontology engineers to better understand the ontology
and quickly judge the suitability of an ontology in a

1 http://stats.lod2.eu/



knowledge engineering project. The authors applies a
name simplicity approach, which is inspired by the
cognitive science notion of basic level objects [22] as
away to filter entities with lengthy labels for the on-
tology summary. The work in [61] has utilised basic
level concepts to extract ontologies from collabora-
tive tags. The work proposes an agorithm for con-
structing an ontology using basic level concepts. A
metric based on the category utility is proposed to
identify basic concepts from collaborative tags,
where tags of a concept are inherited by its sub-
concepts and a concept has all instances of its de-
scendants. However, these approaches lack applying
the formal definitions of basic level objects and cue
validity described in [22,62] in the context of a data
graph. Our work has operationalised these definitions
by developing several algorithms with the corre-
sponding algorithms for identifying knowledge an-
chorsin adata graph.

Forma Concept Analysis (FCA) is a method for
analysis of object-attribute data tables [54], where
data is represented as a table describing objects (i.e.
taxonomical concepts), attributes and their relation-
ships. FCA has been applied in different application
areas [63,64] such as Web mining and ontology en-
gineering. In Web mining, FCA based approaches
have been used to improve the quality of search re-
sults presented to the end users. For example, the
work in [65] developed a personalised domain-
specific search system that uses logs of keywords and
Web pages previousy entered visited by other per-
sons to build a concept lattice. More recently, FCA
has been applied to construct a link pattern hierarchy
to organise semantic links between entities in a data
graph [11]. In ontology engineering, FCA has been
used in two topics: ontology construction and ontolo-
gy refinement. The work in [66] used FCA to con-
struct ad hoc ontologies to help the user to better un-
derstand the research domain. In [67] the authors
presented OntoComp, an approach for supporting
ontology engineers to check whether an OWL ontol-
ogy covers all relevant concepts in a domain, and
supports the engineers to refine (extend) the ontology
with missing concepts. The psychological approaches
to basic level concepts have been formally defined
for selecting important formal concepts in a concept
lattice by considering the cohesion of a formal con-
cept [68]. This measures the pair-wise similarity be-
tween the concept’s objects based on common attrib-
utes. More recently, the work in [69] has reviewed
and formalised the main existing psychological ap-
proaches to basic level concepts. Five approaches to
basic level objects have been formalised with FCA

[69]. The approaches utilised the validity of formal
concepts to produce informative concepts capable of
reducing the user’s overload from a large number of
concepts supplied to the user.

Existing studies in ontology summarisation and
FCA utilise BLO to identify key concepts in an on-
tology in order to help experts to examine or reengi-
neer the ontology. They have been evaluated with
domain experts, and are applicable in tasks where the
users have a good understanding of the domain. In
contrast, we apply the notion of BLO in a data graph
to identify concepts which are likely to be familiar to
users who are not domain experts. Focusing on lay-
man users, we provide unique contribution that
adopts Rosch’s seminal cognitive science work [22]
to devise algorithms that identify (i) KApg that repre-
sent familiar graph entities, and (ii) BLOpg which
correspond to human cognitive structures over a data
graph. Crucially, these algorithms are validated with
layman users who are not domain experts.

2.3. Generating Paths in Data Graphs

In data graphs, the notion of path queries uses reg-
ular expressions queries to indicate start and end enti-
ties of paths in data graphs [70]. For example, in a
geographical graph database representing neighbor-
hoods (i.e. places) as entities and transport facilities
(e.g. Bus, Tram) as edges, the user writes a simple
query such as “I need to go from Place a to Place b”,
and the user is then provided with different transpor-
tations facilities going through different routes
(paths) starting from Place a to reach the destination
Place b [70]. Another used notion is property paths.
A property path defines possible routes between any
two given entities in a data graph. A trivial case of a
property path is simple triple pattern of length 1.
Property paths are used to capture associations be-
tween entities in data graphs where an association
from entity a to entity b comprises entity labels and
edges [71]. However, in big data graphs there are
usualy high numbers of associations (i.e. possible
property paths) between the entities and ways to re-
fine and filter the possible paths, are required. To
tackle this challenge, the work in [7] presented Ex-
plass? for recommending patterns (i.e. paths) between
entities in a data graph. A pattern represents a se-
guence of classes and relationships (edges). Explass
uses frequency of a pattern to reflect its relevance to
the query. It also uses informativeness of classes and
relationships in the pattern to indicate its informa-

2 http://ws.nju.edu.cn/explass/



tiveness by adding the informativeness of al classes
and relationships. A class having fewer instances is
more specific and thus more informative. The idea is
similar to relationships (i.e. an edge) except that in-
formativeness is considered to the start (Subject) enti-
ty and target (Object) entities of a relationship.
Relfinder [72] is another approach for helping users
to get an overview of how two entities are associated
together by showing all possible paths between two
entities in an RDF graph. This approach may not be
suitable for layman users, who may become confuse
or overloaded with too much unfamiliar entities.
While several approaches address the problem of
supporting users exploration through data graphs,
none of them aims at providing layman users with
exploration paths to help such users to expand their
domain knowledge. Furthermore, earlier approaches
generate paths that link graph entities, and are suita-
ble for tasks where users explore associations be-
tween known entities. Whereas, we provide paths for
uni-focal exploration where the user starts from a
single entry point and explores the data graph. The
unique feature of our work is the explicit considera-
tion of knowledge utility of exploration paths. We are
finding entities that are likely to be familiar to the
user and using them as knowledge bridges to gradu-
aly introduce unfamiliar entities and facilitate learn-
ing. This can enhance the usability of semantic data
exploration systems, especially when the users are
not domain experts. Therefore, our work can facili-
tate further adoption of linked data exploration in the
learning domain. It can also be useful in other appli-
cations to facilitate the exploration by users who are
not familiar with the domain presented in the graph.

2.4. Data Exploration Evaluation Approaches

Evaluation of data exploration applications usually
considers the exploration utility from a user’s point
of view or analyses the application’s usability and
performance (e.g. precision, recall, speed etc.) [23].
The prime focusis ng the usability of semantic
Web applications, while assessing how well the ap-
plications help the users with their data exploration
tasks is still a key challenge [73]. Task driven user
studies have been utilised to assess whether a data
exploration application provides useful recommenda-
tions for accomplishing users exploration tasks [37].
A task driven benchmark for evaluating semantic
data exploration has been presented in [73]. The
benchmark presents a set of information-seeking

3 http://relfinder.dbpedia.org

tasks and metrics for measuring the effectiveness of
completing the tasks. The evaluation approach in
[74] aimed to identify whether the simulated explora-
tion paths over information networks are similar to
those produced by human exploration.

In the context of ontology summarisation, there are
two main approaches for evaluating a user-driven
ontology summary [55]: gold standard evaluation,
where the quality of the summary is expressed by its
similarity to a manually built ontology by domain
experts, or corpus coverage evaluation, in which the
quality of the ontology is represented by its appropri-
ateness to cover the topic of a corpus. The evaluation
approach used in [60] included identifying a gold
standard by asking ontology engineers to select a
number of concepts they considered the most repre-
sentative for summarising an ontology.

In this paper, we evaluate algorithms for identify-
ing knowledge anchors in data graphs by comparing
the algorithms' outputs versus a benchmarking set of
basic level objects identified by humans. To the best
of our knowledge, there are no evaluation approaches
that consider key concepts in data graphs which cor-
respond to cognitive structures of users who are not
domain experts. Our evaluation approach that identi-
fies BLOpg through an experimental method adapt-
ing Cognitive Science methods is novel and can be
applied to arange of domains. Our second evaluation
study which assess the knowledge utility and usabil-
ity of the generated exploration paths adopts an es-
tablished task-based approach and utilises an educa-
tional taxonomy for assessing conceptual knowledge.

3. Application Context

As an application context for algorithm validation
and user evaluation we use MusicPinta - a semantic
data browser in the music domain [18]. MusicPinta
provides a uni-focal interface for users to navigate
through musical instrument information extracted
from various linked datasets. The MusicPinta dataset
includes several sources, including DBpedia* for mu-
sical instruments and artists, extracted using
SPARQL CONSTRUCT queries. The DBTune® da-
taset is utilised for music-related structured data
Among the datasets on DBTune.org we utilise: (i)
Jamendo which is a large repository of Creative
Commons licensed music; (ii) Megatune is an inde-
pendent music label; and (iii) MusicBrainz is a com-

4 http://dbpedia.org/About.
S http://dbtune.org/.



munity-maintained open source encyclopaedia of
music information. The dataset coming from
DBTune.org (such as MusicBrainz, Jamendo and
Megatunes) already contains the “sameAs’ links be-
tween them for linking same entities. We utilise the
“sameAs’ links provided by DBpedia to link Mu-
sicBrainz and DBpedia datasets. In this way, DBpe-
dia is linked to the rest of the datasets from
DBtune.org, enabling exploration via rich intercon-
nected datasets. The MusicPinta dataset is made
available as an open source on sourceforgeb. All da-
tasets in MusicPinta are available as a linked RDF
data graph and the Music ontology’ is the ontology
used as the schemato interlink them.

The dataset has 2.4M entities and 38M triple
statements, taking 1.5GB physical space. Table 1
shows the main characteristics of the MusicPinta
dataset.

Table 1. Main characteristics of MusicPinta data graph. The
data graph includes five class hierarchies. Each class hierarchy has
number of classes linked vie the subsumption relationship
rdf s: subC assOf (eg. thereare 151 classesinthe St ri ng
I nstrunent class hierarchy). DBpedia categories are linked to
classesin ahierarchy viathedct er ms: subj ect relationship,
and classes are linked via the domain-specific relationship M-
si cOntol ogy: i nstrument tomusica performances. The
depth of each class hierarchy is the maximum depth value for of
the entities in that class hierarchy.

Instrument class| No. of | Depth | No. of DBpe- | No. of music
hierarchy classes dia categories | performances
String 151 7 255 348

W nd 108 7 161 1539
Percussion| 82 5 182 127

El ectronic| 16 1 7 11

O her 7 1 0 2

The music ontology provides sufficient class hier-
archy for experimentation. For instance, the class
hierarchies for the Stri ng and W nd musical in-
struments have depth of 7, which is considered ideal
for applying the cognitive science notion of basic
level objects [22] on data graphs, as this notion states
that objects within a hierarchy are classified at least
three different levels of abstraction (superordinate,
basic, subordinate). The MusicPinta dataset provides
an adequate setup since it is fairly large and diverse,
yet of manageable size for experimentation.

Figures 1 and 2 show examples of the user inter-
face in the MusicPinta semantic data browser.

6 http://sourceforge.net/p/pinta/code/38/tree/
7 http://musicontology.com/.

- Logout
MusicPinta

Socn). Samnty . Musie sk dicode
Hame Semantis Search Cantribute Help
Bome > Semantic Search > Xylophoos
Xylophone
Description Fealures Reevant Information Reviews Link History

on |5 extracted from Wikipadia when available

The xylophone {from the Greek words fikov — xylon, "wood™ + puv —phaoni,
"sound, voice", meaning “wooden sound”) s & musical instrument in the
percussicn family that consists of wooden (not steel) bars struck by mallets. Each
bar s an idiophone tuned to a pilsh of a musical scake, whether pentalonks or
hegtatonic in the case of many African and Asian mnstruments, diatonic in many
= westem chadren's of for orchestral use

gt © Universty ef Lseds | Abeut Dicode | Comact Us Hﬁgﬂ‘ ﬁ' DBTune.org
Fig. 1. Description page of the entity ' Xyl ophone' in Mu-
sicPinta, extracted from DBpediausing CONSTRUCT queries.

Description Features
Xylophone is:

Relevant Information Reviews Link History

Instrument

Xylophone belongs to:

Greek. Instrument Kevboard

of the Oral and intangible

Pitched percussion| |Tuned percussion

musical instruments
Description Features Relevant Information Reviews Link History

The follawing share features with Xylophone:

Amadinda| |Balafon| |Bamboo Angkiung| |Celesta| |Crotales| |Gamelan| |Glockenspiel

Warimba| |Metal Angkiung Vibraphone

Fig. 2. Semantic Links (i.e. predicates) related to entity Xyl o-
phone presented in Features and Relevant Information. Features
include the semantic relationshipsr df : t ype (e.g. Xyl ophone
is an instrument), and semantic relationshipsr df s: subcl ass

O (e.g. the subClass Xyl ophone belongs to the superClass
Tuned Per cussi on)anddct erms: subj ect relationship
that links an entity to its DBpedia category (e.g. Xyl ophone
belongs to the category Gr eek | oanwor ds). Relevant Infor-
mation also include the semantic relationship r df s: subcl ass
O (eg.Cel esta isasubClassOf Xyl ophone)

In a scoping user study, we examined user explo-
ration of musical instruments in MusicPinta to identi-
fy what strategies would lead to paths with high
knowledge utility (details of the study are given in
[20]). We examined two dimensions - the user’s fa-
miliarity with the domain and the density of entities
in the data graph. Consequently, three exploration
strategies were suggested based on these two dimen-
sions. (i) density-strategy — directing the users to
densest entities; (ii) familiarity-strategy — asking the
user to aways select entities that are familiar to
him/her; and (iii) unfamiliarity-strategy — asking the
user to always select entities that are unfamiliar to
him/her. Paths which included familiar and dense
entities and brought unfamiliar entities led to increas-
ing the users’ knowledge. For example, when a par-
ticipant was directed to explore the entity Gui t ar
which he/she was familiar with, the participant could



see unfamiliar entities linked to Gui t ar such as
Resonator Quitar and Dobro. The entity
Gui t ar served as an anchor from where the user
made links to new concepts (Resonat or Guit ar
and Dobr 0). We aso noted that the dense entities,
which had many subclasses and were well-connected
in the graph, provided good potential anchors that
could serve as bridges to learn new concepts.

Subsumption Theory for M eaningful Learning.
While the scoping study provided useful insights, it
did not give solid theoretical model for developing an
approach that generalises across domains and data
graphs. However, the study directed us to Ausubel’s
subsumption theory for meaningful learning [21] asa
suitable theoretical underpinning for generating ex-
ploration paths. This theory [21,75-77] has been
based on the premise that a human cognitive struc-
ture (i.e. individual’s organization, stability, and clar-
ity of knowledge in a particular subject matter field)
is the main factor that influences the learning and
retention of new knowledge [77]. In relation to mean-
ingful learning, the subsumption process postulates
that a human cognitive structure is hierarchically
organised with respect to levels of abstraction, gener-
aity, and inclusiveness of concepts. Highly inclusive
concepts in the cognitive structure can be used as
knowledge anchors to subsume and learn new, less
inclusive, sub-concepts through meaningful relation-
ships [21,76,78,79]. Once the knowledge anchors are
identified, attention can be directed towards identify-
ing the presentation and sequential arrangement of
the new subsumed content [77]. Hence, to subsume
new knowledge, anchoring concepts are first intro-
duced to the user, and then used to make links for
introducing new concepts.

In the following sections, we will utilise the mean-
ingful learning theory to generate exploration paths
through data graphs based on knowledge anchors.
We will split this into two stages: (i) identifying
knowledge anchors in data graphs, and (ii) using the
knowledge anchors to subsume new knowledge.

4. Preliminaries

We provide here the main definitions that will be
used in the formal description of the main algorithms.
Linked Data graphs are built using traditional Web
standards (e.g. Uniform Resource Identifiers (URIS)
and Hypertext Transfer Protocol (HTTP) and use a
common data graph model, the Resource Description

Framework (RDF). RDF describes entities and at-
tributes (edges) in the data graph, represented as RDF
statements. Each statement is a triple of the form
<Subject - Predicate - Object> [80]. The Subject
and Predicate denote entities in the graph. An Object
is either a URI or a string. Each Predicate URI de-
notes a directed attribute with Subject as a source and
Object as atarget.

Definition 1 [Data graph]. Formally, a data graph
is a labeled directed graph DG =(V,E,T), depict-
ing a set of RDF triples where:

-V ={v,v,

- E={e,e,,.., e} isafinite set of edge labels;

- T ={t,,t,,.., t .} isafinite set of triples where
each triple is a proposition in the form of

(vy,e,Vv,) with v, v, eV , where v, is the

Subject (source entity) and Vv, is the Object (target
entity); and g € E isthe Predicate (edge label).

In our analysis of data graphs, the set of entities V
will mainly consist of the concepts of the ontology
and can also include individual objects (notable in-
stances of certain concepts). The edge labels will
correspond to semantic relationships between con-
cepts and individual objects. These labels will always
include the subsumption relationship r df s: subc
| assOF and may also includether df : t ype rela
tionship. For a given entity v., we will be interested

primarily in its direct and inferred subclasses, and

instances. The set of entities V can be divided further

by using the r df s: subcl assOf subsumption re-
lationship denoted as — ) and following its transitivi-
ty inference. Thisincludes:

- Root entity (r) which is superclassfor all entitiesin
the domain;

- Category entities (C < V ) which is the set of all
inner entities (other than the root entity r ), that
have at least one subclass, and may also include
some individual objects (notable instances of cer-
tain concepts);

- Leaf entities (L <V ) which is the set of entities
that have no subclasses, and may have one or more
individuals.

Starting from the root entity I , the class hierarchy
in a data graph is the set of all entities linked via the
subsumption relationship r df s: subC assOf . The
set of entities in the class hierarchy include the root
entity I' , Category entities C and Leaf entities L .

.-, V, } isafinite set of entities,



The set of edge labels E is divided further consid-
ering two relationship categories:
- Hierarchical relationships(H) is a set of subsump-

tion relationships between the Subject and Object
entities in the corresponding triples.

- Domain-specific relationships (D) represent rele-
vant links in the domain, other than hierarchica
links, e.g. in a music domain, instruments used in
the same performance are related.

Definition 2 [Data Graph Trajectory]. A trajec-
tory J inadatagraph DG=(V,E,T) isdefined asa
sequence of entities and edge labels within the data
graph in the form of J=(Vv,,€,V,...,V,,€,,V,.1) »
where:

-v, eV,i=1..,n+1;

- €€ E,j=1..,n;

- v, and v, are the first and the last entities of the
data graph trajectory J , respectively;

- n isthelength of the data graph trajectory J .

Definition 3 [Entity Depth]. The depth of an enti-
ty ve CUL is the length of the shortest data
graph trgjectory from the entity Vv to the root entity
I inthe class hierarchy of the data graph.

Definition 4 [Exploration Path]. An exploration
path P in adata graph DG is a sequence of finite set
of transition narratives generated in the form of:

P = (V0 1, Vo) (Vg V3, (Vi N VD) WherES

-vieV,i=1..,m+1;

-V, and v, are the first and last entities of the
exploration path P, respectively;

- m isthelength of the exploration path P ;

- n,i =1..,misatext string that represents a nar-
rative script;

- {V;,n;,V,,,) presents a transition from V, to
V., , whichisenabled by the narrative script n; .
Note that an exploration path P is different from a
datagraph trgjectory J inthat v, and V; , in P
may not be directly linked via an edge label, i.e. the

transition from V, to Vi,, in P can be either via

direct link, an edge, or through an implicit link, a
trgjectory.

Our ultimate goal is to provide an automatic way,
starting from an entity v eV , referred as first entity
of an exploration path, and a data graph
DG=(V,ET) to generate an exploration path P in

DG. For this, we will first identify entities that can
serve as knowledge anchors (Section 5) and will then
utilise the knowledge anchors and the subsumption
strategy to generate an exploration path (Section 7).

5. Identifying Knowledge Anchorsin Data Graphs
5.1. Basic Level Objectsin Cognitive Science

The notion of Basic Level Objects (BLO) was in-
troduced in Cognitive Science research, illustrating
that domains of concrete objects include familiar
categories that exist at an inclusive level of abstrac-
tion in humans' cognitive structures (called the basic
level), more than categories at the superordinate lev-
el (i.e. above the basic level) or categories at the sub-
ordinate level (i.e. below the basic level) [22,62],
where a human cognitive structure is hierarchically
organised with respect to levels of abstraction, gener-
aity, and inclusiveness of concepts [77]. Rosch, et
a .[22], define BLO as. categories that “carry the
most information, possess the highest category cue
validity, and are, thus, the most differentiated from
one another”. Crucial for identifying basic level cate-
gories is calculating cue validity: “the validity of a
given cue x as a predictor of a given category y (the
conditional probability of y/x) increases as the fre-
guency with which cue x is associated with category
y increases and decreases as the frequency with
which cue x is associated with categories other than y
increases’ [22].

Most people are likely to recognise and identify
objects at the basic level. An example from the ex-
perimental studies from Rosch et al. [22] of aBLO in
the musical instrument domainisGui t ar. The BLO
Gui t ar represents afamiliar category that is neither
too generic (eg. nusi cal instrument - the
root entity of the musical instrument taxonomy) nor
too specific (e.g. Fol k Qui tar — subclass of the
category Qui t ar). According to Rosch et a. [22],
Gui tar isat alevel within the musical instrument
taxonomy where its members (e.g. Fol k Gui t ar,
Cl assi cal Guitar) share attributes that are dif-
ferent from the attributes of members (eg. G and
Pi ano, Upri ght Pi ano) of another object at the
same level of abstraction (i.e. at the basic level) such



as Pi ano. This indicates that members of a BLO
share many features (attributes) together, and hence
they have high similarity values in terms of the fea-
ture the BLO members share. Based on the above
discussion, two approaches can be applied to identify
BLO in adomain taxonomy. Consequently, to identi-
fy basic level categories in a domain taxonomy, we
will adopt two approaches:

Digtinctiveness (highest cue validity). Identifies
most differentiated category objects. A differentiated
category object has most (or all) of its cues (i.e. at-
tributes) linked to the category members (i.e. sub-
classes) only, and not linked to other category objects
in the taxonomy. Each entity that islinked through an
attribute to members of the category will have a sin-
gle vaidity value used as a predictor of the distinc-
tiveness of the category among other category objects
in the taxonomy. The aggregation of all validity val-
ues will indicate the distinctiveness of the category
object.

Homogeneity (highest commonality between
category members). ldentifies category objects
whose members have high similarity values. The
higher the similarity between category members, the
more likely it is that the category object is at the
basic level of abstraction. This is complementary
with the distinctiveness feature. A category object
with high cue validity will usually have high number
of entities common to its members.

5.2. Algorithms for identifying Knowledge Anchorsin
Data Graphs

Our work in [81] has formally adopted the Cogni-
tive science notion of BLO [22], to describe two
groups of metrics with the corresponding algorithms
for implementation. The set of all knowledge anchors
in a data graph DG is denoted as KApc. The defini-
tions of the KApg metrics followed Formal Concept
Analysis (FCA) approachesin [69] and adapt them in
the context of identifying KApg .

Formal Concept Analysis. Forma Concept
Anaysis (FCA) was presented by Wille in 1982 as
amethod for data analysis and knowledge representa-
tion [82]. It analyses object-attribute data tables,
where data is represented as a table describing ob-
jects, attributes and binary relationships between the
objects and the properties [54]. The two main notions
in FCA relevant to the metrics for identifying KApe
presented in this Section are: formal context and for-
mal concept. A formal context X is represented by a

triple (M, R, 1), where M is a set of objects, Ris a
set of attributes and | isabinary relation | cMxR .
For an object me M and formal attribute r R, is
read as. the object m has the attribute r . Table 2
presents an example of aformal context.

Table 2. An example of aformal context in FCA represented as
sets of objects M and attributes R , where (x) indicates that an
object M hasattribute I .

set of Attributes R

r r 3 I, s

set of Objects M

For a given formal context X, let AcR and BcM.
The pair (A,B) is céled a forma concept, where
A=B' (B'is the set of objects having al the attrib-
utes belonging to A), and B=A" (A'is the set of
attributes applying to all objects belonging to B ). An
example from the formal context X in Table 2 for a
formal concept is (A B)={m,m}{r,r,,r}) -
the concept objects m,m, are conceptually clustered
based on the three shared attributes r,,r,,r;.

In our work, we adapt the FCA notions of formal
context and formal concept to data graph DG and
category entity veC, respectively. Objects M and
attributes R of a formal context (M, R, 1) comprise
entities V and edge labels E in a data graph DG,
respectively. The objects BcM of a formal concept
(AB) comprise members V':V cV of a category
entity veC, and the attributes A in the formal con-

cept represent attribute entities \/e linked to members

ViV cVof the category entity veC via an edge
label ec E inadatagraph DG.

5.2.1. Distinctiveness Metrics

This group of metrics aims to identify the most
differentiated category entities whose members are
linked to distinctive entities that are shared amongst
the members of the category entities but are not
shared to members of other categories. Each entity
v eV that is linked through an edge label € to

members V Vv of the category entity veC will



have a single validity value used to distinctive the
category entity veC among other category entities
in the data graph). Three distinctiveness metrics were
developed:

Attribute Validity (AV). The attribute validity
definition corresponds to the cue validity definition
in [22] and adapts the formula from [69]. We use
‘attribute validity’ to indicate the association with
data graphs - ‘cues’ in data graphs are attributes of
the entities and are represented as relationships in
terms of triples. The attribute validity value of an
entity ve C is calculated with regard to a relation-
ship type e, as the aggregation of the attribute validi-
ty values for all entities Ve linked to subclasses
V'V cv. Theattribute validity value of V'e increases,
as the number of relationships of type e between Vv'e
and the subclassesv' : v cv increases, whereas the
attribute validity value of v'e decreases as the number
of relationships of type e between v'e and all entities
in the data graph increases.

We define the set of vertices W(v,e) related as Sub-
jects to the subclassesv': V' cv, via relationship of
typee:

W(v,e)={ V.: V[V cVA(V,eV) eT|} 1)
The following formula defines the attribute validi-

ty metric for a given entity v with regard to a rela
tionship type e.

I{(ve,eV):V' =V} |
AV (v,e) =
S P T ACTA RV Y

2

In Figure 3, the AV value for category entity
v, with regard the domain-specific relationship D is
the aggregation of the AV values of the (Subject enti-
ties g,e,e,6 ) linked to members of the category
entity v, (Object entities v,,,v,,,V,,,V,, ) via the
edge label (i.e. Predicate) D . The AV value for the
entity e, equals the number of the triples between the
Subject entity e, and members of the category v,
(Object entities v, v,,) via the relationship D (2
triples), divided by the number of triples between the
Subject entity e, and all Object entities in the graph
(Object entities v,, ,v,, ,v,,) vViathe relationshipD (3

triples). Hence the AV value for e, equals 2/3 = 0.66.

The aggregation AV values for entities e, e, e, €,
will identify the AV value for the category entity v,

Category
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Fig. 3. A data graph showing entities and relationship types
between entities.

Category Attribute Collocation (CAC). This ap-
proach was used in [83] to improve the cue validity
metric by adding the so called category-feature collo-
cation measure which takes into account the frequen-
cy of the attribute within the members of the category.
This gives preference to ‘good’ categories that have
many attributes shared by their members. In our case,
a good category will be an entity ve Cwith high
number of relationships of type € between V'e and
the subclasses v’ :v' < v, relative to the number of
its subclasses. The following formula defines the
category-attribute collocation metric for a given enti-
ty v with regard to arelationship type €.

CAC9= {iv.ev):ved| [(ev):Vell
IRV A [ VACYARYASY | V|

3

Considering the above example for identifying
the AV vaue for the entity e,, and considering the

relationship D, the CAC adds a weight of (the num-
ber of the triples the Subject between e, and the

members of v, (Object entities v, , v,, ) via the
relationship D (2 triples) divided by (the number of
members of the category entity v, ( i.e. FOUR

members: V,;, \i,,, Vs, \,) . Hence the CAC of entity
e, will bethe AV value of e, multiplied by (2/4).
The CAC value for entity e, equals[(2/3) * (2/4) =

0.33]. The aggregation CAC values for entities
e, e, 6,6 Will identify the CAC value for the

category entity v, .



Category Utility (CU). This approach was pre-
sented in [84] as an alternative metric for obtaining
categories at the basic level object. The metric takes
into account that a category is useful if it can im-
prove the ability to predict the attributes for members
of the category, i.e. a good category will have many
attributes shared by its members (as mentioned in the
category-attribute collocation metric). At the same
time, it possess ‘unique’ attributes that are not related
to many other categories (efficiency of category
recognition). We adapt the formulain [69] for a data

graph:
cue=Y! (|{<\/e,ev> Ve |)2 (|{<\/e,eva> v, eV |)2 @)
Vi V] V|

Following the previous examples for calculating the
AV and theCAC values for entity e, (see Figure 3);

in addition to the proportion used by the CAC value
(2/4), the CU will include the proportion of all tri-
ples between the Subject entity e, and al Object
entities in the graph (THREE Object entities
Vi,» VsV, ) linked via relationship D (i.e. 3 triples)
over the number of entities linked via subsumption
relationships (e.g. r df s: subdl assOf and r df :
t ype) in the graph (11 entities). Hence the CU
valuefor e, will be: [(2/4)? - (3/11)*= 0.177].

The aggregationCU valuesfor entitiese,, g,,€,,€,,
multiplied by the number of members of category
V, (FOUR members) divided by number of entitiesin
the graph linked via the susbsumption relationships
(11 entities) will identify the CU value for the cate-
gory entity v, .

Algorithm | describes calculating the distinctive-
ness metrics. The algorithm takes a data graph DG
and a relationship type (hierarchical or domain-
specific relationship) as input and returns values for
the three distinctiveness metrics for each category
entity ve C.

In (line 1), al category entities are retrieved via
SPARQL query:

SELECT di stinct ?category
VWHERE {

?category rdfs:subd assOf r.
?subcl ass rdf s: subCl assOF ?cat egory. }

where r isthe root entity in the data graph.

After tha, for an entity v, all members are retrieved
(line 2). Members of an entity can be subclasses or

instances. In the current implementation, we are us-
ing the subsumption relationship r df s: subd assOf
to retrieve the entity’s members via the following
SPARQL query:

SELECT di stinct ?subcl ass

VWHERE {
?subcl ass rdf s: subd assOf v.}

For each entity v'e linked to one or more subclass
entities v’ via an edge label e (v..& V') (line 3),

severa steps are conducted: retrieving all triples with
Subject v'e and Object any subclass v’ (line 4); re-
trieving al triples with Subject v'e and Object any
graph entity v (line 5); applying the formulas for cal-
culating the AV, CAC, and CU metrics for v'e (lines
6-8); and aggregating values for v’ to the overal
valuesfor v (lines 9-11).

Algorithm I: Digtinctiveness M etrics

Input: DG =(V,E,T),ec E
Output: AV,,CAC,,CU, fordl veC

1. foral ve Cdo //all category entities
2 V' =thesetofal V':V cv Jlall members of v
3 for all v, : 3(v;,e,Vv') do

4. Ne = setofal (v,e,v):v'eV’

5. M, = setofal (V,,eV,):Vv, eV

6 AV, =N |/|IM,]|

7 CAC, =(INI/IMD-(INI7IV')D

8 CU, =NV D= (M |/ IV ])?

9. AV, =AY, +AY,

10. CAC,:= CAC, +CAC,

11. cu,=CU, +cu,

12. end for ,

13. CcuU = ||V || -CU ,

14. end for

5.2.2. Homogeneity Metrics

These metrics aim to identify categories whose
members share many entities among each other. In
this work, we have utilised three set-based similarity
metrics [81]: Common Neighbors (CN), Jaccard
(Jac), and Cosine (Cos). The homogeneity value for
a category entity is identified as the average of the
accumulated pair-wise similarity values between the
categories members with regard to an edge label € .
For instance (see Figure 3), the Jaccard similarity
between the pair-wise members (v,,,v,,) of the enti-

ty v, considering the edge label D is the number of
intersected Subject entities (ONE entity e,) linked to



Objects v,,,v,, via edge label D, divided by the
number of union Subject entities (TWO entities e,,

e, ) linked to Objects v,,,v,, via edge label D.
Accordingly, the Jaccard similarity between mem-
bers (v,,,v,,) is(1/2).

Algorithm Il describes implementation of the met-
rics. The algorithm takes a data graph and a relation-
ship type (hierarchical or domain-specific relation-
ship) as input and returns values for the three homo-
geneity metrics for each entity ve C

Algorithm II: Homogeneity Metrics

Input: DG =(V ,E,T),ec E

Output: CN,, Jac,. Cos, foral ve C
1 foral yeC do

2. V' :=thesatofdl V:V CV

/lall category entities
/lall members of v

3 forall (v/,v"):v'eV'Av"eV' do

4 Vo={v,:3(v,, e v}

5 Vi={v,:3(vl,e,v")}

6. | =V.AV/

7 U=V UV,

8 CN, . =|1] //Common Neighbors
9 Jac, . :=|1|/]U | /1Jaccard

10. Cos, ,..=|1 [/({JIVs]-+/IVsD //Cosine

1. CN,=CN,+CN,,

12. Jac, = Jac, + Jac,
13, Cos, = Cos, +Cos,, .
14.  endfor

15, CN,=CN, /(|V'|.(V'|-D/2)
16.  Jac,=Jac,/(|[V'|.(IV'|-D)/2)
17.  Cos, =Cos, /(|V'[.(IV'|-1)/2)
18. end for

The agorithm takes a data graph and a relationship
type (hierarchical or domain-specific relationship) as
input and returns values for the three homogeneity
metrics for each entity ve C. In (line 1), all category
entities are retrieved via the same SPARQL query
used in (Algorithm | / line 1).

Then, for every entity v, al members are retrieved
using the subsumption relationship (line 2) using the
same SPARQL query in (Algorithm | / line 2). For
each pair of subclass entitiesv’ and v” (line 3), sever-
a steps are conducted: retrieving all entities linked
viatriples with v’ and v” (lines 4-5); calculating their
intersection and union (lines 6-7); applying the for-
mulas for calculating the similarity metrics CN, Jac,
and Cos (lines 8-10); and aggregating these values to

the overall values for v (lines 11-13); and normalis-
ing the aggregated values (lines 15-17).

All SPARQL queries were run over the MusicPin-
ta data graph [18] stored in a triple store. This im-
plementation allowed examining the performance of
the KApe metrics over a specific data graph, as pre-
sented next.

6. Evaluating K Apg against Human BL Obc

To enable impartial comparison of the outputs by
the KApg agorithms and the cognitive structures of
humans, we conducted a study with humans follow-
ing earlier Cognitive Science studies closely to iden-
tify basic level objects in domain taxonomies. As a
use case in a representative domain for evaluating
knowledge anchors over a data graph, we used a typ-
ical semantic data browser, MusicPinta, which was
developed in our earlier research [18] and is intro-
duced in section 3. We focus on musical instruments
since they are objects rich in meaning and provide a
suitable domain for studying BLO, as discussed in
[85]. It should be noted that it is not appropriate to
take the list of BLO derived empirically by earlier
Cognitive Science studies (e.g. [22,85]) in music
domain because these BLO presents a commonsense
view of the domain (music in this case) that may not
correspond to the data graph over which the algo-
rithms are run (data graphs are partial abstract mod-
els of the real world). Hence, to ensure that the eval-
uation focuses on the performance of the algorithms,
we have to eliminate any impact of the knowledge
modelling in the data graph (e.g. missing or wrong
concepts/relationships).

6.1. Cognitive Science Experimental Approaches for
Deriving BLO

While studying the notion of basic level objects,
Rosch et al [22] conducted several experiments com-
prising free-naming tasks testing the hypothesis that
object names at the basic level should be the names
by which objects are most generally designated by
adults. In a free-naming task, objects in a domain
taxonomy are shown to a participant as a series of
images in a fixed amount of time, and the participant
is asked to identify the names of objects shown in the
images as quickly as possible. Three types of packets
of images were shown to the participants in their ex-
periments: those in which one picture from each su-
perordinate category appeared; one in which one im-



age from each basic level category appeared; and one
in which all images appeared. The participants over-
whelmingly used names at the basic level while nam-
ing objectsin the images [22].

To identify BLO, they considered accuracy and
frequency. Accuracy refers to naming an entity cor-
rectly by the user. It considers whether a user names
an entity with its exact name, or with a parent (su-
perclass) or with a category member (subclass) of the
entity. Frequency indicates how many times a partic-
ular category was accurately named by different us-
ers. In the example of Qui t ar, when participants
were shown members of Gui t ar object (e.g. Fol k
Quitar, O assical Guitar) in a packet, they
named them with their parent Gui t ar at the basic
level more frequently than with names at the super-
ordinate level (e.g. Musical instrunent) or
with their exact names (e.g. Fol k Gui t ar, Cl as-
si cal GQuitar) atthesubordinate level.

The selection of object names used in the free-
naming tasks in [22] was based on the population of
categories of concrete nouns in common use in Eng-
lish. Every noun with a word frequency of ten or
greater from a sample of written English [86] was
selected as a basic level object. A superordinate cate-
gory was considered in common use if at least four of
its members met this criterion.

However, the Cognitive Science approach for se-
lecting BLO cannot be applied directly in the context
of a data graph. The principal difference is that we
need to constrain the human cognitive structures up-
on the data graph, as opposed to using a bag of words
from popular dictionaries. This is because a data
graph presents a lesser number of concepts from a
domain, which belong to the graph scope, and there
can be concepts that have been omitted. Moreover,
the Cognitive Science studies included concrete do-
mains where images of the objects could be shown to
participants. Many semantic web applications utilise
data graphs which include more abstract concepts for
which images cannot be reliably shown to users (e.g.
medical illnesses, environmental concepts, profes-
sions). Therefore, we adapt the Cognitive Science
experimental approach for deriving BLO to consider
the domain coverage of a data graph, which is appli-
cable to any domain presented with a data graph.

6.2. Algorithm for Identifying Human Basic Level
Objectsin a Data Graph

Following Cognitive Science experimental studies
outlined above, we present two strategies with the

corresponding algorithm for identifying human basic
level objectsin a data graph (BLOpg).

Strategy 1. Takes into account whether a leaf enti-
ty Ve L that has no subclasses is presented to a user
and named with one of its parents (i.e. super classes).

Strategy 2. Takes into account whether a category
entity Ve Cthat has one or more subclasses is pre-
sented and named with its exact name, or with the
name of a category parent (i.e. superclass) or a cate-
gory member (i.e. subclass that is not aleaf entity).

Algorithm 111 describes the two strategies for iden-
tifying human BLOpg using accuracy and frequency.
Accuracy refers to naming an entity correctly.

Algorithm I11: Identifying Human BL Opbc

Input: DG =(V,E,T)

Output: two sets of entities: Setl for human BLOpg identified
from Strategy 1, and Set2 for human BLOpg identified from
Strategy 2. The Union of the Setl and Set2 identifies the final
set of Human BLOpg

1. for aset of entities VC V do
2. foral(i:=1i<n;i++)

3. ifvelL then //Strategyl
4 show (v) and ask a user to name V

5 if answer(v) € parent(v) then

6. count, + +; /lcount frequency
7 end if;

8. dseif ve C then /IStrategy2
9 show(V) and ask a user to nameV

10. if answer (v) = label(v) then

11. count, + +; /lcount frequency
12 dseif answer(v) e{ parent(v) U member(v)} then

13. count, ++; /lcount frequency

14. end if;

15. endif;

16. end for;

17. end for;

18. Setl = {answer (V) : v e L A count, > k}
19. Set2 = {answer (v) : v e C A count, >k}

The algorithm takes a data graph DG as input and
returns two sets of human BLOpe. For any class enti-
ty vV (line 1), we identify the number of usersto
be asked to name the entity (line 2). For Srategy 1
(lines 3-7), we consider accurate naming of a catego-
ry entity (a parent) when aleaf entity v € L thatisa
member of this category is seen. For Strategy 2 (lines
8-14), we consider naming a category entity
v € C with its exact name (lines 10, 11) or a name
of its parents (superclasses) or category members
(subclasses that are not leaf entities) (lines 12-13).



In both the strategies, we use a representation func-
tion Show(V) to create a representation of an entity

VvV to be shown to the user. The representation of a
leaf entity v € L (in Strategy 1) will consider the
leaf itself (e.g. show a single label or a single image
for the leaf entity), while the representation of a cate-
gory entity v € C (in Strategy 2) will consider all
(or some) of the category’s leaf entities (e.g. showing
a random listing of a set of labels of leaf entities or
showing a group of images of leaf entities as
a collage). The following SPARQL query is used to

get the set of leaf entitiesof v :
SELECT ?l eaf ?leaf_| abel
VWHERE {
?l eaf rdfs:subC assOf V.
?l eaf rdfs:|abel ?leaf_|abel.
FI LTER NOT EXI STS
{?menber rdfs:subd assOf ?leaf.}}

The two strategies in Algorithm 111 for obtaining
human BLOp¢ are applied as follows:

Strategy 1. When a user is shown a representation
of aleaf entity Ve L (line 4), the following steps are
conducted:

- Thefunction answer (v) assigns auser's answer

to the leaf entity V.
- Thefunction parent(v) returns a set of labels (i.e.

names) of the parent(s) of the leaf entity v viathe
following SPARQL query:
SELECT ?parent _| abel ?I abel
VWHERE {
VvV rdfs:subC assOf ?parent.
?parent rdfs:|abel ?parent_| abel .}

- The agorithm 111 (line 5) checks if the user named
the leaf entity v with one of its parents. If an ac-
curate name of a parent was provided, then the
frequency of the parent entity will be increased by
one (line 6).

Strategy 2. When a user is shown a representation

of a category entity Ve C (line 9), the following
steps are conducted:

- The function answer (V) assigns a user's answer
to the category entity v.

- The function parent(v) returns a set of labels of
parent(s) of the category entity v via SPARQL
queries similar to Srategy 1 above.

- The function member (v) returns a set of labels (i.e.

names) of member(s) of the category entity V via
the following SPARQL query:

SELECT ?menber _| abel
WHERE {
?menber rdfs:subd assOf V.
?menber rdfs:|abel ?nenber_| abel .}

- The function |abel (v) returns the label of the cate-

gory entity v viathe following SPARQL query:
SELECT ?| abel
VHERE {
VvV rdfs:|abel ?label.}

The algorithm in (lines 10, 12) checks if the user
named the category entity v with its exact name, or a
name of its parents or its members. If there was accu-
rate naming of the category, a parent or a member,
the frequency of the category name (line 11), the
parent name or the member name (line 13) will be
increased by one. K in lines 18 & 19 indicate the
number of different participants that have correctly
named a category asindicated in lines (11,13).

6.3. Evaluating KApg against human BLOpg

6.3.1. Obtaining human BLOpg

To obtain a set of human BLOpg that correspond
to a human cognitive structure, we conducted a user
study in the musical instrument domain to apply Al-
gorithm I11.

Participants. For this user study, 40 participants —
university students and professionals, age 18-55,
were recruited on a voluntary basis. None of the par-
ticipants had any expertise in music.

Method. The participants were asked to freely
name objects that were shown in image stimuli, un-
der limited response time (10 seconds). Overall, 364
taxonomical musical instruments were extracted from
the MusicPinta dataset by running SPARQL queries
over the triple-store hosting the dataset to get all mu-
sical instrument concepts linked via the
rdf s: subcl assOf relationship. The entities in-
cluded: leaf entities (total 256) and category entities
(total 108). While applying the two strategies in Al-
gorithm 111, for each leaf entity, we collected a repre-
sentative image from the Musical Instrument Muse-
ums Online (MIMO)®8 to ensure that pictures of high
quality were shown®. For a category entity, all leaves
from that category entity were shown asa group in a
single image (similarly to a packet of imagesin [22]).

8 http:/Amvww.mimo-international.com/MIM O/
9 MIMO provided pictures for most musical instruments. In the

rare occasions when an image did not exist in MIMO, Wikipedia
images were used instead.



We ran ten online surveys'®. Among them: (i) eight
surveys presented 256 leaf entities, each showed 32
leaves; (ii) two surveys presented 108 category enti-
ties, each showed 54 categories.

Free-naming task. Each image was shown for 10
seconds on the participant's screen, and the partici-
pant was asked to type the name of the given object
(for leaf entities) or the category of objects (for cate-
gory entities). The image alocation in the surveys
was random. Every survey had four respondents from
the study participants (corresponds to line 2 in Algo-
rithm 111). Each participant was allocated only to one
survey (either leaf entities or category entities). Fig-
ures 4-7 show example instrument images and partic-
ipant answers (Figure 4 from Strategy 1, and Figures
5-7 from Strategy 2). Applying Algorithm 1Il over
the MusicPinta dataset, two sets of human BLOpg
wereidentified.

Setl [resulting from Srategyl] . We consider accu-
rate naming of a category entity (parent) when leaf
entity that belongs to this category is seen. For ex-
ample, as shown in Figure 4, a participant has named
Vi ol ott a, aleaf entity in the data graph, with its
parent category Vi ol i n. This will be counted as an
accurate naming and will increase the count for Vi -
ol i n. The overdl count for Vi ol i n will include
al cases when participants named Vi ol i n while
seeing any of its leaf members.

What is the name of this object ?

Violin

Fig. 4. Animageof Vi ol ot t a (alesf entity in the data graph) was
shown to auser, who nameditas Vi ol i n.

Set2 [resulting from Strategy 2]. We consider nam-
ing a category entity with its exact name or a name of
its parent or subclass member. For example (see Figure
5), a participant saw the category Fi ddl e and named

10The study was conducted with Qualtrics (www.qualtrics.com).
Examples from the surveys arein:
https://login.qualtrics.com/jfe/preview/SV_cHhHPPthBFO5r6d?
Q_CHL=preview

its parent category Vi ol i n; this will increase the
count for Vi ol i n. In Figure 6 a participant was shown
the image of category Vi ol i n and named it with its
exact name; thiswill increase the count for Vi ol i n.

What is the name of this object ?
Wiolin

Fig. 5. Animage of Fi dd| e (acategory entity with two leaf enti-
ties) was shown to a user, who nameditas Vi ol i n.

What is the name of this object ?

Violin

Fig. 6. Animage of Vi ol i n (acategory entity) was shown to a user,
who nameditasVi ol i n

In Figure 7 a participant saw the category Bowed
String Instrument and named it as its member
category Vi ol i n; this will also increase the count for
Violin.

What is the name of this object 7

Vialin

Fig. 7. Animageof Bowed String | nstrunent (acategory
entity) was shown to auser, who nameditasVi ol i n



In each of the two sets, entities with frequency
equal or above two (i.e. named by at least two differ-
ent users) were identified as potential human BLOpg.
The union of Setl and Set2? gives human BLOpg (We
identified 24 human BLOpg). The full list of human

BL Opg obtained from MusicPintais available in [87].

6.3.2. Quantitative Analysis

We used the identified human BLOpg to examine
the performance of the KAps metrics. For each met-
ric, we aggregated (using union) the KApg entities
identified using the hierarchical relationships (H).
We noticed that the three homogeneity metrics have
the same values,; therefore, we chose one metric
when reporting the results, namely Jaccard similari-
tyl. A cut-off threshold point for the result lists with
potential KApg entities was identified by normalizing
the output values from each metric and taking the
mean value for the 60th percentile of the normalised
lists?. The KApc metrics evaluated included the
three distinctiveness metrics plus the Jaccard homo-
geneity metric; each metric was applied over both
families of relationships — hierarchical (H) and do-
main-specific (D).

As in ontology summarisation approaches [60], a
name simplicity strategy based on data graphs was
applied to reduce noise when calculating key con-
cepts (usualy, basic level objects have relatively
simple labels, such as chair or dog).

The name simplicity approach we use is solely
based on the data graph. We identify the weighted
median for the length of the labels of all data graph
entities v < V and filter out al entities whose label
length is higher than the median. For the MusicPinta
data graph, the weighted median is 1.2, and hence we
only included entities which consist of one word.
Table 3 illustrates precision and recall values com-
paring human BLOpg and KApg derived using hier-
archical and domain specific relationships.

Table 3. MusicPinta: performance of the KApg agorithms com-

pared to human BLOpg.
Relationship| Precision Recall
types AV |CAC| CU | Jac | AV |CAC| CU | Jac
H 0.60 | 0.62 | 0.62 | 0.60 | 0.68 | 0.73 | 0.73 | 0.55
D 0.55|0.53 | 0.55 | 0.62 | 0.50 | 0.45 | 0.50 | 0.36

1 The Jaccard similarity metric is widely used, and was used in
identifying basic formal concepts in the context of formal con-
cept analysis [68].

12\We experimented the KApg metrics at the 601, 70", 80" and 90™
percentiles on the metrics normalised output lists, and the met-
rics performed best using at the 60" percentile.

Hybridisation of Algorithms. Further analysis of
the False Positive(FP) and False Negative (FN) enti-
ties indicated that the algorithms had different per-
formance on the different taxonomical levels in the
data graph. This led to the following heuristics for
hybridisation of algorithms.

Heuristic 1: Use Jaccard metric with hierarchical
relationships for the most specific categories in the
graph (i.e. the categories at the bottom quartile of the
taxonomical level). There were FP entities (e.g.
Shawmand Cboe) returned by distinctiveness met-
rics using the domain-specific relationship Mu-
si cOnt ol ogy: Performance because these
entities are highly associated with musical perfor-
mances (e.g. Shawm is linked to 99 performances
and Oboe islinked to 27 performance). Such entities
may not be good knowledge anchors for exploration,
as their hierarchical structure is flat. The best per-
forming metric at the specific level was Jaccard for
hierarchical attributes - it excluded entities which had
no (or avery small number of) hierarchical attributes.

Heuristic 2: Take the majority voting for all the
other taxonomical levels. Most of the entities at the
middle and top taxonomical level will be well repre-
sented in the graph hierarchy and may include do-
main-specific relationships. Hence, combining the
values of all algorithms is sensible. Each algorithm
represents a voter and provides two lists of votes,
each list corresponding to hierarchical or domain-
specific associated attributes (H, D). At least half of
the voters should vote for an entity for it to be identi-
fied in KApe. Examples from the list of KApg identi-
fied by applying the above hybridisation heuristics
included Accordion, @Qitar and Xyl oo-
phone. The full KApg list is available here [87].
Applying the hybridisation heuristics improved Pre-
cision value to 0.65 (average Precision in Table 3 =
0.59), Recall valueto 0.68 (average Recall in Table 3
=0.56).

6.3.3. Qualitative Analysis

Examining the FP and FN entities for the hybridi-
zation agorithm, we made the following observa-
tions that relate to the possible use of KApg as explo-
ration anchors.

Observation 1: Missing basic level entities due to
unpopulated areas in the data graph. We noticed that
none of the metrics picked FN entities (such as Har -
nmoni ca, Banjo or Cello) that belonged to
the bottom quartile of the class hierarchy and had a
small number of subclasses (e.g. Har noni ca,
Banjo and Cel |l o each have only one subclass



and there are no domain-specific relationships with
their members). Similarly, none of the metrics picked
Tronbone (which is false negative) - athough
Tr onbone has three subclasses, it is linked only to
one performance and is not linked to any DBpedia
categories. While these entities belong to the cogni-
tive structures of humans and were therefore added in
the benchmarking sets, one could doubt whether such
entities would be useful exploration anchors because
they are not sufficiently presented in the data graph.
These entities would take the user to 'dead-ends
with unpopulated areas which may be confusing for
exploration. We therefore argue that such FN cases
could be seen as ‘good misses' of algorithms.

Observation 2: Selecting entities that are superor-
dinate of basic level entities. The FP included entities,
such as Tanbura, Reeds, Bass, Brass,
Cast anet s, and Wbodwi nd, which are well pre-
sented in the graph hierarchy (e.g. Reeds has 36
subclasses linked to 60 DBpedia categories, Br ass
has 26 subclasses linked to 22 DBpedia categories,
Wbodwi nd has 72 subclasses linked to 82 DBpedia
categories). Also, their members participate in many
domain-specific relationships (e.g. Reeds members
are linked to 606 performances, Brass - 33, and
Whodwi nd - 853). Although, these entities are not
close to the human cognitive structures, they provide
direct links KApg entities from the benchmarking
sets (e.g. Reeds links to Accor di on, Brass links
to Trunpet and Wbodwi nd links to Fl ute).
We therefore argue that such FP cases could be seen
as ‘good picks of the algorithms because they can
provide exploration bridgesto reach BLO.

7. Exploration Strategies Based on Subsumption

In this section we describe how we adopt the sub-
sumption theory for meaningful learning [21] (de-
scribed in section 3) as our underpinning theoretical
model to develop an automatic approach for generat-
ing exploration paths in data graphs.

7.1. Challengesin Applying the Subsumption Theory
for Meaningful Learning

Applying the subsumption theory for meaningful
learning to generate exploration paths brings forth
two challenges:

- How to find the closest knowledge anchor to the
first entity of an exploration path? In uni-focal
browsing (pivoting), a user starts his’her explora-

tion from a single entity in the graph, also referred
as a first entity (Vs). To start the subsumption pro-
cess, the user has to be directed from this first enti-
ty to a suitable knowledge anchor in the data graph
from where links to new entities can be made.
However, there can be several knowledge anchors
in a data graph, requiring a mechanism to identify
the closest knowledge anchor Via to V.

- How to use the closest knowledge anchor to sub-
sume new class entities for generating an explora-
tion path? The closest knowledge anchor usually
can have many subclass entities that exist at differ-
ent levels of abstractions. It is important to identify
which subclasses to subsume and in what order
while generating an exploration path for the user.
Furthermore, we also need to identify appropriate
narrative scripts between the entities in the explora-
tion path. We argue that providing meaningful nar-
rative scripts between entities will help layman us-
ers to create meaningful relationships between fa-
miliar entities they already know in their cognitive
structures and the new subsumed class entities.

7.2. Finding the Closest KApg

Let vs be the first entity of an exploration path. The
first entity Vs can be any class entity in the graph (i.e.
any entity in the subsumption class hierarchy of all
entities linked via the subsumption relationship
rdf s: subCl assO). If vs is a knowledge anchor
(Vs € KApg), then there is no need to identify the
closest knowledge anchor (i.e. find another anchor in
the data graph), and the subsumption process can
start immediately from Vs. However, if Vs is not a
knowledge anchor (Vs ¢ KApg), then Vs can be su-
perordinate, subordinate, or sibling of one or more
knowledge anchors. In this case, an automatic ap-
proach for identifying the closest knowledge anchor
Via tO Vs isrequired.

To find the closest knowledge anchor, we calculate
the semantic similarity between Vs and every
knowledge anchor in the data graph vi € KApg. The
semantic similarity between two entities in the class
hierarchy is based on their distances (i.e. length of
the data graph tragjectory between both entities). Due
to the fact that class hierarchies exist in most data
graphs, we adopt the semantic similarity metric from
[88] and apply it in the context of a data graph, where
semantic similarity is based on the lengths between
the entities in the class hierarchy. The semantic simi-



larity between Vs and a knowledge anchor V; is calcu-
lated as:

2.depth(Ica(v,,)) ®)
depth(v,) + depth(v,)
where, Ica(Vs, Vi) is the least common ancestor of Vs
and Vi, and depth(V) is a function for identifying the
depth of the entity v in the class hierarchy.
Algorithm 1111 describes how the semantic similarity
metric is applied to identify Via.

Algorithm [111: Identifying Closest KAbc

Input: DG =(V,E,T), vyeV, KA, ={Vv,V,,..,V}
Output: wka — closest knowledge anchor with highest semantic

Sm(v,,v) =

similarity to vs
1 if v, e KAy, then /I vsis a knowledge anchor
2. V=V
3. dse /I vsis NOT a knowledge anchor
4, S={}: /it for storing similarity values
5. for all V, € K'Abe do [[for all knowledge anchors
6. CA::{} ;i to store common ancestors of vs and v;
7. L:={}: it for storing trajectory lengths
8. CA<« common_ancestorgv,,V,);
9. for all v, e CA /Ifor all common ancestors
10. L « length(v,Vv,): /Nlength between vc, and v
11. end for;
12. Viea .=V, With least lengthin L ;
13, 2-depth (v,,)

depth (v,) + depth (v,)

14. end for;
15. Via =V, with maximum similarity valueinlist S
16. end if;

The algorithm takes a data graph, the first entity Vs of
an exploration path and a set of knowledge anchors
KApec as an input, and identifies the closest
knowledge anchor vka € KApg with highest seman-
tic similarity value to Vs. If the first entity vs belongs
to the set of knowledge anchors Vs € KApg (line 1),
then the first entity Vs is identified as the closest
knowledge anchor Vka (line 2). However, if the first
entity Vs does not belong to the set of knowledge an-
chors in the data graph vs ¢ KApg (line 3), then the
following steps are conducted:

- The algorithm initialises a list S to store semantic
similarity values between Vs and every knowledge
anchor vi € KApg (line 4).

- For every knowledge anchor Vi € KApg (line 5),
the algorithm initiates two lists: list CA for storing

the common ancestors (i.e. common superclasses)
of Vs and Vi (line 6), and list L for storing the tra-
jectory lengths between the common ancestors in
list CA and the knowledge anchor Vi (line 7).

- The agorithm in (line 8) uses a function com-
mon_ancestors(vs,vi) which retrieves all common
ancestors of vs and vi in the class hierarchy, and
stores them in list CA. The function uses the fol-
lowing SPARQL query to retrieve the common an-

cestors of Vs and Vi:
SELECT di stinct ?commobn_ancest or
VHERE {

Vsrdf s: subdl assOf ?common_ancest or .
Virdf s: subd assOf ?common_ancestor}.

- For every common ancestor in list CA (line 9), the
algorithm identifies the length of the data graph tra-
jectories between v; and each of the common ances-
tors Vea in list CA, viathe SPARQL query:
SELECT(count (?i nternedi ate)-1 as ?l ength)

WHERE {
Vi rdf s: subCl assO ?i nternmedi ate.
?internedi ate rdfs: subd assOF Vea. }

- The common ancestor Vca with least trajectory
length with Vv; in list L is identifies as the least
COmMMON ancestor Vica (line 12).

- After identifying the least common ancestor Vica to
the first entity vs and the knowledge anchor Vi, the
semantic similarity metric (Formula 5) is applied
(line 13). The metric includes identifying depths of
Vs, Vi, and Vica. The depth of an entity visidentified
using the following SPARQL query:

SELECT (count (?internmedi ate)-1 as ?depth)
WHERE {

Vrdfs:subC assOF ?i nternedi at e.
?internedi ate rdfs:subd assOf 1.}

where r isthe root entity in the data graph.

The semantic similarity value is then inserted into the
list S (line 13), and the knowledge anchor with the
highest similarity value to the first entity vs will be
identified as closest knowledge anchor Vi, (line 15).

7.3. Subsumption Using the Closest Knowledge
Anchor

The closest knowledge anchor Vi, is used to sub-
sume new class entities and to generate transition
narratives in the exploration path. Table 4, describes
the different conditions for the narrative scripts used
between entities in an exploration path.



Table4. Narrative types of transitions between entitiesin an
exploration path.

. Output script
Narrative From | 10 Ineqvintion|  (From_entity, Narrative type,
Type |entity entity To_entity)
Veis “You may find it useful to know

that vs belongs to a familiar and
well-known class—via.

Via Let'sexplore vi..”

Veis th;(#] may find g”ui‘erz]ful to I|<now

ereisa well-known class—

N, Ve | Vi |Superclass Vka that belongs to vs .

of Vka Let's explore via”

“You may find it useful to know

N, Vs | Vka [subclassof

N Vs and Viea| that v, is similar to a well-known
3 Vs | Vka Are class— ka.
siblings Let's explore vka.”

V’KA is . .
subclass of| * You may find it useful to know
, that v'ka belongs to vka, and vs
N4 Via | Via | Viaand belongs to v'ka.
superclass Let's explore vika.”
of Vs

V'kais
subclass of| “ You may find it useful to know
N 5 | Vka | V'a Miaandnot that V"a belongsto Via. Let's

superclass explore Vca.”
of Vg

Algorithm V describes our approach for generating
exploration paths following Ausubels’ subsumption
theory for meaningful learning. The narrative types
(N1, No, ..., Ns) used in this algorithm correspond to
the narratives types described in Table 4 above.

The algorithm takes a data graph DG, the first enti-
ty vs, the closest knowledge anchor vi,, the length of
the exploration path (m), and the edge label
e=rdf s: subC assOf asaninput, and generates
an exploration path P of length m. The algorithm
starts by initialising an empty exploration path P
(line 1) used to store m transition narratives. If the
first entity vs is not the closest knowledge anchor via
(line 2), then the algorithm starts identifying the rela
tionship type between vs and Via. If v is subclass of

Via (lines 3), then the following steps are conducted:
- The transition narrative (v, script(N,), v,,) from vs

to wka is inserted into P (line 4) where the function
script(Ny) retrieves the script output for narrative
type Ni from Table 4. The length of exploration
path mis decreased by one (line 5).

- The agorithm in (line 6) identifies the set of inter-
mediate class entities (v,,) between v; and Vi, Us-
ing the following SPARQL query:

SELECT di stinct ?internediate
WHERE {
Vs rdf s: subCl assOF ?i ntermedi at e.
?internedi ate rdfs: subd assOf Vka. }

Algorithm V: Subsumption Using Closest KAbc

Input: DG=(V,E,T): v, eV 1V, e KA M = length of
exploration path, € =r df s: subd assOf
Output: an exploration path P of length m.

1L P={}; Ilempty exploration path P
2. |if Vg £V then IIVsis not Vika
3. if El(vs,e,VKA) then IIvsis subclass of vka
4. P« (v, script(N,),Via s /linsert narrative
5. m——; /Ireduce length of P by one
6. Viaisal Vi, : 3V, € Vi) A T (Viga, € Vi)

7. Q' ={}:

8. Q' « sortDepth (V,, )

9. for i=1; i<|Q|A m=0; i++)

10. P« (V. SCript(N,), QTi]y; /insert narrative
11. m-——; /Ireduce length of P by one
12. end for;

13. eseif (Vv ,,€,V,) then

14. P« (v, script (N,), Via);

15. m-——; lIreduce length of P by one
16. deeif 3(V,,6,V,) A IV, € V,) then

17. P« <VS,SC|’ipt(N3),VKA>; /linsert narrative
18. m-——; /Ireduce length of P by one
19. end if;

20. elseif V, = V, then INs IS Vka
21 | V0, isal Vs D 3(Viea, 8 Via) AVia Q'

2| Q={};

23. Q" « sortDepthDensity(V,,) :

24, for (j=1; j<|Q"|[A m=0; j++) do

25. P« <VKA, SCI’ipt(NS),Q"[ J]>, /linsert narrative
26. m——;

27. end for;

28. end if;

- A listQ'is created in (line 7), and the function
sortDepth() sorts the class entities v/, <V, based
on their depths starting from the least depth class
entity (i.e. direct subclass of vka) to highest depth in
ascending order, and inserts the sorted class entities
into list Q' (line 8). The function sortDepth() iden-

tifies the depth of a class entity v;, viathe follow-

ing SPARQL query:
SELECT (count(?internediate)-1 as
?dept h)
VWHERE {
Vi, rdfs:subCd assOf ?internediate.

?internmediate rdfs:subd assOF 1.}



where 1 istheroot entity in the data graph.

- The agorithm in (lines 9 — 12) uses the closest via
to subsume the class entities in Q'. The transition

narrativ (v, ,, script(N,), QTi]y from via to QTi]
(i.e v, ,) isinserted into P (line 10) where the func-

tion script(Na) retrieves the script output for narra-
tive type Na from Table 4. The length of the path m
is decreased by one (line 11).

If vs is superclass of wa (lines 13), then the transi-
tion narrative (v, script(N,),V,) from vi to vka is

inserted into P (line 14) where the function script(Nz)
retrieves the script output for narrative type N2 from
Table 4. The length m of the path P is decreased by
one (line 15).

If v; and vka are siblings (i.e. share same super-
class) (line 16), then the transition narrative
(v, SCript(N,), Vi, from vs to via is inserted into P

(line 17) where the function script(Ns) retrieves the
script output for narrative type Ns; from Table 4. The
length m of the path P is decreased by one (line 18).

However, if the first entity v equals the closest
knowledge anchor vka (line 20), then the following
steps are conducted:

- Identify the set of subclass entities (V) of Via

which do not belong to Q' (line 21). A list Q" is

created in (line 22), and the function
sortDepthD ensity () sorts the class entities

vy, €V, based on two their depths and density,

asthe following steps:

« |dentify the depth of the class entities (similar to
function sortDepth() described above).

o |dentify the density (using degree centrality) of
the class entities based on number of subclasses.

« Sort the class entity starting from the least depth
(i.e. direct subclasses of ) to highest depth in
ascending order, and from highest density to least
density (i.e. first sort using depth, if two or more
entities are at the same depth, then sort these enti-
ties based on their density from highest to low-
est). The sorted class entities are inserted into list
Q" (line 23).

The agorithm in (lines 24-27) uses vka to subsume

the class entities in Q". The transition narrative

(Via, SCript(Ns), QT j1) fromvia to QT j] (i€ vg,)
is inserted into P (line 25) where the function
script(Ns) retrieves the script output for narrative

type Ns from Table 4. The length of exploration
path mis decreased by one (line 26).

8. Evaluation of the Subsumption Algorithm

To evaluate the subsumption agorithm, we will
conduct an experimental user study with users to
examine the knowledge utility and users' exploration
experience of the generated exploration paths. We
will compare two conditions:

Experimental condition (EC): where users follow
exploration paths generated using the subsumption
algorithm;

Control condition (CC): where users carry out
free exploration and they are free to select entities to
visit.

Comparing both conditions a controlled task-driven

experimental user study will be conducted with par-
ticipants to examine the following hypotheses:

H1. Users who follow EC expand their domain
knowledge.

H2. The expansion in the users knowledge when
following EC is higher than when following CC.

H3. The usability when EC isfollowed is higher than
when CC isfollowed.

8.1. Experimental Condition Setting: Exploration
Task Design

Designing exploration tasks for usersis considered
an important requirement for evaluating data explora-
tion approaches [89]. A typical exploration task has
to be generic (i.e. the scope of the task is broad and
the user don’t have specific information needs), real-
istic (i.e. real-life task that set in a familiar situation),
discovery-oriented (i.e. users travel beyond what they
know), open-ended (i.e. requires a significant amount
of exploration, where open-endedness relates to un-
certainty over the information available, or incom-
plete information on the nature of the search task),
and set in an unfamiliar domain for the user
[2,89,90]. In this work, we follow a two-step ap-
proach (similar to [89]) to design a data exploration
task for the study participants. The approach in-
volves: (i) Designing a task template that places the
participant in a familiar situation which involves ex-
ploring multiple entities in an unfamiliar domain or
topic (e.g. a researcher at a university that wants to
write a research paper (familiar situation) about a
new topic), and (ii) Identifying unfamiliar candidate



entities (e.g. find new research topic) in the domain
that could be plugged into the task template.

Our aim was to design a generic task template that
encourages layman users to seek knowledge in a do-
main unfamiliar to them. Therefore, we designed the
task template in the context of a general knowledge
quiz show where layman users need to acquire as
much knowledge as they can. Inspired by the task
templates in [89], the task template in Table was
designed to suit the musical instrument domain.

Table 5. Task template used in the experimental user study

Task template

“Imagine that you are a member of a team
which will take part in a general knowledge quiz
show. You have been asked to explore two musi-
cal instruments for 20 minutes in order to
prepare a short presentation to describe to
your team what you have learned about these
instruments” .

The second step in designing data exploration task
was to identify unfamiliar entities in the domain of
the user study. For this we ran a questionnaire with
users to identify the unfamiliar entities in the
String Instrunent and Wnd | nstrunent
class hierarchies in the MusicPinta data graph. These
two class hierarchies have the richest class represen-
tation in terms of the number of classes and the hier-
archy depth as discussed in Section 3.5.1, and have
the highest number of knowledge anchors (9 anchors
inthe String |nstrunent class hierarchy and
10 anchorsinthe W nd | nst rument class hierar-
chy — out of 24 anchors in MusicPinta data graph).
We have extracted class entities at the bottom quar-
tile of the two class hierarchies (note that the depth of
the two class hierarchies is 7 — see Table 1, and enti-
ties of depth 6 or 7 are considered to be at the bottom
quartile of the data graph). This is based on earlier
Cognitive science studies acknowledging that layman
users are not familiar with specific objects in a do-
main [91]. Overall 61 class entitiesfromthe St r i ng
I nstrument and Wnd | nstrument class hier-
archies were used in the survey. The selected classes
were randomised and distributed among twelve par-
ticipants who are not experts in the musical instru-
ments (the participants have limited knowledge about
musical instruments and may have seen the instru-
ment, and none of the participants had played any
musical instruments).

The most unfamiliar instrument from each class
hierarchy was Bi wa (class hierarchy: String | n-
strunent, origin: Japanese) and Bansuri (class
hierarchy: W nd | nst rument , origin: Indian).

8.2. Experimental Setup

Participants. 32 participants consisting of univer-
Sity students and professionals (24 students and 8
professionals'®) were recruited on a voluntary basis
(a compensation of £5 Amazon voucher was offered).
Participants varied in age 1845 (mean age is 30),
and cultural background (1 Austrian, 9 British, 1
Chinese, 3 Greek, 1 Italian, 5 Jordanian, 1 Libyan, 2
Malaysian, 6 Nigerian, 1 Polish, 1 Romanian and 1
Saudi).

Method. Four online surveys!* were run (which
can be found here'®). Every survey had 8 participants.
Each participant was allocated one survey. Figure 8
shows the overal structure of the user study. Each
participant explored both musical instruments
(i.e. Bi wa, Bansur i ), where each of the instrument
was allocated to an exploration strategy (EC or CC).
The order of EC and CC was randomised to counter
balance the impact on the results. Every participant
session was conducted separately and observed by
the author. All participants were asked to provide
feedback before, during, and after the interaction
with MusicPinta.

Task Pre-study Graph
presentation Questionnaire exploration
First Second
Task Demeographic exploration  exploration
presentation Data ECor CC ECor CC
Musie Pre- Pre-
familiarity knowledge test  knowledge test
Instriument Instrument
exploration exploration
Post- Post-

knowledge test  knowledge test
Usability and ~ Usability and

Cognitive load ~ Cognitive load

Fig. 8. Structure of user study to examine EC against CC in terms
of knowledge utility, usability and cognitive load.

Task presentation [1 min] — utilise the task tem-
plate (as described in Section 8.1) to present the data
exploration task for the users at the beginning of their

18 University lecturers and private Sector employees (Banking and
Airlines).
14 The study was conducted with Qualtrics (www.qualtrics.com).
5 https://login.qualtrics.com/jfe/preview/SV_39nOZZWAmMCk8Jp
37Q_CHL=preview



exploration session. We used the task template in
Table5for Bi wa and Bansuri .

Pre-study questionnaire [2 min] - collected infor-
mation about the participants’ profiles, and their fa-
miliarity with the music domain, focusing on the two
musical instrument class hierarchies which would be
explored — String Instrument and W nd
I nst rument . The participants’ familiarity with the
two class hierarchies varied from low to medium
(63% and 78% of the participants had low familiarity
with String I nstrunment and Wnd | nstru-
nment , respectively).

Graph exploration [20 min] — each user explored
the two strategies (EC and CC) where each strategy
corresponds to one of the two unfamiliar instruments
(Bi wa or Bansuri). Figure 9 shows an example
for generating the exploration path under EC for the
musical instrument Bi wa (the first entity of the ex-
ploration path) using the closest knowledge anchor
Lute.
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Fig. 9. Extract fromthe St ri ng | nstrunent classhierarchy
in MusicPinta showing exploration path of Bi wa. This path was
followed in the experimental condition EC.

The first transition narrative in the exploration
path is between the Bi wa and the closest knowledge
anchor Lut e (using N: in Table 4). After that, the
closest knowledge anchor Lut e is used to subsume
new class entities and generate transition narratives
in the exploration path using the narrative types Na
(subsume intermediate class entities between Lut e
and Bi wa — line 10 in Algorithm V) and Ns (sub-
sume subclasses of Lut e other than class entities
that have been subsumed using N4 — line 25 in Algo-
rithm V).

The transition narratives that were followed in
generating the exploration path for Bi wa are listed in
Table 6.

Table 6. Transition narratives used for generating the exploration
path for Bi wa

Transition Narratives
for path of Bi wa

v, script(N,), Vi)

Narrative Script

Y ou may find it useful to know
hat ‘Bi wa’ belongsto a familiar and
well-known instrument called
‘Lute’. Let'sexplore‘Lute’.

i U Y ou may also find it useful to know

Vi, SETIPL(N,,). Q11D that ‘Oud’ belongsto ‘Lute’ , and

‘Bi wa’ belongsto‘Oud’. Let's
explore ‘Oud’.

Y ou may also find it useful to
know that ‘ Tambura’ belongs to
‘Lute’. Let'sexplore Tambura’

Y ou may aso find it useful to

know that ‘Pipa’ belongsto ‘Lute’.
Let's explore ‘ Pipa’

Via» Sript (N5), Q]

Vica» SCript (N5 ), Q"[2])

Table 7 shows examples of the entities that were
freely visited inthe control condition CC for Bi wa.

Table 7. Examples of entities the participants have visited during
their free exploration of Bi wa

Example 1 Example 2 Example 3
Bi wa Bi wa Bi wa
Bouzouki String Japanese Misi -
Instruments |[cal Instrunents
Xal am ‘Gui tar’ Lute
Banjitar Acoustic Moon Lute
Gui tar
Pl ucked Stri ng Cl assi cal Bouzouki
i nstrunents Gui tar

Figure 10 shows an example for generating the ex-
ploration path under EC for the instruments Bansu-
ri (the first entity vs in the exploration path) using
the closest knowledge anchor FI ut e.

===
il e Flute
- - T
>4 27T 7 enip) g My,
s el 3 4 o i,
s - ; s iy
£ / - » P e
! £ o1l Other
! £ seripi(Ng) Fipple flutes
! [} ’ flutes
[ seriptiNg rd * 4 ",
] i & % s o,
# ! & %,
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f ! o12]

1 | Transverse U Nose fluts Ocasina
I [ flute e
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1 Flutes
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Fig. 10. Extract fromthe W nd | nst r ument classhierarchy in
MusicPinta showing exploration path of Bansur i . This path was
followed in experimental condition EC.

The exploration path for Bansuri was generated
using the closest knowledge anchor FI ut e and nar-



rative types N1, N4 given in Table 4. The first transi-
tion narrative is between the first entity Bansur i

and the closest knowledge anchor Fl ut e (using Ni
in Table 4). After that, the closest knowledge anchor
Fl ut e is used to subsume new class entities and to
generate transition narratives in the exploration path
using narrative type N4 (subsume intermediate class
entities between Fl ut e and Bansuri line 10 in
Algorithm V). Transition narratives that were fol-
lowed in generating the exploration path for Bansu-

ri arelistedin Table8.

Table 8. Narrative scripts used for generating the experimental
condition EC (i.e. exploration path) for instrument Bansur i

Transition Narratives
for path of Bansur i
Vg, seript (N, ), Vi)

Narrative Script

You may find it useful to know that
‘Bansuri' belongsto a familiar and
well-known instrument called
'Flute’. Let'sexplore 'Flute.
Vias SCript(N,), QT4 'You may also find it useful to know that
'Fipple Flute' belongsto 'Flute' , and
‘Bansuri’ belongsto 'Fipple Flute'.
Let's explore 'Fipple Flute'.
Via, SCTipt (N,), QT2 'You may also find it useful to know that
‘Transverse Flute' belongsto 'Flute' ,
and 'Bansuri' belongsto ‘Transverse
Flute'. Let's explore 'Transverse Flute'.
V,a, Script(N,), Q3]) [You may also find it useful to know that
KA P(N.). QT3P ‘Indian Bamboo Flutes' belongsto
'Flute', and 'Bansuri' belongsto
'Indian Bamboo Flutes. Let's explore
'Indian Bamboo Flutes.

Table 9 shows examples of the entities that were
freely visited in the control condition CC for
Bansuri

Table 9. Examples of entities the participants have visited during
their free exploration of Bansur i

Example 1 Example 2 Example 3
Bansur i Bansur i Bansur i
Transver se Fi pple Flute Banboo Musi -

Flute cal Instru-
nent s
Saw Tr uck Cont r abass Si de- bl own
Recor der Flute
Fi pple Flute Recor der Concert Flute
Fl ute D anour Great bass Fi pple Flute
recor der

Both, EC and the CC had the same length (EC had
four transition narratives, and CC had four edges)™®.
We analysed knowledge utility and user exploration
experience using usability aspects, associated with
the user’s exploration settings under the experimental

16 The length of four edges (5 entities) is based on Miller's Law
[200], which indicates the number of objects that an average hu-
man can hold in working memory is7 + 2.

condition (EC) and the control condition (CC), as the
following:

Measuring knowledge utility. To compare the
knowledge utility of an exploration path, we need a
reliable approach for measuring knowledge. For this,
we adopt the well-known taxonomy by Bloom used
for assessing conceptual knowledge [92]. The taxon-
omy identifies a set of progressively complex learn-
ing objectives that can be used to design or assess
learning experiences over information seeking and
search tasks, and offers a means of assessingthe
depth of learning that occurs through search [93]. It
suggests linking knowledge to six cognitive process-
es: remember, understand, apply, analyze, evaluate,
and create. Among these, ‘remember’ and ‘under-
stand’ are directly related to browsing and explora-
tion activities. The remaining processes require deep-
er learning activities, which usually happen outside a
tool, in our case data browser, and hence will not be
considered. The ‘remember’ process is about retriev-
ing relevant knowledge from the long-term memory,
and includes recognition (locating the knowledge)
and recall (retrieving it from the memory) [92]. The
‘understand’ process is about constructing meaning,
from which the most relevant to a semantic browser
is categorise (determining that an entity belongs to a
particular category) and compare (detecting similari-
ties) [92].

To measure the knowledge utility of a path, we use
a schema activation technique used for assessing how
users expand their knowledge after reading text [94].
To assess user’'s knowledge of a target domain con-
cept, the user is asked to name concepts that belongs
to and are similar to the concept. The schema activa-
tion test is conducted before an exploration and after
an exploration, using three questions related to the
selected cognitive processes of remember, categories,
and compare:

- Q1 [remember] What comes in your mind when
you hear the word X?;

- Q2 [categorise] What musical instrument catego-
ries does X belong to?;

- Q3 [compare] What musical instruments are
similar to X?

The number of accurate concepts named (e.g.
naming an entity with it's exact name, or with a par-
ent or with a member of the entity) by user before
and after exploration is counted, and the difference
indicates the knowledge utility of the exploration. For
example, if a user could name correctly two musical
instruments similar to the musical instrument Bi wa
(Q3) before hisher exploration and then the user



could name correctly six names of musical instru-
ments similar to the instrument Bi wa after his/her
exploration, then the effect of the exploration on the
cognitive process compare is indicated as 4 (i.e. as a
result of the exploration the user learned 4 new simi-
lar musical instruments to the musical instrument
Bi wa). If a user named one instrument after hig’her
exploration (i.e. knowledge utility is -1), in such cas-
es the knowledge utility equal to zero.

User’s exploration experience of a path. After
each exploration, the participants were asked to fill a
questionnaire about their exploration experience and
the cognitive load they have experienced (based on a
modified version of the NASA-TLX questionnaire
[95]). Furthermore, the participants were asked to
think aloud and notes of all comments were kept.

8.3. Results

In the following, we present the results of evaluat-
ing the subsumption algorithm. We have analysed the
user knowledge expansion and user exploration ex-
perience by usability aspects, associated with the
user's exploration settings under the experimental
condition (EC) and the control condition (CC).

8.3.1. Measuring Knowledge Utility

The user knowledge was measured before and after
each exploration using the three questions of the
schema activation test related to the entities Bi wa
and Bansur i . Before exploration, none of the users
were able to articulate any item linked to the two
musical instruments (Bi wa and Bansur i ) using the
three cognitive processes. The knowledge utility for
the three cognitive process before and after
exploration of EC and CC is shown in Figure 11.

0 I I

Remember
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Knowledge Utility
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15

Categorize Compare

B Experimental condition (EC) B Control condition (CC)

Fig. 11. Knowledge utility of the two strategies (EC and CC) of

the user cognitive processes (median of the knowledge utility of
exploration for all users).

The knowledge utility of the exploration under ex-
perimental condition (EC) in the three cognitive pro-
cesses was higher than the effect of free exploration
under control condition (CC); and this difference is
significant (See Table 10). The results showed that
all participants were able to remember and categorise
entities with EC (only 5 participants couldn’t com-
pare new entities). Whereas not all participant could
remember, categorise or compare new entities after
they have finished their exploration with CC (there
were 2 participants that could not remember or cate-
gorise new entities and 13 participants that could not
compare between entities).

Table 10. Stetistically significant differences of the valuesin
Figure 11 (Mann-Whitney, 1-tail, Ne=Nb=32)

Differencein Knowledge| Cognitive
Utility between P and F Process
Remember 3.6 P<0.01
Categorise 5.1 P<0.0001
Compare 2.7 P<0.01

Z-vaue p

EC>CC

Notably, for the cognitive process categorise the
bigger effect on exploration of the subsumption ex-
ploration strategy over the free exploration strategy is
highly significant (p<0.0001). The difference be-
tween median values for categorise cognitive process
under EC and CC was higher than the remember and
compare coghitive processes. Furthermore, we exam-
ined the knowledge utility for the three cognitive
processes for each instrument in its corresponding
class hierarchies, as shown in Figure 12.
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B Experimental condition (EC) ® Control condition (CC)

Fig. 12. Knowledge utility of the two strategies (EC and CC) of
the user cognitive processes (median of the knowledge utility of
exploration for al users).

The knowledge utility of the exploration under exper-
imental condition (EC) in the three cognitive pro-
cesses was higher than the effect of free exploration
under control condition (CC) for Bi wa and was
higher in the cognitive processes compare and cate-
gorise for Bansur i (See Figure 12); and this differ-
ence in EC and CC is significant except for the cog-



nitive process compare for instrument Bansur i
(See Table 11). By inspecting the participants’ an-
swers for the cognitive process compare, it was no-
ticed that more than half of the participants (9 out of
16 participants for EC; 13 out of 16 participants for
CC) had 0 or 1 values as their knowledge expansion
in the cognitive process compare (0 value: partici-
pants didn’t learn similar entities to Bansuri; 1
value: participants learned one entity similar to
Bansur i ). Since more than half of the resultsin the
two lists (EC and CC) are O or 1, this decreases the
difference between EC and CC (i.e. decrease the
chance that a randomly selected value from EC will
be higher than a randomly selected value from CC).
Notably, for the cognitive process categorise the big-
ger effect on exploration of EC over CC is highly
significant (p<0.001) for Bi wa and Bansurii .

Table 11. Statistically significant differences of the valuesin
Figure 12 (Mann-Whitney, 1-tail, Na=Nb=16)

Differencein Instrument | Cognitive [Z-value p
Knowledge Utility|  (class Process
between EC and | Hierarchy)
CcC

Bi wa |Remember | 1.658 |P<0.05
EC>CC (String) | Categorise | 3.373 |P<0.001
Compare | 2.449 |P<0.05
Bansuri |Remember | 3.467 |P<0.001
EC>CC (Wind) |Categorise | 3.900 |P<0.001
Compare 1.280 |P<0.5

To further inspect what caused the low knowledge
utility for the cognitive process compare for instru-
ment Bansuri, we looked into the participants
familiarity with the W nd | nst runment class hier-
archy (the class hierarchy that Bansur i belongs to)
and noticed that 78% of the participants had low fa-
miliarity (i.e. participants have limited knowledge
and they may have seen some instruments) with
W nd | nstrument, whereas 65% of the partici-
pants had low familiarity with the String | n-
strunent class hierarchy. One could argue that
being more familiar with the String I nstru-
ment class hierarchy than the W nd | nst r unent
class hierarchy, participants knew more entities to
compare with. Furthermore, entities in the Stri ng
I nst rument class hierarchy are associated with
more DBpedia categories compared to entities in the
Wnd Instrunment class hierarchy (String
I nstrument has 255 and W nd | nstrunent
has 161 DBpedia categories). Most of these catego-
ries are grouping musical instruments based on their
cultural origin (eg. Chi nese Muisical In-

strunents, Japanese Musical instru-
nment, Indian Misical I nstrunents,
G eek Musical Instrunents), which helped
the participants to associate entities from their cul-
tures. This indicates important considerations of the
data graph and the user familiarity for generating
exploration paths for knowledge expansion.

8.3.2. User Exploration Experience

After each exploration strategy, the participants
feedback on the exploration experience was collected
including exploration usability and exploration com-
plexity, adapted from NASA-TLX [95] (Table 12).

Table 12. Questions to gather feedback on user exploration ex-
perience, adapted from NASA-TLX (mental demand, effort, per-

formance).
Subjective Question text
process
Knowledge | How much the exploration expanded your
Expansion knowledge?
Content How diverse was the content you have ex-
Diversity plored?
Mental How mentally demanding was this explora-
Demand tion?
Effort How hard did you have to work in this explo-
ration?
Performance | How successful do you think you were in this
exploration?

Figures 13 and 14 give a summary of the users
feedback.
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Fig. 13. Users exploration experience of the two exploration
strategies (EC and CC). Values show number of user paths rated
with the corresponding characteristics.

In Figure 13, the exploration experience with EC
was the most informative (all 32 participants identi-
fied their exploration experience with the exploration
paths under EC as informative, whereas 20 partici-
pants indicated their exploration with CC as informa-
tive). The participants also found their exploration
under EC to be dightly more interesting and enjoya-
ble than CC. Furthermore, the participants found the



exploration paths under EC to be the least boring and
least confusing — only 3% (one participant) and 16%
(four participants) of the participants founded their
exploration with EC to be boring or confusing, re-
spectively. For instance, on participant indicated his
exploration experience with EC as boring since he
was not able to freely explore through entities in the
graph (his feedback was “Narratives in paths allows
me to explore entitiesin a hierarchical fashion, and |
would like to freely explore other types of relation-
ships’). Another participant indicated his exploration
experience with EC as confusing (his feedback was
“1 saw the same instruments several times during my
exploration”.
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Fig. 14. Users' subjective perception of the two exploration strate-
gies (EC and CC), based on an adapted NASA-TLX questionnaire
[96] (median values for all usersin the range 1-10).

The effect of the exploration path under EC on the
subjective processes knowledge expansion and per-
formance was higher than the effect of the free explo-
ration strategy; and this difference was significant
(See Table 13 and Fig 14).

Table 13. Statigtically significant differences of users’ subjec-
tive perception of cognitive process (Mann-Whitney, 1-tail,

Na=Nb=32)
Differencein the Subjective z p
users’ experience Process value
Knowledge Expansion | 3.98 |P<0.0001
Content Diversity 0.32 [P<0.5
EC>CC Mental Demand 0.14 |P<0.5
Effort 0.14 |P<0.5
Performance 2.15 |P<0.05

Notably, for the subjective process knowledge ex-
pansion the bigger effect on exploration of EC over
CCishighly significant (p<0.0001).

9. Discussion

In this section, we revisit our research questions
related to finding computational ways to: (i) identify

knowledge anchors KApg and (ii) generate explora
tion paths for knowledge expansion using KAps. We
reflect on how and to what extent we have answered
them, discuss the major contributions of our work,
and point at limitations.

9.1. RQ1: Identification of KApg

To address the first research question, we utilised
Rosch’'s definitions of basic level objects and cue
validity to develop two groups of metrics and the
corresponding algorithms for identifying knowledge
anchors in a data graph. These include; distinctive-
ness metrics, which identify the most differentiated
categories whose attributes are shared amongst the
category members but are not associated to members
of other categories, and homogeneity metrics, which
identify categories whose members share many at-
tributes together. The forma framework that maps
Rosch’'s definitions of BLO and cue validity to data
graphsisamajor contribution of our work.

9.1.1. KApg Algorithms

The KApg agorithms have been formally defined;
they are generic and can be applied over different
application domains represented as data graphs. The
algorithms have been applied over two data graphs —
in music (presented here) and in careers (presented in
[97]). Although this paper focuses only on the music
domain (so that we can show a holistic approach il-
lustrated with a concrete application), in the discus-
sion below we identify key features of the algorithms
which have been confirmed in broader evaluation
(see [97] for further detail).

The implementation showed that the output of the
KApg agorithms is sensitive to the quality of the
data graph in terms of the richness of the class enti-
ties and the hierarchy depth. Specifically, the ago-
rithms tend to pick more anchoring entities when a
data graph has many classes and high depth. For in-
stance, the algorithms identified 9 anchors in the
String Instrunment class hierarchy and 10 an-
chorsin the W nd | nstrunent class hierarchy —
out of 24 anchors (String Instrument and
W nd Instrument are the richest class hierar-
chiesin MusicPinta— See table 1). Whereas the algo-
rithms did not produce any anchor in the El ec-
troni c Instrument class hierarchy (only 15
classes with a depth of one). The same observation
was confirmed in the career domain [97].



9.1.2. Identifying Human BLOpg

To enable objective comparison of the outputs by
the KApg agorithms and the cognitive structures of
humans, we presented an algorithm that adapts earli-
er Cognitive Science experimental approaches of
free-naming tasks to capture human basic level ob-
jects in a data graph (BLOpg) that correspond to fa-
miliar concepts in human cognitive structures over a
data graph. A user study in the music domain was
conducted to identify benchmarking sets of human
BLOpc used to examine the performance of the
KApc metrics. Based on quantitative and qualitative
analysis, the strengths and limitations of each metric
were assessed, and a hybridisation to enhance the
performance of the metrics approach was proposed.

An important component for applying the human
BLOpg algorithm is to identify appropriate stimuli to
be used for representing graph entities and showing
them to humans in a free-naming tasks. One of the
main factors that affects choosing appropriate stimuli
is how well the stimuli cover the entities in the data
graph. In other words, the chosen stimuli should have
representations for all entities in the graph ontology.
For instance, the stimuli for MusicPinta were images
— taken from an established source (MIMQY). The
chosen stimuli have to be close enough to users' cog-
nitive structures, so the users can understand the rep-
resentation of entities.

The formal description of the human BLOpg ago-
rithm makes it applicable over a broad range of do-
mains, by selecting appropriate stimuli. In this paper
we presented an application in a domain with con-
crete objects - musical instruments - that can have
digital representations (e.g. image, audio, video). In
[97] we have shown how the algorithm can be ap-
plied also to a data graph in an abstract domain (ca-
reers) where domain objects have text representations
(i.e. labels of entities) but no clearly distinguishable
digital representations.

The derived human BLOpg set is depends on what
categories are represented in the data graph. If key
domain concepts, which are well-familiar to people,
are missing in the data graph, they cannot be shown
to the users, and hence will be missing from the de-
rived human BLOpg set. This is important for navi-
gation through the data graph, as the evaluation will
consider only entities that are in the data graph (and
hence can be used in navigation paths). Furthermore,
the derived human BLOpg can point at deficiencies
of the data graph. For instance, if a well-known do-
main category is not present in the derived BLOpg
this can indicate that the category is unrepresented in

the data graph. Such findings can be useful for ontol-
ogy evaluation and re-engineering.

9.1.3. Evaluating KApc Against Human BLOpg

An important step in the evaluation is to identify a
suitable cut-off point for the KApe metrics. In the
current implementation, this was done through exper-
imentation — the best performance was by using the
60" percentile. The same percentile was identified as
best for the career domain (see [87]). We expect that
when applied to a range of data graphs, the 60" per-
centile will give reasonable performance (the best
cut-off point for a specific data graph would require
experimentation comparing different percentiles).

The analysis indicated that hybridisation of the
metrics notably improved performance. The same
was observed in the careers domain ([97]). Appropri-
ate hybridisation heuristics for the upper level of the
data graph is to combine the KApg metrics using ma-
jority voting. The hybridisation heuristics for the
bottom level of the hierarchy are dependent on the
domain-specific relationships in the data graph.
Hence, to derive appropriate hybridisation heuristics
that give good performance for categories at the bot-
tom level, further experimentation will be required.
This will include comparing the KApg derived using
the various domain-specific relationships against
human BLOpg.

9.2. RQ2: Generation of Exploration Pathsin Data
Graphs

9.2.1. Subsumption Algorithms for Generating Paths

We adopted the subsumption theory for meaning-
ful learning [21] to generate exploration paths for
knowledge expansion using KApe. For this, we for-
mally described two algorithms.

Algorithm for identifying the closest knowledge
anchor to the first entity of an exploration path.
It applies a semantic similarity metric based on class
hierarchy depth to identify the closest knowledge
anchor to the first entity of an exploration path. This
similarity algorithm is not applicable in data graphs
with shallow class hierarchies (e.g. class hierarchy
depth = 1 or 2). In such cases, there will be no com-
mon ancestors for the first entity and the knowledge
anchors, and hence the semantic similarity value will
be zero. Furthermore, two (or more) knowledge an-
chors in a data graph can have the same semantic
similarity value with the first entity. For example,
there were two knowledge anchors (Fl ute and
Reeds) with the same semantic similarity value with



the first entity Bansuri . One possible way to ad-
dress thisis to filter the knowledge anchors based on
their density and give preference to the densest an-
chor as it will include many subclass members to
subsume while generating the exploration path.

In some cases, the semantic similarity metric can
identify closest knowledge anchors which are not
superclass (i.e. N; in Table 4), subclass (i.e. Ny in
Table 4) nor sibling (i.e. N3 in Table 4) to the first
entity, which means that the closest knowledge an-
chor can not be reached directly from the first entity
using a narrative transition. For instance, although
the anchors Fl ut e and Reeds have the same se-
mantic similarity value with the first entity Bansu-
ri, Fl ute isasuperclass of Bansuri that can be
reached directly using the narrative type (N in Table
4), whereas Reeds can't be reached directly from
Bansuri . Our solution to address this issue was to
apply semantic similarity to knowledge anchors
which could be reached directly from the first entity.
Another solution can be to add a narrative type in
Table 4 that indicates that the first entity and the
closest knowledge anchor simply belong to the same

domain but there is no direct trgjectory between them.

Algorithm for generating exploration path as a set
of transition narratives using the closest knowledge
anchor. The algorithm is underpinned by the sub-
sumption theory for meaningful learning to generate
exploration paths for knowledge expansion. The al-
gorithm uses a knowledge anchor to subsume subor-
dinate entities (i.e. subclasses of the closest
knowledge anchor) while generating transition narra-
tives of an exploration path. The algorithm is de-
pendent on the sub-classes of the selected knowledge
anchor — it may not be possible to generate m transi-
tion narratives in the exploration path (where misthe
required length of exploration path identified as an
input of the agorithm). Our implementation uses
only the knowledge anchor, and can result in paths
whose length of less than m. Another way to address
this would be to continue the path, using another
knowledge anchor. It is also possible to use superor-
dinate categories to the knowledge anchor to extend
an exploration path. This will be suitable for cases
when the user is gained knowledge at the subordinate
level and is ready to generalise to a more abstract
level. In such cases, a user model will be required.

9.2.2. Evaluation of Exploration Paths
Overall, the evaluation results have supported our
hypothesis H1-H3 as set out in Section 8.

H1: When users followed the experimental condi-
tion, i.e. the paths generated by the subsumption al-
gorithm, they expanded their domain knowledge. All
participants in the study have indicated that their ex-
ploration in the experimental condition was informa-
tive (in other words, they felt that while following the
path they were able to find useful information);
whereas 62% of the participants founded their free
exploration tragjectories to be informative.

H2: The expansion of the users' knowledge when
following the generated exploration paths was higher
than when following free exploration - the partici-
pants were able to remember, categorize and com-
pare significantly more entities. The results also
showed that the cognitive process categorise had the
bigger effect on expanding the participants
knowledge. This was caused because: (i) the sub-
sumption hierarchical relationship (r df s: sub
cl assOf ) was used to create the narrative scripts
between entities of the generated exploration paths,
which helped the users to categorise new entities at
different levels of abstraction at their cognitive struc-
tures, and (ii) the subsumption process uses
knowledge anchors to subsume and learn new sub-
categories similar to the way a human mind works
while learning a new concept.

H3: The results showed that participants found
the generated exploration paths to be more enjoyable
and less confusing than free exploration paths, and
their assessment of performance was higher. One
participant founded his experience with hierarchical
narrative scrips to be boring; and suggested that the
system should diversify the types of narratives used
between entities in the exploration path. For example,
to use other relationships, other than the subsumption
relationship, for generating transition narratives.

9.2.3. Applicability of Evaluation Approach

Instruments used in the evaluation of the explora-
tion paths can be applied in other exploratory search
evaluation studies.

To measure knowledge utility of an exploration
path, the user knowledge is assessed before and after
exploration using Bloom’s cognitive processes of
remember, categorise and compare. These were ex-
tracted from the first two cognitive categories in
Bloom's taxonomy (namely remember and under-
stand) which are directly related to exploration ac-
tivities. In other evaluation contexts, more complex
cognitive categories can be applied such as the cogni-
tive category analyse. This category includes severa
cognitive processes, such as differentiate (e.g. differ-



entiate between two entities in the data graph) and
arrange (e.g. arrange entities in the data graph from
abstract to specific), which can be related to explora-
tory search tasks.

We evaluated the subsumption algorithm for gen-
erating exploration paths against free exploration by
adopting a task-based approach. It involved two
steps: (i) designing a task template and (ii) identify-
ing unfamiliar entities in the domain to be plugged
into the task template. The task template presented in
Section 8 is in the context of a general knowledge
quiz that encourages users to seek knowledge in a
given domain represented as a data graph. The tem-
plate can easily be adapted for a range of data graph
exploration tasks. This will require identifying unfa-
miliar entities to include in the template. We did this
based on a small survey with participants to identify
domain entities (at the bottom quartile of the data
graph) which are likely to be unfamiliar to layman
user. At a larger scale, crowdsourcing can be used to
identify unfamiliar entities in the data graph.

10. Conclusion and Future Work

Exploration of data to carry out an open-ended
task is becoming a key daily life activity. It usually
involves a journey through large datasets or search
systems that starts with an entry point, often an initial
query, and then exploring a large amount of data
while constantly making decisions about which data
to explore next. Users who are unfamiliar with the
domain they are exploring can face high cognitive
load and usability challenges when exploring such
large amount of data. Our work investigates how to
support such users' exploration through a data graph
in away that leads to expansion of the user’s domain
knowledge. We introduced a novel exploration sup-
port mechanism underpinned by the subsumption
theory of meaningful learning, which postulates that
new knowledge is grasped by starting from familiar
concepts in the graph which serve as knowledge an-
chors from where links to new knowledge are made.

The KApg agorithms can have several applica
tions. In data graph exploration, KApg enables oper-
ationalising the subsumption theory for meaningful
learning [21] to generate exploration paths for
knowledge expansion. Furthermore, our approach for
identifying KApg can be applied to ontology summa-
risation [53] where KApg alow capturing a layman
view of the domain. KApg approach can also be ap-
plied to solve the ‘cold start’ problem in personaliza-

tion and adaptation [98]. One of the popular choices
for addressing the cold start problem is a dialogue
system with the user. The data graphs can provide a
large knowledge pool to implement such probing
dialogues, however, one needs to select entities from
the vast amount of possibilities for probing to avoid
too long interactions with the user. Knowledge an-
chors can be used as the starting entities for the prob-
ing dialogues [99].

The subsumption algorithm is generic and can be
applied to generate transition narratives for explora-
tory search in other domains. Further extension
would be to maintain a user model and personalise
the path to the individual’s domain knowledge. An-
other future direction would be to add a path diversi-
fication strategy to suggest interesting concepts that
are more likely to attract people to engage in the ex-
ploration, and hence learn more about the domain.
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