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Abstract. The availability of structured data has increased significantly over the past decade and several approaches
to learn from structured data have been proposed. These logic-based, inductive learning methods are often
conceptually similar, which would allow a comparison among them even if they stem from different research
communities. However, so far no efforts were made to define an environment for running learning tasks on a variety
of tools, covering multiple knowledge representation languages. With SML-Bench, we propose a benchmarking
framework to run inductive learning tools from the ILP and semantic web communities on a selection of learning
problems. In this paper, we present the foundations of SML-Bench, discuss the systematic selection of benchmarking
datasets and learning problems, and showcase an actual benchmark run on the currently supported tools.
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1. Introduction

With the growth of the number and size of data
sources over the last years, there is an increasing
demand for algorithms and tools to perform accu-
rate analysis of these datasets. History in computer
science has shown that the main driver to scientific
advances, and in fact a core element of the scientific
method as a whole, is the provision of benchmarks
to make progress measurable. A famous example
from database benchmarking (specifically TPC-A1)
is considered to have been the motor that improved
transaction performance of relational databases by
an order of magnitude on equal hardware in the 90s.
Other more recent benchmarking areas related to
semantic technologies have been ‘question answer-

1http://www.tpc.org/tpca/default.asp

ing benchmarks’ (QALD [18]), ontology matching
(OAEI2), as well as graph and triple store query
performance (LDBC3). All of those have led to
significant performance improvements.

One area, which is not extensively covered by
benchmarks yet is symbolic supervised machine
learning from structured data. In this task, back-
ground knowledge is modelled using RDF, OWL,
Prolog, or other knowledge representation lan-
guages. Within this background knowledge, entities
are selected as positive and negative examples (su-
pervised learning). Based on those examples, logical
formulas e.g. Horn rules or OWL class expressions
are learned, using some algorithms, which separate
positive and negative examples. These formulas

2http://oaei.ontologymatching.org/
3http://ldbc.eu
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or rules are later used to predict further unseen
entities. Hence, this supervised machine learning
discipline considers classification methods that gen-
erate symbolic (as opposed to numeric) classifiers
which describe distinctive structures of the under-
lying knowledge base w.r.t. the given positive (and
negative) examples. For instance, given a dataset
describing chemical compounds in which positive
examples are compounds known to cause cancer
and negative examples are compounds which do
not cause cancer, the algorithms would induce for-
mulas describing what causes cancer. An exam-
ple result of an OWL class expression describing
carcinogenic compounds would be4

(Compound ⊓ ¬∃hasAtom.(

Nitrogen-35 ⊔ Phosphorus-60

⊔ Phosphorus-61 ⊔ Titanium-134)

⊓ (≥ 3 hasStructure.(Halide ⊓ ¬Halide10)

⊔ (amesTestPositive = true

⊓ ≥ 5 hasBond.(¬Bond-7))))

which can be verbalised as ‘a chemical compound
that does not contain a Nitrogen-35, Phosphorus-
60, Phosphorus-61, or Titanium-134 atom, and
which has at least three Halide – excluding
Halide10 – structures, or the ames test of the com-
pound is positive and there are at least five atom
bonds which are not of bond type 7’. A very simple
strategy for an algorithm to derive such expressions
could be to group the positive examples into sub-
sets of ‘similar’ examples that can be generalized
by a preferably specific classifier, and in a later step
combine those ‘sub-classifiers’ to the overall clas-
sifier for the learning problem at hand. However,
there are many different approaches and strategies
as mentioned later. Two major advantages of those
methods are that 1.) they can work with complex
background knowledge including inference and 2.)
the result can be interpreted and understood by
humans.

While a large body of research work has been de-
voted to this area, the evaluation scenarios are scat-
tered and no generally accepted reference bench-
marking platform exists. There are at least two

4See http://dl-learner.org/community/carcinogenesis/

for a deeper discussion on that particular topic.

major reasons for this: 1.) The first problem is that
the use of different knowledge representation lan-
guages makes results very difficult to compare. For
instance, logic programs are incomparable in terms
of expressivity to the description logics underlying
OWL. In practice, the knowledge modelling is dif-
ferent to such an extent, that automatic conver-
sion methods do not output satisfactory results.
2.) The second reason is that the effort required to
model the background knowledge using semantic
technologies can be considered significantly high.
Besides the necessary domain expertise, a basic
understanding of ontology engineering principles
and knowledge of basic vocabularies and existing
complementary background knowledge bases is re-
quired. Applying this to compile knowledge bases
for many learning problems from different domains
and setting up a repository is a major effort. Over-
all, this has led to benchmarks being scattered
across different publications and scientific commu-
nities.

To overcome this problem, we have performed a
systematic scientific literature analysis in order to
collect relevant benchmarks. Those were then trans-
lated into different knowledge representation lan-
guages if needed. For the execution of benchmarks,
a framework has been implemented, which allows
the execution of different learning systems over
a given set of learning tasks and measure perfor-
mance metrics. Moreover, wrappers for the systems
Progol5, Golem6, Aleph7, FuncLog8, TopLog8, Pro-
Golem8, TreeLiker9 and DL-Learner10 have been
written to include them in the framework. Overall,
our main contributions are:

– A systemic survey of articles published in the
last 10 years in relevant scientific conferences
and journals collecting benchmarks for struc-
tured machine learning.

– The preparation of nine learning tasks, which
constitute our current benchmark suite, in-
cluding translations of the background knowl-
edge in OWL and different logic programming
dialects.

5http://www.doc.ic.ac.uk/~shm/progol.html
6http://www.doc.ic.ac.uk/~shm/golem.html
7http://www.cs.ox.ac.uk/activities/machinelearning/

Aleph/
8http://www.doc.ic.ac.uk/~jcs06/GILPS/
9http://ida.felk.cvut.cz/treeliker/TreeLiker.html
10http://dl-learner.org
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– The creation of a framework (called SML-
Bench), which allows comparison of systems
which differ in the knowledge representation
languages they support, and the programming
languages they are written in.

– The creation of wrappers for eight learning
systems for their inclusion in SML-Bench.

The paper is structured as follows: In Section 2
we give an overview of related work, followed by
sections introducing the challenges (Section 3) and
benchmarking strategies (Section 4) of structured
machine learning. We further describe our dataset
review process in Section 5. In Section 6 we in-
troduce our benchmark framework and describe
our evaluation setup and results in Section 7. After
a discussion in Section 8 we give an outlook and
conclude our paper in Section 9.

2. Related Work

Machine learning is a vast field with a variety of
application domains and learning problems. Exist-
ing benchmark initiatives can be categorised based
on data sizes, learning problems, and data types
(associated with a particular set of algorithms).
However not all of those categories have to ap-
ply. For instance, popular dataset repositories like
UCI [4], StatLog [10] and StatLib [26] – though
they provide datasets with evaluation results of
individual algorithms – have the major aim of pro-
viding data, and do not provide comprehensive
comparisons of different algorithms.

A noticeable effort for benchmarking, both
datasets and algorithms, can be seen in LIB-
SVM11 [5]. The authors have collected datasets
from various repositories and preprocessed them for
compatibility with LIBSVM. Most of the datasets
in the above mentioned repositories are in tabular
or CSV format and the underlying structure of
the data is often flat and simple, rendering them
beyond the scope of SML-Bench.

RLBench12, on the other hand, emphasises a par-
ticular task i.e. reinforcement learning. It aims at
implementing reinforcement learning algorithms in
a uniform manner so that new algorithms can be

11http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
12http://hunch.net/~rlbench/

easily tested on a set of different problems. The
learning problems in this benchmark are syntheti-
cally generated and contain reinforcement learning
specific parameters like state, rewards, or actions
etc.

A benchmark focusing on neural networks is
Shirley’s Next-Generation Benchmark Suite13. It
includes numerous types of neural networks that
perform different tasks on the provided data. The
benchmark suite contains several datasets collected
from different internet resources together with re-
sults from simulation of different machine learn-
ing algorithms. This covers bitmap or numerical
data tailored for certain neural network techniques
which is not the focus of our work.

Recently, benchmarking and data collection at-
tempts have started to cover big data and scalabil-
ity tests. Bench-ML14 provides a minimal bench-
mark of learning tools for preprocessing, visuali-
sation and machine learning algorithms for com-
monly used open source implementations e.g. in
R, Python, H2O and Spark-MLlib. This bench-
mark can be used for testing scalability, speed and
accuracy of the above mentioned machine learn-
ing tools. However, it uses only one dataset from
an airline for the evaluation that is tabular and
lacks semantic structure. A similar effort15 assesses
Redshift, Hive, Shark, Impala and Stinger, with
the goal of providing understandable and repro-
ducible results. The data includes unstructured
HTML documents and tables containing summary
information. Fox et al. [7] have provided a bench-
mark for HPC applications by providing multiple
Ogres or facets for understanding them. The work
of Ming et al. [19] focuses on a generator that cre-
ates structured, semi-structured and unstructured
data such as text, graph, or tables for numerous
big data related tasks reflecting properties of real
world datasets. In a Spark specific benchmarking
suite [17], a variety of different algorithms related
to machine learning (logistic regression, SVM, ma-
trix factorisation), graph computation (PageRank,
SVD++, TriangleCount), SQL queries and stream-
ing applications are included. The evaluation is
done using synthetic datasets with a variety of
workloads. Some other big data related benchmarks
are [8,9,3] and [2]. The datasets provided by all of

13http://lava.cs.virginia.edu/shirley_benchmark/
14https://github.com/szilard/benchm-ml
15https://amplab.cs.berkeley.edu/benchmark/
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the above mentioned benchmarking efforts are not
sufficiently structured and cannot be used directly.

One of the noticeable benchmarks in the se-
mantic web community for query performance is
proposed by the Linked Data Benchmark Coun-

cil (LDBC)16 [1]. It comprises two sets of bench-
marks covering semantic publishing and social net-
works. RdfStoreBenchmarking17 is a repository
that provides an exclusive collection of references
to RDF benchmarks, benchmarking results and
papers about RDF benchmarking. The main focus
of these benchmarking efforts is to collect differ-
ent types of RDF data or to provide meaningful
schema information. It covers tasks like evaluating
the query performance of different semantic web
repositories that provide a SPARQL endpoint, or
use of graphs with different properties (e.g. regard-
ing their connectedness), or linked data translation
and integration, performance evaluation of feder-
ated query engines, linked data quality assessment
or data fusion systems. It can be noted that, most
of the systems provided at the above repository are
concerned with basic triple storage and retrieval
performance related tasks. On the other hand, we
are interested in (structured) data sets that are
particularly suitable for supervised machine learn-
ing tasks. We require that the data allows to derive
a classification problem as described in Section 1.
In Table 1, we summarize the benchmarking efforts
described in this section.

As we focus on symbolic machine learning from
examples and semantically structured background
knowledge, the benchmarking projects introduced
here are not suitable. None of them deals with se-
mantically structured data and/or algorithms, that
explicitly present a supervised structured machine
learning problem, making our benchmarking effort
considerably different and unique.

3. Challenges of Structured Machine
Learning

In this section, we describe some of the challenges
of machine learning on structured data grouped by
category:

16http://ldbcouncil.org/industry/organization/origins
17https://www.w3.org/wiki/RdfStoreBenchmarking

Background Language Expressivity A powerful
property of machine learning algorithms operat-
ing on structured data is their ability to reason
about the background knowledge. Generally, more
expressive languages for the background knowledge,
e.g. an expressive description logic such as SROIQ,
have a higher (worst case) time complexity than a
lightweight language. Structured machine learning
algorithms usually either include a reasoner as part
of their architecture or integrate reasoning capabil-
ities into the core of their algorithms (sometimes
without completeness and correctness guarantees
for results).

Size Larger datasets affect the efficiency of struc-
tured machine learning tools. There are three main
aspects of size: (1) The size of the schema, (2)
the size of the instance data and (3) the number
of examples. The first aspect, schema size, affects
mainly the hypothesis space as the learned concepts
are constructed from the available schema. The
schema size is the number of predicates in the back-
ground knowledge (where OWL classes are unary
and OWL properties are treated as binary predi-
cates). In the absence of a particular language bias,
e.g. restrictions on the length of learned concepts,
nested concepts etc., the size of the hypothesis
space can become extremely large for big schemata.
The second and third aspect, i.e. the instance data
size and number of examples, affect mainly the
time for hypothesis checking, i.e. validating whether
a concept fits the given examples well.

Target Concept Language Given the same back-
ground knowledge, the performance of a structured
machine learning algorithm will still heavily depend
on the target concept language which is not neces-
sarily the same as the background knowledge lan-
guage. For instance, some algorithms can learn ar-
bitrarily nested predicate structures (e.g. “parents
having studied in Germany” could be represented
via nesting of the predicates parent and studied).
Moreover, in particular for description logics, avail-
able concept constructors, such as existential and
universal quantification or qualified cardinality re-
strictions, can be included or excluded. Including
them increases the search space, but potentially
also allows to find better solutions.

Within our evaluation, we will discuss how the
tools perform on the selected datasets with respect
to the above challenges (often also referred to as
choke points in the benchmarking literature).

http://ldbcouncil.org/industry/organization/origins
https://www.w3.org/wiki/RdfStoreBenchmarking
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Table 1
Comparison of different benchmarking efforts

Benchmark Data type Algorithms Learning Problems/Benchmarking Tasks

SML-Bench Structured data Multiple SML algorithms Structured supervised ML
UCI, StatLog, StatLib Tabular data No algorithms Variety of learning problems
LIBSVM Tabular data SVM and others Machine learning
Shirleys NN Tabular data Neural networks Classification
RLBench Tabular data Reinforcement learning Reinforcement learning
Bench-ML, Amplab Large datasets Scalable processing Machine learning, query performance
Ogres Large datasets Scalable processing HPC applications
LDBC Linked Data Benchmarks Query performance, quality assessment, etc

4. Benchmarking Structured Machine
Learning Algorithms

As introduced in Section 1 the general task of an
inductive learning algorithm is to learn a classifier
discriminating two classes (generally referred to as
positive and negative) based on distinguished ex-
amples and some background knowledge. In case of
the symbolic learning approaches considered here
those classifiers are, for example, Horn rules or de-
scription logic class expressions. For benchmarking,
the respective implementations of the considered
algorithms are taken as ‘black boxes’, i.e. no evalua-
tions on algorithmic or implementation details are
performed. To judge the quality of a binary classi-
fier there are several measures that are all derived
from the confusion matrix [25] which provides the
numbers of examples correctly classified as positive,
incorrectly classified as positive, correctly classified
as negative and incorrectly classified as negative.
Derived quality metrics are, e.g. accuracy, preci-
sion, recall, F-score, specificity, and AUC [25]. In
Section 7 we focus on average accuracy and average
F1-score for brevity.

Considering more general performance indicators
of software systems [27], measures that might apply
in the structured machine learning context are
memory usage and the overall runtime. Taking the
overall runtime into consideration does not allow
a complete comparison across all learning systems
since some of them implement anytime algorithms
(which terminate after a pre-set execution time).
Thus, even though the overall runtime values are
provided with the benchmark results, in Section 7
we only report when systems could not finish within
the maximum execution time configured in the
overall benchmark settings.

In terms of memory usage, measuring the space
complexity of a certain algorithm would be a valu-
able metric for comparison. However, since the re-
spective algorithms are implemented using differ-
ent programming languages and execution environ-
ments, determining the actual memory usage is not
an easy task. First of all, to run a set of such hetero-
geneous implementations we cannot invoke them
inside one single benchmarking system but have to
execute the implementations as own processes in
their native environments, like, for example, a Pro-
log interpreter, a Java Virtual Machine etc. This
means that specialized memory analysis tools like
Valgrind18 would have to be interposed. However,
those can only measure the RAM usage of the re-
spective execution environments which have their
own specifics, like, for example, an interpreter’s ob-
ject model and memory layout, the libraries loaded
etc. Furthermore, taking into consideration that
different knowledge representation languages come
with their own representational overhead (compare,
for example, relatively short atom names in Prolog
with the full IRIs used in OWL) makes the reliable
assessment of the memory usage a non-trivial task.
Due to these practical difficulties we currently do
not report the memory usage but just note in the
benchmark results when a learning system ran out
of memory.

Assessing the scalability of a structured machine
learning algorithm along the dimensions reported
in Section 3 would require a learning problem gener-
ator which can create synthetic training data which
may differ in terms of its knowledge representation
language expressivity, number of schema axiom-
s/rules, number of assertions/facts, number of ex-

18http://valgrind.org/

http://valgrind.org/
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amples, and the expressivity of the target concept
language. We consider the problem of designing
such a learning problem generator, which provides
freely scalable, sound, meaningful and non-biased
learning problems a non-trivial task which was not
investigated in depth, yet, and thus requires further
research. Hence, we leave this as future work.

5. Datasets

To review and collect datasets already proposed
or used in other works, we performed an extensive
literature review. The five co-authors investigated
publications that appeared in major conferences
and journals related to structured machine learning
in the past 10 years. An overview of the conferences
and journals covered is given in Table 2.

The actual review was performed by either re-
viewing the accepted papers as linked in the con-
ference schedule or in the corresponding proceed-
ings and journal issues. The papers were scanned
for relevant learning tasks involving datasets that
are suitable for our benchmarking approach. The
following selection criteria were used in order to
determine whether a learning task is relevant:

Paper is available One first requirement was to
be able to access an electronic version of the paper
on the Web. This included PDF versions of the
accepted submissions that were made available on
the conference website as well as papers provided
by the publishers of the corresponding conference
proceedings or journals. All considered publications
met this criterion.

Availability of the Dataset A major requirement
regarding the actual data was its accessibility on
the Web to be able to investigate its suitability.
In the easiest case downloads and further informa-
tion were provided on dedicated Web pages. How-
ever, frequently datasets were just referred to by
name. In such cases we considered a dataset avail-
able if we could find an entry via a search engine
or in one of the major public machine learning
dataset repositories with an unambiguously match-
ing name, file name or description. If datasets were
only indirectly referenced by pointing to other pub-
lications introducing or using them, we considered
them available if we could find a corresponding
Web site after (transitively) following and review-
ing the referenced papers. Although the portion of

Table 2
Conferences and journals with number of surveyed papers
(#P) and candidate datasets (#C)

Source Year #P #C

ECML

2006 39 0
2007 28 2
2008 25 0
2009 105 0
2010 120 0
2011 121 2
2012 128 3
2013 158 10
2014 147 8
2015 139 8

ILP

2006 27 1
2007 22 0
2008 40 14
2009 40 8
2010 31 5
2011 66 7
2012 35 12
2013 31 14
2014 40 10
2015 36 13

ICML

2006 140 0
2007 150 0
2008 158 0
2009 159 0
2010 159 0
2011 160 0
2012 247 0
2013 283 0
2014 310 0
2015 270 0

Source Year #P #C

JMLR

2006 100 0
2007 91 0
2008 104 1
2009 100 0
2010 118 1
2011 105 0
2012 119 0
2013 118 2
2014 118 1
2015 118 1

KDD

2006 126 3
2007 116 0
2008 119 0
2009 145 0
2010 136 0
2011 178 0
2012 210 0
2013 197 0
2014 218 5
2015 253 6

MLJ

2006 55 0
2007 46 0
2008 55 0
2009 52 13
2010 61 2
2011 58 0
2012 55 2
2013 61 0
2014 63 0
2015 80 0

StarAI

2010 19 0
2012 23 2
2013 19 0
2014 24 2
2015 16 2

datasets actually available varies among the consid-
ered literature sources and time, we observed that
only a small fraction of approximately 40% of the
datasets were accessible, whereas the majority of
them stems from benchmark dataset repositories.

Structure of the Dataset Since the main aim of
our framework is to provide benchmark scenarios
for inductive learning tools working on structured
logical representations, we focused on datasets that
contain logical relations between single data entries
or attributes. Hence, flat datasets mainly describ-
ing data with numeric attributes were not consid-
ered. However, data that does not comply with
this requirement, but could easily be enriched with
other structured data, was also further investigated
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in our review. An example of such a case would
be data from clinical trials that could be linked to
the Gene Ontology19 or phenotype ontologies like
e.g. the Mammalian Phenotype Ontology20.

Dataset Size A further requirement was that a
candidate dataset should be sufficiently complex in
terms of its size. The main aim behind this require-
ment was to not just provide small toy examples
that will show only negligible differences between
the benchmarked tools. Ideally, datasets should
cover non-synthetic, real world problems to prove
the practical applicability of tools obtaining high
SML-Bench scores.

Derivable Inductive Learning Problems The last
requirement was that the described dataset repre-
sents an inductive learning scenario, or that such a
scenario could be derived trivially. This means that
a supervised machine learning task with positive
and (optionally) negative examples is provided or
can easily be constructed. In the latter case the
dataset must describe certain entities that can be
distinguished through relations or data values con-
tained or added to the dataset by means of ex-
ternal data sources. If no example data is given
entities from one of those distinguishable sets of
entities need to be sampled to serve as positive
examples. Negative examples can then be drawn
from the remaining distinguished sets. A simple
illustration for this procedure is given in case of the
Premier League dataset (described below) which
provides statistics of soccer players. Here to form
one particular learning scenario the positive ex-
amples were taken from the set of goal keepers
whereas the negative examples were constructed
randomly drawing from the set of non-goal keepers,
i.e. outfield players. Of course the respective dis-
tinctive feature, i.e. a soccer player’s field position,
need to be removed from the dataset afterwards to
avoid trivial solutions.

The review was performed in two rounds: In
the literature review phase candidate datasets are
selected based on their description in the corre-
sponding paper or after briefly checking the actual
data. The publications were then marked as either
not, maybe, or likely containing suitable datasets.
In the candidate review round all papers maybe or

19http://geneontology.org/
20https://github.com/obophenotype/

mammalian-phenotype-ontology

likely containing suitable datasets were examined in
depth. Here we tried to download the datasets and
assessed them manually exploring the raw data (e.g.
in a text editor or via SQL queries after loading it
into a database).

Overall 6 890 publications were reviewed and 160
candidate datasets selected. From the datasets that
were found and could be used for our framework,
data conversions and adaptions were performed
to work with all tools, if necessary. Besides com-
mon and simple formats like CSV or relational
databases, data was also provided in special file for-
mats like the Chemical Table file (CTfile)21. If not
available, dedicated parsers and converters had to
be written to transform such data into the different
KR language formats. Apart from the conversion
of the actual data, metadata was added. This addi-
tional information comprised TBox axioms in case
of OWL background knowledge, and mode declara-

tions which had to be added for each Prolog-based
learning system. In addition to these efforts, usual
testing cycles were performed to check whether the
(constructed) learning problem contains enough
and consistent information for inductive learning.

As of March 2018, 9 out of 78 datasets were
converted and integrated in SML-Bench. Due to the
high effort to prepare benchmarks of good quality,
including the configuration and verification in the
participating inductive learning programs, this is
an ongoing task for which we also acknowledge
support from the community. The datasets were
then labelled with the initial version tag v0.1 and
added to our learning task repository. After internal
reviews and discussions or external user feedback
this version number can be increased to allow a
unique reference to the dataset and represent its
maturity.

Apart from conference and journal publica-
tions, we also investigated public machine learn-
ing dataset repositories mentioned in the reviewed
literature. The investigated repositories are sum-
marised in Table 3. If possible, we pre-filtered the
repository to classification datasets, ignoring re-
gression or clustering use cases. However, we also
examined all datasets that were not grouped into
any of those categories or could not be pre-filtered.
Most of the repositories provide data that is mainly

21http://accelrys.com/products/collaborative-science/

biovia-draw/ctfile-no-fee.html

http://geneontology.org/
https://github.com/obophenotype/mammalian-phenotype-ontology
https://github.com/obophenotype/mammalian-phenotype-ontology
http://accelrys.com/products/collaborative-science/biovia-draw/ctfile-no-fee.html
http://accelrys.com/products/collaborative-science/biovia-draw/ctfile-no-fee.html
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Table 3
Surveyed benchmark dataset repositories with their number
of datasets (#D) as of March 2018, and the number of
candidates (#C) that could be used in our framework.

Repository #D #C

UCI Machine Learning Repository22 349 2
StatLib Datasets Archive23 104 0
Stanford Large Network Dataset Collection24 103 0
LIBSVM Data25 100 0
Relational Dataset Repository26 66 4
DL-Learner example datasets27 26 5
Mulan Datasets28 26 0
Delve Datasets29 18 0
IDA Benchmark Repository30 13 0

numeric and lacks a sufficiently deep structure.
More deeply structured graph or network datasets,
however, usually only provide one kind of edge
which would translate into having, e.g. just one
Prolog predicate or OWL property in the whole
knowledge base, and thus would render those use
cases unrealistic for structured machine learning
approaches. Another criterion that was rarely met
was to have a dataset that is sufficiently large
to serve as a benchmark task. For example, even
though the DL-Learner repository comes with a
lot of learning scenarios that are perfectly tailored
for the inductive learning tasks on structured data,
most of them would be too simple to distinguish a
field of state-of-the-art structured machine learning
algorithms. Thus, overall only a very small por-
tion of datasets were considered suitable for our
benchmarking purposes.

An overview of datasets that are part of the
SML-Bench framework is given in Table 4 and 5.

The datasets Lymphography, Mammographic,
Pyrimidine and Suramin are rather small in terms
of their instance and schema data. They have a very
low expressivity and mainly differ in their number

22https://archive.ics.uci.edu/ml/datasets.html
23http://lib.stat.cmu.edu/datasets/
24http://snap.stanford.edu/data/index.html
25https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
26https://relational.fit.cvut.cz/
27https://github.com/SmartDataAnalytics/DL-Learner

(test and examples directories)
28http://mulan.sourceforge.net/datasets-mlc.html
29http://www.cs.toronto.edu/~delve/data/datasets.html
30http://www.raetschlab.org/Members/raetsch/

benchmark

Table 4
Overview of the datasets that are part of the SML-Bench
framework

Dataset Description

Carcinogenesis Prediction of carcinogenic drugs
Hepatitis Prediction of the Hepatitis type based

on patient data
Lymphography Prediction of diagnosis class based on

lymphography patient data
Mammographic Prediction of breast cancer severity

based on screening data
Mutagenesis Prediction of the mutagenicity of chem-

ical compounds
NCTRER Prediction of a molecule’s estrogen re-

ceptor binding activity
Premier
League

Find a predictive description of goal
keepers based on player statistics in
soccer matches

Pyrimidine Prediction of the inhibition activity of
pyrimidines and the DHFR enzyme

Suramin Find a predictive description of suramin
analogues for cancer treatment

Table 5
Overview of the OWL versions of the datasets that are part
of SML-Bench with their number of axioms (#A), classes
(#C), object properties (#O), datatype properties (#D)
and expressivity (Expr.)

Dataset #A #C #O #D Expr.

Carcinogenesis 74, 566 142 4 15 ALC(D)
Hepatitis 73, 114 14 5 12 ALE(D)
Lymphography 2, 187 53 0 0 AL
Mammographic 6, 808 19 3 2 AL(D)
Mutagenesis 62, 066 86 5 6 AL(D)
NCTRER 92, 861 37 9 50 ALCI(D)
Prem. League 214, 566 10 14 202 ALEH(D)
Pyrimidine 2, 006 1 0 27 AL(D)
Suramin 13, 506 46 3 1 AL(D)

of examples with Suramin having the fewest (16),
followed by Pyrimidine (40), Lymphography (148),
and Mammographic (961).

Mutagenesis, Hepatitis and Carcinogenesis can
be considered as ‘medium size’ datasets w.r.t our
benchmarking repository. While the OWL repre-
sentation of the Mutagenesis dataset also shares
the very simple DL family AL(D), Hepatitis and
Carcinogenesis are more complex. However, with
ALC(D) being the most expressive DL used, they
can still be considered simple. In terms of their
example sets, Mutagenesis provides the smallest

https://archive.ics.uci.edu/ml/datasets.html
http://lib.stat.cmu.edu/datasets/
http://snap.stanford.edu/data/index.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://relational.fit.cvut.cz/
https://github.com/SmartDataAnalytics/DL-Learner
http://mulan.sourceforge.net/datasets-mlc.html
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.raetschlab.org/Members/raetsch/benchmark
http://www.raetschlab.org/Members/raetsch/benchmark
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number (84), followed by Carcinogenesis (298) and
Hepatitis (500).

The most complex dataset w.r.t. the expressivity
of its OWL representation is NCTRER. In size,
however, it can also be considered medium, be it
in terms of schema and instance data, or w.r.t. the
number of examples.

The biggest dataset we provide is Premier
League. It provides a lot of different statistics which
are expressed through an extensive (though still
simple) schema and comprehensive instance data.

Further information about the datasets (like
their origin, size, etc.) can be found in the dataset
description files in the SML-Bench GitHub reposi-
tory. The dataset descriptions are provided as RDF
data and can be found in the respective knowledge
representation language directory for each learning
task31.

6. SML-Bench Framework

With SML-Bench our aim is to provide a frame-
work which is open and extensible but already
comes with predefined benchmark scenarios and
presets for relevant tools, thus being ready for use.
The core framework is developed in the Java pro-
gramming language and is intended to be used via
a command line interface. However, the system
can easily be extended to support graphical user
interfaces. SML-Bench is provided as free software
and accessible on the Web32.

Architecture The overall architecture of SML-
Bench is shown in Figure 1. The framework’s main
building blocks are the tools to execute during
a benchmark run and the benchmark scenarios.
SML-Bench provides means to connect a set of
inductive learning tools with such scenarios to run
the evaluation on. This overall setting is held in a
benchmark configuration and the framework will
take care of providing the tools with the required
data, performing the benchmark and collecting the
results.

To support a wide range of tools and the intro-
duction of own inductive learning implementations

31E.g. https://github.com/SmartDataAnalytics/

SML-Bench/blob/develop/learningtasks/carcinogenesis/

owl/dataset.ttl for the OWL version of the Carcinogenesis
dataset

32https://github.com/SmartDataAnalytics/SML-Bench

learnsysX

run validate

…

taskA

lpP

…
…

benchmark
settings

…

SML-Bench

benchmark
results

Fig. 1. Overview of the SML-Bench framework. Learning
problems (lpP , red) are defined on a learning task (taskA,
yellowish) and contain positive/negative examples and op-
tional learning system configurations. An overall benchmark
configuration defines which learning systems (learnsysX,
green) to run on which learning problem to produce bench-
mark results.

the SML-Bench framework follows a lightweight
extensibility approach. Based on the relations
between benchmark scenarios, their background
knowledge, utilised KR languages, and bench-
marked inductive learning systems we define some
conventions which allow the extension of the frame-
work with new use cases and tools without any
changes in the code base or further wiring.

Benchmark scenarios To better structure scenar-
ios and allow different benchmark variations based
on the same data we distinguish between learning

tasks and learning problems. Learning tasks define
the actual background knowledge the benchmark
is run on for learning problems. Learning problems
are thus learning task-specific and comprise a set
of positive and (optionally) negative examples, as
well as optional tool settings dedicated to the given
example declarations (cf. Figure 1). Accordingly,
varying example constellations or tool configura-
tions are realised as separate learning problems.

In our ‘convention over configuration’ approach
the files containing the background knowledge for
a learning task A, given in a knowledge represen-
tation language L, are expected to reside in the
directory path learningtasks/A/L/data/ (relative
to the framework’s root directory). Examples for
L, in use already, are owl and prolog. If additional
tool-specific data is required (as in case of the
Prolog-based tools which usually require particular
mode declarations), e.g. for a tool X, this should be
put into the directory learningtasks/A/L/data/X/.
Data might be spread across multiple files which
are all read and merged during a benchmark run.

An individual learning problem P can be de-
fined adding a file containing positive examples

https://github.com/SmartDataAnalytics/SML-Bench/blob/develop/learningtasks/carcinogenesis/owl/dataset.ttl
https://github.com/SmartDataAnalytics/SML-Bench/blob/develop/learningtasks/carcinogenesis/owl/dataset.ttl
https://github.com/SmartDataAnalytics/SML-Bench/blob/develop/learningtasks/carcinogenesis/owl/dataset.ttl
https://github.com/SmartDataAnalytics/SML-Bench
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and an optional file containing negative examples
to a directory named learningtasks/A/L/lp/P/. A
learning problem might also comprise tool-specific
configurations which are put into a file named after
the respective tool with the file suffix .conf, e.g.
learningtasks/A/L/lp/P/X.conf.

Benchmarked Tools A similar approach is fol-
lowed to integrate inductive learning tools into
SML-Bench. To make a tool X available to the
benchmark framework, a corresponding directory
has to be created at learningsystems/X/. For a
given learning system under assessment we are
mainly interested in two things: 1) the learned rule
or class expression and 2) a measure of how well
this rule or expression performs on the provided
examples. Accordingly, the benchmark process is
divided into two phases: 1) the training phase and
2) the validation phase. In the training phase the
learning system generates the rule or class expres-
sion for a particular learning problem, which is
then assessed in the validation phase. Whereas the
output of phase 1 might be a tool-specific represen-
tation of the learned description, the validation out-
put has to follow a fixed pattern, quantifying the
number of true positive, false positive, true nega-
tive and false negative examples covered. Since the
integration of all these particularities into the core
framework would render it inflexible and hardly
extensible, we rely on a wrapper-based interface
to the respective learning systems: For each phase
a dedicated executable has to be provided. One
executable runs the learning system to generate the
rules or class expressions which are then assessed
by a validation executable producing the standard-
ised output. These executables have to be named
run and validate, respectively, and can be written
in any programming language (cf. Figure 1).

To illustrate the extensibility we consider an
imaginary learning system with the main exe-
cutable systemx which takes the file paths to the
OWL background knowledge, positive and negative
examples as input and generates an OWL class
expression written to an output file specified as
last argument. A possible run shell script adapting
this system to SML-Bench is sketched in Listing 1.

Listing 1: Example run script

#!/bin/bash

# Makes helper functions like read_config available

# (not part of SML-Bench -- must be provided)
source myhelperfunctions.sh

# Reads the benchmark configuration properties file given
# to each run executable.
# All properties (like e.g. filename.workdir) will then be
# made available as environment variables (with dots
# replaced by double underscores to form valid variable
# names). The main settings of interest are
# filename.workdir, filename.pos, filename.neg,
# filename.output and the current learning task.
read_config

dataset_dir="${filename__workdir}/learningtasks/\

${learningtask}/owl/data/"

# Concatenates all OWL files to one single file
cat ${dataset_dir}*.owl > bg_data.owl

./systemx bg_data.owl $filename__pos $filename__neg \

$filename__output

exit 0

In this example the result written to the output file
is a (tool-specific) class expression string like e.g.
hasStructure some (not (Amine)). In the next step
the validate script will be invoked which parses
this string, again reads files containing positive
and negative examples, and feeds the background
knowledge files into an OWL reasoner. This OWL
reasoner will then be used to assess the result class
expression in terms of provided positive examples
being an instance of it (true positives, tp), positive
examples not not being an instance of it (false
negatives, fn), negative examples being an instance
of it (false positives, fp), and negative examples
not being an instance of it (true negatives, tn). The
expected output of this script will be a file with
the counts for the respective classification category
as shown in Listing 2.

Listing 2: Example validation result file

tp: 33

fp: 2

tn: 35

fn: 0

Based on those numbers measures like accuracy,
F-score etc. are computed.

Benchmark settings To generate a custom bench-
mark on a selection of tools and learning problems,
a global configuration has to be provided defin-
ing which tools to run, which learning problems
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to tackle, and optionally, additional benchmark-
specific tool configurations. The framework then
executes the run and validate executables with the
corresponding configurations of all selected tools.
SML-Bench supports arbitrary train-test splits, n-
fold cross validation, as well as running the train-
ing and validation on the whole set of examples33.
The actual execution can be performed in paral-
lel threads or sequentially. A simple benchmark
configuration snippet is shown in Listing 3.

Listing 3: Example configuration of the SML-Bench
benchmark runner

learningsystems = aleph, dllearner, progol, progolem

learningsystems.aleph.noise = 3

learningsystems.progol.noise = 3

learningsystems.progolem.positive_example_inflation=2

scenarios = mammographic/1, mutagenesis/42

framework.crossValidationFolds = 10

framework.maxExecutionTime = 1800

framework.threads = 10

SML-Bench supports the generation of semantic
descriptions of a benchmark setup based on the
MEX vocabulary [6]. Such descriptions do not only
comprise general configuration issues as shown in
Listing 3 but cover all the details to comprehend
the benchmark settings in detail. This includes de-
tailed specifications of the tools executed together
with their runtime configurations, details about
the data used in the benchmark and the actual
evaluation results.

Available learning systems In its current state
SML-Bench supports eight inductive learning tools,
collected during our literature review. A tool was
introduced into SML-Bench as learning system
if it implements a published inductive learning
algorithm, if it is freely available and sufficiently
documented.

The oldest of the available learning systems is
the classic ILP tool Golem [21] which was published
in the year 1990, implementing a Relative Least

General Generalisations-based induction approach.
Golem supports a Prolog-based knowledge repre-
sentation language. Another, slightly more recent

33Though uncommon in machine learning, this was a
requirement in a 3rd party use case for a separate feature
extraction phase over the example set.

ILP tool called Progol [20] uses inverse entailment
to derive covering clauses based on examples and
background knowledge given as Prolog-like logic
programs. An ILP tool completely implemented
in Prolog is Aleph which supports a number of
ILP algorithms. Similarly, the General Inductive

Logic Programming System (GILPS) comprises sev-
eral Prolog programs realising different inductive
learning approaches. FuncLog [24], one tool of the
GILPS collection, is specialised in learning on Head

Output Connected learning problems. Besides this,
the tools TopLog [23] and ProGolem [22] which
are based on Top Directed Hypothesis Derivation

and Asymmetric Relative Minimal Generalisations,
respectively, are also part of GILPS and supported
in SML-Bench.

On the description logics-based knowledge rep-
resentation field, several algorithms are integrated
in one tool: DL-Learner [15] is a framework for
inductive learning on RDF and OWL-based back-
ground knowledge. It supports a wide range of
algorithms, including refinement operator based
algorithms and evolutionary inspired approaches,
as well as different OWL profiles.

In terms of Statistical Relational Learning (SRL)
tools, we considered RapidMiner34 and Tree-

Liker35 [12]. Unfortunately we were not able to
integrate RapidMiner since its server component
imposed requirements that were not fulfilled in
our overall workflow36. However, we provide ex-
perimental support for the TreeLiker tool, which
also works on background knowledge expressed in
a Prolog-like syntax and contains implementations
for different SRL algorithms.

7. Evaluation

To give a general impression of our framework,
we ran SML-Bench with all provided learning sys-
tems on all available learning problems, excluding
Suramin due to its small number of examples. We
applied 10-fold cross validation and executed all
learning systems in their default settings except
the DL-Learner running OCEL which requires a
noise value to be set to allow a certain number of

34https://rapidminer.com
35http://ida.felk.cvut.cz/treeliker/TreeLiker.html
36See https://github.com/SmartDataAnalytics/

SML-Bench/issues/14 for more details

https://rapidminer.com
http://ida.felk.cvut.cz/treeliker/TreeLiker.html
https://github.com/SmartDataAnalytics/SML-Bench/issues/14
https://github.com/SmartDataAnalytics/SML-Bench/issues/14
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misclassifications. Thus, we set the noisePercent-

age parameter to 30. Leaving the learning systems
unconfigured will not show their optimal perfor-
mance, but will rather reflect whether a tool per-
forms well ‘out-of-the-box’ and whether the exe-
cuted algorithms fit the particular learning scenar-
ios. This also means that highly specialized algo-
rithms might not work well on all of the learning
scenarios, or even, that our learning problems do
not have certain, expected characteristics an al-
gorithm requires to function well. Following this
approach our main aim is to assess whether SML-
Bench can provide a meaningful benchmarking en-
vironment. To consider the provided set of bench-
marking tasks meaningful we would expect to see
that 1) not all learning problems can be ‘solved’ eas-
ily in default settings 2) the learning problems are
able to distinguish the field of competitors, i.e. that
they point out certain strengths and weaknesses
of the learning systems under assessment 3) the
learning problems are diverse enough to address
different strengths and weaknesses of the learning
systems under assessment.

In the case of DL-Learner and TreeLiker we exe-
cuted a set of available algorithms introduced in
the following. The OWL Class Expression Learner

(OCEL) algorithm, which is part of the DL-Learner,
is a refinement operator-based learning algorithm
using heuristics guiding the search. An evolution
of OCEL which is more biased towards short and
human readable concepts is the Class Expression

Learning for Ontology Engineering (CELOE) al-
gorithm [16]. A third implementation provided by
the DL-Learner framework is the EL Tree Learner

(ELTL) algorithm which is restricted to OWL EL
as target concept language.

The TreeLiker tool can be configured to utilize
a block-wise construction of tree-like relational fea-

tures (RelF) [14], a hierarchical feature construction

(HiFi) [13], or a Gaussian Logic-based algorithm
(Poly) [11] for classification. These three algorithms
can also be run in a grounding-counting setting

(GC) considering the number of examples covered
by a generated feature during learning. Since the
TreeLiker works on a Prolog-like knowledge repre-
sentation language that does not support certain
Prolog expressions, we could not assess it on the
Mutagenesis and NCTRER datasets.

We set an overall maximum execution time
of 300 seconds and executed all tools sequen-
tially. The benchmark was performed on a ma-

chine with 2 Intel Xeon ‘Broadwell’ CPUs with 8
cores running at 2.1 GHz with 128 GB of RAM.
A benchmark description based on the MEX RDF
vocabulary can be found at http://sml-bench.

sda.tech/benchmark_results/march2017/. The
benchmark results are summarised in Table 6 and
Table 7. Besides their average accuracies and F1-
scores we also report when nothing (or just the
trivial solution listing all the input examples) could
be learned (no results), when learning systems
could not finish within the given 300 seconds (time-

out), or when learning systems ran out of memory
(out of mem.).

One first observation we made is that we seem
not to have a suitable learning scenario which would
benefit from FuncLog’s specialization in learning
with head output connected predicates. Since it
did not return learned rules on any of the learning
problems we did not list FuncLog in Table 6 and
Table 7.

Another observation is that Aleph, CELOE and
OCEL already provide default settings which work
well on the learning problems and lead to very
good results on mutagenesis/42, premierleague/1
and pyrimidine/1.

Taking into consideration that Golem was im-
plemented in the 1990s one possible explanation
for its lower performance could be that the default
settings reflect hardware expectations in terms of
available memory and computing power that are
now superseded. This might also apply to con-
stants defined in Golem’s source code. Hence, ad-
justing settings to current hardware capabilities
might make a considerable difference here. A sim-
ilar argumentation might apply for Progol. Be-
sides this Golem’s mode declarations do not pro-
vide means to express explicitly which predicates
should appear in the head of a learned rule. This
might be an explanation for some of the results
that do not provide a description for the given
examples, at all, as in the case of nctrer/1 where
we observed learned rules like bound_atom(A,B) :-

first_bound_atom(A,atom_232_2) that should ac-
tually characterize molecules, i.e. positive examples
like molecule(molecule13).

Progol and ProGolem appear to be overly cur-
tailed by the restricted execution time. In those
cases, the algorithm itself may be very suitable
for the learning problems but increasing the time
limit further would lead to prohibitive runtimes of
the evaluation scenario. Currently, the maximum

http://sml-bench.sda.tech/benchmark_results/march2017/
http://sml-bench.sda.tech/benchmark_results/march2017/
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Table 6
Evaluation results of an SML-Bench benchmark run. All tools were run with a maximum execution time of 5 minutes.
Reported are the average accuracy and its standard deviation of 10-fold cross validation.

Learning
problem

Aleph DL-
Learner
(CELOE)

DL-
Learner
(OCEL)

DL-
Learner
(ELTL)

Golem Progol ProGolem

carcinog./1 0.48 ± 0.10 0.55 ± 0.02 no results 0.55 ± 0.02 no results 0.49 ± 0.06 timeout
hepatitis/1 0.67 ± 0.05 0.47 ± 0.05 0.66 ± 0.14 0.41 ± 0.01 0.59 ± 0.01 no results 0.29 ± 0.10
lymphogr./1 0.83 ± 0.10 0.83 ± 0.11 0.73 ± 0.12 0.54 ± 0.03 0.40 ± 0.11 0.79 ± 0.09 0.28 ± 0.16
mammogr./1 0.65 ± 0.04 0.49 ± 0.02 0.82 ± 0.05 0.46 ± 0.01 0.54 ± 0.00 timeout timeout
mutag./42 0.72 ± 0.25 0.94 ± 0.13 0.53 ± 0.29 0.30 ± 0.07 0.42 ± 0.25 no results timeout
nctrer/1 0.72 ± 0.14 0.59 ± 0.02 0.81 ± 0.09 0.58 ± 0.02 0.41 ± 0.01 no results 0.00 ± 0.00
prem.leag./1 0.95 ± 0.09 0.99 ± 0.04 0.85 ± 0.10 0.49 ± 0.02 out of mem. no results 0.00 ± 0.00
pyrimidine/1 0.95 ± 0.16 0.83 ± 0.17 0.85 ± 0.24 no results 0.15 ± 0.21 no results 0.35 ± 0.32

Learning
problem

TopLog TreeLiker
(HiFi)

TreeLiker
(RelF)

TreeLiker
(Poly)

TreeLiker
(HiFi GC)

TreeLiker
(RelF GC)

TreeLiker
(Poly GC)

carcinog./1 0.40 ± 0.12 0.38 ± 0.12 0.38 ± 0.12 0.38 ± 0.12 0.43 ± 0.11 0.43 ± 0.11 0.38 ± 0.12
hepatitis/1 0.18 ± 0.04 0.46 ± 0.05 0.46 ± 0.05 0.46 ± 0.05 0.49 ± 0.16 0.56 ± 0.03 0.46 ± 0.05
lymphogr./1 0.28 ± 0.16 0.29 ± 0.17 0.29 ± 0.17 0.29 ± 0.17 0.52 ± 0.11 0.51 ± 0.09 0.29 ± 0.17
mammogr./1 0.18 ± 0.05 0.22 ± 0.04 0.22 ± 0.04 0.22 ± 0.04 0.54 ± 0.01 0.54 ± 0.01 0.22 ± 0.04
mutag./42 0.23 ± 0.18 — — — — — —
nctrer/1 0.00 ± 0.00 — — — — — —
prem.leag./1 0.00 ± 0.00 out of mem. out of mem. out of mem. out of mem. out of mem. out of mem.
pyrimidine/1 0.18 ± 0.26 0.20 ± 0.26 0.20 ± 0.26 0.18 ± 0.26 0.60 ± 0.24 0.60 ± 0.39 0.18 ± 0.26

Table 7
Evaluation results of an SML-Bench benchmark. All tools were run with a max. execution time of 5 minutes. Reported are
the average F1-score and its standard deviation of 10-fold cross validation.

Learning
problem

Aleph DL-
Learner
(CELOE)

DL-
Learner
(OCEL)

DL-
Learner
(ELTL)

Golem Progol ProGolem

carcinog./1 0.46 ± 0.12 0.71 ± 0.01 no results 0.71 ± 0.01 no results 0.16 ± 0.12 timeout
hepatitis/1 0.38 ± 0.12 0.60 ± 0.02 0.64 ± 0.07 0.58 ± 0.01 0.00 ± 0.00 no results 0.32 ± 0.10
lymphogr./1 0.84 ± 0.09 0.87 ± 0.07 0.76 ± 0.10 0.70 ± 0.03 0.13 ± 0.10 0.79 ± 0.10 0.26 ± 0.18
mammogr./1 0.48 ± 0.08 0.64 ± 0.01 0.78 ± 0.08 0.63 ± 0.00 0.00 ± 0.00 timeout timeout
mutag./42 0.43 ± 0.47 0.93 ± 0.14 0.29 ± 0.42 0.46 ± 0.08 0.16 ± 0.25 no results timeout
nctrer/1 0.71 ± 0.18 0.73 ± 0.02 0.85 ± 0.06 0.73 ± 0.02 0.00 ± 0.00 no results 0.00 ± 0.00
prem.leag./1 0.94 ± 0.11 0.99 ± 0.04 0.97 ± 0.06 0.66 ± 0.02 out of mem. no results 0.00 ± 0.00
pyrimidine/1 0.90 ± 0.32 0.84 ± 0.15 0.80 ± 0.13 no results 0.04 ± 0.13 no results 0.33 ± 0.32

Learning
problem

TopLog TreeLiker
(HiFi)

TreeLiker
(RelF)

TreeLiker
(Poly)

TreeLiker
(HiFi GC)

TreeLiker
(RelF GC)

TreeLiker
(Poly GC)

carcinog./1 0.38 ± 0.17 0.39 ± 0.18 0.39 ± 0.18 0.39 ± 0.18 0.16 ± 0.15 0.16 ± 0.15 0.39 ± 0.18
hepatitis/1 0.21 ± 0.08 0.48 ± 0.10 0.48 ± 0.10 0.48 ± 0.10 0.26 ± 0.22 0.17 ± 0.18 0.48 ± 0.10
lymphogr./1 0.26 ± 0.18 0.24 ± 0.19 0.24 ± 0.19 0.23 ± 0.19 0.31 ± 0.23 0.20 ± 0.22 0.23 ± 0.19
mammogr./1 0.24 ± 0.07 0.24 ± 0.08 0.24 ± 0.08 0.24 ± 0.08 0.02 ± 0.03 0.02 ± 0.03 0.24 ± 0.08
mutag./42 0.23 ± 0.25 — — — — — —
nctrer/1 0.00 ± 0.00 — — — — — —
prem.leag./1 0.00 ± 0.00 out of mem. out of mem. out of mem. out of mem. out of mem. out of mem.
pyrimidine/1 0.20 ± 0.26 0.20 ± 0.26 0.20 ± 0.26 0.20 ± 0.26 0.68 ± 0.24 0.50 ± 0.45 0.20 ± 0.26
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runtime is approximately 100 hours (10 folds × 8
learning problems × 15 configured learning systems
× 5 minutes).

In their default settings, the GILPS tools Pro-
Golem and TopLog often returned identical results.
Even though we can only report a low performance
on all the learning problems, the authors of Pro-
Golem and TopLog published experiments showing
much better results on Carcinogenesis, Pyrimidine
and Mutagenesis [23,22]. This might emphasize
that a proper configuration substantially impacts
the tool’s performance, or suggest that differing
versions of the respective datasets were in use.

For the TreeLiker algorithms we can also observe
that different settings might give identical results.
The low performance can be attributed to the fact
that TreeLiker is a collection of feature construc-
tion algorithms and to the way we use it in our
benchmark framework. Since the TreeLiker algo-
rithms usually produce a high number of features
we currently only consider the best one for our
evaluation. This might not fully exploit TreeLiker’s
capabilities and we are in contact with one of the
tool authors to improve this.

Even though the premierleague/1 learning prob-
lem is large in terms of background knowledge with
more than 200 thousand axioms, Aleph was able to
learn almost perfect results. For the TreeLiker we
gradually increased the maximum available JVM
heap size up to 10 GB. Increasing it even further
might also give results for its algorithms. However,
since other Java implementations could generate
results with 2 GB of available maximum heap size,
we stopped there.

Overall, the evaluation supports our initial ex-
pectations. However, we also have to admit that
some of the learning systems need to be adjusted
properly to provide competitive performances. This
will be discussed in the following.

8. Discussion

With SML-Bench we built a benchmarking
framework that is extensible and comes with a set
of initial scenarios to evaluate arbitrary inductive
learning tools. As shown in the previous section, the
provided learning problems are able to discriminate
the performance of different learning systems but
are not complete in the sense that we are lacking
some datasets that are tailored for particular capa-

bilities of certain tools (in particular FuncLog). We
also believe – and verified this in some cases man-
ually – that most of the results can be improved
by spending more effort in configuring the learn-
ing systems, hence generating more competitive
results. We already tried to get in contact with the
tool authors to support this, but only got a reply
from one of the TreeLiker developers. In the future,
we may allow an explicit parameter tuning phase,
e.g. via nested cross validation or explicit tuning
examples, in our benchmark for systems which are
capable of this functionality. Apart from the issues
revolving around system configuration, the liter-
ature survey and the actually converted datasets
have shown that datatype properties are widely
used in many learning scenarios. However, the tools
currently do not fully exploit this part and focus
more on the structured components. In this sense,
the tools would benefit more from deeper struc-
tures in the datasets. To this end, we will work on
further enriching datasets in this direction if possi-
ble. Of course doing so requires considerable effort
and extensive domain knowledge (e.g. in chemistry
or genetics). Through the community feedback we
obtain, we will continuously extend and refine the
learning problem library. SML-Bench is part of
a funded research programme and benchmarking
challenges will be presented in a series of (yet to
be finally determined) venues. We will use those
as a feedback channel.

A further issue that needs to be discussed is the
representation of knowledge in different KR lan-
guages. Most of the design decisions for the dataset
conversions were made individually, since an au-
tomatic conversion would not yield a satisfactory
modelling result exploiting the strengths of Prolog
or different OWL profiles even in cases when it
is theoretically possible. This can potentially lead
to a bias since particular modelling choices may
lead to different solutions provided by the tools.
While we acknowledge this problem, we do not see
a straightforward solution and also believe that
to some extent this could spur some competition
in terms of finding appropriate KR languages or
dialects to support in inductive learning.

In our opinion, the availability of SML-Bench
will improve the state of the art for symbolic ma-
chine learning from expressive background knowl-
edge in the next years. While many efforts in this
field date back to the early 90s, only in the past
years the availability of data has increased signifi-
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cantly. However, it was still challenging for individ-
ual researchers or small groups to perform a com-
prehensive benchmark. We believe to have closed
this gap, which could in turn lead to similar im-
provements as we have seen for question answering,
link discovery and query performance for RDF.

9. Conclusion and Outlook

In this paper, we have presented SML-Bench – a
benchmarking framework for structured machine
learning. We performed a systematic literature sur-
vey to obtain relevant benchmark datasets. Over-
all, we analysed 6 890 papers, which led to 160
candidate learning problems. For 9 of those, we
converted them across the used KR languages and
set them up for all learning systems. Currently, 8
learning systems are integrated with two further
inclusion requests in the works. A first analysis
presented here has identified some shortcomings of
individual tools. Generally, we believe that a ma-
ture research area requires a benchmark to evolve
further. In particular, we want to contribute to
bringing the Semantic Web and machine learning
areas close together. We also aim to reduce the
boundaries of knowledge representation languages
as well as the research communities behind them.
We further envision that SML-Bench could in the
future evolve into a central hub for comparing sug-
gested tool settings, learning problems, and perfor-
mances.

We will perform further analysis and regular
benchmarking runs in the scope of the HOBBIT
project37 which will fund this benchmarking ac-
tivity until end of 2018 after which it will be
taken over by the HOBBIT association. SML-
Bench based challenges are planned in further work-
shops, e.g. the Know@LOD workshop to which we
contributed for the past 5 years. In the future, it
is likely that we will support further languages,
e.g. full first order logic based systems, combina-
tions of rules and description logics as well as fuzzy
and probabilistic description logics and statistical
relational learning systems.

Another direction for future work is the integra-
tion of means to import MEX machine learning ex-
periment descriptions to generate benchmark con-

37http://project-hobbit.eu/

figurations. In combination with our MEX export
function this would allow to load experiments from
other researchers or share own benchmark settings.
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