
Semantic Web 0 (0) 1–0 1
IOS Press

BimSPARQL: Domain-specific functional
SPARQL extensions for querying RDF
building data
Chi Zhang a,*, Jakob Beetz b, Bauke de Vries a

a Department of Built Environment, Eindhoven University of Technology, P.O. box 513, Eindhoven, The
Netherlands
E-mail: c.zhang@tue.nl, b.d.vries@tue.nl
b Department of Architecture, RWTH University Aachen, Schinkelstrasse 1, 52062 Aachen, Germany
E-mail: j.beetz@caad.arch.rwth-aachen.de

Editors: Álvaro Sicilia, Universitat Ramon Llull, Spain; Pieter Pauwels, Universiteit Gent, Belgium; Leandro Madrazo, Universitat Ramon
Llull, Spain; María Poveda Villalón, Universidad Politécnica de Madrid, Spain; Jérôme Euzenat, INRIA & Université Grenoble Alpes, France
Solicited review: Three anonymous reviewers

Abstract. In this paper, we propose to extend SPARQL functions for querying Industry Foundation Classes (IFC) building data.
The official IFC documentation and BIM requirement checking use cases are used to drive the development of the proposed
functionality. By extending these functions, we aim to 1) simplify writing queries and 2) retrieve useful information implied
in 3D geometry data according to requirement checking use cases. Extended functions are modelled as RDF vocabularies and
classified into groups for further extensions. We combine declarative rules with procedural programming to implement extended
functions. Realistic requirement checking scenarios are used to evaluate and demonstrate the effectiveness of this approach and
indicate query performance. Compared with query techniques developed in the conventional Building Information Modeling
domain, we show the added value of such approach by providing an application example of querying building and regulatory
data, where spatial and logic reasoning can be applied and data from multiple sources are required. Based on the implementation
and evaluation work, we discuss the advantages and applicability of this approach, current issues and future challenges.

Keywords: BimSPARQL, IFC, ifcOWL, SPARQL, function

1. Introduction

As integrating data in the architecture, engineer-
ing and construction (AEC) industry is becoming in-
creasingly important [47], Building Information Mod-
eling (BIM) has been adopted by a growing number
of industry practitioners and has led to the specifica-
tion and standardization of the data standard Industry
Foundation Classes (IFC) [16, 27]. Using BIM appli-
cations and the IFC standard to create, exchange and
process building-related data is the state-of-the-art in

*Corresponding author. E-mail: c.zhang@tue.nl.

the AEC industry’s day-to-day operations. Even us-
ing IFC-based instance building models, however, the
retrieval of domain specific information is currently
challenging for industry practitioners, who are gen-
erally depending on proprietary, vendor-specific solu-
tions. Building models are used for different engineer-
ing tasks, where information needs to be flexibly de-
rived according to a wide range of use case require-
ments. However, the IFC data model is designed for
the creation and exchange of product data, but not tai-
lored for various query and analysis tasks [49]. Many
useful relationships and properties that are explicitly
defined or implied in building models are difficult to

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

retrieve in day-to-day processes. Furthermore, the IFC
data is limited by its schema which is not flexible
enough to adapt to situations when data from different
sources needs to be integrated and processed [4, 40].
Although IFC is a data model aiming to cover the en-
tire AEC industry, much information used in common
industry scenarios is not specified within the scope of
the IFC data model, including e.g. product classifica-
tions, building requirements and regulations as well as
data from neighboring domains such as urban planning
and sensor networks.

Using the Resource Description Framework (RDF)
and Semantic Web technologies to represent building
data has been proposed time and again over the last
decade [4, 39, 46]. Unlike conventional data model-
ing approaches that are limited by the scope of their
underlying schemas, these Semantic Web technologies
provide an open and common environment for sharing,
integrating and linking data from different domains
and databases. Semantics can be formally defined with
the logic basis of these technologies and shared us-
ing web-based mechanisms such as Uniform Resource
Identifiers (URIs) and the Hypertext Transfer Protocol
(HTTP). The ifcOWL ontology has been developed as
a counterpart of the IFC data model using the Web On-
tology Language (OWL) and RDF. The ifcOWL ontol-
ogy is in the final stages of the standardization process
driven by the buildingSMART organization, the most
important industry standardization body and forms the
foundation for Semantic Web applications for the AEC
domain [39]. By transforming IFC instance building
models to RDF data that follows the ifcOWL ontology,
using a standard query language such as SPARQL to
process them becomes possible [20].

By using plain SPARQL 1 on ifcOWL data, how-
ever, some of the aforementioned issues still remain
to be addressed. Many query and analysis use cases in
the AEC domain are hampered by the complexity of
IFC data, and many required relationships and prop-
erties e.g. property sets, product geometry quantities
and spatial and topological relations etc. are difficult
to retrieve. In this paper, we use SPARQL as a base
query language and propose to extend it with a set of
functions specific for querying ifcOWL building data.
The motivation is elaborated in Section 2. We focus on
the official IFC documentation and common BIM re-
quirement checking use cases to define required func-

1In this paper, plain SPARQL refers to SPARQL queries that are
compliant with the W3C Recommendation SPARQL 1.1.

tions. Some of the use case examples are presented in
Section 4. The strategy of extending SPARQL func-
tions for domain specific usage has also been em-
ployed in other industry domains. For example, the
Open Geospatial Consortium (OGC) has standardized
GeoSPARQL as a set of vocabularies and functions for
geospatial data [43], allowing e.g. to implement spa-
tial queries (e.g. ’within distance’, ’touching’ etc.). We
argue, that the standardization, implementation (e.g.
Marmotta, Stardog, Oracle, GraphDB etc.) and indus-
try adoption of GeoSPARQL provides a reasonable in-
dication for the feasibility of a similar approach for the
AEC industry.

There are currently three major components of the
BimSPARQL project presented in this paper: 1) A set
of functions modelled as RDF vocabularies that can
be used in SPARQL queries (see Section 4); 2) A
set of query transformation rules to map functions to
IFC data structures to make writing queries easier (see
Section 5); 3) A module for implementing geometry-
related functions for deriving implicit information (see
Section 5). The official IFC specification and BIM re-
quirement checking use cases in the Netherlands and
Norway, and some checks that have been implemented
in Solibri Model Checker (SMC) [10, 45, 48, 51] have
been used to drive the development of the proposed
and implemented functionality. The links to the vocab-
ularies, transformation rules and source code reposi-
tory of the prototypical reference implementation are
provided in Appendix A.

The extended functions in this research do not re-
quire extensions for the grammar of SPARQL. With
SPARQL as a common interface language, extended
functions can be used to query building data alone or
combined with data from other sources, which in turn
may have their own domain specific functions (Fig. 1).
We believe that this is a generic approach that is us-
able in many different use cases, including e.g. multi-
model collaboration, quantity take-off and cost estima-
tion, requirement and code compliance checking etc..
As a W3C standard, SPARQL has been widely imple-
mented by a plethora of RDF Application Program-
ming Interfaces (APIs) and databases, and there are
many of them support extending functions (e.g. see
Section 3.3 and Section 5), hence can be used as base
environments for implementing extended functions.

This paper is structured as follows: In Section 2, the
background of IFC and ifcOWL is briefly introduced
and the motivation of this research is elaborated. In
Section 3, an overview of related research is provided.
The proposed functional extensions for SPARQL are

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 3

Fig. 1. SPARQL query with domain specific functional extensions

introduced and classified in Section 4, followed by ex-
ample use cases. In Section 5, implementation meth-
ods are described and a prototype is presented. In Sec-
tion 6, realistic use cases put forward by research com-
munities and building models are used to evaluate this
prototype and demonstrate the value of this approach
in comparison with SPARQL and exiting work. In Sec-
tion 7, an extended example is presented to show the
extensibility of this method. A discussion about added
value, limitations and further work concludes this pa-
per.

2. Background and motivation

In the last two decades, the IFC standard has been
developed and maintained by buildingSMART as a
standard data model for data exchanges between het-
erogeneous applications in the AEC/FM sector [10,
16]. The IFC schema is specified using the EXPRESS
modeling language [25], while its instances are usually
serialized in IFC STEP File format [26]. The compre-
hensiveness of the AEC domain makes IFC one of the
largest EXPRESS-based data models across engineer-
ing industries. It provides a wide range of constructs
for modeling building-related information. For exam-
ple, one of the most recent versions, IFC4_ADD1, de-
fines 768 entities and 1480 attributes on the schema
level [10]. IFC has also provided a few mechanisms
to extend semantics in the instance level including e.g.
common property sets and external standard classifica-
tion references. However, there are limited rules spec-
ified in IFC about usage of these constructs and mech-
anisms. On the other hand, the semantics required in
the AEC industry are much more than all the avail-
able concepts formalized in the IFC data model. There-
fore, a large amount of information is informally or
implicitly represented with various ways and usually
causes redundancies and ambiguities in IFC instance
models [53]. As an object-oriented data model, IFC

structures data mainly for the purpose of data exchange
rather than for the understanding of the knowledge
domain, and information is usually represented using
relatively complex structures. From technical perspec-
tive, furthermore, the EXPRESS language family has
not gained popularity outside the STEP initiative in ei-
ther engineering or software development communi-
ties, and there is a very limited set of tools to support
storage, query and management for data in the IFC na-
tive format. All these issues have brought about diffi-
culties regarding data query and management of IFC
instance data.

SELECT ?e
WHERE{
?e a ifc:IfcBuildingElement .
FILTER NOT EXISTS{
?r ifc:relatedElements ?e .
?r a ifc:IfcRelContainedInSpatialStructure

.
?r ifc:relatingStructure ?storey .
?storey a ifc:IfcBuildingStorey .

}
}

Listing 1: Query to retrieve building elements which
are not contained in a building storey. The query
result can be used to check the spatial containment
relationship for every building element.

Converting the IFC schema and its instances to
OWL and RDF was firstly proposed and implemented
in [4] to facilitate use cases of data partition, data
query and knowledge reasoning. It has been further de-
veloped by the buildingSMART Linked Data Work-
ing Group (LDWG) and has been specified as can-
didate standard status in 2015 [39]. Using inferenc-
ing and reasoning capabilities of RDF(S) and OWL,
practical data processing scenarios in the building in-
dustry can be addressed with off-the-shelf algorithms
and tools that would require custom tools using STEP-
based modeling technologies. For example, a simple
data validation use case requires that every building
element should be associated with a building storey,
can be implemented without hardcoding procedural
validators [45, 57]. The relationship between a build-
ing element and the related building storey can be de-
fined using an instance of IfcRelContainedInSpatial-
Structure, which is an objectified relationship defined
in IFC. Provided that the building model is represented
in the standardized ifcOWL, the query provided in
Listing 1 can retrieve building elements which do not

4 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

have this spatial containment relationship using com-
mon SPARQL implementations 2.

As RDF and Linked Data have received increas-
ing attention in the AEC industry, it makes sense to
use SPARQL as a common language to process feder-
ated data sources instead of developing custom domain
specific languages. Common instance model query
scenarios that can be implemented using the current
SPARQL specification include:

– All building objects should be tagged with NL-
sfb classification code, which is a building prod-
uct classification system used in Netherlands.

– The type and thickness of walls can only be mod-
elled according to the valid combinations pro-
vided in an external table X.

– Retrieve all geo-locations of companies which
produce the materials used in the walls placed in
space X.

All these scenarios not only need to query building
models captured in e.g IFC, but also require data from
other sources. We argue that they can be more eas-
ily implemented with RDF and SPARQL technologies
without relying on proprietary systems.

The conversion from IFC instances to ifcOWL RDF
data is a straightforward process, and the data struc-
tures in IFC instances are reflected in the output RDF
data [39]. Since standard SPARQL queries are only
processed by matching the data graph patterns in RDF,
the resulting queries are usually more complex than the
high-level abstractions provided in use cases. For ex-
ample, in the query case of Listing 1, it is better to have
a shortcut relationship between a building element and
a storey rather than the objectified solution of the regu-
lar schema. There are many commonly used structures
that can be simplified all over the IFC data model to
simplify query and make properties and relationships
closer to the understanding of knowledge domains.

Another problem that motivates this research and
development work is that SPARQL can hardly re-
trieve useful information in scenarios where geomet-
ric computations and spatial reasoning is needed. Ge-
ometry data usually constitutes the largest sections

2In this paper, all properties defined in ifcOWL are abbreviated to
compact format in query listings e.g. ifc:relatedElements is used to
represent ifc:relatedElements_IfcRelContainedInSpatialStructure,
which is standardized in ifcOWL. Another simplification is that all
the queries in this paper assume that they are under RDFS entail-
ment, hence in this case all the instances of IfcBuildingElement
subtypes are visited by the query.

Fig. 2. A model that has incorrect semantic information with re-
spect to its geometric data. The left one shows two walls which are
stated as "contained in" (using IfcRelContainedInSpatialStructure)
in a storey are actually located on the storey above. The second one
shows three walls (the light grey ones) which are labelled as "is ex-
ternal" are actually internal.

in building models (see Table 10) and contains large
amounts of information that currently can only be in-
terpreted by human domain end users. Although the
IFC data model provides many ways to explicitly
model geometry-related properties and topological re-
lationships (e.g. property sets and explicit relation-
ships such as the IfcRelContainedInSpatialStructure
relationship used in Listing 1), they are not mandatory
and not always reliable due to lack of rigidness in the
IFC data model and the ad-hoc nature of design pro-
cesses in the AEC domain. In practice, IFC building
models often miss required semantic relationships and
properties or contain incorrect or inconsistent informa-
tion. Fig. 2 shows two examples of inconsistencies be-
tween semantic relationships and geometric represen-
tations in real building models. Directly deriving in-
formation from geometric representations of building
models provides another option to enrich data and en-
sure consistency. Furthermore, much geometry-related
information is impractical or impossible to be explic-
itly provided in IFC data. For example, there are spe-
cific topological relationships such as the "touching"
relationship between the bottom surface of a wall to
the upper surface of the floor slab (see Listing 8) [51],
or properties such as distances between elements (see
Listing 7).

Across the different use cases analyzed in the con-
text of the research presented here [10, 45, 48, 51],
there are many commonly used concepts that are fre-
quently reused. Using the query in Listing 1 as an ex-
ample, the spatial containment relationship is required
in data validation use cases, and is also important in
many cases including e.g. cost estimation and building
code compliance checking. By wrapping them as func-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 5

tions used in a standard language (see Section 4), we
are able to reuse them in many different applications.

3. Related work

3.1. BIM query techniques

Many past developments have been aimed at the
query and analysis of IFC instance data. Some com-
mercial platforms such as Solibri Model Checker
(SMC) provide functions for querying IFC data [48].
However, the semantics of query functions in these
proprietary systems are not transparent and the usage
of them is limited by the user interfaces provided to
end users.

Some researchers attempt to have use the generic
Structured Query Language (SQL) to query IFC data
that has been mapped into relational databases [29,
31]. These attempts either have severe performance
and scalability issues due to the vast amount of tables,
or are not intuitive enough for end users.

BimQL is among the first implemented and open
source domain specific query language for querying
IFC data [36]. It is implemented in the open source
bimserver.org platform [4]. It provides create, retrieve,
update and delete (CRUD) functionalities to manip-
ulate IFC data. Besides using concepts in the IFC
schema, BimQL also provides a few shortcut functions
for handling common use cases such as deriving infor-
mation from common modeling constructs in the IFC
model referred to as property sets and quantity sets.
However, these functions are very limited and BimQL
has not been further developed.

Geometry and spatial information in building mod-
els is especially focused by a spatial query language
introduced in [8]. This approach is further developed
as a query language named QL4BIM for querying IFC
data [11]. It has provided a few topological and spatial
operators and use R-Tree [19] spatial indexes to opti-
mize query performance.

There are also query languages tailored for specific
use cases such as building code compliance check-
ing. The Building Environment Rule and Analysis
(BERA) Language is a domain-specific language ded-
icated to evaluate building circulation and spatial pro-
grams [34]. For this purpose, it has defined an inter-
nal data model containing a small subset of IFC with
related concepts such as floor, space and door, etc.
Path-finding algorithms are developed to generate cir-
culation routes between spaces. As a language, how-

ever, BERA has limited expressive power and only
supports some specific cases on building circulation
rules. BIM Rule Language (BimRL) is a more recent
research project [14]. It is a domain specific query lan-
guage designed to facilitate accessing information for
use cases of regulatory compliance checking. BimRL
has provided a suite of components including a simpli-
fied data schema and a light-weight geometry engine.
IFC building models are loaded through an Extract-
Transform-Load (ETL) process into data warehouse.
The language has an SQL-like syntax to check build-
ing models in terms of the defined data schema and im-
plemented functions. It is currently implemented based
on a relational database.

The above technologies have provided inspiring do-
main specific algorithms for querying building data.
Currently, however, no query language has been stan-
dardized or widely adopted by the research commu-
nity and AEC industry. We argue that this might be be-
cause these technologies are limited by the closed con-
ventional data modeling approaches that are not sus-
tainable in the AEC domain, which continuously needs
changes, extensions and customizations according to
different contexts and use cases. All these domain spe-
cific BIM query languages are designed based on fixed
internal data models (usually an IFC equivalent or a
simplified subset of it) and additional functions are
hard-wired on top of them. Although some of them
have provided programming interfaces for further ex-
tensions, the development work is usually limited by
the data captured in its internal data model.

3.2. Applying Semantic Web technologies for
querying BIM models

In recent years, Semantic Web and Linked Data
technologies have received increasingly more attention
as a knowledge modeling approach in the AEC in-
dustry and a number of research prototypes have been
developed. A recent and comprehensive overview of
them is provided in [42]. Here, we only briefly describe
cases related to data query and knowledge reasoning
tasks.

Regarding data query for use cases in the AEC do-
main, one of the early examples is described in [55].
Conformance constraints are interpreted and formal-
ized as SPARQL queries in that paper. A similar
method is developed in [9], which has introduced a
semi-automatic process to transform regulatory texts
to SPARQL queries. A limitation of both efforts is that
they mainly focus on formalizing building regulations

6 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

into a query language without specifying on how to
map the used terminologies to building data models.

A number of researchers have applied Semantic
Web technologies in different sub-domains in the con-
text of the AEC industry to facilitate knowledge mod-
eling and rule checking. In [40], a remarkable ap-
proach for facilitating regulatory compliance check-
ing has been introduced based on N3Logic and EYE
reasoning engine [5], and a test case of an acoustic
performance checking is presented. In [35], an OWL
ontology has been used for reasoning tasks in cost
estimation cases. There are also cases regarding en-
ergy management and simulation, construction man-
agement, and job hazard analysis etc. [3, 58, 59]. All
these examples have proved that different knowledge
reasoning tasks in the AEC industry can be facilitated
by properly using Semantic Web technologies.

Currently however, a systematic way to query data
from building models using Semantic Web technolo-
gies is still missing. One of the possible reasons is that
an authorized and stable standard ifcOWL ontology
has only been established very recently and its adop-
tion in suitable use cases will likely take a few more
years. The most similar work that has overlaps with
this research are the IfcWoD and SimpleBIM [12, 38]
ontologies. They both attempt to transform ifcOWL
data to a more compact graph to ease query and im-
prove runtime performance. The difference is that they
mainly focus on developing a standard ontology as
an alternative to ifcOWL to simplify the data graph,
while this research is a framework that mainly con-
siders the query functions with respect to semantics in
common use cases and further extensions of them. A
major enhancement of the approach introduced here is
that functions related to geometry data are provided.
To our knowledge, it is the first time to combine an-
alyzing IFC geometry data with rule-based reasoning
technologies.

3.3. Functional extensions of SPARQL

Extending SPARQL with additional functions has
been proposed and implemented in other fields. The
most inspiring ones are geospatial and geographical
domains as they share many requirements, concepts
and processes with the AEC industry. The stSPARQL
in Strabon and the GeoSPARQL standard from Open
Geospatial Consortium (OGC) have specified many
topological and geospatial functions for 2D geometry
data [33, 43]. They have been implemented by spatial
database systems including Strabon, Parliament and

uSeekM [2, 18]. Some other RDF APIs and triple-
stores like the Apache Jena framework, Allegrograph
and OpenLink Virtuoso have also implemented some
geospatial functions. To our knowledge, these vocab-
ularies and functions developed in the Semantic Web
world have mainly considered 2D geometry and can-
not be directly reused for building models.

The AEC industry also has significant differences
to e.g. the geospatial field. There are many disci-
plines and use cases in different contexts, in which the
amounts of required properties and relationships are
almost unlimited. There are much more sophisticated
reasoning tasks related to 3D geometry. Therefore, the
systems needed in the AEC domain must go beyond
a fixed set of vocabularies but should rather provide a
flexible framework that can reuse and extend functions
more easily to process data and adapt with different
situations.

From the implementation perspective, there are
many technologies can be used to extend functions
for SPARQL. Besides existing open source and com-
mercial platforms (e.g. Apache Jena, OpenLink Virtu-
oso and Allegrograph) that support customizing func-
tions by coding them with full fledged programming
languages, there are some technologies that provide
more transparent and portable methods for extending
functions. For example, SPARQL Inferencing Nota-
tion (SPIN) can be used to define and execute func-
tions by issuing SPARQL queries. A meta vocabulary
is provided by SPIN to serialize SPARQL queries into
RDF graphs to maintain implemented functions (see
Section 5). The VOLT proxy provides a similar method
that utilizes SPARQL fragments and graph patterns
to define functions [44]. It has been applied on some
geospatial cases and a plugin to include functions for
spatial computation is provided based on the PostGIS
API. Recently, an approach is presented in [13] to de-
fine functions by extending Triple Pattern Fragments
(TPF) [54] on the client side, hence extended functions
are compatible with any SPARQL server. As showed
in [13], it however might have issues regarding perfor-
mance and data traffics since additional functions are
computed in web browsers and raw data needs to be
retrieved to the client side. All these approaches can
potentially be undertaken for implementing extended
SPARQL functions for querying IFC building models
and data in the AEC domain.

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 7

4. Vocabularies

Building data captured by the IFC data model is
the focus for developing functions. The IFC docu-
mentation and requirement checking use cases from
the Dutch Rgd BIM Norm, the Norwegian Statsbygg
BIM Manual and some checks that have been imple-
mented in the Solibri Model Checker (SMC) are re-
viewed to determine the structure of needed vocabular-
ies [10, 45, 48, 51]. Most of the referenced cases are
BIM data quality validation requirements, which are
associated with the IFC data model and are the most
fundamental and commonly-used requirement check-
ing cases. From reviewing the above sources, we have
extracted many properties and relationships that are re-
quired in use cases (see Section 4.1, 4.2, 4.3 and 4.4).
The implemented functions are wrappers of modular
low-level code to derive such information and to coher-
ently use them in different scenarios. Due to the com-
plexity of the AEC industry however, it is not possible
for a single organization to list all required functions
for all common task scenarios. Instead, they are clas-
sified based on required data inputs from IFC build-
ing models since they are very much related to further
implementations and extensions (see Section 5).

Information in IFC-based building models can be
roughly grouped into 1) domain semantics that are usu-
ally explicitly represented by e.g. object types, rela-
tionships, and properties, and 2) geometric data, which
is a low-level technical description captured by geom-
etry objects associated with IfcProduct instances. Due
to the lack of support for parametric geometry descrip-
tion on the levels of the data model and the implemen-
tation, these two kinds of information are almost in-
dependent from each other. In fact, building models in
real practices often contain information that is incon-
sistent between these two subsets [50] (also see Fig. 2).
We thus argue that query functions should be catego-
rized to identify which subsets of the model are used to
derive data from. As shown in Fig. 3 and listed in Ta-
ble 1, the proposed domain vocabularies are classified
into four groups to derive data from these two subsets
of either geometric or non-geometric information in
IFC models. Sections 4.1 and 4.2 describe functions
used to extract information only from domain semantic
subset of models, while Sections 4.3 and 4.4 describe
functions to mainly analyse geometric aspects. Besides
these four vocabularies that are defined for building
objects, we also propose a vocabulary in Section 4.5 to
materialize and process geometry data. It is considered
as an additional lower level layer independent from do-

main information and can provide additional functions
for some use cases e.g. the example in Listing 8. For
each category and subcategory, some function exam-
ples are provided to show how to apply them on an if-
cOWL instance data set and query examples are pro-
vided to demonstrate a use case.

There are generally two ways to extend SPARQL
with domain specific functionality. The first method is
to add operators in expressions (e.g. FILTER expres-
sion). The second one is to define a function as an RDF
property, which is known as a computed property or
property function to be used in triple patterns to gen-
erate or evaluate bindings based on its bound subject
and object. The differences are: 1) a property function
is also an RDF property that can have domain(s) and
range(s); 2) a property function can generate new bind-
ings for triple patterns beyond simply computing val-
ues based on inputs. The syntactic sugar of using RDF
collections in triple patterns also provide the possibil-
ity for a property function to have multiple inputs and
outputs (see an example in Listing 7). In the research
presented in this paper, most of the extended functions
are defined as property functions. We argue, that they
are more flexible and intuitive and can potentially be
materialized into RDF graphs for specific applications
in order to improve runtime performance [41]. Func-
tions are modelled as RDF vocabularies with their re-
spective URIs. Due to the flexibility and openness of
the RDF technology, additional vocabularies can al-
ways be added.

4.1. Functions for schema level semantics

Functions in this group are defined to wrap com-
monly used structures specified on the IFC schema
level. They are identified with prefixes schm: in this
paper. We model these functions mainly from the fun-
damental concepts and assumptions specified in the
official IFC documentation [10]. These fundamental
concepts describe recommended and commonly used
structures in IFC instances as the general guideline for
usage and implementation of IFC. Each of the fun-
damental concepts defines how a domain concept or
relationship should be represented in IFC. Many of
them have relatively complex structures to represent
semantics. By reviewing these fundamental concepts
and comparing them with use cases, shortcuts can be
constructed to simplify writing queries and adapt to the
high level abstractions in the AEC domain. They are
defined for the following situations.

8 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

Fig. 3. Conceptual relationships between vocabularies and IFC data

Table 1
Vocabulary prefixes used in this paper and descriptions

Prefix Description

schm: Shortcut properties and relationships for IFC schema level semantics (see Section 4.1)
pset: Short cut properties for instance level property sets (see Section 4.2)
qto: Shortcut properties for instance level quantity sets (see Section 4.2)
pdt: Properties for single product based on geometry data (see Section 4.3)
spt: Properties and relationships based on geometry data of multiple products (see Section 4.4)
geom: Lower level geometry library for materializing geometry data and computations on geometry objects (see Sec-

tion 4.5)

Fig. 4. Example of shortcut functions for schema level semantics

The most basic functions are related to objectified
relationships. Many relationships in IFC data are re-
alized by objectified relationships that are instances

of IfcRelationship subtypes. An example is IfcRelCon-
tainedInSpatialStructure, which is used in Listing 1.
Most of these objectified relationships and their us-
age are described by the fundamental concepts in IFC
documentation. In general, each of the objectified re-
lationships can be used to associate an object with an-
other object or a set of objects. For example, an IfcRel-
ContainedInSpatialStructure can be used to associate
an IfcSpatialElement (e.g. storey, space) with a set of
IfcElement instances (e.g. wall, door) to define a spa-
tial containment relationship. In the current vocabu-
lary, functions are defined as shortcuts to wrap such
structures and create direct relationships between the
objects that are associated. For example, the function
schm:isContainedIn is created to retrieve the relation-
ship between an IfcElement and the containing Ifc-

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 9

SpatialElement instance (see Fig. 4). With the same
approach, functions are created for all the fundamen-
tal concepts which describe semantic structures con-
taining IfcRelationship subtypes (see another exam-
ple schm:hasSpaceBoundary in Table 2). This type of
shortcuts are also proposed in [12] and [38].

Another requirement is that some relationships need
additional specification or generalization. For exam-
ple, the spatial composition relationship between spa-
tial objects (e.g. site, building, space) is semantically
different from the aggregation relationship between
building elements (e.g. wall, slab, stair). The former
one only represents a hierarchical spatial relationship,
while the latter one implies geometry compositional
relationship. In IFC, however, they are represented
using the same structure (IfcRelAggregates). These
two structures are defined as two different functions
(see one of them schm:isDecomposedByElement in Ta-
ble 2). On the contrary, sometimes more generalized
relationships are required for different structures. A
typical example is the relationship of material associ-
ation. There are several means to associate a material
with a building object (e.g. single material, layered ma-
terial), while in many use cases, it requires direct rela-
tionship between an object and its associated material.
In this case, besides functions for each different struc-
tures, an additional function is created to retrieve a di-
rect relationship between an object and its associated
material regardless of which representation it is taken
(see schm:hasMaterial in Table 2).

The third situation is functions for additional short-
cuts. They are defined only based on experiences and
referenced use cases. A typical example is the relation-
ship between a filling element (e.g. doors, windows)
and a voided element (e.g. walls that have openings).
If we need to assert such relationship, it is realized in
IFC with two objectified relationships and an opening
element as illustrated in Fig. 4. As such relationship is
frequently required, a function is created as a direct re-
lationship between the filling element and voided ele-
ment (see Fig. 4 and Listing 2).

Following these approaches, over 40 relationships
are currently wrapped as functions (see Appendix A).
Some frequently used examples are listed in Table 2.
Listing 2 shows an example query to apply two func-
tions for a use case from Statsbygg BIM Manual [51],
which requires to check whether every window and the
wall it is placed in are contained in the same building
storey. This query uses the functions schm:isPlacedIn
and schm:isContainedIn. A comparison with a query

Table 2
Example functions for schema level semantics

Function Description

schm:hasType Generates or evaluates a re-
lationship between an object
occurrence and its type object

schm:hasMaterial Generates or evaluates a re-
lationship an object with its
associated material instances
regardless of which struc-
tures are taken for associating
materials in IFC

schm:hasSpaceBoundary Generates or evaluates a re-
lationship between a space
with its boundary elements
(e.g. wall, door or virtual
boundary)

schm:isDecomposedByElement Generates or evaluates a rela-
tionship between an element
and its child elements

using plain SPARQL to realize this use case is pre-
sented in Section 6.

SELECT ?window ?wall
WHERE{
?window a ifc:IfcWindow .
?window schm:isPlacedIn ?wall .
?wall a ifc:IfcWall .
FILTER NOT EXISTS {
?wall schm:isContainedIn ?storey .
?window schm:isContainedIn ?storey .
?storey a ifc:IfcBuildingStorey .

}
}

Listing 2: Query to retrieve pairs of a window and a
wall, with the condition that the window is placed in
the wall but they are not contained in the same storey.

4.2. Functions for instance level semantics

Functions in this group are provided to represent
IFC instance level semantics. As mentioned in Sec-
tion 2, IFC instances can be semantically extended
by property sets and quantity sets. These extended
properties are modelled as instances of IfcProperty or
IfcElementQuantity in IFC models, which are associ-
ated with IfcObject instances using certain structures.
For example, Fig. 5 illustrates two common struc-
tures for associating IfcProperty with IfcObject [10].
An extended property that is modelled as an instance
of IfcProperty with a related IfcPropertySet is asso-
ciated with an IfcObject through either an IfcRelDe-

10 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

finesByProperties or an IfcTypeObject, which in turn
is associated with the IfcObject through an IfcRelDe-
finesByType. The semantics of extended properties are
identified by their names defined in external documen-
tations. A property which is modelled using the former
structure overrides a property modelled using the latter
one if they have the same name.

Fig. 5. Two common structures for associating IfcProperty with If-
cObject

This structure leads to complex declarations in
SPARQL even for simple use cases. In this research,
shortcut functions are defined to directly connect ob-
jects (IfcObject instances) with property values in-
stead of using complex structures in IFC instances for
writing queries. These functions are identified with
prefixes pset: and qto: for property sets and quan-
tity sets respectively. A typical example is illustrated
in Fig. 6, where a wall that has a "LoadBearing"
property is represented as an IfcWall associated with
an IfcProperty instance in ifcOWL data. A shortcut
property pset:loadBearing is defined to associate the
wall and value of the property instance. All the prop-
erties of primary data types (instances of IfcProper-
tySingleValue and IfcPhysicalSimpleQuantity) can use
the same mechanism to define functions. They are the
majority in property sets and quantity sets and are also
most frequently required in use cases. In our work,
the property sets and quantity sets officially defined by
buildingSMART are considered as examples. In total,
there are 2519 properties and 257 quantities grouped
within 415 property sets and 93 quantity sets in the
official IFC 4 documentation [10]. Within them, 1471
properties and 257 quantities have the value range of
primary data types and the domain of IfcObject sub-
types. They are defined in our vocabulary.

Functions are automatically extracted from the offi-
cial Ifcdoc document, which is a file in SPF format re-
leased by buildingSMART for storing IFC documenta-
tion. Additional, third-party property sets and quantity
sets can be extended by processing e.g. simple XML
or tabular structures with a trivial tool.

Fig. 6. Example of short cut functions for property sets. The
schm:hasObjectProperty and schm:hasTypeProperty are two short-
cut functions defined in the vocabulary schm: to wrap the two differ-
ent structures (see Fig. 5) for associating an extended property with
an object.

Listing 3 shows a query for a realistic quantity take
off example, which is to count the load bearing walls
on each building storey. By only using plain SPARQL,
a query with the same semantics can also be written
but with a much more complex structure (see the com-
parison in Section 6 and Listing 13).

SELECT ?storey (COUNT(?wall) AS ?q)
WHERE{
?wall a ifc:IfcWall .
?wall pset:loadBearing true .
?wall schm:isContainedIn ?storey .
?storey a ifc:IfcBuildingStorey .

} GROUP BY ?storey

Listing 3: Query to count load bearing walls for each
building storey.

4.3. Functions for product geometry

Functions in this category are introduced to derive
properties based on the geometric representations of
a single building product. The vocabulary is identi-
fied by the prefix pdt:. In IFC model instances, geom-
etry data is represented by geometry objects associ-
ated with related building products. Large amounts of
properties are implied in geometric representations of
building products including e.g. height, area, length.
Although many of these properties can be represented
by property sets and quantity sets (see Section 4.2),
they are not mandatory and are not always reliable in
real building models [50] . In fact, a typical example of
BIM requirement checking is to check the consistency
between property sets (or quantity sets) and properties
derived from geometric representations [48, 51].

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 11

Table 3
General product geometry function examples that are applicable for all types of product

Function Illustration Description

pdt:hasBodyGeometry Returns the geometry form of a product represented as a WKT literal (see Sec-
tion 4.5). It either retrieves a WKT literal (see Section 4.5) to represent a 3D triangu-
lated surface (TIN Z), or a geometry collection (GeometryCollection Z) in WKT.

pdt:hasAABB Returns the axis-aligned bounding box of a product as a WKT literal (see Sec-
tion 4.5).

pdt:hasMVBB Returns the oriented minimum volume bounding box of a product as a WKT literal
(see Section 4.5).

pdt:hasOverallHeight Returns the height of axis aligned bounding box of a product as a numerical value.

pdt:hasSurface Returns all plain surfaces of a product. Each of the surfaces is generated as a new
binding for the triple pattern which uses this function.

pdt:hasUpperSurface Returns the upper surface of a product, which is defined as surfaces that have the
highest elevation and have normals of nearly (0,0,1), represented as a WKT literal
(see Section 4.5). A use case of it is shown in Listing 8.

pdt:hasVolume Returns the volume of the product as a numerical value.

The IFC data model offers a number of means to
represent geometry for building products. The most
common way is the Body representation, which de-
fines 3D volumetric shape of products. However, there
are many geometry types to describe a Body geometry
in IFC including e.g. Boundary Representation (Brep),
Constructive Solid Geometry (CSG) or Non Uniform
Rational B-Splines (NURBS). In our work so far, they
are unified as triangulated boundary representation to
ease developing analysis algorithms, but can be tai-
lored to different representation forms in future. The
3D geometry representation of a product is either rep-
resented by a single triangulated surface, a collection
of triangulated surfaces or represented by triangulated
surfaces associated with its composing elements.

Based on the triangulated representation, many gen-
eral geometry properties are derived using existing
or simple algorithms (see Section 5), including axis-
aligned bounding box, oriented minimum volume
bounding box, basic dimensions (e.g. height, volume,

area of surfaces) and partial geometry (e.g. surfaces
facing to certain directions). These properties are de-
fined as general product geometry functions that are
applicable for all products which have 3D representa-
tions. Table 3 lists examples of them, their 3D show-
cases and semantics. Listing 4 shows a use case: search
for inconsistencies between the geometric height of a
wall with its height quantity [48].

Table 4
Example functions to derive geometry properties for specific product
types

Prefix Description

pdt:hasSpaceArea Returns the area of bottom surface of
a space.

pdt:hasWindowArea Returns the area of the largest sur-
face of the oriented minimum bound-
ing box of a window.

pdt:hasGrossWallArea Returns the area of the largest surface
of the wall plus area of openings on it.

12 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

Combined with product types and some common as-
sumptions (e.g. a wall length is greater than the wall
thickness), many more specific product properties can
be retrieved. These properties include some defined ex-
amples in Table 4. They can be applied for more do-
main related use cases such as design assessment. List-
ing 5 shows an example, which is defined to find out
spaces which have too small window-to-floor area ra-
tios. It is a common use case that can be additionally
customized (e.g. add conditions for space types) to val-
idate the design plan according to regulations or pro-
grammatic requirements.

SELECT ?w
WHERE{
?w a ifc:IfcWall .
?w pdt:hasOverallHeight ?hg .
FILTER NOT EXISTS {
?w qto:height ?h .
FILTER(?hg>?h-0.01 && ?hg<?h+0.01)
}

}

Listing 4: Query to retrieve walls
that do not have height quantity or have inconsistent
information between its height quantity and geometric
representation.

SELECT ?space ?ratio
WHERE{
?space a ifc:IfcSpace .
?space pdt:hasSpaceArea ?area .
{
SELECT ?space (SUM(?windowArea) AS ?
totalWindowArea)

WHERE{
?space schm:hasSpaceBoundary ?w .
?w a ifc:IfcWindow .
?w pdt:hasWindowArea ?windowArea .

} GROUP BY ?space }
BIND ((?totalWindowArea/?area) AS ?ratio)
FILTER (?ratio<0.3)

}

Listing 5: Query to retrieve spaces which have
window-to-floor area ratios less than 0.3.

4.4. Functions for spatial reasoning

Functions in this group are provided to derive infor-
mation related to spatial reasoning, which needs geo-
metric and location data of multiple building products.
This vocabulary is identified by the prefix spt:. They
are additionally classified and described in following
sections.

4.4.1. Relationships between products
Functions in this category are used to derive re-

lationships between two products. We have defined
some general topological relationships that belong to
this group, which are applicable for all building prod-
ucts. They are related to many use cases including e.g.
geometric clash detection and quantity take-off. The
OGC Simple Features are also used as a reference for
defining these functions, as they have already estab-
lished general topological relationships for geometric
objects [22]. The aim of these defined functions is not
to cover a full range of possible scenarios, but to pro-
vide a set of reference examples for other developers
and a basis for extensions. For example, directional re-
lationships like "above", "under" or more domain spe-
cific relationships can also be defined with the same
form in the future.

Table 5
Functions for relationships between products

Function Simple Feature
counterpart

Use case scenario

spt:touches touches Identify connection rela-
tionships between building
elements

spt:disjoints disjoints Evaluate interferences be-
tween building elements

spt:intersects overlaps Detect clashes between
building elements

spt:contains contains Identify containment re-
lationships between e.g.
space and elements

spt:within within Identify containment re-
lationships between e.g.
space and elements

spt:equals equals Detect duplicate building
elements in coordination
phases

SELECT ?wall
WHERE{
?wall a ifc:IfcWall .
?slab a ifc:IfcSlab .
?wall spt:intersects ?slab .

}

Listing 6: Query to retreive all walls intersect with
slabs. The result of query is used to detect clashes
between walls and slabs.

Defined functions are listed in Table 5 with their
counterparts defined in OGC Simple Features and ex-
ample scenarios for using such functions. Each of

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 13

these functions retrieve products that have such re-
lationships, or evaluate the relationship between two
products. In the GeoSPARQL standard, these topolog-
ical relationships are defined to process 2D geometry
data, while in our cases 3D geometry data is the focus.

Listing 6 shows an example to retrieve walls which
intersect with slabs in order to detect clashes between
walls and slabs.

4.4.2. Property for groups of products
Functions in this group are used to derive properties

for groups of products. Querying the distance between
products is a typical example. Many building codes
and BIM requirement manuals constrain the minimal,
maximal or exact distance between building compo-
nents, such as interference between building elements,
clearance before openings, heights of floors etc. The
exact semantics of the notion "distance" can vary be-
tween contexts. We have currently defined the con-
cepts provided in Table 6.

Table 6
Functions as properties for groups of products

Function Description

spt:distance Returns the shortest distance be-
tween two products in 3D space

spt:distanceZ Returns the vertical shortest dis-
tance between bounding boxes of
two products

spt:distanceXY Returns the shortest distance be-
tween the projections of two prod-
ucts on a horizontal plane

SELECT DISTINCT ?ceiling
WHERE{
?ceiling a ifc:IfcCovering .
?ceiling ifc:predefinedType ifc:CEILING .
?ceiling schm:isContainedIn ?storey1 .
?storey1 spt:hasUpperStorey ?storey2 .
?slab schm:isContainedIn ?storey2 .
?slab a ifc:IfcSlab .
?slab ifc:predefinedType ifc:FLOOR .
(?slab ?ceiling) spt:distanceZ ?distance .
FILTER (?distance<0.4)

}

Listing 7: Query to retrieve ceilings that are too close
to the floor slabs in the above floor.

An example query is provided in Listing 7 to de-
tect suspended ceilings that are too close to the floor
slab and may e.g. interfere mechanical, electrical, and
plumbing components (MEP) by selecting ceilings

which have the vertical distance shorter than 0.4 me-
ter with floor slab in the above floor [51]. The function
spt:distanceZ requires two products as the inputs for
the computation.

4.4.3. Property and relationships based on spatial
relationships

In the considered use cases, there are also examples
that not only require geometry data of referenced prod-
ucts, but also require to process geometry data of other
specific types of related building products. For exam-
ples, spatially identifying whether a building storey is
located right above another one requires geometry and
location data of floor slabs of all the building stories,
and retrieving a walking path between two spaces re-
quires geometry data of all the related spaces, obstruc-
tions and openings. The exact semantics of these prop-
erties often require knowledge from AEC sub-domains
for their specification. We currently only provide two
example functions listed in Table 7 for this group. Be-
sides referenced products (building storey and building
elements), they both require to process geometry data
of floor slabs of all building storeys.

Table 7
Implemented example functions as properties based on spatial
relationships

Function Description

spt:hasUpperStorey Generates or evaluates bindings
between a building storey and the
storey right above it

spt:isLocatedInStorey Generates or evaluates bindings
between an element and the build-
ing storey which spatially con-
tains it

An example query which uses the function spt:has-
UpperStorey is shown in Listing 7.

4.5. Geometry library

This vocabulary includes geometry related con-
cepts that are materialized in RDF graphs. They are
considered as general geometry concepts that pro-
vide additional layers independent from domain in-
formation. Similar with GeoSPARQL, we define the
geom:Geometry as the class for geometry objects. As
mentioned in Section 4.3, triangulated representations
are used to represent Body geometry data. As geome-
try data for a product is usually processed as a whole,
Well Known Text (WKT) string literals that have been
defined in Simple Feature Access [22] are adopted to

14 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

keep materialized triples in small size. The geometry
data of an element (instances of IfcElement subtypes)
that is decomposed by other elements is represented
by geometry data of its composing elements. Fig. 7 il-
lustrates the basic structure for materializing product
geometry data. Table 10 lists a comparison between
triple count of building models in ifcOWL, geometry
subsets of them and the triple count of geometry data
represented in this format. It shows that geometry data
represented in triples with WKT literals is much more
compact and should be more efficiently processed by
programs. Besides the triangulated representations that
are by default always materialized, the axis aligned
bounding boxes and minimum volume bounding boxes
for products are also provided in this vocabulary. In fu-
ture research, other types of geometry representations
can also be extended if they are required.

Fig. 7. SPARQL query with domain specific functional extensions

SELECT ?wall
WHERE{
?wall a ifc:IfcWall .
FILTER NOT EXISTS{
?wall schm:isContainedIn ?storey .
?slab a ifc:IfcSlab .
?slab schm:isContainedIn ?storey .
?slab ifc:predefinedType ifc:FLOOR .
?wall pdt:hasBottomSurface ?ws .
?slab pdt:hasUpperSurface ?ss .
FILTER (geom:touches3D(?ws,?ss)

}
}

Listing 8: Query to select all walls which do not have
bottom surface touching the upper surface of any floor
slab on the same floor

Another requirement that can be addressed by WKT
and this vocabulary is to represent and process tem-
porarily generated geometry data at query runtime. In
many tasks, analysis on IFC building models not only
requires geometry data of building products, but also
needs temporarily defined or derived geometry data.

Fig. 8. Use case examples that require temporarily added or gen-
erated geometry objects to analyse properties and relationships of
building objects: The first one requires "upper surface" and "lower
surface" of walls and slabs to evaluate their topological relation-
ships; The second one requires extruded boxes to evaluate clearance
in front of windows.

Fig. 8 shows some use cases of them. Such geome-
try objects can be manually added or automatically
derived in query runtime with the WKT literals, and
expression functions used in e.g. FILTER expressions
can be defined for additional manipulation on them.
An initial set of expression functions for manipulating
WKT data are defined. The query example in Listing 8
demonstrates an example of using them. In this exam-
ple, the bottom surface and upper surface are derived
at query runtime (see Table 3) as partial geometries of
a wall and a slab, and they are additionally evaluated
by the function geom:touches3D to identify their topo-
logical relationships.

5. A prototype implementation

In our prototype implementation of the proposed
functions, we attempt to minimize hardcoding to make
defined functions more portable, more transparent for
public reviews and easier to be extended by the re-
search and development community. Table 8 lists the
current amount of defined and implemented functions.

Table 8
Count of currently defined and implemented functions

Prefix Property function Expression function

schm: 46 -
pset: 1471 -
qto: 257 -
pdt: 15 -
spt: 11 -

Functions defined in Section 4.1 and 4.2 can be im-
plemented by a range of methods including those de-
scribed in Section 3.3 and declarative rule languages

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 15

like e.g. Semantic Web Rule Language (SWRL) and
N3Logic [5, 23]. We choose SPIN for the implemen-
tation, as it uses SPARQL and already has a few open
source implementations which enhance future compat-
ibility. SPIN provides a set of vocabularies to wrap
SPARQL queries as functions and allows their cascad-
ing use. For example, the function schm:isContainedIn
in Listing 2 is mapped to ifcOWL with the query in
Listing 9. As presented in Listing 10, this function
is maintained as an instance of spin:MagicProperty,
and the query is transformed to RDF and associated
with the function using spin:body property. The sys-
tem will trigger the query as a subquery when the func-
tion schm:isContained is called as the predicate in a
triple pattern. In this process, the subject and object of
this triple pattern will be passed to ?arg1 and the out-
put (in this case the ?a2) of the query respectively to
generate or evaluate bindings. An advantage of using
such method for implementing functions is that devel-
opment work is more portable. For example, the RDF
graph in Listing 10 can be loaded in any SPIN-enabled
environments in order to use this function in SPARQL
queries.

When dealing with geometry related reasoning
tasks, declarative methods like SPIN are usually not
sufficiently expressive to implement sophisticated and
computational intensive algorithms. Geometry data in
IFC or ifcOWL is preprocessed and transformed to
RDF data represented by the vocabulary described in
Section 4.5. Functions described in Section 4.3, 4.4
and 4.5 are implemented using procedural program-
ming. Many existing general purpose geometry algo-
rithms and domain specific algorithms can be reused.
For example, functions in Section 4.4.1 are imple-
mented by computing on triangles of both products to
determine their relations, similar with algorithms de-
scribed in [11]. Table 9 lists the key procedurals and
algorithms that are used. They are coded in Java in the
current prototype.

SELECT ?a2
WHERE {
?a1 ifc:relatedElements ?arg1 .
?a1 ifc:relatingStructure ?a2 .
?a1 a ifc:IfcRelContainedInSpatialStructure

.
}

Listing 9: Query that is used in SPIN to map the
function schm:isContainedIn

schm:isContainedIn
rdf:type spin:MagicProperty ;
rdfs:subClassOf spin:MagicProperties ;
rdfs:domain ifc:IfcElement ;
rdfs:range ifc:IfcSpatialStructureElement ;
spin:body
[rdf:type sp:Select ;
sp:resultVariables ([sp:varName "a2"]) ;
sp:where
([
sp:object spin:_arg1 ;
sp:predicate ifc:relatedElements ;
sp:subject [sp:varName "a1"]
] [
sp:object [sp:varName "a2"] ;
sp:predicate ifc:relatingStructure ;
sp:subject [sp:varName "a1"]
] [
sp:object ifc:
IfcRelContainedInSpatialStructure ;

sp:predicate rdf:type ;
sp:subject [sp:varName "a1"]
])

] ;
spin:constraint
[
rdf:type spl:Argument ;
spl:predicate sp:arg1 ;
spl:valueType rdfs:Resource

] .

Listing 10: SPIN listing (TURTLE syntax) for the
query in Listing 9, which is used in SPIN to register
and define the function schm:isContainedIn

Table 9
Procedurals for implementing geometry-related functions and used
existing algorithms

procedural algorithm

WKT IO SFCGAL library [7]
MVBB (see Section 4.3) Jylanki [28]
volume (see Section 4.3) Zhang and Chen [56]
topology operators (see Sec-
tion 4.4.1)

Daum and Borrmann [11]

distance (see Section 4.4.2) SFCGAL library [7]

The functional extensions introduced here are im-
plemented based on the Open Source Apache Jena
framework and SPIN API (see Fig. 9). In this imple-
mentation, all the extended functions are processed at
query runtime in a backward chaining order. The data
flow is illustrated in Fig. 10. The ifcOWL instances or
IFC files and SPARQL queries are the input of the sys-
tem. The ifcOWL data or IFC files are preprocessed
to generate additional triples that capture geometry

16 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

WebGL-based User Interface

Jena Core

Jena ARQ

SPIN API Coded Func!ons

ifcOWL
Func!on

Vocabularies

Func!on

Mappings

Geometry

Module

RDF

data

Fig. 9. Implementation architecture (blank blocks are added mod-
ules)

Fig. 10. Data flow of querying and reasoning process

Fig. 11. The Web-based query interface with 3D graphical visualiza-
tion of this prototype implementation

data using the vocabulary described in Section 4.5 and
WKT literals. Depending on the size of ifcOWL files,
we can choose to load them into memory or material-
ize them into a graph persisted into a Jena TDB triple-
store. When a property function is referred to during a
query execution, a SPIN rule as a subquery or a snip-
pet of programming code to retrieve related values is
triggered. Since a SPIN rule is also a SPARQL query

that can call extended functions, this process iteratively
continues until no functions are left to be called. This
process can be compatible with other reasoning tech-
nologies. For example, in this prototype an Jena RDF
Schema (RDFS) reasoner is used underneath of the
SPARQL query engine. A prototype Web-based user
interface with a 3D visualization environment is im-
plemented to input queries and visualize query results
(Fig. 11). For example, it highlights retrieved building
products in order to report e.g. building products that
under certain conditions or violate constraints.

6. Evaluation and comparison

To evaluate the effectiveness of defined functions
and the prototype implementation, test work is con-
ducted using three IFC building models employing ex-
ample queries presented in Section 4, each of which
represents a realistic use case taken from BIM manuals
or common requirement checking applications (see Ta-
ble 11). The query processes are compared with those
realized by standard SPARQL. We also compare our
approach with existing proposals for simplifying if-
cOWL data and writing queries. Through this work,
we aim to 1) evaluate the effectiveness of using these
functions to simplify queries and retrieve useful infor-
mation implied in 3D geometry data, 2) demonstrate
the added value as well as the differences of this ap-
proach, and 3) initially evaluate applicability by pro-
viding indicative measurements of query performance.

The models selected for the test are open IFC mod-
els commonly used as a reference in literature [15].
They are converted to ifcOWL RDF data and loaded
into named graphs persisted in a Jena TDB triplestore.
Additional WKT geometry triples that capture trian-
gulated boundary representations of building products
are generated with the IfcOpenShell package [30]. The
size of the different models as well as their specifica-
tions are listed in Table 10. For example, the model
M1 is 2.25 MB in size in its SPF representation, and
the ifcOWL version contains 298,085 triples. 546 ad-
ditional triples have been generated to capture trian-
gulated boundary representations with the geom: vo-
cabulary using WKT literals. All datasets are available
at https://doi.org/10.17605/OSF.IO/V5ENM (see also
Appendix A). In this test, WKT geometry triples are
not used to replace the original geometry triples but
are simply added and processed along with original if-
cOWL models, hence the model M1 that is processed
by the query engine contains 298,085 plus 546 triples.

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 17

Example queries presented in Listing 2, 3, 4, 5, 6, 7
and 8 in Section 4 are used in this evaluation and the
results of their execution are presented in this sec-
tion. Each of the queries addresses a realistic use case
that has been specified e.g. in BIM manuals or imple-
mented as standard model checks in proprietary model
checking software tools. They are summarized in Ta-
ble 11, which lists use case types and requirements. Q1
and Q2 are only related to non-geometric data, while
Q3 to Q7 are geometry related.

The hardware used for the evaluation is a mid-range
laptop with a Quadcore i7 2670 processor and 4 GB
memory allocated for the Java Virtual Machine (JVM).
Each of the queries is executed 10 times to derive the
average query time.

6.1. Results

Table 12 documents the results and average query
execution times for Q1 to Q7 on models M1, M2 and
M3. All queries except Q2 are used to address require-
ment checking use cases by retrieving building objects
which violate defined constraints. Thus, in these cases
returning zero results means no violation in the build-
ing model was detected.

Q1 and Q2 only depend on functions that are imple-
mented based on the SPIN framework, which in turn
is dependent on the Jena ARQ query engine, while
Q3 to Q8 also depend on additional computations in
external Java code. Q3 and Q4 are related to func-
tions in the group introduced in Section 4.3 and their
query execution time mainly depends on the algo-
rithms used for deriving properties from the geometry
data of a single product. For example, in Q3 when the
function pdt:hasOverAllHeight is called, the underly-
ing WKT representation of the product is processed
to generate an axis-aligned bounding box on the fly
in order to derive the overall height of a wall. In Q4,
the most computationally expensive part is the func-
tion pdt:hasWindowArea, which needs to compute a
minimum volume bounding box for each window ob-
ject. These processes can be optimized by material-
izing additional geometry representations for building
products. Q5, Q6 and Q7 have relatively longer execu-
tion times, especially for the largest model M3. This is
expected since these three queries are all related to spa-
tial reasoning functions, which involve geometry data
of multiple building products. For example, the current
procedural of the function spt:intersects, which is used
in Q5, needs to compute the topological relationship
for each combination of a wall and a slab. This pro-

cedure needs to run 750*19 times for the model M3,
which contains 750 walls and 19 slabs. This can be op-
timized further by mechanisms like adding spatial in-
dices to reduce computation time.

6.2. Comparison

We first compare the results with a procedural that
only uses SPARQL to query ifcOWL data. The same
query environment is set up with the exception that all
the extended functions are not activated. By just us-
ing SPARQL and ifcOWL data, only the use cases that
are addressed by Q1 and Q2 can be realized, hence
the comparison is limited in these two queries. Queries
with the same semantics of Q1 and Q2 are written in
SPARQL and presented in Listing 12 and Listing 13
in Appendix B. They have complex query bodies that
contain more triple patterns. They are documented as
Q1* and Q2* in Table 13, which also compares them
with Q1 and Q2 with respect to triple pattern count
in WHERE clauses, query results and average query
time. It shows that with significantly simplified query
bodies, Q1 and Q2 have the same query results with
Q1* and Q2* respectively without sacrificing much
performance. This topic is further discussed in Sec-
tion 8.3.

As mentioned in Section 3, there have been a few
ontologies developed to simplify ifcOWL data includ-
ing those introduced in [12] and [38]. All these ex-
isting efforts have not considered processing geome-
try data, hence only the use cases addressed by Q1
and Q2 can be addressed. Functions defined in Sec-
tion 4.1 and 4.2 can be compared with those simpli-
fied ontologies. The difference is that those existing
simplified ontologies tend to preprocess ifcOWL data
(or IFC data) and transform it to a more compact data
graph and improve query performance, while the ap-
proach presented in this paper treats simplified proper-
ties and relationships as functions, which are used in
query runtime. An advantage of this approach is that
simplified queries can run on any ifcOWL data with-
out additional materializations (for functions defined
in Section 4.1 and 4.2). This provides a more flexible
paradigm that users do not have to adopt the entire vo-
cabulary but can reuse a subset of them or extend them
to adapt with more specific use cases. If some simpli-
fied IFC ontologies are standardized, this approach can
also be compatible with them by defining additional
mapping rules.

Regarding use cases addressed by Q3 to Q7, to our
knowledge there is no open and off-the-shelf query

18 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

Table 10
Statistics of tested building models M1, M2 and M3.

id model name SPF size (MB) ifcOWL triples geometry triples
in ifcOWL

WKT geometry
triples

M1 Duplex_A_20110505.ifc 2.25 298,085 222,212 546
M2 Office_20110811_Combined.ifc 12.8 1,787,763 1,680,645 3,164
M3 091210Med_Dent_Clinic_Combined.ifc 107 14,487,725 12,580,688 15,052

Table 11
Query tested in the evaluation study

id query body use case types description of the query including reference to provenance of real use case

Q1 Listing 2 model structure check Find out windows and walls with the condition that the window is placed in the
wall but they belong to different building storeys (Statsbygg, p. 66) [51].

Q2 Listing 3 quantity take-off Count load bearing walls for each building storey (Solibri example) [48].
Q3 Listing 4 data consistency check Retrieve walls which do not have the height quantity or height is inconsistent

with its geometry representation (Solibri example) [48].
Q4 Listing 5 design check Find out spaces which have the window-to-floor area ratio smaller than 0.3

(Solibri example) [48].
Q5 Listing 6 design check Find geometry clashes (intersections) between walls and slabs (Rgd 2.1.6, p.

9) [45].
Q6 Listing 7 design check Retrieve suspended ceilings that are too close (with the distance less than 0.4

meter) to the floor slabs in the above building storey (Statsbygg 56, p. 35) [51] .
Q7 Listing 8 design check Find out walls that have bottom surfaces not touching upper surfaces of any floor

slabs on the same building storey (Statsbygg 41 and 43, p. 30 and 31) [51] .

Table 12
Query results and performance of Q1 to Q8 (see Table 11)on M1, M2, M3, M4 (see Table 10).

query model triple count (total) avg. querying (s) stand. derivation result count

Q1 (Listing 2) M1 298,631 0.033 0.053 0
M2 1,790,927 0.059 0.054 0
M3 14,502,777 0.110 0.190 31

Q2 (Listing 3) M1 298,631 0.169 0.033 1
M2 1,790,927 1.437 0.062 1
M3 14,502,777 1.610 0.221 1

Q3 (Listing 4) M1 298,631 0.023 0.00064 49
M2 1,790,927 0.345 0.0051 495
M3 14,502,777 0.679 0.0079 750

Q4 (Listing 5) M1 298,631 0.250 0.025 2
M2 1,790,927 0.067 0.026 0
M3 14,502,777 2.377 0.672 41

Q5 (Listing 6) M1 298,631 1.044 0.188 8
M2 1,790,927 3.720 0.071 6
M3 14,502,777 35.471 0.460 10

Q6 (Listing 7) M1 298,631 0.647 0.03 10
M2 1,790,927 1.127 0.061 0
M3 14,502,777 37.152 1.276 0

Q7 (Listing 8) M1 298,631 0.637 0.103 34
M2 1,790,927 0.678 0.098 495
M3 14,502,777 32.386 3.769 65

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 19

Table 13
Comparison with a procedural using plain SPARQL

query triple patterns results M1 time(s) M1 results M2 time(s) M2 results M3 time(s) M3

Q1 (Listing 2) 6 0 0.033 0 0.059 31 0.110
Q1* (Listing 12) 15 0 0.026 0 0.043 31 0.069
Q2 (Listing 3) 4 1 0.169 1 1.437 1 1.610
Q2* (Listing 13) 40 1 0.207 1 1.89 1 1.70

system in the Semantic Web field can be compared
with. Some of them might be supported by BIM query
languages which support geometry features like those
introduced in [11] and [14]. However, we argue that
these query languages either have limited expressive
power or do not have precisely defined or standard-
ized semantics, while this approach is based on a stan-
dard and expressive query language [1, 20]. More im-
portantly, with this approach RDF and other Semantic
Web technologies can be leveraged to facilitate knowl-
edge reasoning and data integration and partition tasks.
With these capabilities, defined functions can more
easily be reused and extended for specific applications.
An example is presented in Section 7.

7. An extended application example

As mentioned in Section 4, to define an exhaus-
tive list of functions for the entire AEC industry may
hardly be achieved, hence the system should allow
functions to be extended more easily. An application
example is presented in this section in a regulatory
compliance checking scenario that requires to extend
case specific functions to query both building mod-
els and regulatory data. The aim of this example is to
demonstrate how functions could be extended to ad-
dress specific cases with less arbitrary programming
work, which is commonly used in BIM applications
and query techniques. To address the complexity of
knowledge engineering work required for extending
functions is not within the scope of this paper.

The example provided here is taken from the Inter-
national Building Code (IBC), which is developed by
the International Code Council (ICC) and used as a
base code standard in United States [24]. This rule ex-
ample is from Chapter 7 Fire and Smoke Protection
Features, and is used to check opening areas on exter-
nal walls to evaluate their fire performance. This exam-
ple requires to process domain specific semantic data
and geometry data in building models and external tab-
ular data defined in the IBC document.

– 705.8.4 Where both unprotected and protected
openings are located in the exterior wall in any
story of a building, the total area of openings
shall be determined in accordance with the fol-
lowing:

(Ap/ap) + (Au/au) 6 1 (1)

where:
Ap = Actual area of protected openings.
ap = Allowable area of protected openings.
Au = Actual area of unprotected openings.
au = Allowable area of unprotected openings.

Additionally, the allowable opening areas for pro-
tected and unprotected openings (ap and au) are deter-
mined by the Table 705-8 in IBC that describes their
relations with fire separation distance. This table has
three columns and twenty-four rows. Table 14 shows
one row of it, which defines that when the fire separa-
tion distance is between 15 to 20 feet and the opening
is unprotected and the space is non-sprinklered, the al-
lowed ratio (au in the equation) between opening area
and external wall area is up to 25 percent.

Table 14
One row of Table 705-8 in International Building Code [24]

Fire separation
distance

Degree of open-
ing protection

Allowable area

15 to less than 20 Unprotected,
Non-sprinklered

25%

In this example, external wall instances in a dataset
have to be checked and analysed to derive related prop-
erties and relationships. In addition to the data cap-
tured in the IFC building data sets, the referenced table
in this example can be considered as a small dataset
that needs to be processed to derive allowable pro-
tected openings and unprotected openings for each
wall. It is transformed to the RDF format with the
approach described in [52] and processed along with
the building model. A general algorithm in a procedu-

20 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

ral pseudo-code notation is specified in Algorithm 1
to check building models and find out external walls
which violate this requirement.

Algorithm 1 procedure for checking rule 705.8.4
1: for each external wall w do
2: compute the area ratio between protected open-

ings and gross wall area Ap;
3: compute the area percentage of unprotected

openings and gross wall area Au;
4: compute the fire separation distance for the wall

fsd;
5: find the sprinkler status of related space sp;
6: find the allowable area of protected and unpro-

tected openings ap and au from Table 705.8
with fsd and sp;

7: check the equation (1) with Ap, Au, ap, au and
return result for w;

8: end for

Table 15
Extended functions for the rule case 705.8.4 in IBC

Function Description

ibc:hasAp Retrieves the ratio between all
the protected windows in the
wall and the gross area of the
wall.

ibc:hasAu Retrieves the ratio between all
the unprotected windows in
the wall and the gross area of
the wall.

ibc:hasFireSeparationDistance Retrieves the shortest horizon-
tal distance between a wall
and lot lines.

ibc:allowableArea_T705-8 Retrieves allowable area (au
or ap) from Table705-8 based
on fire separation distance and
sprinkler protection status.

Case specific functions are extended for deriving
some of these properties based on provided functions.
For example, the value Ap used in Algorithm 1 is spec-
ified as the ratio between all the protected windows in
the wall and the gross area of the wall. Based on prede-
fined functions and SPIN rules, this function can be ex-
tended with the query provided in Listing 14 (see Ap-
pendix C). The value fsp of an external wall used in Al-
gorithm 1 is defined as the horizontal distance between
the wall and lot line. Using the same method, functions
are extended for this case and listed in Table 15. SPIN
rules for defining these case specific functions based

on ifcOWL and BimSPARQL functions are listed in
Appendix C. As the Table 705-8 in IBC is also pro-
cessed, a function ibc:allowableArea_T705-8 is also
defined to process this external dataset. With all these
extended functions loaded into the system, the query
in Listing 10 is used to check the opening area of all
external walls.

SELECT ?wall
WHERE{
find external walls
?wall a ifc:IfcWall .
?wall pset:isExternal true .
compute Ap and Au values
?wall ibc:hasAp ?Ap .
?wall ibc:hasAu ?Au .
compute fire separation distance
?wall ibc:hasFireSeparationDistance ?d .
find sprinkler status of related space
?wall schm:isContainedIn ?storey .
?storey pset:sprinklerProtection ?bool .
find ap and au values from the table
BIND (ibc:allowableArea_T705-8(?d,true,?
bool) AS ?ap) .

BIND (ibc:allowableArea_T705-8(?d,false,?
bool) AS ?au) .

filter out walls that have issues
FILTER ((?Ap/?ap+?Au/?au)>1) .

}

Listing 11: Query to retrieve external walls which
violate the constraint defined in this building code.

As a proof of concept, a building model is created,
which contains required building elements and lot line
(modelled as an IfcAnnotation instance) with related
properties. It is a small model that contains 189,778
triples. With all the additional SPIN functions loaded,
it is checked using the query in Listing 11. This pro-
totype implementation generates a visualization of the
result that is provided in Fig. 12.

Fig. 12. Snapshot of the query result of the GUI

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 21

8. Discussion

8.1. Flexibility and portability

In comparison with domain specific query lan-
guages that are developed from scratch, the approach
introduced in this paper leverages Semantic Web tech-
nologies and existing implementations to provide a
more interoperable, modular and flexible mechanism
to extend functionality in order to address a wide range
of use cases for information extraction and validation
of the AEC industry. As shown in Section 7, query
functions for specific use cases can be extended by
adding additional declarative rules based on proce-
dural functionality. They are modular and flexible to
adapt to the various possible forms to present facts in
IFC data sets. For example, a protected opening in an-
other building case, created by another author using a
different BIM authoring tool might be different from
how it is defined in Listing 14. It is easier to change
or replace this rule without affecting other rules. Ex-
ternal, linked datasets can be addressed using the same
technology as long as they are captured as RDF or pro-
vide SPARQL endpoint services [6, 21].

Declarative methods can also enable more portable
implementations for functions. As many functions are
defined using SPIN rules, they can be reused by query
environments which have implemented SPIN (e.g.
Topbraid SPIN API or Eclipse RDF4J) and potentially
be reused by those which have implemented SPARQL.
All the SPIN functions are stored in RDF which can be
maintained in triplestores or shared as dereferencable
resources on the Web. It is also possible for users to
upload SPIN rules as RDF data to the server side to
extend functions for their own cases without extending
the source code of the server.

There are a few issues that affect the portability of
this system. The main issue that limits portability here
is functions implemented by procedural programming,
which still needs geometry libraries to be integrated.
This may not be addressed in a short term as geomet-
ric computation is a domain that usually requires spe-
cific methods and tools. Secondly, the portability also
depends on the implementation of used declarative
methods. With the implementation approach presented
in Section 5, in order to implement a BimSPARQL-
enabled endpoint and reuse some of the development
work here, the server side must support SPIN by e.g.
integrating SPIN engines. For specific applications that
require extending additional functions using SPIN,

users must have the access to upload SPIN rules to the
server side.

8.2. Coverage

The full list of implemented functions are published
in the link of Appendix A. They are defined based
on referenced BIM requirement checking use cases.
There are various use cases in the AEC industry and
almost unlimited properties and relationships are re-
quired. IFC also provides rich methods to represent in-
formation to adapt with different contexts and projects.
As stated in Section 4, it is not our aim to provide
a complete set of functions, but to suggest a more
bottom-up approach to define modular functions and
then gradually extend to cover more use cases. In this
approach, each function should be considered as a
module to retrieve a view from IFC building models. A
general classification of them is provided as a frame-
work for further extending functions and a set of func-
tions are provided as foundational examples.

Functions introduced in Section 4.1 and 4.2 cover
all the commonly used semantic structures and all the
simple data properties and quantities defined in the of-
ficial IFC documentation. In real practices, these two
groups of functions can be extended according to var-
ious application concepts in AEC sub-domains and
third-party property sets and quantity sets.

Functions introduced in Section 4.3 and 4.4 mainly
focus on triangulated boundary representation, which
is a fundamental geometric representation that can
be used to represent any 3D physical shapes. The
WKT literals simplify the structure of IFC geometry
data, which has a high degree of decompositions. This
method enables many general geometry algorithms be
reused for analyzing data (see Table 9). A set of gen-
eral geometry and spatial reasoning functions that are
applicable for all building products and some exam-
ple functions related to specific product types are de-
fined. This geometric representation is also related to
further implementations including e.g. spatial indexa-
tion and use cases like efficient visualization, which is
commonly required for many applications in the AEC
industry. It is suggested that such representation should
be accepted as the basis for other implementations to
ensure interoperability and query results across them.
There are indeed use cases that require particular ge-
ometry forms (e.g. deriving the flange thickness for a
I-shape beam requires parametric I-shape profile ob-
jects), they can be extended by providing multiple rep-
resentations for specific products. It can be envisioned

22 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

that with efforts of research communities, a consen-
sus of a set of geometry representations for query and
analysis should be defined and accepted.

From the perspective of use cases, a current limi-
tation of this approach is related to requirements of
instantiating resources with additional triples based
on procedural computations. For example, identifying
the shortest path between two rooms usually needs to
instantiate a path object, which might have geomet-
ric representations and relationships with e.g. passed
spaces and doors. Even with procedural coding, ex-
tended functions are not suitable to create such addi-
tional dynamic data graphs in query runtime. WKT lit-
erals might be used to represent additional geometry
objects in query time, but more investigations are still
required to properly adapt this type of query functions
in an RDF and Semantic Web environment.

8.3. Query performance

At present optimizing query performance is not in
the main focus of the research presented here. Query
performance depends on the implementation of used
technologies and geometry analysis algorithms that are
used. The prototype implementation has used the SPIN
framework, which is based on the Jena ARQ query en-
gine and Jena TDB triplestore. In Section 6, it is shown
that for some cases, simplified queries can have similar
performance with equivalent plain SPARQL queries.
This implementation method has also taken part in
a performance benchmark with comparisons to other
rule languages and their implementations [41]. That
research shows that this implementation method is a
reliable approach, but there is still room for optimiz-
ing its performance in comparison with some commer-
cial databases like Stardog. In the current SPIN frame-
work, when a function is called in a triple pattern, it is
considered as a separate query that is executed based
on assigned arguments and then joints with the tem-
porary results of outer query. It lacks a query rewrit-
ing mechanism to flatten queries and preferentially ex-
ecute the most selective triple patterns regarding all the
triple patterns defined in called functions.

As shown in Section 6, the current performance
short-coming can be mainly attributed to geometry-
related functions, especially spatial reasoning related
functions. With a plain RDF triplestore like Jena TDB
without additional optimization mechanisms, spatial
reasoning functions have relatively long running time.
In future developments, this process can be optimized

by e.g. integrating spatial indices and caching mecha-
nisms.

As RDF graphs are flexible, another direction for
optimizing performance might be to materialize re-
quired triples into RDF graphs for specific applica-
tions. As described in Section 6, besides ifcOWL data
only the triangulated boundary representation of prod-
ucts are currently materialized and all the functions are
processed at query runtime. If some related function
are frequently required for specific applications, it is
recommended to materialize them as properties. The
effect of materialization has been discussed in [41].
Since it is usually a trade-off between storing and com-
puting data, a dynamic approach to automatically ma-
terialize triples with regards of use cases, preprecess-
ing, runtime performance and storage cost needs addi-
tional investigation and future research.

9. Conclusion and future work

This research provides a general framework to de-
fine and extend SPARQL functions for querying IFC-
based building data. A set of functions are classified
and introduced and two different approaches are used
to implement them. It is shown in Section 6 that many
BIM requirement checking use cases can be addressed
by using SPARQL with these functions, which either
simplify queries or enable implicit information be re-
trieved from 3D geometry data. The work presented
here should be regarded as a general framework and
proof of concept for a modular, scaleable approach to
address the large amounts of domain specific query re-
quirements in the AEC domain. As more and more
data is represented by RDF and Linked Data technolo-
gies, this approach has considerable advantages over
the current practices to process building related data
in proprietary information silos using one-of-a-kind is-
land solutions.

The links to the vocabularies, transformation rules
and source code repository of the prototypical refer-
ence implementation are provided in Appendix A.

In the future, more use cases should be investigated
and implemented to gradually extend the functionality
for specific sub-domains in AEC industry and to com-
bine data from different sources. The extension work
should not be conducted with a totally ad hoc man-
ner, but be more systematic regarding classifications of
functions and geometry representations. Besides, there
are a few directions that can be considered as down-
stream work for future research and development.

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 23

9.1. Performance optimization

Optimization for query performance is necessary
as it is important for applications of this approach.
As discussed in Section 6 and 8, some current per-
formance shortcomings of the solutions introduced
here are mainly related to the implementation issues.
They seem specifically problematic for spatial reason-
ing functions, which require additional computations
related to many-to-many relationships. In the future,
spatial indexation mechanisms can be integrated to im-
prove performance in this aspect, as they have been
proved to have significant impact for spatial reason-
ing in the geospatial domain [37]. This might lead
to creating specialized databases in the future. Addi-
tional development and testing work is required since
this method might also cause the performance issue
of preprocessing building models if building designs
change frequently. Other general query optimization
techniques such as query rewriting and additional ma-
terialization should also be investigated and applied.

9.2. Implementation approaches

As discussed in Section 8, the purpose of introduc-
ing a declarative language for implementing some of
the functions is to improve the portability of devel-
opment work. In practices, the portability is also af-
fected by the implementation status of used declara-
tive language. Other technologies especially standard-
ized ones shall also be investigated in the future. It
however requires evaluation and comparison regarding
their expressiveness, implementation status and perfor-
mance. A potential candidate is Shape Constraint Lan-
guage (SHACL) [32], which is a newly standardized
W3C Recommendation and has many functionalities
in common with SPIN. Regarding geometry related
functions, existing and commonly used 3D geometry
libraries like e.g. CGAL [17] may also be integrated in
the future to reuse algorithms, improve interoperability
and performance of computations.

9.3. Knowledge engineering

The last direction that can be considered as a long-
term objective is to simplify the knowledge engineer-
ing processes that are required for extending functions.
As shown in Section 7 and Appendix C, SPIN rules
can enable more flexible extensions for functions, the
knowledge engineering work required is still inten-
sive for domain end users. How to enable them to ef-

fectively translate domain knowlege into processable
rules is still an open question that needs to be ad-
dressed. Proper methods and tools for such knowledge
engineering activities need to be developed to ease
these processes and verify correctness.

References

[1] Renzo Angles and Claudio Gutiérrez. The expressive power
of SPARQL. In Amit P. Sheth, Steffen Staab, Mike Dean,
Massimo Paolucci, Diana Maynard, Timothy W. Finin, and
Krishnaprasad Thirunarayan, editors, The Semantic Web -
ISWC 2008, 7th International Semantic Web Conference,
ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Pro-
ceedings, volume 5318 of Lecture Notes in Computer Sci-
ence, pages 114–129. Springer, 2008. https://doi.org/10.1007/
978-3-540-88564-1_8.

[2] Robert Battle and Dave Kolas. Enabling the geospatial seman-
tic web with parliament and geosparql. Semantic Web, 3(4):
355–370, 2012. https://doi.org/10.3233/SW-2012-0065.

[3] K. Baumgartel, M. Kadolsky, and R. Scherer. An ontology
framework for improving building energy performance by uti-
lizing energy saving regulations. In A. Mahdavi, B. Martens,
and R. Scherer, editors, Proceedings of the 10th European Con-
ference on Product and Process Modelling (ECPPM 2014), Vi-
enna, Austria, 17-19 September 2014: eWork and eBusiness in
Architecture, Engineering and Construction, pages 519–526.
CRC Press, 2014.

[4] Jakob Beetz, Jos van Leeuwen, and Bauke de Vries. IfcOWL:
A case of transforming EXPRESS schemas into ontologies.
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 23(1):89–101, 2009. https://doi.org/10.1017/
S0890060409000122.

[5] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf,
and Jim Hendler. N3logic: A logical framework for the world
wide web. Theory and Practice of Logic Programming, 8(3):
249–269, 2008. https://doi.org/10.1017/S1471068407003213.

[6] Christian Bizer and Richard Cyganiak. D2r server
- publishing relational databases on the semantic web.
Poster at the 5th International Semantic Web Conference,
ISWC 2006, Athens, GA, USA, November 5-9, 2006,
2006. http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/
Bizer-Cyganiak-D2R-Server-ISWC2006.pdf.

[7] Mickael Borne, Hugo Mercier, Vincent Mora, and Olivier
Courtin. SFCGAL, 2013. http://www.sfcgal.org.

[8] André Borrmann and Ernst Rank. Topological analysis of 3D
building models using a spatial query language. Advanced En-
gineering Informatics, 23(4):370–385, 2009. https://doi.org/
10.1016/j.aei.2009.06.001.

[9] Khalil Riad Bouzidi, Bruno Fiés, Catherine Faron-Zucker,
Alain Zarli, and Nhan Le Thanh. Semantic web approach to
ease regulation compliance checking in construction industry.
Future Internet, 4(3):830–851, 2012. https://doi.org/10.3390/
fi4030830.

[10] BuildingSMART International. Industry Founda-
tion Classes version 4 - Addendum 1, 2015. http:
//www.buildingsmart-tech.org/ifc/IFC4/Add1/html/.

https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.3233/SW-2012-0065
https://doi.org/10.1017/S0890060409000122
https://doi.org/10.1017/S0890060409000122
https://doi.org/10.1017/S1471068407003213
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/Bizer-Cyganiak-D2R-Server-ISWC2006.pdf
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/Bizer-Cyganiak-D2R-Server-ISWC2006.pdf
http://www.sfcgal.org
https://doi.org/10.1016/j.aei.2009.06.001
https://doi.org/10.1016/j.aei.2009.06.001
https://doi.org/10.3390/fi4030830
https://doi.org/10.3390/fi4030830
http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/
http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/

24 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

[11] Simon Daum and André Borrmann. Processing of topolog-
ical BIM queries using boundary representation based meth-
ods. Advanced Engineering Informatics, 28(4):272–286, 2014.
https://doi.org/10.1016/j.aei.2014.06.001.

[12] Tarcisio Mendes de Farias, Ana Roxin, and Christophe Nicolle.
IfcWoD, semantically adapting IFC model relations into OWL
properties. In CIB W78 32nd Conference on Information Tech-
nology in Construction, October 27-29, 2015, Eindhoven, The
Netherlands, 2015.

[13] Christophe Debruyne, Eamonn Clinton, and Declan
O’Sullivan. Client-side processing of GeoSPARQL func-
tions with triple pattern fragments. In Sören Auer, Tim
Berners-Lee, Christian Bizer, Sarven Capadisli, Tom Heath,
Krzysztof Janowicz, and Jens Lehmann, editors, Work-
shop on Linked Data on the Web co-located with 26th
International World Wide Web Conference (WWW 2017),
CEUR Workshop Proceedings. CEUR-WS.org, 2017.
http://ceur-ws.org/Vol-1809/article-06.pdf.

[14] Johannes Dimyadi, Wawan Solihin, C. Eastman, and Robert
Amor. Integrating the BIM rule language into compliant de-
sign audit processes. In CIB W78 33rd Conference on Infor-
mation Technology in Construction, October 31-November 2,
2016, Brisbane, Australia, 2016.

[15] E. William East. Common Building Information Model
files and tools, 2013. https://www.nibs.org/?page=bsa_
commonbimfiles. Last accessed on 21 March 2017.

[16] Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen
Liston. BIM Handbook: A Guide to Building Information Mod-
eling for Owners, Managers, Designers, Engineers and Con-
tractors,. John Wiley & Sons, 2nd edition, 2011.

[17] Andreas Fabri and Sylvain Pion. CGAL: the computational
geometry algorithms library. In Divyakant Agrawal, Walid G.
Aref, Chang-Tien Lu, Mohamed F. Mokbel, Peter Scheuer-
mann, Cyrus Shahabi, and Ouri Wolfson, editors, 17th ACM
SIGSPATIAL International Symposium on Advances in Geo-
graphic Information Systems, ACM-GIS 2009, November 4-6,
2009, Seattle, Washington, USA, Proceedings, pages 538–539.
ACM, 2009. https://doi.org/10.1145/1653771.1653865.

[18] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis.
Geographica: A benchmark for geospatial RDF stores.
In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T.
Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo,
Natasha F. Noy, Chris Welty, and Krzysztof Janowicz, ed-
itors, The Semantic Web - ISWC 2013 - 12th International
Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part II, volume 8219 of Lecture
Notes in Computer Science, pages 343–359. Springer, 2013.
https://doi.org/10.1007/978-3-642-41338-4_22.

[19] Antonin Guttman. R-Trees: A dynamic index structure for
spatial searching. In Beatrice Yormark, editor, SIGMOD’84,
Proceedings of Annual Meeting, Boston, Massachusetts, USA,
June 18-21, 1984, pages 47–57. ACM Press, 1984. https:
//doi.org/10.1145/602259.602266.

[20] Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query
Language. W3C Recommendation, 21 March 2013. https:
//www.w3.org/TR/sparql11-query/.

[21] Tom Heath and Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011. https://doi.org/10.
2200/S00334ED1V01Y201102WBE001.

[22] John R. Herring, editor. OpenGIS Implementation Standard
for Geographic information - Simple feature access - Part 1:
Common architecture. Open Geospatial Consortium, 2011-05-
28. http://www.opengeospatial.org/standards/sfa/.

[23] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: A Seman-
tic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 21 May 2004. https://www.w3.org/
Submission/SWRL/.

[24] ICC. International Building Code. International Code Council,
11th edition, 2006. https://codes.iccsafe.org/public/document/
details/toc/732.

[25] ISO. ISO 10303-11: Industrial automation systems and
integration-Product data representation and exchange-Part
11: Description methods: The EXPRESS language reference
manual. International Organization for Standardization, 1994.

[26] ISO. ISO 10303-21: Industrial automation systems and in-
tegration - Product data representation and exchange - Part
21: Implementation methods: Clear text encoding of the ex-
change structure. International Organization for Standardiza-
tion, 2002.

[27] ISO. ISO 16739:2013 Industry Foundation Classes (IFC) for
data sharing in the construction and facility management in-
dustries. International Organization for Standardization, 2013.

[28] Jukka Jylanki. An exact algorithm for finding minimum ori-
ented bounding boxes, 2015. https://pdfs.semanticscholar.org/
a76f/7da5f8bae7b1fb4e85a65bd-3812920c6d142.pdf. Last
accessed in December 2016.

[29] Hoon-sig Kang and Ghang Lee. Development of an object-
relational IFC server. In Proceedings of 3rd International Con-
ference on Construction Engineering and Management (IC-
CEM)/6th International Conference for Construction Project
Management (ICCPM), Jeju, South Korea, 2009.

[30] T. Kijnen. IfcOpenShell, 2011. http://ifcopenshell.org/.
[31] A. Kiviniemi, M. Fischer, and V. Bazjanac. Integration of mul-

tiple product models: IFC model servers as a potential solu-
tion. In Raimar J. Scherer, Peter Katranuschkov, and Sven-
Eric Schapke, editors, CIB W78 22nd Conference on Informa-
tion Technology in Construction, July 19-21, 2005, Dresden,
Germany, pages 37–40. Institute for Construction Informatics,
Technische Universität Dresden, 2005.

[32] Holger Knublauch and Dimitris Kontokostas. Shapes Con-
straint Language (SHACL). W3C Recommendation, 20 Julyl
2017. https://www.w3.org/TR/shacl/.

[33] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis
Koubarakis. Strabon: A semantic geospatial DBMS.
In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin,
Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,
Abraham Bernstein, and Eva Blomqvist, editors, The Se-
mantic Web - ISWC 2012 - 11th International Seman-
tic Web Conference, Boston, MA, USA, November 11-15,
2012, Proceedings, Part I, volume 7649 of Lecture Notes
in Computer Science, pages 295–311. Springer, 2012.
https://doi.org/10.1007/978-3-642-35176-1_19.

[34] Jin-Kook Lee, Charles M. Eastman, and Yong-Cheol Lee. Im-
plementation of a BIM domain-specific language for the build-
ing environment rule and analysis. Journal of Intelligent and
Robotic Systems, 79(3-4):507–522, 2015. https://doi.org/10.
1007/s10846-014-0117-7.

https://doi.org/10.1016/j.aei.2014.06.001
http://ceur-ws.org/Vol-1809/article-06.pdf
https://www.nibs.org/?page=bsa_commonbimfiles
https://www.nibs.org/?page=bsa_commonbimfiles
https://doi.org/10.1145/1653771.1653865
https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
http://www.opengeospatial.org/standards/sfa/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://codes.iccsafe.org/public/document/details/toc/732
https://codes.iccsafe.org/public/document/details/toc/732
https://pdfs.semanticscholar.org/a76f/7da5f8bae7b1fb4e85a65bd-3812920c6d142.pdf
https://pdfs.semanticscholar.org/a76f/7da5f8bae7b1fb4e85a65bd-3812920c6d142.pdf
http://ifcopenshell.org/
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-642-35176-1_19
https://doi.org/10.1007/s10846-014-0117-7
https://doi.org/10.1007/s10846-014-0117-7

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 25

[35] Seul-Ki Lee, Ka-Ram Kim, and Jung-Ho Yu. Bim and
ontology-based approach for building cost estimation. Au-
tomation in Construction, 41:96–105, 2014. https://doi.org/10.
1016/j.autcon.2013.10.020.

[36] Wiet Mazairac and Jakob Beetz. BIMQL - An open query lan-
guage for building information models. Advanced Engineer-
ing Informatics, 27(4):444–456, 2013. https://doi.org/10.1016/
j.aei.2013.06.001.

[37] Kostas Patroumpas, Giorgos Giannopoulos, and Spiros
Athanasiou. Towards geospatial semantic data management:
strengths, weaknesses, and challenges ahead. In Yan Huang,
Markus Schneider, Michael Gertz, John Krumm, and Jagan
Sankaranarayanan, editors, Proceedings of the 22nd ACM
SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems, Dallas/Fort Worth, TX, USA,
November 4-7, 2014, pages 301–310. ACM, 2014. https:
//doi.org/10.1145/2666310.2666410.

[38] Pieter Pauwels and Ana Roxin. SimpleBIM: From full ifcOWL
graphs to simplified building graphs. In S. Christodoulou and
R. Scherer, editors, Proceedings of the 11th European Confer-
ence on Product and Process Modelling (ECPPM 2014), Li-
massol, Cyprus, 7-9 September 2016: eWork and eBusiness
in Architecture, Engineering and Construction, pages 11–18.
CRC Press, 2016.

[39] Pieter Pauwels and Walter Terkaj. EXPRESS to OWL for
construction industry: Towards a recommendable and usable
ifcOWL ontology. Automation in Construction, 63:100–133,
2016. https://doi.org/10.1016/j.autcon.2015.12.003.

[40] Pieter Pauwels, Davy Van Deursen, Ruben Verstraeten, Jos De
Roo, Ronald De Meyer, Rik Van de Walle, and Jan Van Camp-
enhout. A semantic rule checking environment for building
performance checking. Automation in Construction, 20(5):
506–518, 2011. https://doi.org/10.1016/j.autcon.2010.11.017.

[41] Pieter Pauwels, Tarcisio Mendes de Farias, Chi Zhang, Ana
Roxin, Jakob Beetz, Jos De Roo, and Christophe Nicolle.
A performance benchmark over semantic rule checking ap-
proaches in construction industry. Advanced Engineering In-
formatics, 33:68–88, 2017. https://doi.org/10.1016/j.aei.2017.
05.001.

[42] Pieter Pauwels, Sijie Zhang, and Yong-Cheol Lee. Semantic
web technologies in AEC industry: A literature overview. Au-
tomation in Construction, 73:145–165, 2017. https://doi.org/
10.1016/j.autcon.2016.10.003.

[43] Matthew Perry and John R. Herring, editors. GeoSPARQL -
A geographic query language for RDF data. Open Geospa-
tial Consortium Implementation Standard, 2012. http://www.
opengeospatial.org/standards/geosparql.

[44] Blake Regalia, Krzysztof Janowicz, and Song Gao. VOLT: A
provenance-producing, transparent SPARQL proxy for the on-
demand computation of linked data and its application to spa-
tiotemporally dependent data. In Harald Sack, Eva Blomqvist,
Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and
Christoph Lange, editors, The Semantic Web. Latest Advances
and New Domains - 13th International Conference, ESWC
2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Pro-
ceedings, volume 9678 of Lecture Notes in Computer Sci-
ence, pages 523–538. Springer, 2016. https://doi.org/10.1007/
978-3-319-34129-3_32.

[45] D. Van Rillaer, J. Burger, R. Ploegmakers, and V. Mi-
tossi. Rgd BIM Standard, 1.0.1. Rijksgebouwendienst, 1

July 2012. https://english.rijksvastgoedbedrijf.nl/documents/
publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2.

[46] Hans Schevers and Robin Drogemuller. Converting the In-
dustry Foundation Classes to the Web Ontology Language.
In 2005 International Conference on Semantics, Knowledge
and Grid (SKG 2005), 27-29 November 2005, Beijing, China,
page 73. IEEE Computer Society, 2005. https://doi.org/10.
1109/SKG.2005.59.

[47] Weiming Shen, Qi Hao, Helium Mak, Joseph Neelamkavil,
Helen Xie, and John Dickinson. Systems integration and col-
laboration in construction: A review. In Proceedings of the
12th International Conference on CSCW in Design, CSCWD
2008, April 16-18, 2008, Nanyang Hotel, Xi’an Jiaotong Uni-
versity, Xi’an, China, pages 11–22. IEEE, 2008. https://doi.
org/10.1109/CSCWD.2008.4536948.

[48] Solibri. Solibri model checker, 2000. https://www.solibri.com/
products/solibri-model-checker/. Last accessed January 2016.

[49] Wawan Solihin and C. Eastman. Classification of rules for au-
tomated bim rule checking development. Automation in Con-
struction, 53:69–82, 2015. https://doi.org/10.1016/j.autcon.
2015.03.003.

[50] Wawan Solihin, Charles M. Eastman, and Yong-Cheol Lee.
Toward robust and quantifiable automated IFC quality vali-
dation. Advanced Engineering Informatics, 29(3):739–756,
2015. https://doi.org/10.1016/j.aei.2015.07.006.

[51] Statsbygg. Statsbygg building information modelling manual
version 1.2, 2011. http://www.statsbygg.no/bim. Accessed
January 2014.

[52] Jeremy Tandy, Ivan Herman, and Gregg Kellogg, editors. Gen-
erating RDF from Tabular Data on the Web. W3C Recommen-
dation, 17 December 2015. https://www.w3.org/TR/csv2rdf/.

[53] Manu Venugopal, Charles M. Eastman, Rafael Sacks, and
Jochen Teizer. Semantics of model views for information
exchanges using the industry foundation class schema. Ad-
vanced Engineering Informatics, 26(2):411–428, 2012. https:
//doi.org/10.1016/j.aei.2012.01.005.

[54] Ruben Verborgh, Miel Vander Sande, Olaf Hartig,
Joachim Van Herwegen, Laurens De Vocht, Ben De Meester,
Gerald Haesendonck, and Pieter Colpaert. Triple pattern
fragments: A low-cost knowledge graph interface for the
web. Journal of Web Semantics, 37-38:184–206, 2016.
https://doi.org/10.1016/j.websem.2016.03.003.

[55] Anastasiya Yurchyshyna and Alain Zarli. An ontology-based
approach for formalisation and semantic organisation of con-
formance requirements in construction. Automation in Con-
struction, 18(8):1084–1098, 2009. https://doi.org/10.1016/j.
autcon.2009.07.008.

[56] Cha Zhang and Tsuhan Chen. Efficient feature extraction
for 2D/3D objects in mesh representation. In Proceedings of
the 2001 International Conference on Image Processing, ICIP
2001, Thessaloniki, Greece, October 7-10, 2001, pages 935–
938. IEEE, 2001. https://doi.org/10.1109/ICIP.2001.958278.

[57] Chi Zhang, Jakob Beetz, and Matthias Weise. Interopera-
ble validation for IFC building models using open standards.
Journal of Information Technology in Construction, 20:24–39,
2015. http://www.itcon.org/2015/2.

[58] Sijie Zhang, Frank Boukamp, and Jochen Teizer. Ontology-
based semantic modeling of construction safety knowledge:
Towards automated safety planning for job hazard analysis
(JHA). Automation in Construction, 52:29–41, 2015. https:
//doi.org/10.1016/j.autcon.2015.02.005.

https://doi.org/10.1016/j.autcon.2013.10.020
https://doi.org/10.1016/j.autcon.2013.10.020
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1145/2666310.2666410
https://doi.org/10.1145/2666310.2666410
https://doi.org/10.1016/j.autcon.2015.12.003
https://doi.org/10.1016/j.autcon.2010.11.017
https://doi.org/10.1016/j.aei.2017.05.001
https://doi.org/10.1016/j.aei.2017.05.001
https://doi.org/10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.autcon.2016.10.003
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
https://doi.org/10.1007/978-3-319-34129-3_32
https://doi.org/10.1007/978-3-319-34129-3_32
https://english.rijksvastgoedbedrijf.nl/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2
https://english.rijksvastgoedbedrijf.nl/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2
https://doi.org/10.1109/SKG.2005.59
https://doi.org/10.1109/SKG.2005.59
https://doi.org/10.1109/CSCWD.2008.4536948
https://doi.org/10.1109/CSCWD.2008.4536948
https://www.solibri.com/products/solibri-model-checker/
https://www.solibri.com/products/solibri-model-checker/
https://doi.org/10.1016/j.autcon.2015.03.003
https://doi.org/10.1016/j.autcon.2015.03.003
https://doi.org/10.1016/j.aei.2015.07.006
http://www.statsbygg.no/bim
https://www.w3.org/TR/csv2rdf/
https://doi.org/10.1016/j.aei.2012.01.005
https://doi.org/10.1016/j.aei.2012.01.005
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1016/j.autcon.2009.07.008
https://doi.org/10.1016/j.autcon.2009.07.008
https://doi.org/10.1109/ICIP.2001.958278
http://www.itcon.org/2015/2
https://doi.org/10.1016/j.autcon.2015.02.005
https://doi.org/10.1016/j.autcon.2015.02.005

26 BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data

[59] B.T. Zhong, L.Y. Ding, H.B. Luo, Y. Zhou, Y.Z. Hu, and H.M.
Hu. Ontology-based semantic modeling of regulation con-
straint for automated construction quality compliance check-
ing. Automation in Construction, 28:58–70, 2012. https:
//doi.org/10.1016/j.autcon.2012.06.006.

Appendix A. Resources

The vocabularies, rules and models are published
with doi: 10.17605/OSF.IO/V5ENM. Related source
code for the backend is published on: https://github.com-
/BenzclyZhang/BimSPARQL.

Appendix B. Compared SPARQL queries

SELECT ?storey (COUNT(?wall) AS ?q)
WHERE{
?window a ifc:IfcWindow .
?r ifc:relatedBuildingElement ?window .
?r ifc:relatingOpeningElement ?opening .
?r a ifc:IfcRelFillsElement .
?rel ifc:relatedOpeningElement ?opening .
?rel ifc:relatingBuildingElement ?wall.
?rel a ifc:IfcRelVoidsElement .
?wall a ifc:IfcWall .
FILTER NOT EXISTS {
?r1 ifc:relatedElements ?window .
?r1 ifc:relatingStructure ?storey.
?r1 a ifc:
IfcRelContainedInSpatialStructure .

?r2 ifc:relatedElements ?wall .
?r2 ifc:relatingStructure ?storey.
?r2 a ifc:
IfcRelContainedInSpatialStructure .

?storey a ifc:IfcBuildingStorey .
}

}

Listing 12: Query to count load bearing walls for each
storey

SELECT ?storey (COUNT(?wall) AS ?q)
WHERE{
?storey a ifc:IfcBuildingStorey .
?rel ifc:relatingStructure ?storey .
?rel a ifc:
IfcRelContainedInSpatialStructure .

?rel ifc:relatedElements ?wall .
?wall a ifc:IfcWall .
{
?r ifc:relatedObjects ?wall.
?r a ifc:IfcRelDefinesByProperties .
?r ifc:relatingPropertyDefinition ?pset .

?pset a ifc:IfcPropertySet .
?pset ifc:name ?n .
?n expr:hasString "Pset_WallCommon" .
?pset ifc:hasProperties ?property .
?property a ifc:IfcPropertySingleValue .
?property ifc:name ?name .
?name expr:hasString "LoadBearing" .
?property ifc:nominalValue ?value .
?value expr:hasBoolean true .
}UNION{
?r ifc:relatedObjects ?wall.
?r a ifc:IfcRelDefinesByType .
?r ifc:relatingType ?type .
?type ifc:hasPropertySets ?pset .
?pset a ifc:IfcPropertySet .
?pset ifc:name ?n .
?n expr:hasString "Pset_WallCommon" .
?pset ifc:hasProperties ?property .
?property a ifc:IfcPropertySingleValue .
?property ifc:name ?name .
?name expr:hasString "LoadBearing" .
?property ifc:nominalValue ?value .
?value expr:hasBoolean true .
FILTER NOT EXISTS{
?r2 ifc:relatedObjects ?wall.
?r2 a ifc:IfcRelDefinesByProperties .
?r2 ifc:relatingPropertyDefinition ?pset2
.

?pset2 a ifc:IfcPropertySet .
?pset2 ifc:name ?n2 .
?n2 expr:hasString "Pset_WallCommon" .
?pset2 ifc:hasProperties ?property2 .
?property2 a ifc:IfcPropertySingleValue .
?property2 ifc:name ?name2 .
?name2 expr:hasString "LoadBearing" .
}
}

}GROUP BY ?storey

Listing 13: Query to count load bearing walls for each
storey

Appendix C. SPIN rules for implementing
functions for case in Section 7

SELECT (?a/?wallArea AS ?Ap)
WHERE{
?arg1 pdt:hasGrossWallArea ?wallArea .
{
SELECT (SUM(?windowArea) AS ?area){
?window schm:isPlacedIn ?arg1 .
?window pset:fireRating "OH-45" .
?window pdt:hasWindowArea ?windowArea .

} GROUP BY ?arg1 }
}

Listing 14: Query to implement the function ibc:hasAp
referenced in Listing 11

https://doi.org/10.1016/j.autcon.2012.06.006
https://doi.org/10.1016/j.autcon.2012.06.006
https://doi.org/10.17605/OSF.IO/V5ENM
https://github.com/BenzclyZhang/BimSPARQL
https://github.com/BenzclyZhang/BimSPARQL

BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data 27

SELECT (?a/?wallArea AS ?Au)
WHERE{
?arg1 pdt:hasGrossWallArea ?wallArea .

{ SELECT (SUM(?windowArea) AS ?area){
?window schm:isPlacedIn ?arg1 .
FILTER NOT EXISTS{
?window pset:fireRating "OH-45" .
}
?window pdt:hasWindowArea ?windowArea .
} GROUP BY ?arg1 }

}

Listing 15: Query to implement the function ibc:hasAu
referenced in Listing 11

SELECT (MIN(?d) AS ?distance)
WHERE{
?line a ifc:IfcAnnotation .
?line ifc:name ?name .
?name expr:hasString "Lot Line" .
(?arg1 ?line) spt:distanceXY ?d .

}GROUP By ?arg1

Listing 16: Query to implement the
function ibc:hasFireSeparationDistance referenced in
Listing 11

SELECT ?ap
WHERE {
?b1 ibc:minFSDistance ?min .
?b1 ibc:maxFSDistance ?max .
?b1 ibc:openingProtection ?arg2 .
?b1 ibc:sprinklerProtection ?arg3 .
?b1 ibc:allowableArea ?ap .
FILTER ((qudtspin:convert(?arg1, unit:Meter
, unit:Foot) >= xsd:double(?min)) && (
qudtspin:convert(?arg1, unit:Meter, unit:
Foot) < xsd:double(?max))) .

}

Listing 17: Query to implement the function
ibc:allowableArea_T705-8 referenced in Listing 11

	Introduction
	Background and motivation
	Related work
	BIM query techniques
	Applying Semantic Web technologies for querying BIM models
	Functional extensions of SPARQL

	Vocabularies
	Functions for schema level semantics
	Functions for instance level semantics
	Functions for product geometry
	Functions for spatial reasoning
	Relationships between products
	Property for groups of products
	Property and relationships based on spatial relationships

	Geometry library

	A prototype implementation
	Evaluation and comparison
	Results
	Comparison

	An extended application example
	Discussion
	Flexibility and portability
	Coverage
	Query performance

	Conclusion and future work
	Performance optimization
	Implementation approaches
	Knowledge engineering

	References
	Appendix A. Resources
	Appendix B. Compared SPARQL queries
	Appendix C. SPIN rules for implementing functions for case in Section 7

