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Abstract. Novel Internet of Things (IoT) applications and services rely on an intelligent understanding of the environment
leveraging data gathered via heterogeneous sensors and micro-devices. Though increasingly effective, Machine Learning (ML)
techniques generally do not go beyond classification of events with opaque labels, lacking machine-understandable representa-
tion and explanation of taxonomies. This paper proposes a framework for semantic-enhanced data mining on sensor streams,
amenable to resource-constrained pervasive contexts. It merges an ontology-based characterization of data distributions with
non-standard reasoning for a fine-grained event detection. The typical classification problem of ML is treated as a resource dis-
covery by exploiting semantic matchmaking. Outputs of classification are endowed with computer-processable descriptions in
standard Semantic Web languages, while explanation of matchmaking outcomes motivates confidence on results. A case study
on road and traffic analysis has allowed to validate the proposal and achieve an assessment with respect to state-of-the-art ML
algorithms.
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1. Introduction

The Internet of Things (IoT) paradigm is emerg-
ing through the widespread adoption of sensing micro-
and nano-devices dipped in everyday environments
and interconnected in low-power, lossy networks. The
amount and consistency of pervasive devices increases
daily and then the rate of raw data available for pro-
cessing and analysis grows up exponentially. More
than ever, effective methods are needed to treat data
streams with the final goal of giving a meaningful in-
terpretation of retrieved information.

The Big Data label has been coined to denote the re-
search and development of data mining techniques and
management infrastructures to deal with “volume, ve-
locity, variety and veracity” issues [1] emerging when
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very large quantities of information materialize and

need to be manipulated. Hence, Machine Learning

(ML) is adopted to classify raw data and make pre-

dictions oriented to decision support and automation.

Progress in ML algorithms and optimization goes hand

in hand with advances in pervasive technologies and

Web-scale data management architectures, so that un-

deniable benefits have been produced in data analysis.

Nevertheless, some non-negligible weaknesses are still

evident with respect to the increasing complexity and

heterogeneity of pervasive computing scenarios. Par-

ticularly, the lack of machine-understandable charac-

terization of outputs is a prominent limit of state-of-

the-art ML techniques for a possible exploitation in

fully autonomic application scenarios.
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This paper proposes a framework named MAFALDA1

(as MAtchmaking Features for mAchine Learning Data
Analysis), aiming to enhance classical ML analysis on
IoT data streams, by associating semantic descriptions
to information retrieved from the physical world, as
opposed to simplistic classification labels. The basic
idea is to treat a typical ML classification problem
like knowledge-based resource discovery. This process
calls for building a logic-based characterization of sta-
tistical data distributions and performing a fine-grained
event detection through non-standard reasoning ser-
vices for matchmaking [2].

The proposal leverages both general theory and
technologies of Pervasive Knowledge-Based Systems
(PKBS), intended as KBS whose individuals (asser-
tional knowledge) are physically tied to objects dis-
seminated in a given environment, without central-
ized coordination. Each annotation refers to an on-
tology providing the conceptualization and vocabu-
lary for the particular knowledge domain and an ad-
vanced matchmaking can operate on the above meta-
data stored in sensing and capturing devices. No fixed
knowledge bases are needed. In other words, infer-
ence tasks are distributed among devices which pro-
vide minimal computational capabilities. Stream rea-
soning techniques provide the groundwork to harness
the flow of annotation updates inferred from low-level
data, in order to enable proper context-aware capa-
bilities. Along this vision, innovative analysis meth-
ods applied to data extracted by inexpensive off-the-
shelf sensor devices can provide useful results in event
recognition without requiring large computational re-
sources: limits of capturing hardware could be coun-
terbalanced by novel software-side data interpretation
approaches.

MAFALDA has been tested and validated in a case
study for road and traffic monitoring on a real data set
collected for experiments. Results have been compared
to classic ML algorithms in order to evaluate the pro-
vided performances. The experimental test campaign
allows a preliminary assessment of both feasibility and
sustainability of the proposed approach.

The remainder of the paper is as follows. Section
2 outlines motivation for the proposal, before dis-
cussing in Section 3 both background and state of
the art on semantic data mining and ML for the IoT.
The MAFALDA framework is presented in Section 4,

1The name should give a retcon with the well-known Quino comic
strip to hint at the shrewd gaze of Mafalda character with her inves-
tigating attitude to life and her curiosity about the world.

while Section 5 and Section 6 report on the case study
and the experiments, respectively. Conclusion finally
closes the paper.

2. Motivation

Motivation for the work derives from the evidence
of current limitations featuring the typical IoT sce-
narios. There, information is gathered through micro-
devices attached to common items or deployed in
given environments and interconnected wirelessly. Ba-
sically, due to their small size, such objects have min-
imal processing capabilities, small storage and low-
throughput communication capabilities. They continu-
ously produce raw data whose volume requires to be
processed by advanced remote infrastructures. Clas-
sical ML techniques have been largely used for that,
but often representations of detected events are not
completely manageable in practical applications: this
is mostly due to the difficulty of making descriptions
interoperable with respect to shared vocabularies. In
addition, usually ML solutions are very much tai-
lored (i.e., trained) to a specific classification problem.
In spite of increasing device pervasiveness (miniatur-
ization) and connectivity (interconnection capability),
data streams produced at the edge of the network can-
not be fully analyzed locally yet. Commonly adopted
data mining techniques have two main drawbacks: i)
they basically carry out no more than a classification
task and ii) their precision increases if they are applied
on very big data amounts, so on-line analyses hardly
achieve high performance on typical IoT devices, due
to computational and storage requirements. These fac-
tors still prevent the possibility of actualizing thinking
things, able to make decisions and take actions locally
after the sensing stage.

IoT relevance could be enhanced by annotating real-
world objects, the data they gather and the environ-
ments they are dipped in, with concise, structured and
semantically rich descriptions. The combination of the
IoT with Semantic Web models and technologies is
bringing about the so-called Semantic Web of Things
(SWoT) vision, introduced in [3] and developed, e.g.,
in [4–7]. This paradigm aims to enable novel classes
of intelligent applications and services grounded on
Knowledge Representation (KR), exploiting semantic-
based automatic inferences to derive implicit infor-
mation from an explicit event and context detection
[8]. By associating a machine-understandable, struc-
tured description in standard Semantic Web languages,
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each classification output could have an unambigu-
ous meaning. Furthermore, semantic-based explana-
tion capabilities allow increasing confidence in sys-
tem outcomes. If pervasive micro-devices are capable
of efficient on-board processing on locally retrieved
data, they can describe themselves and the context
where they are located toward external devices and ap-
plications. This enhances interoperability and flexibil-
ity and enables autonomicity of pervasive knowledge-
based systems, not yet allowed by typical IoT infras-
tructures.

Two important consequences ensue. First of all,
human-computer interaction could be improved, by re-
ducing the user effort required to benefit from com-
puting systems. In classical IoT paradigms, a user ex-
plicitly interacts with one device at a time to perform
a task. On the contrary, user agents –running on mo-
bile computing devices– should be able to interact si-
multaneously with many micro-components, provid-
ing users with context-aware personalized task and de-
cision support. Secondly, even if ML techniques, algo-
rithms and tools have enabled novel classes of analy-
ses (particularly useful in the Big Data IoT perspec-
tive), the exploitation of logic-based approximate dis-
covery strategies as proposed in the present work com-
pensates possible faults in data capture, device volatil-
ity and unreliability of wireless communications. This
supports novel, resilient and versatile IoT solutions.

3. Background

Hereafter main notions on Machine Learning and
Description Logics are briefly recalled in order to
make the paper self-contained and easily understand-
able. Then, most relevant related work is surveyed.

3.1. Basics of Machine Learning

Machine Learning (ML) [9] is a branch of Artifi-
cial Intelligence which aims to build systems capa-
ble of learning from past experience. ML algorithms
and approaches are usually data-driven, inductive and
general-purpose in nature; they are adopted to make
predictions and/or decisions in some class of tasks,
e.g., spam filtering, handwriting recognition or activ-
ity detection. Basically, ML problems can be grouped
in three categories: classification2, regression and clus-

2It should not be mistaken for the same-name problem in ontol-
ogy management, consisting of finding all the implicit hierarchical
relationships among concepts in a taxonomy.

tering. This paper focuses on classification, i.e., the as-
sociation of an observation (sample) to one of a set of
possible categories (classes) –e.g., whether an e-mail
message is spam or not– based on values of its rele-
vant attributes (features). Classification has therefore a
discrete n-ary output.

The implementation of a ML system typically in-
cludes training and testing stages, respectively devoted
to build a model of the particular problem inductively
from training data and to system validation. Evalua-
tion of classification performance is based on consid-
ering one of the output classes as the positive class and
defining:

– true positives (T P): the number of samples cor-
rectly labeled as in the positive class;

– false positives (FP): the number of samples in-
correctly labeled as in the positive class;

– true negatives (T N): the number of samples cor-
rectly labeled as not in the positive class;

– false negatives (FN): the number of samples in-
correctly labeled as not in the positive class.

The following performance metrics for binary clas-
sification are often adopted:

– Precision (a.k.a. positive predictive value), de-
fined as P = T P

T P+FP
– Recall (a.k.a. sensitivity), defined as R = T P

T P+FN
– F-Score, defined as the harmonic mean of preci-

sion and recall: F = 2PR
P+R

– Accuracy, defined as A = T P+T N
T P+FP+T N+FN

Multiclass generalizations of the above formulas [10]
have been also adopted in this paper.

Each available dataset to be classified is split in a
training set for model building and a test set for vali-
dation. There exist several approaches for properly se-
lecting training and test components. Among others,
in k-fold cross-validation, the dataset is partitioned in
k subsets of equal size; one of them is used for test-
ing and the remaining k − 1 for training. The process
is repeated k times, each time using a different subset
for testing. The simpler holdout method, instead, di-
vides the dataset randomly, usually assigning a larger
proportion of samples to the training set.

As detailed in the further Section 6, the perfor-
mance of classification in the approach proposed here
has been compared to the following popular ML tech-
niques:

– C4.5 decision tree [11]: it adopts a greedy top-
down approach for building a classification tree,
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starting from the root node. At each node, the in-
formation gain for each attribute is calculated and
the attribute with the highest score is selected.

– Functional Tree [12, 13]: a classification tree with
logistic regression functions in the inner nodes
and leaves. The algorithm can deal with binary
and multiclass target variables, numeric and nom-
inal attributes, and missing values.

– Random Tree [14]: it combines two ML algo-
rithms, namely model trees and random forests,
in order to achieve both robustness and scalabil-
ity. Model trees are decision trees where every
leaf holds a linear model optimized for the local
subspace of that leaf. Random forests follow an
ensemble learning approach which builds several
decision trees and picks the mode of their outputs.

– K-Nearest Neighbors, KNN [15], is an instance-
based learning algorithm. It locates the k in-
stances nearest to the input one and determines
its class by identifying the single most frequent
class label. It is generally considered not tolerant
to noise and missing values. Nevertheless, KNN
is highly accurate, insensitive to outliers and it
works well with both nominal and numerical fea-
tures.

– Multilayer Perceptron [16]: a feedforward Artifi-
cial Neural Network (ANN), consisting of at least
three layers of neurons with a nonlinear activa-
tion function: one for inputs, one for outputs and
one or more hidden layers. Training is carried out
through backpropagation. The Deep Neural Net-
work (DNN) name characterizes ANNs having
more than one hidden layer and using gradient de-
scent methods for error reduction in backpropa-
gation.

3.2. Basics of Description Logics

Description Logics –also known as Terminological
languages, Concept languages– are a family of logic
languages for Knowledge Representation in a decid-
able fragment of the First Order Logic [17]. Basic DL
syntax elements are:

– concepts (a.k.a. class) names, standing for sets of
objects, e.g., vehicle, road, acceleration;

– roles (a.k.a. object property) names, linking pairs
of objects in different concepts, like hasTire, has-
Traffic;

– individuals (a.k.a. instances), special named ele-
ments belonging to concepts, e.g., Peugeot_207,
Highway_A14.

A semantic interpretation I = (∆, ·I) consists of
a domain ∆ and an interpretation function ·I which
maps every concept to a subset of ∆, every role to a
subset of ∆×∆, every individual to an element of ∆.

Syntax elements can be combined using construc-
tors to build concept and role expressions. Each DL
has a different set of constructors. Concept expressions
can be used in inclusion and definition axioms, which
model knowledge elicited for a given domain by re-
stricting possible interpretations. A set of such axioms
is called Terminological Box (TBox), a.k.a. ontology.
Semantics of inclusions and definitions is based on set
containment: an interpretation I satisfies an inclusion
C v D if CI ⊆ DI , and it satisfies a definition C ≡ D
when CI = DI . A model of a TBox T is an interpre-
tation satisfying all inclusions and definitions in T . A
set of axioms on individuals (a.k.a. facts) sets up an
Assertion Box (ABox), which composes a Knowledge
Base KB together with its reference TBox.

Adding new constructors makes DL languages more
expressive. Nevertheless, this usually leads to a growth
in computational complexity of inference services
[18]. This paper refers specifically to the Attribu-
tive Language with unqualified Number restrictions
(ALN ) DL. It provides adequate expressiveness to
support the modeling patterns described in Section 4.1,
while granting polynomial complexity to both stan-
dard and non-standard inference services. Syntax and
semantics of ALN constructors are reported in Table
1, along with the corresponding elements in the RD-
F/XML serialization of the Web Ontology Language
(OWL 2)3. OWL also supports annotation properties
associated to class and property names, e.g., for com-
ments and versioning information.

3.3. Related work

The semantic-enhanced machine learning approach
proposed here is basically general-purpose, but it has
been particularly devised for the Internet of Things. In
IoT scenarios, smart interconnected objects gather en-
vironmental data samples, useful to identify and pre-
dict many real-world phenomena which exhibit pat-
terns: early research has shown state-of-the-art ML is
effective in the domain of ubiquitous sensor networks
[19], although carried experiments involved a prob-
lem of limited size and complexity and a fixed server

3OWL 2 Web Ontology Language Document Overview (Second
Edition), W3C Recommendation 11 December 2012, http://www.
w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
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Table 1
Syntax and semantics ofALN constructs

Name DL syntax OWL RDF/XML element Semantics

Top > <owl:Thing> ∆I

Bottom ⊥ <owl:Nothing> ∅
Concept C <owl:Class> C

Role R <owl:ObjectProperty> C

Conjunction C u D <owl:intersectionOf> CI ∩ DI

Atomic negation ¬A <owl:disjointWith> ∆I\AI

Unqualified existential restriction ∃R <owl:someValuesFrom> {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}
Universal restriction ∀R.C <owl:allValuesFrom> {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}
Unqualified number > nR <owl:minCardinality> {d1 | ]{d2 | (d1, d2) ∈ RI} > n}
restrictions 6 nR <owl:maxCardinality> {d1 | ]{d2 | (d1, d2) ∈ RI} 6 n}

Definition axiom A ≡ C <owl:equivalentClass> AI = CI

Inclusion axiom A v C <owl:subClassOf> AI ⊆ CI

(and then a centralized architecture) has been used to
store and analyze sensor data.. Extracting high-level
information from the raw data captured by sensors and
representing it in machine-understandable languages
has several interesting applications [20, 21]. The paper
[22] surveyed requirements, solutions and challenges
in the area of information abstraction and presented an
efficient workflow based on the current state of the art.

Semantic Web research has addressed the task of
describing sensor and data features through ontolo-
gies; relevant collections are on the following ontology
catalogues: Linked Open Vocabularies (LOV) [23],
LOV for Internet of Things (LOV4IoT)4, OpenSens-
ingCity5 and smartcity.linkeddata.es6 de-
veloped within the READY4SmartCities project. Best
practices and methodologies for integrating Semantic
Web technologies and ontologies in the IoT are dis-
cussed in [24]. SSN-XG7 [25] is perhaps the most rel-
evant and widely accepted ontology in this field. It is
general enough for being adapted to different appli-
cations. In addition, it is compatible with the Open
Geospatial Consortium (OGC) Sensor Web Enable-
ment (SWE) standards at the sensor and observation
levels [26]. OGC SWE has been used in several frame-
works aiming to grant access to sensor data as RESTful
services or Linked Data [27, 28]. Many projects, e.g.,
SPITFIRE [4], put semantics in networking protocols

4http://lov4iot.appspot.com/
5http://ci.emse.fr/opensensingcity/ns/ontologies/
6http://smartcity.linkeddata.es/
7Semantic Sensor Network Ontology, W3C Recom-

mendation 19 October 2017, https://www.w3.org/TR/2017/
REC-vocab-ssn-20171019

to build full communication frameworks. The problem
of semantic data flow compression in scenarios with
limited resources has been faced in [29] by developing
a scalable middleware platform to publish annotated
data streams on the Web through HTTP.

Unfortunately, the above solutions only allow ele-
mentary queries in SPARQL fragments on RDF anno-
tations. More effective techniques such as ontology-
based Complex Event Processing (CEP) [30] exploit a
shared domain conceptualization to define events and
actions to be run on an event processing engine. Also
the ENVISION [31] and ETALIS [32] projects com-
bine CEP with semantic technologies to perform Se-
mantic Event Processing from different sources: con-
text and background knowledge are represented in
RDF, while SPARQL queries are exploited to identify
complex event patterns from incoming facts populat-
ing a knowledge base. The ACEIS CEP middleware
[33] processes urban data streams in smart city appli-
cations: a semantic information model has been de-
signed to represent complex event services and it is
leveraged for discovery and integration of sensor data
streams via SPARQL queries. Nevertheless, a funda-
mental limitation of CEP approaches is that pattern
detection relies on rigid Boolean outcomes of defined
queries and rules, whereas a more flexible approx-
imated match could better support classification. In
fact, the adoption of KR techniques on large amounts
of instances is useful to annotate raw data and pro-
duce high-level descriptions in a KB. This is suitable
for advanced reasoning, aiming to improve standard
data mining and ML algorithms [34]. In [35] a post-
processing of ML operations –based on ontology con-
sistency check– aims to improve results of associa-

http://lov4iot.appspot.com/
http://ci.emse.fr/opensensingcity/ns/ontologies/
http://smartcity.linkeddata.es/
https://www.w3.org/TR/2017/REC-vocab-ssn-20171019
https://www.w3.org/TR/2017/REC-vocab-ssn-20171019
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tion rule mining. Semantically inconsistent associa-
tions were pruned and filtered out, leveraging logic
reasoning. The framework proposed in [36] combines
ontology-based Linked Open Data (LOD) sources as
background knowledge with dynamic sensor and so-
cial data, in order to produce dynamic feature vectors
for model training. Similarly, [7] exploits ontology-
based data annotation to perform classification and re-
source retrieval. A LOD-inspired approach and an ar-
chitecture are presented in [37] to define, share and
retrieve rules for processing sensor data in the IoT.
While the above works define from scratch complete
semantic IoT platforms, the present paper focuses on
a specific ML approach, which could be integrated
in larger frameworks. Furthermore, the above propos-
als exploit SPARQL queries for reasoning and imple-
menting rules on annotated data, while the approach
proposed here aims to provide more thorough and ro-
bust answers, by supporting also non-exact matches
via non-standard DL inferences. Extensions to stan-
dard reasoning algorithms, supporting uncertainty and
time relationships, have been also proved as effective
in tasks such as activity recognition [38].

Some of the most successful ML methods, such
as ANN and deep learning techniques, suffer from
opaqueness of models, which cannot be interpreted by
human experts and therefore cannot explain reasons
for the outcomes they provide. This is a serious is-
sue for ML adoption in all those sectors which re-
quire accountability of decisions and robustness of out-
puts against accidental or adversarial input manipula-
tion [39, 40]. Research efforts to build decipherable re-
sults of ML techniques and systems are therefore more
and more expanding. The approach adopted in this pa-
per could be an example of that, as it combines seman-
tic similarity measures and classical (frequentist) data
stream mining [41]. Another conceptually easy ap-
proach is to exploit ensemble learning, by combining
multiple low-dimensional submodels, where each in-
dividual submodel is simple enough to be verifiable by
domain experts [40]. In [42] Bayesian learning is used
to generate lists of rules in the if . . . then form, which
can provide readable reasons for their predictions. That
method is competitive with state-of-the-art techniques
in stroke prediction tasks over large datasets, although
training time appears as rather long for IoT scenarios.
The regression tool in [43] is able to translate automat-
ically components of the model to natural-language
descriptions of patterns in the data. It is based on a
compositional grammar defined over a space of Gaus-
sian regression models, which is searched greedily us-

ing marginal likelihood and the Bayesian Information
Criterion (BIC). The approach supports variable di-
mensionality (number of features) in each regression
model, thus allowing the selection of the desired trade-
off between accuracy and ease of interpretation.

Semantic-enhanced ML methods can achieve the
same goals through formal, logic-based descriptions
of models and outputs in order to develop explana-
tory functionalities, so increasing users’ trust. Further-
more, they can be integrated in larger cognitive sys-
tems, where models and predictions are used for auto-
mated reasoning. Semantic data mining refers to data
mining tasks which systematically incorporate domain
knowledge in the process. The framework proposed
here belongs to this research area, which has been sur-
veyed in [44, 45] and includes ontology-based rule
mining, classification and clustering. Ontologies are
useful to bridge the semantic gap between raw data
and applications, as well as to provide data mining al-
gorithms with prior knowledge to guide the mining
process or reduce the search space. They can be suc-
cessfully used in all steps of a typical data mining
workflow. In Ontology-Based Information Extraction
(OBIE) [46], ontologies are also exploited to anno-
tate the output of data mining, and this aspect is also
adopted in our approach. In [47], the authors propose
to use wireless sensor networks and ontologies to rep-
resent and infer knowledge about traffic conditions.
Raw data are classified through an ANN and mapped
to ontology classes for performing rule-based reason-
ing. In [48], an unsupervised model is used for classi-
fying Web Service datatypes in a large number of on-
tology classes, by adopting an extended ANN. Also in
that case, however, mining is exploited only to map
data to a single class.

The exploitation of matchmaking through non-
standard inferences enables a fine-grained event de-
tection by treating the ML classification task as a re-
source discovery problem. Promising semantic-based
approaches also include fuzzy DL learning [49], con-
cept algebra [50] and tensor networks based on Real
Logic [51]. While their prediction performance ap-
pears good, computational efficiency must be still eval-
uated completely and accurately, before considering
them suitable for IoT scenarios.

Summarizing, most semantic-enhanced data min-
ing and machine learning approaches currently sup-
port meaningful data description and interpretation,
but provide limited reasoning capabilities and have
complex architectures. Conversely, classical ML al-
gorithms can achieve high prediction performance,
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but their models and outcomes often have poor ex-
plainability. This paper proposes an approach aiming
to combine the benefits of Semantic Web technolo-
gies with state-of-the-art learning effectiveness, partic-
ularly for IoT data stream mining.

4. Automatic identification of events via
knowledge representation

MAFALDA preserves the classical data mining
and machine learning workflow: data collection and
cleansing, model training, validation and system us-
age. Nevertheless, as reported in Figure 1, semantic
enhancements grounded on DLs change the way each
step is performed. Details about the devised methodol-
ogy are outlined hereafter.

Fig. 1. Framework architecture

4.1. Ontology and data modeling

The overall workflow starts with raw data gathered
e.g., by sensors dipped in a given environment extract-
ing several different parameters, a.k.a. features. In or-
der to support semantic-based data annotation and in-
terpretation, an ontology T models the domain con-

ceptualization along patterns specified hereinafter. T
is assumed as acyclic and expressed in the moderately
expressive ALN DL. This is required by the non-
standard inferences for semantic matchmaking [2] ex-
ploited in the subsequent stages. M3-lite [52] has been
used as upper ontology. For each measuring parameter
(e.g., acceleration, engine load, fuel consumption), T
must include a hierarchy of concepts (each one with
its own properties) derived from the QuantityKind
concept in M3-lite, forming a partonomy of the top-
most concept. In other words, each parameter is repre-
sented via a class/subclass taxonomy featuring all sig-
nificant value ranges and configurations it can assume
in the domain of interest. The depth of the hierarchy
and the breadth of each level will be chosen by the
knowledge modeler; they are typically proportional to
both resolution and range of sensing/capturing equip-
ment, as well as to the needed degree of detail in data
representation.

As an example, Figure 2 shows the class hierarchy
of the domain ontology modeled for the case study
in Section 5. Two different modeling approaches have
been investigated to represent data ranges for mea-
sured parameters in the knowledge base8. In the first
one, each data range associated to a concept is mod-
eled by means of a pair of OWL annotation prop-
erties, named maxValue and minValue, indicat-
ing the maximum and minimum value, respectively.
For example, the concept EngineRPMLevel2 –
corresponding to values from 801 to 900 engine revo-
lutions per minute– is annotated as in Figure 3(a). Af-
terwards, this approach has been modified: the mod-
eling preserves the hierarchy of concepts, but an ex-
plicit semantics is given to the range of potential vari-
ability for each measured parameter. Number restric-
tions associated to each subconcept have been adopted
for that purpose. See the EngineRPMLevel2 con-
cept expressed in this way in Figure 3(b). The latter
approach allows a semantic-based selection also in the
preliminary step of raw data collection: numerical data
are translated to number restrictions and the correct
corresponding concept subclass is identified exactly by
means of the Consistency Check reasoning service [2].
Performance differences related to the above modeling
approaches are described in Section 6.

According to the proposed modeling, a generic data
corpus can be translated to an OWL-based dataset,

8Both the proposed OWL ontologies are available in the project
repository: http://github.com/sisinflab-swot/mafalda
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Fig. 2. Class hierarchy in the domain ontology for the case study

where each record corresponds to an instance of a
proper KB. Regardless of the particular ontology mod-
eling, each individual also includes a set of annota-
tion properties setting up the real output class for each
observable event. As shown in Figure 4, the annota-
tion property name reflects the output attribute, while
the annotation value refers to the output concepts as-
sociated during the dataset building. In particular, the
Traffic Danger ontology [53] has been exploited in
the road monitoring case study described in Section
5 to model traffic congestion and road surface condi-
tions, while novel classes have been defined to repre-
sent the different driving styles. In this way, both a sin-
gle event annotation and the overall dataset –described
w.r.t. well-known vocabularies– can be also: (i) pub-
lished on the Web following the Linked Data guide-
lines [54]; (ii) shared with other users or IoT devices
on the same network; (iii) reused locally for further
reasoning and processing tasks. The modeling effort is
basically a study and manual design procedure. As per
many engineering activities, it could be supported by
software tools for computer-aided design. Protégé by
Stanford University9 is one of the most adopted and
widespread ontology editors and knowledge manage-
ment systems; anyway, also more simplistic and easy-
to-use software could be suitable in this case, given

9https://protege.stanford.edu

the fixed patterns to be followed. In particular, the pro-
posed ontology modeling complies with different tools
(e.g., WebVOWL [55] and LODE [56]) aiming to im-
prove visualization and automatic documentation of
OWL ontologies.

4.2. Training

In this phase training data are automatically gener-
ated, able to define the model used afterward by the
ML algorithm for predictions on test data. In the pro-
posed approach, there is a semantic annotation for each
possible output class, connoting the observed even-
t/phenomenon according to input data. In these terms,
the framework presents a twofold modeling effort: the
Knowledge Base definition (which is basically human-
driven, manually pursued) and the training set genera-
tion (automatically carried out after the first step). The
annotations will be expressed in Concept Components
according to the following recursive definition:

Definition 1 (Concept Component). Let C be an
ALN concept formalized as C1 u · · · u Cm. The
Concept Components of C are defined as follows:
if C j, with j = 1, . . . ,m is either a concept name,
or a negated concept name, or a number restriction,
then C j is a concept component of C; if C j = ∀R.E,
with R ALN role and E ALN concept formalized
as E1 u · · · u Ep, then ∀R.Eh is a concept com-
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(a) Annotation properties

(b) Number restrictions

Fig. 3. Data range modeling

Fig. 4. Example of output class annotation

ponent of C, for each Eh concept component of E,
h = 1, . . . , p.

The training phase is carried out on a set S of n train-
ing samples, each with at most m features. Let us sup-
pose w distinct outputs exist in the training set and the
system must be trained to recognize them. Each fea-

ture value is mapped to the most specific correspond-
ing concept in the reference ontology T . Therefore the
i-th sample ∀ i = 1, . . . , n is composed of: (a) up to m
concept components Ci,1, . . . ,Ci,m annotating its fea-
tures; (b) an observed output Oi labeled with a class
name in the ontology.

Samples are processed sequentially by Algorithm 1
in order to build the so-called Training MatrixM (the
pseudocode uses a MATLAB-like notation for matrix
access).M is a (w + 1)× (k + 1) matrix. All the dif-
ferent outputs are located on the first column while the
k distinct concept components occurring in the train-
ing set are on the first row. In each element of the ma-
trix, there is the number of occurrences of the column
header concept component in the samples having the
row header output. Basically, Algorithm 1 takes the i-
th training sample and first checks its associate class
Oi (lines 4-11): if it is not yet inM (no previous sam-
ple has been associated to that class), it appends a row
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Algorithm 1 Creation of the Training Matrix
Input:

– w: number of output classes;
– n: number of instances in the training set;
– mi: number of concepts defining the description of the in-
stance S i ∀ i = 1, . . . , n ;
– L: reference Description Logic;
– T : acyclic TBox;
– O: vector of the output classes O1,O2, . . . ,Ow;
– S : training set containing {S 1, S 2, . . . S n} instances, with
S i = (Ci,1, . . . ,Ci,mi ,Oi) ∀ i = 1, . . . , n, where Ci, j concepts
and Oi are expressed in L and satisfiable in T .

Output:
– k: number of distinct concepts appearing in S ;
–M : (w + 1)× (k + 1) matrix of occurrences of
the concept components for each observed output.

1: M := 0 // start with a (1× 1) matrix
2: r := 1, c := 1
3: for i := 1 to |S | do
4: ur := findConceptIndex(Oi,M(:, 1))

5: if ur = null then
6: append a row toM
7: r := r + 1

8: ur := r
9: M(ur , 1) := Oi

10: setM(ur , 2 : c) to zero
11: end if
12: for j := 1 to m do
13: uc := findConceptIndex(Ci, j,M(1, :))

14: if uc = null then
15: append a column toM
16: c := c + 1
17: uc := c
18: M(1, uc) := Ci, j
19: initializeM(2 : r, uc) to zeros
20: end if
21: M(ur , uc) =M(ur , uc) + 1 // update occurrences
22: end for
23: end for
24: return k,M

toM setting its values to zeros. Subsequently, for each
concept component Ci, j, if Ci, j is not yet in M (i.e.,
no previous sample includes that concept component),
it appends a column and sets its values to zeros (lines
13-20). Finally, it increases by 1 the value of the cell
corresponding to Oi and Ci, j (line 21).
M gives a complete picture of the training set. Each

output class can be defined now as conjunction of
the concepts having greater-than-zero occurrences in
the corresponding row. By doing so, however, even
very rare concept components are included, which may
have low significance in representing the class. There-
fore, it is useful to define a significance threshold Ts

as the minimum number of samples a concept compo-
nent must appear in, to be considered relevant for the
occurrence of a particular output. The structure ofM

suggests the possibility to define different thresholds
for each output and for each feature:

Ts(i, j) = θ(i, j) |S |

with 0 < θ(i, j) 6 1 ∀i, j being adaptive ratios com-
puted through e.g., a cross-validation process on the
training dataset.

Customized thresholds allow to focus sensitivity on
the features with highest variance and/or the outputs
most difficult to predict. In the road monitoring case
study described in Section 5, the threshold value has
been calculated in a way not disadvantaging sensors
with lower sampling rate or events which occur less
often in the training dataset. In detail, each element
M(i,j) is normalized: (i) according to the individual
feature w.r.t. all the features belonging to the same
class hierarchy (i.e., all classes annotating e.g., temper-
ature value ranges) and (ii) based on a single event with
respect to the remaining ones (e.g., if “Uneven Road
Condition” is much less frequent than “Smooth Road
Condition”, normalization will increase all the values
in the “Uneven Road Condition” row ofM).

The adopted formula is:

Ts(i, j) = Tbase ∗
maxoccur(i, j)− minoccur(i, j)

2

where Tbase is a user-defined base percentage thresh-
old. The result of the training is the association of ev-
ery output class label Oi with a conjunctive expression
composed by the concepts occurring with a normalized
frequency over the threshold.

Therefore, this training approach produces a KB
with conceptual knowledge (the TBox) modeled –as
said– by human experts and factual knowledge (the
ABox) created automatically from the available data
stream, with instances representing the events the sys-
tem is able to recognize.

4.3. Classification

This task refers to the typical ML problem of as-
signing each input instance to a possible output class,
based on its features. The classification exploits a se-
mantic matchmaking process based on Concept Con-
traction and Concept Abduction non-standard infer-
ence services [2].

Given an ontology T and two concept expressions
A and B, if they have conflicting characteristics, Con-
cept Contraction determines a concept expression G
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(Give up) which is an explanation about what in A is
not compatible with B and returns a value penalty(c)
representing the semantic distance associated to it.
Otherwise, if A is compatible with B, but does not
cover it fully, Concept Abduction calculates a concept
expression H (Hypothesis) representing what should
be hypothesized (i.e., is underspecified) in B in or-
der to completely satisfy A, and it provides a related
penalty(a) value. Concept Contraction and Concept
Abduction can be respectively considered as exten-
sions to Satisfiability and Subsumption standard infer-
ence services, which only provide “yes/no” answers in
KR systems.

MAFALDA first labels instance elements to be clas-
sified with respect to the reference ontology, like in
Section 4.1. Their conjunction is then taken as annota-
tion of the instance itself. A linear combination of the
penalty values obtained from matchmaking yields the
semantic distance between the input instance and each
event description Oi generated during training. In par-
ticular, based on the different ontology modeling tech-
niques proposed in Section 4.1, two semantic distance
functions have been defined. In the case of annotation
properties, penalty score is computed via the following
formula:

SDap(R, S ) =
penalty(a)(R,S )

penalty(a)(R,>)

where penalty(a)(R, S ) measures the Abduction-induced
distance between an event description R and sensor
data annotation S ; this value is normalized dividing
by the distance between R and the universal concept
> which depends only on axioms in the ontology.
Instead, in case of adopting number restrictions, the
penalty function is defined as:

SDnr(R, S ) =
α∗penalty(c)(R,S )+β∗penalty(a)(R,S )

penalty(a)(R,>)

where penalty(c)(R, S ) indicates the Contraction-induced
semantic distance. This value is now present because
number restrictions introduce explicit incompatibili-
ties between concepts due to disjoint numeric ranges.
Two tunable weighting factors combine both contri-
butions and enable a ranking mainly based on either
conflict or missing features.

After the penalty scores calculation, the predict-
ed/recognized event will be the one with the lowest dis-
tance. Since semantic matchmaking associates a logic-
based explanation to ranked (dis)similarity measures,
the classification outcome has a formally grounded and
understandable confidence value. This is a fundamen-

tal benefit with respect to the majority of standard ML
techniques, which produce a prediction not simply in-
telligible. Furthermore, notice that the proposed ap-
proach does not take the instance annotation directly
as output, because the inherent data volatility in IoT
contexts could lead to inconsistent assertions, which
would be impossible to reason on.

4.4. Evaluation

The system evaluation works with a test set, consist-
ing of several classified instances referred to the same
ontology used for building the training set. The goal is
to check how often (and possibly, how much) the pre-
dicted event classes correspond to the actual events as-
sociated to each instance of the test set. Beyond clas-
sical performance indicators for classifying ML algo-
rithms (like the confusion matrix and statistical metrics
as accuracy, precision and recall), the graded nature
of predictions of MAFALDA, e.g., the average seman-
tic distance of the predicted class from the actual one,
allows applying typical error measures of regression
analysis like the Root Mean Square Error (RMSE).

Cross-validation can be used to tune system param-
eters if performance is not satisfactory. Moreover, if
computing resources permit it, incoming test data can
also be used to update the training matrix on-the-fly, in
order to allow the model to evolve when new data is
observed.

5. Case study: road and traffic monitoring

Mobility services are one of the main IoT applica-
tion areas. The presented case study refers to a proto-
typical system for road and traffic monitoring created
e.g., to improve the functionality of navigation sys-
tems with real-time driver assistance. Useful insight on
travel conditions is provided both among nearby vehi-
cles (in a peer-to-peer fashion through VANETs – Ve-
hicular Ad-hot NETworks) and on a large scale (e.g.,
by updating a remote Geographical Information Sys-
tem with real-time and history information toward road
policy makers). In particular, the proposed knowledge-
based system exploits the semantic descriptions of ve-
hicles and context annotations to:

1. interpret vehicle data extracted via the mandatory
On-Board Diagnostics10 (OBD-II) port;

10California Environmental Protection Agency, On-Board Di-
agnostics (OBD) Program, http://www.arb.ca.gov/msprog/obdprog/
obdprog.htm

http://www.arb.ca.gov/msprog/obdprog/obdprog.htm
http://www.arb.ca.gov/msprog/obdprog/obdprog.htm
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(a) Cars list (b) Sensed data from OBD-II

(c) Measurements dashboard (d) Classification view

Fig. 5. Mobile application screenshots
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2. integrate environmental information;
3. detect potential risk factors.

Besides providing warnings, the detected knowledge
allows giving suggestions to the driver and evaluating
car efficiency and environmental impact in real time
[57].

The implementation is based on the Java language
in order to be compatible with both Java SE (Stan-
dard Edition) and Android platforms. The prototype
includes the Mini-ME lightweight matchmaker [2],
which provides the required inferences for the ALN
DL (under the assumption of acyclic TBoxes). The
above ML framework has been used to extract high-
level indications starting from a large number of low-
level parameters acquired from the car via OBD-II and
from micro-devices (accelerometer, gyroscope, GPS)
embedded in the user’s smartphone, with the goal of
characterizing accurately the overall system composed
by driver, vehicle and environment.

A dedicated dataset has been collected for experi-
mental analyses11. Raw data have been retrieved and
stored using the Torque Lite (OBD-II & Car)12 An-
droid application on seven different routes: suburban,
urban and mixed ones, with medium and long dis-
tances. An average of five traces per route have been
recorded, sampling OBD-II parameters and smart-
phone data at 1 Hz frequency. About 10,000 records
have been collected on average for each route, taken
on different days, in various traffic conditions and with
three different cars (and drivers): particularly a Peu-
geot 207 (two routes), an Opel Corsa (two routes) and
a Peugeot 308 (three routes) have been used.

The case study aims to identify driving style as well
as road characteristics and traffic conditions, by ana-
lyzing parameters gathered by the car and by the user’s
smartphone. It is purposely kept simple to give an
immediate proof of concept, but classification can be
largely enriched at will without modifying the theo-
retical settings. In detail, the system should detect the
following classes:

– Smooth, Uneven or FullOfHoles road surface con-
ditions;

– Low, Normal or High traffic congestion condi-
tions;

– Aggressive or EvenPace driving style.

11A subset of the collected data is publicly available on the project
GitHub repository cited in Section 4.1.

12http://torque-bhp.com/

During the dataset creation, each driver who col-
lected a trace has been asked to label manually the
records with the event characteristic for each of the
above categories. Gathered information represent the
raw data in the ML problem. Timestamp and GPS co-
ordinates (also taken through the smartphone) have
been added to each record.

Analyzed data consist of:

– altitude change, calculated over 10 seconds;
– speed: current value, average and variance in the

last 60 seconds and change in speed for every sec-
ond of detection;

– longitudinal and vertical acceleration, measured
by the smartphone accelerometer and pre-processed
with a low-pass filter to delete high frequency sig-
nal components due to electrical noise and exter-
nal forces;

– engine load, expressed as percentage;
– engine coolant temperature, in ◦C;
– Manifold Air Pressure (MAP), a parameter the in-

ternal combustion engine uses to compute the op-
timal air/fuel ratio;

– Mass Air Flow (MAF) Rate measured in g/s, used
by the engine to set fuel delivery and spark tim-
ing;

– Intake Air Temperature (IAT) at the engine en-
trance;

– Revolutions Per Minute (RPM) of the engine;
– average fuel consumption calculated as needed

liters per 100 km.

As shown in Figure 2, the above parameters have
been represented in the domain ontology and divided
in subclasses, each characterized by a value range. At
the end of the training phase, the ABox created auto-
matically from the available data stream contains in-
stances representing the events that the system should
be able to recognize.

In addition to evaluations on the static data set, a
mobile application for smartphones has been devel-
oped to validate the framework in a real usage. It is
an evolution of [57], devoted to evaluate vehicle health
and driver risk level, exploiting semantic-based match-
making to suggest users how to reduce or even elim-
inate danger and get better vehicle performance and
lower environmental impact. By exploiting this new
version, implemented using Android SDK Tools, Re-
vision 24.1.2 –corresponding to Android Platform ver-
sion 5.1, API level 22– and tested on a LG E960 Nexus
4 smartphone, the user can:
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– select a dataset related to the cars used in the ex-
periments (Figure 5(a)) and train the prediction
model;

– view and query all available sensed data, as
shown in Figure 5(b);

– open a measurements dashboard (see the screen-
shot in Figure 5(c)). For each device, a colored
icon indicates a low (white), medium (yellow) or
high (red) measured value.

Moreover, the user can start the classification view
in Figure 5(d). The smartphone camera viewfinder is
used as background allowing the user to see the clas-
sification outputs without looking away from the road.
The application queries vehicle information via OBD-
II and executes the algorithm described in Section 4.
The user interface shows at the bottom a compact de-
vice dashboard (a smaller version of the one in Figure
5(c)), while three large icons are displayed at the top,
related to the event outputs (road conditions, traffic and
driving style). Also in this case, classified output levels
correspond to different colors (green, yellow and red).
In the picture, the algorithm detects a smooth road and
low traffic (green icons) and an aggressive driving style
by the user (red icon).

6. Experiments

This section reports on the experiments carried out
on the dataset collected as stated before. Results are
summarized and compared through classic ML metrics
such as weighted precision, recall, F-score and overall
accuracy.

6.1. Configuration selection

A preliminary test (Table 2) compares performance
indexes of the modeling techniques described in Sec-
tion 4.1 with data ranges expressed through number
restrictions (NRi) and annotation properties (AP j), re-
spectively. For each route, the whole dataset has been
split in a training set and a test set by holdout, mixing
the records randomly in a 70%/30% ratio. The training
set generates the model, while the test set allows evalu-
ating the classification performance. Training and test
set have been processed in several configurations ob-
tained by varying Tbase, i.e., the normalization thresh-
old value, as well as α and β, used to compute the se-
mantic distance in the classification task. For each test
configuration, performance measures have been calcu-
lated.

Precision and recall values are plotted in Figure 6.
The best configuration is AP1, presenting the high-
est values for recall, F-score and accuracy; precision
is only slightly lower than configurations with larger
Tbase. It is important to notice that configurations in-
cluding number restrictions exhibit lower values due to
the disjunction of intervals in modeling concepts of the
ontology: semantic descriptions produced by the train-
ing stage are all similar, penalizing the later stages. In-
deed, in the classification phase, the matchmaking be-
tween the output description generated by the train-
ing and the sample from the test set tends to increase
penalty values due to disjoint number restrictions, fre-
quently producing an incorrect classification output.

6.2. Performance comparison

The same training and test sets have been used with
classical Machine Learning algorithms to compare and
evaluate results obtained with the best configuration of
MAFALDA. The following algorithms recalled in Sec-
tion 3.1 have been used for comparison:

1. J48 implementation of C4.5;
2. Functional Tree (FT);
3. Random Tree (RT);
4. K-Nearest Neighbors (k-NN);
5. Multilayer Perceptron;
6. Deep Neural Network (DNN) Classifier.

Algorithms 1-5 have been tested in their implemen-
tation from Weka13 [58]; the last one is implemented
in the tf.estimator.DNNClassifier class of
TensorFlow14. Also in this case, each algorithm is used
for testing different configurations obtained by conve-
niently setting parameters in Table 3. Results corre-
sponding to the configurations with the highest accu-
racy are reported in Table 4. MAFALDA presents com-
parable precision, albeit with slightly lower recall val-
ues. Overall, it represents a competitive alternative to
classical ML algorithms, with the benefit of producing
interpretable semantic-based annotated concept repre-
sentations.

Moreover, the experimental analysis has measured
processing time of compared algorithms on a PC
testbed, equipped with Intel Core i7-3770K CPU at
3.5 GHz, 12 GB DDR3 SDRAM memory, 2 TB SATA
(7200 RPM) hard disk, 64-bit Microsoft Windows 7
Professional, 64-bit Java 8 SE Runtime Environment

13Weka version 3.6.12, http://www.cs.waikato.ac.nz/ml/weka/
14TensorFlow version 1.4.0, http://www.tensorflow.org/
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Table 2
Experiments report in several different test configurations

ID α β Tbase Precision Recall F-Score Accuracy

KB with
Number Restrictions

NR1 0.2 0.8 50 0.741 0.575 0.648 0.575
NR2 0.5 0.5 50 0.846 0.661 0.709 0.661
NR3 0.2 0.8 20 0.742 0.609 0.669 0.609
NR4 0.5 0.5 20 0.890 0.672 0.766 0.672

KB with
Annotation Properties

AP1 - - 15 0.861 0.813 0.836 0.813
AP2 - - 20 0.866 0.798 0.831 0.798
AP3 - - 30 0.867 0.764 0.812 0.764
AP4 - - 50 0.866 0.665 0.752 0.665
AP5 - - 65 0.837 0.624 0.715 0.624
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Fig. 6. Precision/recall plot

build 1.8.0_31-b13, and 64-bit Python 3.6.3 environ-
ment. Training and evaluation times, reported in Ta-
ble 4, represent the average interval (computed on five
runs) needed to build the model –starting from each
training set exploited for accuracy analysis– and per-
form the evaluation on the related test set. The high-
est training time has been taken by the DNN Classi-
fier, due to the complex model and the expensive op-
timization function, whereas the lowest is by k-NN,
where the training task only validates input data. Con-
versely, the evaluation time is highest in the case of k-
NN, since the algorithm calculates the distance among
samples. Random Tree has the lowest overall time,
due to the very simple model used to classify the test
instances. MAFALDA exhibits a very low training
time, making the approach suitable for on-the-fly data
stream processing, while evaluation time is higher due
to semantic matchmaking. The above behavior gives
however a satisfactory performance tradeoff in case of
mobile ad-hoc scenarios as they are typically charac-
terized by data rates higher than query rates.

Processing time of MAFALDA has been analyzed on
two more platforms:

– Nexus 4 smartphone, equipped with Qualcomm
Snapdragon S4 quad-core CPU at 1.5 GHz, 2 GB
RAM and Android 5.1.1 operating system;

– Raspberry Pi Model B15, equipped with a single-
core ARM11 CPU at 700 MHz, 512 MB RAM
(shared with GPU), 8 GB storage memory on SD
card, Raspbian Wheezy OS.

In this case, the tests have been executed using the
first Peugeot 207 dataset consisting of 8615 records;
6030 used as training set and 2585 as test set. Like in
the above experiment, each test has been repeated five
times and the average value has been taken, as reported
in Figure 7.

The overall process includes several sub-steps:

1. Ontology Loading: the OWL file containing the
TBox T is loaded and parsed;

15http://www.raspberrypi.org/products/model-b/
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Table 3
Parameters of the reference classification algorithms

Algorithm Parameter Description

J48
-M 2 minimum number of instances per leaf
-U unpruned tree

Functional Tree

-I 20 fixed number of iterations
-F 0 tree type to be generated

-M 20 minimum number of instances for node split
-W 0 value for weight trimming

Random Tree
-K 0 number of attributes to randomly investigate

-M 1.0 minimum number of instances per leaf
-S 1 seed for random number generator

k-Nearest Neighbors
-K 1 number of nearest neighbors (k)
-W 0 maximum number of training instances maintained

-A LinearNNSearch nearest neighbour search algorithm to use

Multilayer Perceptron
-N 50 number of epochs to train through

-H 4,8,4 number of nodes on each hidden layer

DNN Classifier

num_epochs = 2 number of epochs to train through
hidden_units = [4, 8, 4] number of nodes on each hidden layer
optimizer = ’Adagrad’ optimization algorithm to train the model

activation_fn = tf.nn.relu activation function of nodes

Table 4
Comparison of ML algorithms

Algorithm Precision Recall F-Score Accuracy Training Time (ms) Evaluation Time (ms)
J48 0.885 0.883 0.884 0.883 45.64 1.32

Functional Tree 0.884 0.880 0.882 0.876 565.52 165.88
Random Tree 0.879 0.879 0.879 0.879 14.87 0.86

k-Nearest Neighbors 0.878 0.863 0.870 0.863 1.25 914.71
Multilayer Perceptron 0.853 0.860 0.856 0.860 873.95 5.72

DNN Classifier 0.905 0.805 0.850 0.856 9898.05 430.67
MAFALDA 0.861 0.813 0.836 0.813 13.63 190.97

2. Data Mapping: for each of the 6030 data records
in the training set, the concept subclass(es) corre-
sponding to the parameter values are identified;

3. Matrix Creation: the Training Matrix using the
concepts detected in the previous step is creat-
ed/updated;

4. Matrix Normalization: this activity normalizes
the matrix values and calculates the reference
thresholds;

5. OWL Model Creation: starting from the normal-
ized matrix, the semantic annotations describing
each event are generated;

6. Classification: every data record is classified in
the test set.

On both platforms, processing times obtained with
a KB modeled with annotation properties are slightly
faster than those obtained with number restrictions.
Data mapping is by far the longest phase, due to the
large amount of sensed data to manage. However, the
time needed for a single mapping is very low (shorter
than 1.2 ms on PC, 48 ms on smartphone and 70 ms
on Raspberry). In case of number restrictions, ontol-
ogy loading and data mapping are slower, due to the
higher time needed to parse these kind of logic descrip-
tions. Conversely, OWL model creation is faster be-
cause event annotations usually contain less concepts.
In fact, for each parameter at most one subclass is as-
sociated to the event annotation given the explicit in-
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compatibility among concepts induced by the number
restrictions.

Considering the faster approach with annotation
properties, the average turnaround time for training
the classification model (i.e., build and normalize the
training matrix and then create the event annotations)
is 40 ms on PC, 630 ms on smartphone and 1.48 s
on Raspberry. This can be deemed as acceptable also
for mobile and embedded systems. It is useful to point
out that model training is performed only once after
training set selection. Furthermore, processing time is
clearly negligible with respect to data gathering: in the
tested case, 6030 records read at 1 Hz frequency cor-
respond to over 1.5 hours of data collection. Then, the
classification task starts. For each test sample, classi-
fication is executed in about 0.22 ms on PC, 8 ms on
mobile and 29 ms on Raspberry.

6.3. Explainability

In addition to adequate prediction performance and
computational sustainability, a major goal of the pro-
posed approach is to improve explainability w.r.t. the
state-of-the-art techniques. Models and outputs gener-
ated by all the above algorithms applied to the first
Peugeot 207 training set have been compared in a
qualitative assessment. Figure 8 shows the model pro-
duced by MAFALDA. Classes are not simply labeled,
but they are annotated as described in Section 4.2.
Annotations are machine-understandable and easily

readable. As said, the further semantic matchmaking
enables also logic-based explanation of results: this
grants accountability for classification outcomes. Fi-
nally, non-monotonic inference services and approxi-
mated matches increase resilience against missing or
spurious sensor readings in test samples during system
usage.

Figure 9 shows the model produced by the C4.5 de-
cision tree (for the sake of readability, the figure re-
ports only on a portion of the whole model). Every
node tests a feature with a threshold: branches define
paths leading to leaf nodes, which represent classifi-
cation decisions. Also in this case, the model is easily
readable both by humans and software systems: every
class is basically represented by a clause in Disjunctive
Normal Form. Nevertheless, the use of sharp thresh-
olds in propositional atoms may make the approach
vulnerable to slight sample data variations, e.g., due to
measurement problems. Functional Tree and Random
Tree models –not reported for the sake of conciseness–
are similarly readable, although nodes contain logis-
tic or linear functions, respectively, instead of Boolean
propositions. Due to the same reason, however, they
are more robust against input perturbation.

Models generated by k-NN basically consist in
point clouds –where each element represents a training
sample– in an n-dimensional space, if n is the num-
ber of features. k-NN extensions toward hierarchical
multi-label classification [59] have been proposed to
predict structured outputs, but they are applicable only
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(a) Smooth Condition (b) Uneven Condition (c) Full Of Holes Condition

Fig. 8. Example of the model generated by MAFALDA for road surface

to multi-label classification problems, i.e., when each
sample can be labeled as belonging to multiple classes
simultaneously; this is unlike most IoT and data stream
mining scenarios.

Finally, the model generated by Multilayer Percep-
tron is depicted in Figure 10: input features are in
green, output classes in yellow, neurons are organized
in layers and their connections are shown. The model
for the DNN Classifier is structurally similar. Such
models are practically black boxes, both for humans
and automatic systems, because the relationship be-
tween input sample features and output class label is
encoded only in node thresholds and edge weights. For
example, the first node of the second hidden layer is
modeled as x2,1 = f (

∑4
j=1 w1, j,1x1, j, t2,1) where f

is the activation function, parameterized by the node
threshold value t2,1. Consequently, a meaningful de-
scription cannot be associated to output class labels.
Furthermore, deep ANNs are particularly vulnerable
to input perturbation and adversarial examples [60]:
small variations in input data can produce widely dif-
ferent outputs in unpredictable ways. This lack of ro-
bustness and accountability prevents more widespread
DNN adoption in the industry. Significant research ef-
forts are ongoing to devise new approaches which are
both more robust and explainable. Other state-of-the-
art ML algorithms like Support Vector Machines are
more resilient against input variations, but have similar
model explainability issues.

Fig. 9. Example of model for C4.5 decision tree classifier

6.4. Discussion

The main outcomes of experiments are summarized
hereafter:

– In the reference road and traffic analysis case
study, the best algorithm performance has been
achieved using annotation properties and a low
base threshold value. As number restrictions on
disjoint value ranges cause more frequent incon-
sistency between output classed and test sam-
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Fig. 10. Example of model for Multilayer Perceptron classifier

ples, semantic penalties become higher, leading
to lower precision and recall.

– Prediction performance of MAFALDA is accept-
able w.r.t. classical ML algorithms for IoT scenar-
ios. Precision is comparable and recall is slightly
lower in the case study.

– Processing time of MAFALDA is in the same
order of magnitude as other ML algorithms. It
has very fast model training and relatively slow
evaluation time (though absolute values appear
as adequate, with 8 ms per classification sam-
ple on the 2013 mobile device exploited in the
case study). Hence, the semantic matchmaking
induces a slowing down of the evaluation w.r.t.
training. Anyway, in typical wireless sensor net-
work and IoT scenarios where queries are less
granular than input data streams, this however
achieves satisfactory performances.

– Computational performance trends are predictable
on PC vs mobile vs single-board computer plat-
forms. Even for the latter, absolute values of train-
ing and classification times are small w.r.t. typ-
ical IoT application requirements. This is a sig-
nificant outcome because it suggests that the pro-
posed approach is responsive even with multiple
features.

– MAFALDA achieves high explainability w.r.t. the
state-of-the-art techniques. Other ML algorithms,
such as decision trees, produce models with ar-
guably similar or better readability for humans;

notwithstanding, the proposed approach allows
both formal semantic-based representation of the
trained models and automatic logic explanation of
classification outcomes. This makes the approach
dependable and accountable, facilitating adoption
even in critical scenarios. Moreover, MAFALDA
output is expressed in standard Semantic Web
languages, therefore it can be immediately used
for further reasoning tasks. This facilitates inte-
gration in larger knowledge-based system archi-
tectures and is currently not allowed by other
competitor approaches.

7. Conclusion and future work

This paper has introduced a novel approach for
semantic-enhanced machine learning on heteroge-
neous data streams in the Internet of Things. Map-
ping raw data to ontology-based concept labels pro-
vides a low-level semantic interpretation of the sta-
tistical distribution of information, while the conjunc-
tive aggregation of concept components allows build-
ing automatically a rich and meaningful representation
of events during the model training phase. Finally, the
exploitation of non-standard inferences for matchmak-
ing enables a fine-grained event detection by treating
the ML classification problem as a resource discovery.

A concrete case study on driving assistance has been
developed through data gathered from real vehicles via
On-Board Diagnostics protocol (OBD-II) and exploit-
ing sensing micro-devices embedded on users’ smart-
phones. A realistic dataset has been so built for exper-
imentation. Subsequent extensive evaluations have al-
lowed assessing performance of the proposed frame-
work compared with state-of-the-art ML technologies,
in order to highlight benefits and limits of the pro-
posal. Main highlights are competitive prediction per-
formance and speed w.r.t. existing approaches, com-
bined with more expressive classification outputs and
easily understandable models. In general, the main
benefit of using Semantic Web technologies is to get
meaningful information from data, but the main draw-
back is higher processing time: this paper demon-
strates it is not necessarily true.

Several future perspectives are open for semantic-
enhanced ML and particularly for the devised frame-
work. A proper extension of the baseline training al-
gorithm can enable a continuously evolving model
through a fading mechanism allowing the system to
“forget” the oldest training samples. A further exten-
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sion of the training algorithm could aim at distribut-
ing the processing on more than one node, with a fi-
nal merging step. This should reduce the communi-
cation overhead within a sensor network if intermedi-
ate nodes have enough storage capacity. Further vari-
ants could increase the flexibility of the proposed ap-
proach at the classification stage. For example, it could
be useful to investigate the possibility of creating dy-
namically super-classes with a range combining those
of the concepts found in the description: this would
avoid affecting the result of the inference algorithms
for descriptions that would otherwise be similar. Fi-
nally, adopting a more expressive logic language such
as ALN (D) to model the domain ontologies could al-
low introducing data-type properties to better charac-
terize typical IoT data features. Further experiments
will have to be carried out to assess and optimize the
proposed methods in terms of both accuracy and re-
source efficiency.
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