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Abstract. Matching-related methods, i.e., entity resolution, search and evolution, are essential parts in a variety of applications.
The specific research area contains a plethora of methods focusing on efficiently and effectively detecting whether two different
pieces of information describe the same real world object or, in the case of entity search and evolution, retrieving the entities of a
given collection that best match the user’s description. A primary limitation of the particular research area is the lack of a widely
accepted benchmark for performing extensive experimental evaluation of the proposed methods, including not only the accuracy
of results but also scalability as well as performance given different data characteristics.

This paper introduces EMBench++, a principled system that can be used for generating benchmark data for the extensive
evaluation of matching-related methods. Our tool is a continuation of a previous system, with the primary contributions including:
modifiers that consider not only individual entity types but all available types according to the overall schema; techniques
supporting the evolution of entities; and mechanisms for controlling the generation of not single data sets but collections of data
sets. We also present collections of entity sets generated by EMBench++ as an illustration of the benefits provided by our tool.
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1. Introduction

Entity Matching is the task of efficiently and effec-
tively detecting whether two different pieces of infor-
mation describe the same real world object, such as a
conference, a person, or a publication. Strongly related
to entity matching are the tasks of entity search and
evolution, which focus on efficiently and effectively
retrieving the entities of a given collection that best
match the user’s description.

Matching-related methods are typically part of data
integration or cleaning components that are consid-
ered essential in a variety of applications. The research
community has already introduced a great deal of
matching-related methods. These methods have been
discussed in related surveys, such as [5], [6], [12], [15],
and [22]. A major limitation of the existing works in
the particular research area is the lack of a widely

accepted benchmark for performing extensive experi-
mental evaluation of the proposed methods, including
not only the accuracy of results but also the scalability
and the performance for different data characteristics.

In our previous work, we had developed EMBench
[23,21], a system for benchmarking matching-related
methods in a generic, complete, and principled way.
The system is based on a series of test cases aiming
at capturing the majority of the matching situations.
EMBench [21] is fully configurable with users being
able to define the desired entities with their attributes
as well as the modifications and modification level that
will be incorporated in the entities. The system also
provides an on-the-fly generation of the different test
cases in terms of different sizes and complexities both
at the schema and at the instance level.

Currently, we are witnessing research efforts for
dealing with a number of new challenges. One such

1570-0844/18/$35.00 c© 2018 – IOS Press and the authors. All rights reserved



2 E. Ioannou and Y. Velegrakis. / EMBench++: Benchmark Data for Thorough Evaluation of Matching-Related Methods

challenge is volatility. As explained elsewhere [33,34],
applications, especially Web 2.0 applications, focus
on enabling and encouraging users to constantly con-
tribute and modify existing content. A DBPedia analy-
sis has revealed that the data describing the entities has
been modified overtime time, and only a small fraction
of it has remained unchanged. Volatility is the result
of many reasons like change on the requirements, on
the topics of interest, performance reasons, or even se-
mantic evolution that requires entity merging or split-
ting [40,29].

In this work, we are introducing EMBench++,
an extension of our previous system with additional
mechanisms aiming at generating benchmark data
for the evaluation of matching-related methodologies,
which (primarily) include other than entity matching
and search, also entity evolution. EMBench++ moves
towards a thorough experimental evaluations by en-
abling the assessment of a plethora of aspects that in-
fluence quality and performance. Each aspect can be
investigated following various scenarios and different
assumptions, produced with in a controlled and con-
sistent manner. The main contributions we are making
here is the set of extensions and new services in our
entity matching benchmark. In particular:

– We introduce modification mechanisms on exist-
ing datasets that consider not only individual en-
tities but also sets of entities determined by their
schema information.

– We are generating collections of data sets that are
able to capture and evaluate specific matching-
related aspects.

– Provide mechanisms that allow the users to gen-
erate sequences of data sets, with the entities of
each data set being the evolved version of the en-
tities from the preceding one.

– We illustrate the abilities of our system by gen-
erating collections with appropriate data sets for
the thorough experimental evaluating matching-
related methodologies.

2. Related Work & Open Challenges

Existing related works can be separated into two
main categories: those related to the generation of syn-
thetic data for matching-related approaches (Section
2.1) and those related to approaches for performing en-
tity matching (Section 2.2). In each category there are
a number of open challenged.

2.1. Synthetic Data Generation

On 2004 the Ontology Alignment Evaluation Initia-
tive (OAEI) started working on the controlled experi-
mental evaluation of alignment and matching systems.
With respect to EMBench++, the most interesting task
is instance matching for which, currently, OAEI pro-
vides real and synthetic data [1].

Real data are static collections, typically of a much
larger size than the synthetic ones. Such collections are
extracted from real applications and reflect the match-
ing problems that must be addressed. Thus, real data
contain the possible, independent occurrences of the
challenges that the matching-related techniques must
handle (e.g., heterogeneities, schema absence, etc.) as
well as situations in which such challenges appear in
combination. Furthermore, we must always keep in
mind that such real systems evolve, which means that
additional data challenges can appear. Thus, regularly
monitoring and extracting data from real applications
(e.g., once per month) can assist in detecting such data
challenges.

Given the reasons presented above, it is clear that
real data should be the first source for the experimental
evaluation of matching-related techniques. However,
there are some aspects of real data collections that limit
their usability. The first limitation is that that ground
truth is typically not fully correct. As an example con-
sider the DBLP system that lists publications from re-
searchers. For researchers with common, or even simi-
lar names, the system has difficulties separating them1.
Obviously, computing the quality of a matching tech-
nique cannot be accepted as being fully correct when
using data with issues related to the ground truth. An-
other limitation of using real data is the lack of collec-
tions focusing on a particular challenge or challenges.
For instance, one matching technique might focus on
addressing the lack of schema and thus evaluating the
technique over data that also include heterogeneities in
the values could be considered unfair for the particular
technique.

Synthetic data is included in OAEI using the ISLab
Instance Matching Benchmark [14]. The particular
benchmark, first includes entities from the OKKAM
project [30,31]. These entities are then modified using:
(i) value transformations, such as typographical errors;
(ii) structural transformations, such as value deletions;
(iii) logical transformations, such as creation of two

1E.g.: http://dblp.uni-trier.de/pers/hd/c/Chen:Lin
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entities for the same real world object; and (iv) combi-
nations of various transformations.

Synthetic generation of benchmarking entity match-
ing data is also possible with the SWING system [13].
SWING design principles and goals are similar to
EMBench but EMBench [23,21] has more expressive
power and offers more flexibility in the specification
of the testing data. A detailed discussion is available in
[21]. It compares the functionalities provided by EM-
Bench with the ones of the SWING system, grouped
according to (1) data acquisition, (2) data generation,
and (3) matching scenarios.

The most recent approach is LANCE [42], a gener-
ator that given a linked data set with its schema cre-
ates a new data set with matching tasks of various dif-
ficulties. The generator follows standard test cases re-
lated to structure and value transformations while also
considering expressive OWL constructs.

Challenges Related to Benchmarking Systems. It
is clear that using synthetic and not static data allows
users to control the generated data sets. This is in line
with benchmarks in other data domains, such as TPC-
H and STBenchmark [2], and stress test tools, such
as Siege2. EMBench++ extends the options that users
can control with the most advanced being the ability
to control the “modifications” between the generated
entity sets. In addition, EMBench++ provides mecha-
nisms for generating volatile data, an aspect that exist-
ing benchmarking systems have not yet considered.

2.2. Matching-related Methods

The research area of matching-related methods has
been deeply investigated the last couple of decades and
a plethora of methods have been suggested. The pri-
mary difference between the existing methods is what
they consider as an entity representation and which in-
formation they use for performing the matching. We
discuss these methods next. For ease of comprehension
and discussion, we group them into categories accord-
ing to the data included in the entity representation al-
though there are many methods that span across more
than one category.

A. Similarity Methods. The first category contains
methods operating on entities that are either atomic
string values or a set of string values. Here, we have
various basic similarity techniques (see surveys [6] and
[5]), such as Levenshtein distance [28], Jaro [24], Jaro-

2http://www.joedog.org/siege-home/

Winkler [46] and TF/IDF similarity [41]. Note that
[7] and [5] describe and discuss an experimental com-
parison of various basic similarity techniques used for
matching names. Merge-purge [18] is another method.
It considers every database relation (i.e., record) as a
representation and detects if relational records refer to
the same real world object. Other methods focus on
finding mappings between the representations using ei-
ther transformations [44], such as abbreviation, stem-
ming, and initials, or predefined rules [9] with knowl-
edge about specific representations.

B. Collective Matching. The next category contains
methods using collective matching, which means per-
forming the matching using existing or discovered
inner-relationships. A well-know method for this cate-
gory is Reference Reconciliation [10]. The method first
detects possible associations between the entities by
comparing their corresponding attribute values. These
associations are propagated to the rest of the entities in
order to enrich their information and improve the qual-
ity of final matches. Other methods are [3,4] that use
entity inner-relationships to create a graph between en-
tities. Graph nodes are clustered and detected clusters
are used to identify the common entities. The meth-
ods from [26,25] follow a similar methodology to cre-
ate a graph. However, these methods also generate ad-
ditional possible relationships to represent the candi-
date matches between entities. Matches between en-
tities are discovered by analyzing the relationships in
the graph.

C. Entity Evolution. The third category contains
methods that deal with the volatile nature of the data.
Handling volatility can be achieved by various mecha-
nisms. For instance, a portion of the introduced meth-
ods handle volatility through probabilities that model
the belief related to the current resolution status of
the entities [39,8,20,29]. More specifically, [39,8] con-
sider a small set of possible entity alternatives, with
each alternative accompanied by a probability that in-
dicates the belief we have that this reflects the cor-
rect entity. The approach in [20] addresses many chal-
lenges of heterogeneous data. It does not assume that
the alternatives are known, but that an entity collection
comes with a set of possible linkages between entities.
Each linkage represents a possible match between two
entities and is accompanied with a probability that in-
dicates the belief we have that the specific represen-
tations are for the same real world object. Entities are
compiled on-the-fly, by effectively processing the in-
coming query over representations and linkages, and
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Fig. 1. An illustration of EMBench++’s architecture (grey dotted line denotes the components from the previous version).

thus, query answers reflect the most probable solution
for the specific query.

Another example of methods aiming at handling
volatility, focuses on using the newly arrived data to
incrementally and efficiently update the detected en-
tities. For this purpose, [45] focuses on maintaining
the matches up-to-date with techniques that do not ex-
ecute matching from scratch but exploit all previous
matches. The approach in [16] considers clustering,
i.e., each cluster corresponds to a specific entity. New
data can be merged with existing clusters or can be
used for correcting previous matching mistakes.

D. Blocking-based Methods. The last category in-
cludes blocking-based methods, focusing on process-
ing data sets of large sizes. Instead of comparing each
entity with all other entities, blocking-based methods
separate entities into blocks, such that entities of the
same block are more likely to be a match than enti-
ties from different blocks. Thus, only the entities of
the same block are compared. The majority of the
proposed methods typically associate each entity with
a Blocking Key Value (BKV) summarizing the val-
ues of selected attributes and then operate exclusively
based on the BKVs. One such example is [17]. It sorts
blocks according to their BKV and then slides a win-
dow of fixed size over them, comparing the represen-
tations it contains. The most recent methods investi-
gate building the blocks when having heterogeneous
semi-structured data with loose schema binding, e.g.,
[35]. Among other, the authors introduce an attribute-
agnostic mechanism for generating the blocks, and ex-
plain how efficiency can be improved by scheduling
the order of block processing and identifying when to
stop the processing. Iteratively block processing [38]
provides a principled framework with message pass-
ing algorithms for generating a global solution for the
resolution over the complete collection.

Challenges Related to Benchmarking Systems.
The last three categories have not yet been targeted by

benchmarking systems. Extensive evaluation of collec-
tive matching methods requires usage of schema infor-
mation in order to incorporate relationships between
the entities. Entity evolution requires generating evolv-
ing versions of entities, i.e., the system should be able
to include modifications on the already generated enti-
ties with the modifications reflecting possible changes
due to time. Scaling to a large number of entities is also
important, especially for blocking-based methods that
aim at processing huge collections. This implies being
able to generate a huge number of data while also be-
ing able to alter specific aspects, such as the level of
inconsistencies.

3. The architecture of EMBench++

We now present the architecture of EMBench++

and discuss the additions included from the previous
version of the system, which was described in [21] and
[23]. Figure 1 provides a graphical illustration of the
architecture. The rectangle with dotted grey line de-
notes the components that were incorporated in EM-
Bench. The remaining components have been included
in the system in order to achieve the goals introduced
in Sections 1 and 2.

The system includes a set of Shredders that are
responsible for shredding a given data source (e.g.,
Wikipedia data, XML files) it into a series of Column
Tables. The current implementation contains general
purpose shredders, such as relational databases and
XML files, and shredders that are specifically designed
for popular systems, such as Wikipedia and DBLP.
Each Column Table contains distinct and clean atomic
values of a particular type, for example first names,
surnames, cities, and universities. This is achieved
through mechanisms that focus on cleaning the repet-
itive, overlapping, and complementary information in
the resulted column tables.
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• Entity type Person contains the following data (attribute7→source): Person
id7→autoincrease, full_name7→FullName, university7→University, id full_name university job_title
job_title7→random{PhD student, postdoc, lecturer, etc}. e_p1 Noela Kuglen Goshen College professor

(a) • Entity type Article contains the following data (attribute7→source): (b) e_p2 Nikoline Paccini University of Dubrovnik postdoc
id7→autoincrease, author_17→Person, ..., author_107→Person, e_p3 Adwin Bokhri Columbus State University professor
title7→PaperTitle, journal 7→JournalName, year 7→random[1970-2016]. e_p3 Oliwer Ellert Kwan Dong University PhD student

Article
id author_1 author_2 author_3 author_4...10 title journal year

(c) e_a1 e_p1 e_p2 e_p4 null Social and Human Aspects of Software Engineering Thomas Wolfe Review 2015
e_a2 e_p3 null null null Road Detection in Panchromatic SPOT Satellite Images Wire Journal International 2014
e_a3 e_p4 e_p2 null null Constraint Based Object State Modeling Review of Metaphysics 2016

Fig. 2. (a) Definition for two entity types. (b) Data generated for Person entity type. (c) Data generated for Article entity type.

In addition, the system also uses rules that specify
how the values of the column tables are to be com-
bined together or modified and guide the creation of
a new set of column tables. Data resulted from rules
are stored in Derived Column Tables, and are actually
used by the system in the same way as column tables.
Our current implementation, supports identify function
rule meaning that the resulted derived table is identi-
cal to the column table without any modification. It
also supports function rules that combining column ta-
bles between them or with strings. As an example, con-
sider a derived column table for FullName. The rule for
FullName represents the concatenation of values from
FirstName with a space character and values from Sur-
name. This is, for example, expressed in the system as
‘FirstName + " " + Surname’.

EMBench++ also maintains a Repository that main-
tains internal data, including the Column Tables, De-
rived Column Tables as well as generated entities and
data sets. Note that the system contains a default repos-
itory with a number of Column Tables, for example
1,2 million first names, 293,5 thousands surnames,
8,6 thousands universities and 22,5 thousands titles of
journal articles.

The system also contains a set of Entity Modifiers.
Each modifier is responsible for incorporating a partic-
ular type of heterogeneity in the specified entities. As
explained in [23], EMBench contains implementations
for set of Entity Modifiers, including misspellings,
word permutations, acronyms and abbreviations.

In the updated version of the system, i.e., EMBench++,
we have incorporated mechanisms for Volatility. In
short, these mechanisms focus on heterogeneity that
appears in entities due to time changes. The developed
mechanisms for volatility are presented and discussed
in Section 4.3.

User Configuration allows users to configure the pa-
rameters related to the generation of data. Primarily,
this involves configuring the desired entities and data
collections. With respect to the entities, users define
the entity types to be generated by specifying the num-

ber of entities, the attributes of each entity and the
source for the attribute values. The source is a (De-
rived) Column Table along with a distribution (i.e.,
normal or Zipf) or a random value within a given
range.

In addition, EMBench++ has mechanisms that al-
low users to use a generated entity value as the source
of entities, which basically means that the result will
be not independent tables but a complete database with
foreign keys among its tables. The details are intro-
duced and discussed in Section 4.1.

EMBench++ does not only allow users to generate
and apply modifiers over individual entities (as the pre-
vious version) but also allows generating collections
that contain various data sets of entities. As we later
describe (Section 4.2), users can specify a collection
with a number of data sets. Each data set can contain
a different set of Entity Modifiers or the same set but
different levels of destruction. The system also pro-
vides different options, refer to as propagation type,
for generating the data sets within the same collection.
The mechanisms related to collection generation are
described in Section 4.2.

4. Advanced Generation of Benchmark Data

The primary concern of EMBench++ is the gener-
ation of data that goes beyond individual entity types.
In particularly, we need the generated entity sets to
capture all the aspects required for a complete and ex-
tensive evaluation of matching-related methods, which
were discussed in Section 2. Two important aspects
are the existence of inner-relationships between enti-
ties (also referred to as correlations) and the incorpora-
tion of all possible heterogeneities. To formally incor-
porate these aspects in the entity sets of our system, we
use a model that assumes the existence of an infinite
set of entity identifiers O, an infinite set of names N
and an infinite set of atomic values V .
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Definition 1 An entity is a tuple that consists of an
identifier o∈O and a finite set of attribute name-value
pairs 〈n, v〉, where n∈N and v∈V∪O. The sequence of
attribute names 〈n1, n2, ..., nk〉 of an entity e is referred
to as the type of the entity.

An entity set, denoted as I(n1,...,nk), is a set of en-
tities {e1,...,en}, where I∈N and is referred to as the
name of the entity set, and all the entities in the set are
of the same type 〈n1,...,nk〉.

Note that the fact that a value of an attribute in an en-
tity can be an atomic value or the identifier of another
entity, is the main mechanism that allows entities to
rerate to each other. In what follows, we will use no-
tation ei.n j to denote the value v j corresponding to at-
tribute n j for entity ei. For example, e1. f ull_name in
Figure 2 returns “Noela Kuglen”.

EMBench++ includes a set of modifiers responsi-
ble for incorporating particular types of heterogeneity
(Section 3). A modifier fi is tuple 〈i, {〈t,l〉}〉 where i is
the identification name and each pair t-l provides the
level l of the particular configuration setting t. Our im-
plementation follows this definition and supports mod-
ifiers with a number of configuration settings, i.e., set
of t-l pairs. However, for simplicity, in the remaining
paper we assume modifiers with only one pair and thus
a modifier corresponds to tuple 〈i, t, l〉.

The modifiers are not executed on the whole entity
set but on a subset of it. Initially, the entity set Ik−1
into two sets: Im

k−1 that contains randomly selected en-
tities and Io

k−1 that contains the remaining entities, i.e.,
Io
k−1=Ik−1\Im

k−1. The entities of Io
k−1 are directly in-

cluded in the entity set Ik whereas the entities of Im
k−1

are first modified and then included in Ik.

Definition 2 A modified entity set is the entity set Im

resulted by a sequential execution of the modifiers f1,
f2, . . . , fm over entity set I, i.e., Im= fm( fm−1( . . . f1(I))).

Each fk(Ik−1) creates sets Im
k−1 and Io

k−1 such that
Ik−1=Im

k−1∪Io
k−1 and |Im

k−1|=c with c being a constant.
Then, fk(Ik−1) = Io

k−1 ∪ { fk(ei) | ∀ ei ∈ Im
k−1 }.

The constant c is given to the system for selecting
the number of entities from I that should be modified,
i.e., c≤|I|. Our current implementation also accepts se-
lecting the number of entities using a percentage over
I, denoted as p, and computes c as |I|×p.

Consider again a modified entity set, i.e., Ik= fk−1(Ik−1).
It is also a set of entities generated when modifier fk−1
is applied on the entities on Ik−1. This operation is de-

noted as Ik−1
fk−1→ Ik. Since the result of a modifier is

<attribute name="author"
min-occurence="1" max-occurence="10" >

<namespec>
<factor type="constant">author</factor>

</namespec>
<valuespec>

<factor type="value-set" distribution="zipf">
Author

</factor>
</valuespec>

</attribute>

Fig. 3. Configuration of author attributes in the Person entity set.

also an entity set, it can also be used as an input to an-
other modifier. Thus, a modified entity set may be the
result of a series of different modifiers applied on the

original entity set (as given in Definition 2), i.e., I
f1→I1

f2→I2 ...
fm−1→ Im−1

fm→Im.

Definition 3 Let Im be a modified entity set for I and
em∈Im be the modified entity of e∈I. An entity match-
ing scenario is then tuple 〈I, em, e〉 and it is said to be
successfully executed by a matching-related approach
if it returns the entity e as a response when provided as
input the pair 〈I, em〉, i.e., returns e as the best match
of em in the entity set I.

Once EMBench++ generates the entity set I, as
specified by the user, it executes the selected and con-
figurated modifiers f1, f2, . . . , fm. The latter creates
the modified entity set Im. The two entity sets are then
used for evaluating a matching-related approach by
generating an entity matching scenario 〈I, em, e〉 ∀e∈I
with e.id=em.id where em∈Im. The evaluation of the
matching-related approach is related to its ability to de-
tect and return e as the best match of entity em in the
entity set I.

4.1. Foreign Key Relationships

The data models followed by RDF and relational
databases support internal references (i.e., namely for-
eign keys in databases), which is considered as an es-
sential aspect. The primary reason is that foreign keys
model the real world relationships as references in the
data. Also, they are especially useful for encoding cas-
cading relationships, i.e., having multiple foreign keys
in tables with each foreign key referring a different par-
ent table. In addition, satisfying referential integrity,
i.e., ensuring that foreign keys agree with the primary
key that the foreign keys refer to, enforces data consis-
tency. For being able to support foreign keys we have
included special mechanisms in EMBench++.



E. Ioannou and Y. Velegrakis. / EMBench++: Benchmark Data for Thorough Evaluation of Matching-Related Methods 7

The first mechanism is in the configuration. In
the previous version of our benchmarking system,
users could define entity sets using attributes that
are either Column Tables or Derived Column Tables.
EMBench++ enhanced this part and also allows defin-
ing entity sets in which the values of the entity at-
tributes are identifiers to entities, either of the same
set (i.e., type) or to entities from other entity sets. In
other words, entities can now have references to other
entities.

The second mechanism for enabling usage of for-
eign key relationships is incorporated in the Genera-
tor. More specifically, the Generator uses the configu-
ration of each Entity Type and of each of its included
attributes to create the entities. The foreign keys mech-
anism is applied when the configuration detects that
the values of a particular attribute are another Entity
Type. In this case, the Generator does not include an
actual value, i.e., from a (Derived) Column table, but
identifiers from the specified Entity Type.

The selection of identifiers from the specified En-
tity Type can be also influenced by the users (through
configuration). More specifically, users can choose be-
tween a random or Zipfian option (Figure 3). The ran-
dom option will do a random selection among all the
identifiers of the given Entity Type without repetitions.
The Zipfian option will do the selection based on a
Zipfian distribution of all identifiers of the given En-
tity Type. The latter implies that the majority of the
selected identifiers would appear few times and only
a small number of the select identifiers would appear
many times.

4.2. Generating Collections

As discussed in Section 2.1, to have an an exten-
sive evaluation we need to examine how the matching-
related methods behave when modifying important
data characteristics, such as the size of the data set
or the destruction level of the modifiers. For exam-
ple, with respect to the level of the modifiers, it would
be beneficial to apply the modifiers with the different
level on the original entity set. On the contrary, with re-
spect to the size of the data, it would reasonable to start
from the original entity set and keep incrementally in-
cluding entities, thus each time we use the previously
created entity set.

Definition 4 Let Fa denote a set of modifiers, i.e.,
Fa={ f1, f2, . . . }. We allow the following operations:
• addition(Fa, f j): Fa = Fa ∪ { f j}

C-A0 C-A1 C-A2
Fa1={} Fa2=addition(Fa1,〈missp.,10%〉) Fa3=adjust(Fa1,missp.,10%,+)
person C-A0.person + misspelling 10% C-A0.person + misspelling 20%
article C-A0.article + misspelling 10% C-A0.article + misspelling 20%

C-B0 C-B1 C-B2
Fb1={} Fb2=addition(Fb1,〈volat.,10%〉) Fb3=adjust(Fb2,volat.,10%,+)
person C-B0.person + volatility 10% C-B1.person + volatility 20%
article C-B0.article + volatility 10% C-B1.article + volatility 20%

Fig. 4. Independent and Sequential propagation.

• deletion(Fa, f j): Fa = Fa \ { f j}
• adjust(Fa,t,l,�): ∀ f j∈Fa with f j.type=t

7→ f j.level= f j.level�l, where �={+,−}

As explained in Definition 2, a modified entity set
results when we execute modifiers f1, f2, . . . , fm over
an entity set. We now use symbol Fa to denote a se-
quence of modifiers, i.e., Fa={ f1, f2, . . . } and examine
the generation of collections that contain data sets on
which we execute different modifier sequences.

As shown in Definition 4, a sequence of modifiers
Fa can either be extended with another modifier (i.e.,
addition operation), condensed by removing one of the
modifiers (i.e., deletion operation), or adjusted by al-
tering properties of selected modifiers (i.e., adjust op-
eration). The adjust operation is given a configuration
setting t, the level l, and the activity �. The result is
to alter all modifiers containg a configuration setting
equal to t by setting the value of this configuration set-
ting, i.e., t, from level to level�l. If, for example, we
have Fa={ f1} with f1=〈missp.,attr.-per.,10%〉 and we
apply adjust(Fa,attr.-per.,5%,+) then the f1 in Fa be-
comes 〈missp.,attr.-per.,15%〉.

Definition 5 Given an entity set I and a collection of
modifier sets Fa, Fb, Fc, . . . , then:
(i) an independent propagation results in sets

Ia=Fa(I), Ib=Fb(I), Ic=Fc(I), . . .
(i) a sequential propagation results in sets

Ia=Fa(I), Ib=Fb(Ia), Ic=Fc(Ib), . . .

According to the above definition, we consider col-
lections as follows: starting by a modifier sequence Fa

and a set of operators, we first apply the operators over
Fa and generate Fb, Fc, . . . . These modifier sequences
are then executed over the entity sets, starting from
the original entity set I, and considering the requested
propagation.

Figure 4 shows two example collections, each with
three data sets. The data sets of the first collection, i.e.,
C-A, include an increasing level of misspelling in their
entity sets. The first data set (i.e., C-A0) has a zero
level of misspelling, the next (i.e., C-A1) has 10%, and
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<volatility source-template="Author" rounds=3>
<class type="addition" attribute="fullname"

source="Surname" separator="-; "></class>
<class type="replacement" attribute="fullname"

source="Surname"></class>
<class type="replacement" attribute="university"

source="University"></class>
<class type="continuous" attribute="job_title"

deviation="-1,+2"></class>
</volatility>

Fig. 5. Configuration of the volatility modifications.

the third one (i.e., C-A2) has 20%. C-A is an indepen-
dent propagation with both C-A1 and C-A2 generated
from C-A0. Note that the requested modifiers and level
are executed on all entity types of the data sets, in this
situation on Person as well as Article. C-B0 is similar
example with one volatility modifier. As shown, C-B
is a sequential propagation with C-B1 generated from
C-B0 and C-B2 generated from C-B1.

4.3. Volatility

Applications, especially Web 2.0 applications, focus
on enabling and encouraging users to constantly con-
tribute and to modify existing content. For example, an
analysis of DBPedia [33,34], revealed that the data de-
scribing the entities were modified in time, with only
some of the data remaining the same. Changes affect
not only values but might also involve entities splitting
or being merged, a form of semantic evolution [40].

EMBench++ provides mechanisms that allow users
to generate sequential data sets, with the entities of
each succeeding data set being the evolved version
of the entities from the preceding data set. Volatility
mechanisms are either value-level or attribute-level, as
follows:

A. Value-level Mechanisms. The first group of
mechanisms incorporate modifications in the entity
values. Given an entity set I(n1,...,nk)={e1,...,en}, and
some attribute name ni, the value-level mechanisms
will modify the value corresponding to ni in the enti-
ties, i.e., e1.ni, e2.ni, . . ., en.ni. The modification can be
of three different kinds.

A.1) Replacement: that substitutes the value of the
attribute e j.ni with another value selected from a given
(Derived) Column Table. As shown in the Figure 5,
values of attribute “university” will be replaced with
values from the University Column Table.

A.2) Continuous: that is used on attributes that take
values from a restricted set, e.g., job_title takes values
from {PhD student, postdoc, lecturer, ...}, and replaces
the existing value with the next one in the sequence
of the allowed values. It is also possible to change the

Person :: C-B0
id full_name university job_title

e_p1 Noela Kuglen Goshen College professor
e_p2 Nikoline Paccini University of Dubrovnik postdoc
e_p3 Adwin Bokhri Columbus State University professor
e_p3 Oliwer Ellert Kwan Dong University PhD student

Person :: C-B1
id full_name university job_title

e_p1 Noela Kuglen-Airta Goshen College professor
e_p2 Nikoline Paccini Goshen College lecturer
e_p3 Adwin Bokhri University of Vermont professor
e_p3 Oliwer Ellert Presidency University researcher

Person :: C-B2
id full_name university job_title

e_p1 Noela Kuglen-Airta Goshen College professor
e_p2 Nikoline Saro Keele University senior lect.
e_p3 Adwin Bokhri University of Vermont professor
e_p3 Oliwer Ellert Presidency University researcher

Fig. 6. A collection with data volatility.

selection mechanism and instead of selecting the one
immediatelly after, select the one before or the one k
positions after.

A.3) Addition: which maintains the existing value
but adds to it another one from a specific (Derived)
Column Table. The existing and new value are sepa-
rated using a given character, for example “-” or “ ”.

Figure 6 illustrates a collection with evolving data
sets following the configuration shown in Figure 5.
Thus, the entities of C-B1 are the evolved version of
the entities of C-B0, and the entities of C-B2 are the
evolved version of the entities of C-B1. Consider again
the configuration of the volatility modifications. It in-
cludes four modifications. The first is the addition of
values from column table Surname to attribute full-
name with “-” as the separator, e.g., the “Noela Ku-
glen” from C-B0 becomes “Noela Kuglen-Airta” in
C-B1. The second modification is replacement of the
value of fullname with a value from Surname, e.g.,
“Nikoline Paccini” from C-B1 appears as “Nikoline
Saro” in C-B2. The third modification is similar to the
second one. It involves the replacement of the value
of university with a value from University, e.g., the
university of entity with id “e_p2” is “University of
Dubrovnik” in C-B0, changes to “Goshen College” in
C-B1, and to “Keele University” in C-B2. The last
modification is for the job_title attribute. This was
originally an ordered list of values and now the modifi-
cations is for taking the value either to the value found
one place before in the list or up to two places after-
wards. In the figure, this is present in entity with id
“e_p3” that was a “PhD student” in C-B0 and a “re-
searcher” in C-B1.

B. Attribute-level Mechanisms. The second group
contains mechanisms that operate on the attribute-
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level. Thus, for a given entity set I(n1,...,nk)={e1,...,en}
the result involves modifications on the attribute names
as well as the reflection of these modification on the
entities. More specifically, the attribute-level mecha-
nisms can be:

B.1) Elimination: that removes selected attributes
from the entity set and thus eliminates the correspond-
ing values from all entities. For example, if a user re-
moves attribute ni then the system (i) will convert I
into I(n1, ..., ni−1, ni+1, ..., nk) and (ii) will remove ni

from all entities of I, i.e., e1.ni, e2.ni, . . ., en.ni.
B.2) Expansion: that includes additional attribute

names in an entity set while also generating the val-
ues for these attributes in all the corresponding enti-
ties. Expansion of I with attribute names nk+1, ..., nk+ j,
implies that the system (i) will now use I(n1,...,nk,
nk+1, ..., nk+ j) and (ii) will generate values for these
attributes for all entities, i.e., e1.nk+1, ..., e1.nk+ j, ...,
en.nk+1, ..., en.nk+ j.

5. Empirical Evaluation

In this section we illustrate an empirical use and
evaluation of the introduced benchmarking system. We
aim at examining different aspects of EMBench++ and
describe and report our different assessments.

More specifically, we start with an overview of the
collections used in existing publications (i.e., static
data) and discuss the advances offered by EMBench++

(Section 5.1). Next is an illustration of generated data
collections focusing on collective resolution and en-
tity evolution (Section 5.2). We then continue with a
comparison between collections used in the literature
with the data sets that EMBench++ can generate (Sec-
tion 5.3). Finally, we provide an example illustration
on how data collections generated by our system have
been used for testing a real matching-related technique
(Section 5.4).

5.1. Advances over Static Collections

The majority of data collections used in the litera-
ture are from a small set of works [10,19,36,37] and
only few include entities of other types [11,27,32,36].
We follow this separation in our comparison. Table 1
focuses on one publication-related collections while
Table 2 on collections of various entity types.

As Table 1 shows, most publication-related collec-
tions are of a small size. For instance, Cora contains
6.107 citations and DBLP/ACM contains 4.671. The

largest collections are the KDD Cup 2003 and the Four
PIMs. Unfortunately, the latter is from personal data
and not publicly available. Furthermore, all these data
collections do contain any evolution data.

The situation is a little better with respect to col-
lections containing different entity types (i.e., Table
2). Here we have collections of larger sizes, for ex-
ample IMDB/DBPedia containing 50.797 movies and
Wikipedia containing 5,48M entities. Although this is
a positive aspect, there are other issues when evalu-
ating algorithms using these collections. The first is
that these collections have a low number of duplicates
(i.e., from 0 to 2 instances per entity). This is because
the collections were typically created by merging two
sources. For example, in the IMDB/DBPedia collec-
tion we would have one instance from IMDB and one
instance from DBPedia describing the same real world
object. Wikipedia, which is among the largest collec-
tions, does not have any duplicates, i.e., we see only
one instance per entity. Another issue with these col-
lections is that the absence of evolution data. The only
exception is with Wikipedia, since one can use the pre-
vious versions of the collection.

As previously discussed, EMBench++ is able to al-
leviate the aspects of existing collections that put lim-
its on the possible evaluations. These aspects are the
capability of generating collections of large sizes, con-
taining various entity types, including various number
of duplicates, and capturing evolution.

5.2. Illustration of Generated Data Collections

5.2.1. Collective Resolution
Evaluating collective matching methods, for exam-

ple those briefly discussed in part B of Section 2.2, re-
quires investigating the behavior of the methods un-
der various data sets characteristics. We now explain
how EMBench++ can be used for generating collec-
tions that allow investigating such characteristics.

For example, consider that we have a technique and
would like to examine how it behaves when altering
the following characteristics:
(a) collection size defined as the total number of enti-
ties in the data set on which the technique is executed.
This would help to verify that the technique is scalable
and thus able to efficiently process collection of vari-
ous sizes, e.g., collections with 1.000 as well as collec-
tions with 1 million entities.
(b) cleanliness, which is the percentage of the total
number of duplicates with respect to the total number
of clean entities in the data set. For example, we would
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Publication-related Data Collections
Dataset Types Instances Entities Duplicates Public Evolution Ground-truth

Cora, e.g., [37,10,20] citations 6.107 338 1-21 yes no included
DBLP/ACM, e.g., [36,19] citations 4.671 2.552 1-2 yes no included

CiteSeer, e.g., [37,19] citations 1.031 558 1-21 yes no included
Four PIMs, i.e., [10] citations total=103.435 total=9.989 avg. 10 no no manually

KDD Cup 2003, e.g., [38] papers, authors 58.515 authors 29.555 papers & not given yes no included
13.092 authors

EMBench++ citations, authors, * * * yes yes included
affiliations, etc.

Table 1
Comparison with publication-related collections.

Collections of Various Types
Dataset Types Instances Entities Duplicates Public Evolution Ground-truth

Biz, i.e., [10] business 5.000 each entity 87 avg. 5.000 not stated artificial included
IMDB/DBPedia, i.e., [36] movies 50.797 22.863 0-2 yes no included

Amazon/Google, e.g., [32,27,36] products 4.393 1.104 0-2 yes no included
Abt-Buy, e.g., [27] products 2.173 1.097 0-2 yes no included

Wikipedia, DBpedia, e.g., [11] various 5,48M3 5,48M none yes yes included
LinkedGeoData, e.g., [11] location-related 1.073M4 1.073M none yes no to other systems

EMBench++ various * * * yes yes generated
Table 2

Comparison with collections of various entity types.

like to check what happens when only 1% of the enti-
ties in the collection are duplicates and what happens
when 50% are duplicates.
(c) entity size, i.e., the number of attributes included
in the entities. This could assist in testing whether the
technique can handle small entities, e.g., composed by
1-2 attributes, as well as large entities, i.e., composed
by 8-10 attributes.
(d) duplication, given the number of duplicates de-
scribing the same real world entity. For example, test if
the technique can handle collections in which a maxi-
mum of 2 entities can refer to the same real world ob-
ject as well as collections in which up to 25 entities
might refer to the same real world entity.

We used EMBench++ to generate four collections
containing a small number of data sets, with each col-
lection related to one of the four investigated charac-
teristics. The specific characteristic remained identical
for all the data sets in the collection. The other char-
acteristics were increased among the data sets of the
collection. For the particular generation we focused on
Person and Article entity sets, which are the most com-
monly used types in existing works (Section 5.1).

Figure 7 provides two illustrations of the collections
(i.e., the two plots on top of the figure) as well as
detailed statistics (i.e., the four tables) for their data
sets. Collection A is related to the collection size, i.e.,
characteristic a. As shown in the figure, data set A-
1 contains 38.000 entities, A-2 contains 76.000, A-3

contains 114.000 entities, and A-4 contains 152.000.
Consider now data set A-1. It contains 38.000, out of
which 36.000 are clear and 2.000 refer to the same
real object. Thus, cleanliness is 5.6% (i.e., cleanli-
ness=2.000/36.000*100) and it is the same for all data
sets of collection A. entity size is 15 (i.e., the total
number of attributes used in the entities) and duplica-
tion is 2 (i.e., maximum of 2 entities refer the same
object).

Collection B is related to the cleanliness, meaning
that only this increases among the data sets of the col-
lection whereas the other characteristics remain the
same. Note that in this situation the entity size could
not be exactly the same but it is almost the same. Col-
lection C is related to entity size and thus we see the
same value for collection size, cleanliness, and du-
plication (i.e., 85.500, 5,5%, and 2). Lastly, Collec-
tion D is related to duplication. Thus, D-1 to D-7 data
sets contain an increasing number of duplicates for the
same real world entity while having the same clean-
liness and entity size. Generating identical collection
sizes for all data sets of collection D was not possible,
so we see an only slightly increasing value.

5.2.2. Entity Evolution
As explained in part C of Section 2.2, a recently

appeared research area focuses on dealing with the
volatile nature of the data. Our second usability in-
vestigation generates data suitable for evaluating such
methods.
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Collection A
A-1 A-2 A-3 A-4

• Collection Size 38.000 76.000 114.000 152.000
Person 28.500 57.000 85.500 114.000
Article 9.500 19.000 28.500 38.000

• Cleanliness 5,6%
Person clean 27.000 54.000 81.000 108.000
Article clean 9.000 18.000 27.000 36.000

• Entity Size 15 attributes
Person attr. 6 6 6 6
Article attr. 9 9 9 9

Collection B
B-1 B-2 B-3 B-4

• Collection Size 107.000-115.000
Person 86.800 83.500 80.300 77.000
Article 28.930 27.830 26.750 25.680

• Cleanliness 2% 3% 5,0% 7%
Person clean 85.500 81.000 76.500 72.000
Article clean 28.500 27.000 25.500 24.000

• Entity Size 15 attributes
Person attr. 6 6 6 6
Article attr. 9 9 9 9

Collection C
C-1 C-2 C-3 C-4

• Collection Size 85.500
Person 57.000 64.125 68.400 71.250
Article 30.000 22.500 18.000 15.000

• Cleanliness 5,6%
Person clean 54.000 60.750 64.800 67.500
Article clean 28.500 21.357 17.100 14.250

• Entity Size 13 15 17 19
Person attr. 6 6 6 6
Article attr. 7 9 11 13

Collection D
D-1 D-3 D-5 D-7

• Entities 40.000 45.796 52.432 60.029
Person 30.000 34.347 39324 45022
Article 10.000 11.449 13.108 15.007

• Cleanliness 0,7% (for all Person & Article data sets)
• Entity Size 15 (6 attr. for Person & 9 for Article)
• Duplication [1-1] [1-3] [1-5] [1-7]

Fig. 7. Two illustrations and statistics for the data sets in Collections
A, B, C and D (can be used for evaluating collective resolution).
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Fig. 8. The number of evolved entities as well as the ones that re-
mained the same in all the data sets in Collection E.

Using EMBench++ we created a collection that
contains data sets with entities evolved in time. We
used Person entities with the configuration shown in
Section 4.3. Starting from a data set of 30.000 Per-
son entities, we created a total of five data sets (named
E1, E2, E3, E4 and E5) with each data set containing
an evolved version of 3.000 entities from the previous
data set.

The resulted data sets are exactly the same except
for the number of duplicated entities. More specifi-
cally, the total number of entities is 30.000 and the
number of entity attributes is 5. Figure 8 provides a
graphical illustration of the data sets in Collection E.

5.3. Representation of Real World Situations

We now continue with a comparison between data
collections generated by EMBench++ with real world
data from existing collections. The particular evalu-
ation aims at illustrating that the introduced mecha-
nisms are able to generate data that actually represent
real world situations.

The first aspect we investigated is the distribution of
the values generated by EMBench++. For this evalu-
ation we retrieved people included in two data collec-
tions. The first corresponds to actors included in DB-
Pedia movies and the second to authors included in
publications generated by our system (e.g., publication
collections shown in Figure 7). From these two collec-
tions, we used the initial 15.500 distinct names, i.e.,
DBPedia actors and EMBench++ publication authors.
We then extracted the first names and computed the
appearance frequency of each first name. Figure 9 pro-
vides the distribution of the first names for the two col-
lections. The plots illustrate the resemblance between
the frequency of first name appearance and actually il-
lustrate that for both collections the first names follow
the Zipfian distribution.

We also examined whether our system can capture
evolution as this occurs in the real world applications.
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Fig. 9. Distribution of the first names from (a) actors from DB-
Pedia, and (b) authors generated by our system.
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Fig. 10. The percentage of evolved people entities between (a)
two DBPedia versions, and (b) the E1-E2 collections.

To examine this we used data from two different ver-
sions of DBPedia and in particular data from DBPe-
dia November 2014 and from 2015. We then analyzed
the “Persondata” data sets from both versions. More
specifically, we computed the number of entities from
the 2015 version that had different values than the
November 2014 version. This showed that 154.814 en-
tities evolved and 908.454 remained the same, giving
a percentage of 14,5% of evolved entities.

Figure 10 shows the number of entities that have
evolved as well as the entities that remained the same
between the particular DBPedia versions. Further-
more, the plot also shows the same information for the
entities evolved from the E1 to the E2 collection. It can
be seen that the percentage of evolved entities in E2 is
13%, which is similar to the DBPedia data. In addition,
our system is capable of going to larger percentages as
for example the ones illustrated in Figure 6.

5.4. Demonstration of Testing a Real
Matching-Related Technique

The VLDB 2018 publication [19], provides an ex-
ample of how EMBench++ can be used for generat-
ing and using data for the experimental evaluation. The
authors evaluated their technique on the real data sets
of Cora, CiteSeer, DBLP/ACM, which we discussed
in Section 5.1. The authors have also used generated
data for being able to study the influence of a small
set of particular characteristics, such as the number of
instances in the collection.

More specifically, EMBench++ was used for gen-
erating 3 collections with a total of 12 data sets. Each
collection had a fixed value on one of the investigated
characteristics and an increased number for the other
characteristics, similar to the ones discussed in Fig-
ure 7. The data sets from these collections were used
for evaluating various aspects of the introduced tech-

80
100
120
140

exe
cuti

ont
i

0
20
40
60
80e(m

sec
)

number of instances in the entities

C-1, top-2               C-1, p≥0,7 
C-2, top-2               C-2, p≥0,7exe

cuti
on t

imme
 (m

sec
)

Fig. 11. A plot from the experimental evaluation include in [19],
using data generated with EMBench++.

nique. The following list provides some of the per-
formed tests:

• Collection Size. The test examined efficiency and
effectiveness of the technique when increasing
the number of entities in the collection, for exam-
ple on collections with 2.000 entities until 20.000
entities.
• Number of Instances in Entities. The test investi-

gated the technique with entities consisting of a
different number of instances, for example with
up to 2 instances match the same real world enti-
ties or with up to 7 instances match the same real
world entities.
• Ratio of Duplicates. The test valuated the tech-

nique on collections with different ratio of dupli-
cated vs. clean entities. For example, only 4% of
the collection instances can refer to the same real
world entities, or 10% of the collection instances
refer to the same real world entities.

As an example, consider the evaluation result shown
in Figure 11 (originally shown in [19]). This uses two
of the synthetic data sets, namely the C-1 and C-2 data
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sets. Both data sets contain 20.000 entities but a dif-
ferent number of duplicates with a different ration of
duplicated vs. clean entities (i.e., 10% C-1 and 6% for
C-2) and different number of maximum instances per
entity (i.e., 7 for C-1 and 6 for C-2). The authors per-
formed evaluations for each of these data sets and for
each of the two supported query types, which are top-k
and threshold. Then, they reported execution time (i.e.,
efficiency) according to the number of maximum in-
stances per entity.

6. Conclusions

We have introduced a system for generating bench-
mark data that can be used for the extensive evalu-
ation of matching-related methods. Our main contri-
butions included usage of the available schema infor-
mation during the modification of entities, generating
data sets with evolved versions of entities, and control-
ling not just the generation of single data sets but col-
lections of data sets. Note that the implementation of
EMBench++ with the default repository data as well
as the configuration and collections involved in the us-
ability experiments will be made available in the final
version of the journal.
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EMBench++: Benchmark Data for Thorough Evaluation of Matching-Related 
Methods, by E. Ioannou and Y. Velegrakis 
    
We thank the editor and reviewers for the effort they devoted on our submission, and the positive feedback 
that they have provided, as well as the fact that they have appreciated the usefulness of our work. We have 
carefully revised our manuscript in order to improve its quality. All the comments and suggestions have been 
addressed. We truly believe that the review comments were instrumental to improve several aspects of the 
manuscript, and especially the empirical evaluation section (which has been extended with additional 
evaluations, suggested by the reviewers, as well as clarifications on the previous evaluations). The following 
paragraphs present the actions taken for each of the reviewer’s comments.  

 

Reviewer 1 (Recommendation: Major Revision) 
 
The paper describes EMBench++, an extension of a tool to generate benchmarks for entity resolution. The tool 
(significantly) extends a previous tool (EMBench) with more features, in particular supporting evaluation in contexts where 
entity schemas are different and entities evolve along time. 
 
The tool and its new features provide several functionalities and control mechanisms over the generated datasets. In 
addition the feature to generate evolving entity sets is to me extremely useful to evaluate approaches that tackle the 
important topic of matching representations that change along time. Thus, the paper contains a contribution that is original 
compared to previous work. 
 
- - - - - - - - - - - - 
The paper is reasonably understandable, although it contains several typos and some paragraphs require further 
explanations. In particular, the explanation of Figure 5 and concepts used therein is not clear and need to be improved. 
 
We have addressed the raised concerns in the revised manuscript, i.e., corrected the typos, extended the text 
for incorporating additional explanations, and improved the explanation of Figure 5. The following paragraphs 
provide more details on the actions taken with respect to the incorporated improvements and extensions. 
 
- - - - - - - - - - - - 
I am quite convinced about the usefulness of the tool. Section 5 provides good arguments for the effectiveness of control 
mechanisms for the generation of datasets with desired features. As a small remark, Section 5 does not discuss a proper 
usability evaluation. Thus I suggest changing its title.  
 
Thank you for the suggestion. The title of the particular section in the revised version is “Empirical Evaluation”, 
which we also feel that it better represents the new content of the section.  
 
- - - - - - - - - - - - 
What instead is missing in my opinion is an equally convincing argument for the usefulness and representativeness of the 
datasets that are generated. 
 
Following this comment, we extended the section’s content with respect to the usefulness and 
representativeness of the generated data sets. Detailed comments for these extensions are given in the 
answers of the next paragraphs. 
 
- - - - - - - - - - - - 
I can better explain these concerns with a set of questions that the authors should address in the new version of the paper 
(in case of major revision).  
• Have datasets generated with EMBench and EMBench++ been used to evaluate some entity resolution approach so far? If 
yes, to what extent? 
 



Yes, there are authors that used our system to generate data for evaluating their entity-related techniques. A 
recent VLDB publication (from one of the authors), used data generated from EMBench++ for performing 
experiments in order to compliment the ones performed using real world data sets. For example, test the 
introduced technique when increasing the number of instances in the collection and when having collections 
with a larger ratio of duplicated vs. clean instances. For performing the evaluations, the authors used our 
system to generate three collections with a total of 12 data sets.  
 
In the revised version of our manuscript we have included a short description of the particular experimental 
setup along with a discussion on tests performed using these collections and data sets. The description is 
included under “Demonstration of Usage” in Section 5. 
 
- - - - - - - - - - - - 
• How the data generated with the tool relate to other datasets used to evaluate entity resolution approaches? The relation 
to OAEI is quite clear, but other datasets have been used e.g., DBpedia and LinkedGeoData [1], or ACM-DBLP, Amazon-
Google and Abt-Buy datasets used in [2]. Can you generate datasets of the same size of datasets used so far? Is there an 
upper bound to the size of datasets that you can generate? More specifically, these questions become important in relation 
to datasets used to evaluate approaches for collective matching, entity evolution (a missing reference for this body of work 
is to temporal record linkage [3]), and blocking-based methods. In other words, arguments should be given (after the 
description of the tool, for example in a subsection of Section 5) to convince that the generated datasets have the features 
that are required to test these approaches. To this end, you may compare datasets that you can create with EMBench++ to 
datasets used in these domains (e.g., making a table that list datasets used so far for evaluation and their features, e.g., 
synthetic vs non synthetic, size, etc..), or to sum up main challenges found for these approaches in the sate-of-the-art and 
discuss how these challenges are well represented in datasets built with EMBench++. 
 
In order to address these issues, we have followed the reviewer’s suggestions and compared the data that one 
can create with EMBench++ to data sets used in existing publications. 
 
The related information is included in part “Advances over Static Collections” of Section 5 and is summarized in 
Tables 1 and 2. Comparisons are discussed by separating the data sets into two categories: (1) collections 
containing data related to publications and (2) collections containing other entity types. In all cases, we provide 
also the capabilities of generating corresponding data sets using the EMBench++ system. 
 
- - - - - - - - - - - - 
• Will the tool be publicly available? (I consider this as an important factor for acceptance) 
 
Absolutely! We had done that with the first version of our tool, the EMBench 
(http://db.disi.unitn.eu/pages/EMBench/ ), and we will do the the same for the EMBench++. We will include 
the source code, example configurations (e.g., the ones used for the data sets generated for this manuscript), 
and values for loading the repository. These will also be accompanied by an online tool that will allow users to 
easily execute the functionalities of EMBench++. We have not made it public yet, first because the paper is not 
yet accepted, and second, because we need to polish it so that it will be easier for people to use it, as we had 
done with the EMBench. We are working towards this goal.   
 
- - - - - - - - - - - - 
For the above-mentioned reasons, and despite the merit of the work described in the paper, I think that the paper needs to 
be revised before acceptance. I add more detailed comments below the reference. 
 
We have carefully gone through all provided comments and revised our manuscript in order to capture the 
given suggestions and raised questions. Please see the actions taken in the following paragraphs. 
 
- - - - - - - - - - - - 
P. 2  
The benefit of using synthetic data … → Yes, but real-world data may reflect more heterogeneities that can be found in 
real-world matching problems. I suggest discussing pros and cons of synthetic datasets. 
 



We have rechecked the paragraph from the manuscript that was mentioned in the comment and agree with 
the reviewer that a more complete discussion should be included. Thus, we have updated the particular part 
based on the provided suggestion, i.e., a discussion on the pros and cons of using synthetic/real data sets for 
the evaluation of matching-related techniques. The principal advantage of the synthetic data is that we have a 
better control of the test cases we want to run so that we get a better understanding of the capabilities of the 
system.  

- - - - - - - - - - - - 
P. 4 
It took me a while to understand if derived column tables contain again one column each (which results from rules applied 
to column tables) or contain more columns. I suggest stating this more explicitly. 
 
We have revised the corresponding paragraph to making this explicit. We have also included a small example of 
a rule. 
 
- - - - - - - - - - - - 
"for for the attribute values" → for the aƩribute values 
"These sources is" → These sources are 
 
We have corrected these mistakes in the revised version. Thanks for pointing them. 
 
- - - - - - - - - - - - 
P. 5 
Figure 2: Do you support URIs as identifiers? If yes, do you support URI generation schemes (e.g., 
www.example.org./person/Noela_Kulgen)? It may be helpful for benchmarking entity resolution for RDF. 
 
Our current implementation does not explicitly support URIs as identifiers. However, we do see the usefulness 
and are considering them for the next versions of the system. Our goal is to continue improving it as we did 
with the EMBench, that we extended it to EMBench++.   
 
- - - - - - - - - - - - 
“or the same set but different level of destruction. “ → please, revise “levels of destrucƟon”. 
“Advance Generation of Benchmark Data “ → Advanced GeneraƟon of Benchmark Data (?) 
“either data among the different entities or the heterogeneity level. “ → please, revise. 
“incorporating a particular type of “ → incorporaƟng parƟcular types of 
“I_m=f_m( f_m−1(... f(I))). “ → shouldn’t be I_m=f_m( f_m−1(...f_1(I))) ?  
 
We have revised and corrected these sentences.  
 
- - - - - - - - - - - - 
I suggest revise the explanation of Definition 2. It is a very intuitive concept (and definition) if the intuition that each 
modified entity set contains a subset of unmodified entities along with a set of modified entities is explained before the 
formal definition (e.g., using explanations in the paragraph “EMBench++ uses c to split […]”. 
 
As an action to the comment we improved the explanation of Definition 2. More specifically, we followed the 
suggestion and explained before the definition that each modified entity set contains a subset of unmodified 
entities along with a set of modified entities. We have also modified Definition 1 to make it more complete.  
  
- - - - - - - - - - - - 
P. 6 
“related to its ability of the approach to “ → related to its ability to 
“ensuring foreign keys agree “ → ensuring that foreign keys agree 
“using attributes that are other entity types “ → using aƩributes that have enƟƟes of other types as values (?) 
 
We have revised these sentences in the updated version. 
  
- - - - - - - - - - - - 
Use listings for pieces of code, add a caption and reference them (similarly o Figures) in the text.  



 
We modified the manuscript and now all pieces of code are illustrated as figures, as suggested.  
 
- - - - - - - - - - - - 
P. 7  
Fig. 3.: you have “F_a,” for C-A1, but “F_a,” for C-A2 (similarly for C-B1 and C-B2). Harmonize the notation in the figure. 
“and keep incrementally include entities” → please, revise. 
The adjust function in Definition 4 should be explained better. I suggest also using an example. 
“we first apply the operators over F_a and generated F_b” → we first apply the operators over F_a and generate F_b (?) 
“C-A is a independent” → C-A is an independent 
 
We revisited these sentences. After a close consideration of the unclarity commented for Definition 4, we 
updated the definition for simplifying the description of the particular operation, added a paragraph to 
describe the content of the definition, and included an example.  
 
- - - - - - - - - - - - 
P. 8 
I like Figure 4 but all mechanisms should be exemplified (listing are helpful but less than example of transformations).  
 
We have included an extensive explanation of the data included in the entity sets of this figure. We also related 
them to the corresponding configuration and the volatility mechanisms.   
  
- - - - - - - - 
“four investigated characteristic” → four invesƟgated characterisƟcs  
 
The sentence has been revised. 
  
- - - - - - - - 
P. 9 
The plots and the tables in Fig. 5 should be explained more in details, as well as concepts needed to understand them. For 
example, percentage of clean vs duplicated entities is not clear (what is the total in 5.6%?). Why entities are always 12.000 
in Collection B is not clear. In Collection C, I guess that it sould be 90000 instead of 9000. The semantics of circles in the 
plots is also unclear, because it centers of the circles seem to represent points in the plane. I guess you want to represent 
the size of the datasets, but size seems to be represented by the x axis.  
 
We have revised the particular part of the paper. Some numbers shown in the figure were incorrectly 
transferred from the excel sheet to latex and this caused part of the confusion. Overall, we made the following 
modifications: 

 Updated the figure, including the two plots and all tables. The circles in the top plot represent the 
number of entities in the data set. The circles in the bottom plot represent the percentage of 
duplicates vs. clean values. This information is now included in the figures.  

 We revised the description of the used characteristics and better explained how these are defined. For 
example, cleanliness is the percentage of the total number of duplicates with respect to the total 
number of clean entities in the data set. Cleanliness for A-1 is 5.6% since this data set contains 38.000 
entities, out of which 36.000 are clean and the remaining 2.000 refer to the same real world objects 
(i.e., cleanliness=2.000/36.000*100). 

 The collections are now better explained. Especially the statistics related to Collection A have been 
described in more details in order to provide the clear setting followed for all the collections. For the 
other collections we simply provided an overview.  
 

- - - - - - - - 
“sets have everything the same except the number of attribute entities.” → Please revise “sets have everything the same”, 
and I think it should be “number of entity attributes”. 
“data sets those entities evolved in time.“ → please, revise. 
 
We have revised these sentences.  



 

Reviewer 2 (Recommendation: Major Revision) 
The paper introduces EMBench++, a framework to generate benchmark data. In addition to the previous system, modifiers 
are introduced which modify data across entity types, a technique is implemented to simulate the evolution of entities and 
mechanisms are included to generate not only one single data set but whole collections of data sets. 
 
Altogether, the paper is well written and nicely describes the framework as well as the enhancements of the systems. It is 
getting clear why there is a need for benchmarks supporting for example the evolution of entities because that is an 
emerging challenge for entity linking systems.  
  
- - - - - - - - - - - - 
It would be good to know if the previous system has found widespread support in the entity linking community and 
whether systems are actually using the generated data sets. The main criticism is a missing evaluation to assess whether 
the data sets represent a realistic scenarios and to show the behavior of matching systems on the data sets. The 
characteristics of one data set are investigated but only regarding indicators like the number of entities or the number of 
duplicates. It would be important to see whether the data sets present realistic matching scenarios. For example, it is not 
clear if the implemented mechanism to simulate the evolution of the entities, generates data sets that actually represent 
this scenario. An application of state-of-the-art entity linking systems could show the applicability of the generated data 
sets and in turn of the EMBench++ framework. Such experiments could be similar to the ones presented by the same 
authors in the paper "On generating benchmark data for entity matching", where the influence on the modification level on 
the effectiveness and execution time of one matching system is depicted. To review whether a realistic scenario is for 
example presented by the data generated for entity evolution, characteristics of entities in a knowledge base that actually 
evolve could be gathered and compared to the characteristics of the created data set. By applying a matching system, the 
influence of the evolution on the performance etc. can be shown.  
 
We performed new experiments focusing on investigating whether the data sets generated represent realistic 
matching scenarios. As commented by the reviewer, one aspect should be testing/verifying if “the 
implemented mechanism to simulate the evolution of the entities, generates data sets that actually represent 
this scenario”. To investigate this, we used two versions of DBPedia (i.e., data from DBPedia taken at two 
different times, the first from 2014 and the second from 2015). More specifically, we analyzed the people 
entities and detected the percentage of entities that evolved.  We then used data sets that we generated using 
EMBench++ to also detected the percentage of evolved entities. EMBench++ can indeed generate data with the 
same percentage, and thus, it can capture realistic matching scenarios. In addition, we also compared the 
distribution of the entity values generated by our system against the values of real world entities taken from 
DBPedia. We found out that both follow the Zipfian distribution. These experiments are presented and 
discussed in Section 5, under the “Representation of Real World Situations” part. 
 
We also included a discussion with respect to the comment that an “application of state-of-the-art entity 
linking systems could show the applicability of the generated data sets”. For this, we discuss a real technique 
that used our system to generate benchmarking data for its experimental evaluation. The authors generated 3 
collections with a total of 12 data sets, which they used to compliment the experiments performed using real 
world data sets, i.e., for testing aspects of the technique that could not have been tested using the available 
real data collections.  
 
In addition to the experiments described above, we also revised and further extended Section 5 “Empirical 
Evaluation”. Particularly, the revised version includes a more clear description of the part related to the 
illustration of generated data collections and a new part including a discussion of the static data sets that are 
used in existing publications along with the advances users can get by using EMBench++. 
 
 



Reviewer 3 (Recommendation: Minor Revision) 
This paper describes a system called EMBench++, which generates synthetic tests sets for evaluation of entity matching 
algorithms. The paper is in general well-written and easy to follow, and the tool is likely of practical interest to researchers 
in this field.  
 
- - - - - - - - - - - - 
I have two primary concerns with the paper. One is related to the related work section. This section describes both 
synthetic data generation systems and entity matching algorithms. In my view, the description of other synthetic data 
generation systems (with the exception of ISLab) is somewhat lacking, in that it does not clearly indicate the functionality of 
all systems mentioned and how that compares to EMBench++. For instance, the paper states that when compared to 
SWING “EMBench has more expressive power and offers more flexibility in the specification of the testing data.” More 
detail is needed here in order to fully establish the novelty of EMBench++. It might be helpful to include a table comparing 
the available features of all of the synthetic data generations systems mentioned.  
 
We see the point raised by the reviewer. We did not include such a discussion in the manuscript since this was 
covered by the previous journal. More specifically, the previous journal included a discussion (along with a 
table providing an overview of the differences) of the functionalities provided by our system in comparison to 
the functionalities offered by the SWING system. These functionalities were grouped and discussed according 
to (1) data acquisition, (2) data generation, and (3) matching scenarios.  
 
In the revised version, we included a small summarization of the particular discussion and we also included a 
sentence stating that more information can be found in the description of the previous version of the system.  
 
- - - - - - - - - - - - 
My second concern is that there is no grounding of the synthetic datasets produced by the tool. In order to establish the 
utility of EMBench, it would be helpful to provide an argument (either logical or empirical) that the synthetic datasets it 
produces reflect the types of datasets found in the real world.  
 
We followed the suggestion and include an additional part, named “Representation of Real World Situations”, 
in Section 5 that focuses on the particular aspect of our system.  
 
In short, we performed two new experiments. In the first experiment we compared the distribution of the 
entity values generated by EMBench++ against the values from real world entities. The second experiment 
compares the ratio of evolved entities vs. to the ones that did not change. This comparison was also done with 
respect to entities from a real data set (i.e., DBPedia) and illustrate the resemblances in the specific aspects.  
 
- - - - - - - - - - - - 
Minor issues: 
The references given on page one for matching-related methods (10, 18) are very narrow. This is a very established field, so 
it would be helpful to either refer to more systems or to a survey paper.  
 
The citations 10 and 18 are surveys but this was not clear from the given text. We thus revised the sentence for 
clarifying that the references are surveys for methods related to the studied domain. In addition, we also 
included other citations that are also surveys. 
 
- - - - - - - - - - - - 
When mentioning string similarity metrics in the context of entity matching, it might be helpful to reference Cheatham, 
Michelle, and Pascal Hitzler. "String similarity metrics for ontology alignment." International Semantic Web Conference. 
Springer, Berlin, Heidelberg, 2013. (Full disclosure: this is my own paper, but it does seem particularly relevant here.)  
 
We found the given citation to be a nice paper and included it in our manuscript as it is indeed strongly related.  
 
- - - - - - - - - - - - 
In Section 2.2, it might be helpful to mention that techniques A through D are not mutually exclusive.  
 



Yes, the techniques A through D are not mutually exclusive. The revised version clarifies that we followed the 
particular categorization for ease of comprehension and discussion and that there  actually exist methods that 
span more than one category.  
 
- - - - - - - - - - - - 
The paper seems unnecessarily verbose in some places. For example, the description of foreign key relationships in Section 
4.1, particularly the description of Figure 2(a), is somewhat wordy. The descriptions of the various transformations are also 
rather in-depth, considering that they are fairly straightforward in most cases.  
 
We carefully revisited the whole text for improving the paper and also used the suggestions included in this 
comment to shorten and make more concise particular parts of the sections. 
 
 - - - - - - - - - - - -   
Typos: 
“with the most advance being the ability” -> “with the most advanced being the ability” 
“can be used for correcting previous matching mistakes errors” -> only need either mistakes or errors, rather than both 
“the systems also uses rules” -> “the system also uses rules”  
“the mechanisms focuses on” -> “these mechanisms focus on” 
“these sources is a (Derived)” -> “these sources are a (Derived)” 
 “and keep incrementally include entities” -> “and keep incrementally including entities”? 
“C-B2generated” -> “C-B2 generated” 
“contains data sets those entities evolved in time” -> “contains data sets whose entities evolved over time” 
“exactly the same except the number of duplicated entities” -> “exactly the same except for the number of duplicated 
entities” 
“the number of entity attributes to 5” -> “the number of entity attributes is 5” 
 
We have corrected all the listed typos in the revised version. We also rechecked the text to ensure that there 
are no other typos and syntax errors. 
 
- - - - - - - - - - - - 
Definition 1 should probably mention that e sub 1 through e sub n are drawn from O.  
 
An entity is tuple < v_1, v_2, …, v_k > and it provides a value for each attribute of the entity set, i.e., v_i gives 
the value for attribute n_i. Each v_i can be either an atomic value from V or an entity identifier from O. Having 
entity identifiers as values allows relationships between the entities. For example, an article entity that include 
authors that are “references” to people entities. Thus, it’s the value of the entities that can be drawn from O 
(and not the entities themselves). 
 
We thank the reviewer for pointing out that this was unclear. We have now revised the related parts for 
clarifying these issues. Please see the updated Definition 1 as well as the paragraphs following the particular 
definition. 
 
- - - - - - - - - - - - 
The numbers in should have commas instead of decimals.  
 
We revised the manuscript (i.e., text, figures, and tables) and now use “,” to indicate the decimal place and a 
“.” to separate groups of thousands. 
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