
Semantic Web 0 (0) 1 1
IOS Press

A Visual Modeling Approach for the
Semantic Web Rule Language
Benedikt Pittl a, Hans-Georg Fill a,b,*

a Research Group Knowledge Engineering, University of Vienna, Austria
E-mail: benedikt.pittl@univie.ac.at
b System Development and Database Application Group, University of Bamberg, Germany
E-mail: hans-georg.fill@univie.ac.at

Abstract. The Semantic Web Rule Language (SWRL) is considered a main pillar for realizing the semantic web and for support-
ing innovative rule-based applications. Thereby, it is used to infer new knowledge from a given fact base. Today, SWRL rules
are developed and managed by technical experts in text-based editors using software applications such as the Stanford Protégé
toolkit. For easing the specification and analysis of SWRL rules by non-technical users, we introduce in this paper a visual
modeling approach for SWRL. By building upon a visual modeling language, the approach includes validation mechanisms and
layouting algorithms for visually representing new as well as existing rules. The approach further provides import and export
interfaces to common SWRL exchange formats. In this way, its compatibility with widely-used reasoners and semantic web
platforms is guaranteed. For ensuring its feasibility, the approach has been prototypically realized using the SeMFIS platform
and evaluated using the sample rules as provided in the SWRL specification.

Keywords: SWRL, OWL, Modeling Language, Semantic Processing, SeMFIS

1. Introduction

Rule-based systems as well as the corresponding
formalisms constituted for a long time an important re-
search area for expert systems [1]. Today, they have
become popular again, especially for semantic web-
based applications and for enterprise information sys-
tems [2]. For example, in the domain of enterprise in-
formation systems, rules are today being applied for
specifying business process decisions and constraints
as well as for compliance checking, e.g. [3, 4]. The Se-
mantic Web Rule Language (SWRL) is thereby con-
sidered as a significant technology towards the seman-
tic web that is adequate for many types of informa-
tion systems [5]. In particular, SWRL is a sound and
well-established technique for deriving new facts from
a given fact base. Hence, the need for comprehen-
sive SWRL editors is obvious and explicitly mentioned
in the scientific community, e.g. [6–8]. Today, SWRL

*Corresponding author. E-mail: hans-georg.fill@univie.ac.at.

rules are usually developed and modified using text-
based editors such as the Protégé SWRL tab [5]. The
text-based representation is convenient for technical
experts but comes in a mathematical notation, which is
not common to many domain experts. The representa-
tion thus obviously impedes a more wide-spread adop-
tion of SWRL. Recently, Skillen et al. showed empir-
ically that business users and even technical experts
would benefit from a visual modeling language for
SWRL in terms of understandability and development
time [8]. The subsequently developed visual modeling
language shows a strong focus on usability but does
not support all SWRL concepts [8]. Further, the im-
port function as well as the handling of the underlying
OWL ontology is limited - see section 2 for an in-depth
discussion.

In a previous paper we therefore proposed a first
idea for a visual modeling language that covers all con-
cepts of SWRL [9]. The paper at hand extends this idea
and contains an in-depth description of a comprehen-
sive, visual modeling approach for SWRL. The main
goal is enable the visual modeling of SWRL that can

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

be used both for use cases dealing with the analysis of
existing SWRL rules, e.g. to enhance the understand-
ing of a rule, as well as for use cases where SWRL
rules have to be specified by non-technical experts, e.g.
to conduct compliance checking by business users [4].
A further goal is to realize a modeling language that
includes all necessary constructs in a visual form and
that is thus easy to understand even by non-technical
users. In more detail, this led us to the following list of
requirements for such a modeling approach:

(i) Visual modeling of all atoms as defined in the
SWRL specification (ii) Explicit visual representation
of variables and data values (iii) Linkage to visually
represented OWL ontologies using the previously de-
veloped SeMFIS modeling language [10, 11] (iv) Seri-
alization and De-serialization of visual SWRL models
in OWL-XML syntax (v) Prototypical implementation
of the approach to evaluate its feasibility.

In this paper we describe how we met these require-
ments. In particular, the contributions are as follows:

– Detailed description of the metamodel of the vi-
sual modeling language

– Formalization of the modeling language for an
implementation-independent representation

– Development of implementation-independent rules
for transforming the model to concrete syntax
representations and vice versa

– Description of the prototypical implementation
using the SeMFIS platform based on ADOxx [12]

The remainder of the paper is structured as follows:
In section 2 foundations of conceptual modeling and
SWRL as well as related work is analyzed. The mod-
eling language for SWRL is introduced in section 3. In
section 4 the transformation from the SWRL model to
a SWRL syntax and vice versa is introduced. The tech-
nical implementation of the approach is introduced in
section 5 followed by a use case which is presented in
section 6. In section 7 the limitations of the approach
are discussed. The paper ends with a conclusion in sec-
tion 8.

2. Foundations and Related Work

In this section we discuss at first foundations of con-
ceptual modeling that are necessary for describing our
approach. This includes a characterization of model-
ing methods as it is typically used in the area of en-
terprise modeling and the formalization of modeling
languages. Second, we regard the contents of the W3C

SWRL proposal that is the basis for the subsequently
presented modeling language.

2.1. Foundations of Conceptual Modeling Methods

According to Karagiannis and Kühn, a modeling
method consists of (i) a modeling language, which
encompasses a visual notation, syntax and semantics,
(ii) a modeling procedure, which describes how to use
a modeling language, and (iii) algorithms and mech-
anisms, which can be applied to the models [13]. In
the paper at hand we focus on the description of the
modeling language as well as on algorithms and mech-
anisms.

For describing modeling languages, specific for-
malisms have been designed in the past [14, 15]. Ex-
amples include EMF [16] or a specific formalism for
the UML OCL specification1. Four our purposes, we
decided to use the Formalism for Describing ADOxx
Meta Models and Models (FDMM) [17]. It has been
used for formalizing a wide variety of modeling lan-
guages in the past, e.g. [18–20]. FDMM supports the
core concepts of the ADOxx metamodeling platform,
which we use in sections 5 and 6 of this paper for the
implementation and evaluation of our approach.

In FDMM, a metamodel MM of a modeling lan-
guage is described using four components, i.e. MM =
〈MT,�, domain, range, card〉. Each metamodel con-
sists of a set model types MT which are used to cre-
ate a set of models mt. Each model type MTi consists
of a set of object types OT

i , a set of attributes Ai and
a set of datatypes DT

i . A model type is thus described
in FDMM by MTi=〈OT

i ,DT
i Ai〉. The operator � is an

ordering on the set of object types OT
i that is used to

define an object type hierarchy similar to inheritance
hierarchies in object oriented software languages.

domain is a function which assigns attributes to ob-
ject types. The range function assigns datatypes, other
object types and model types to attributes, while the
card function defines the cardinality, i.e. the number
of allowed values for an attribute. For describing the
instantiation of model types to models, object types
to objects, and data types to concrete data values, the
functions µmt, µO, and µD are used, which basically
take a type from the metamodel as input and map it to
a set of instances of this type.

A model mti is an instance of a particular model
type and consists of so-called triple statements τj :

1http://www.omg.org/spec/OCL/2.0/

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 3

(oj aj dj) representing the model content. The first el-
ement oj of a triple τj represents an instance of an ob-
ject type, the second component aj represents an at-
tribute and the last component dj represents the value
for the attribute aj. The assignment of triples to models
is accomplished via the map β : mt → P(τ). For fur-
ther details on FDMM especially regarding instantia-
tion functions and additional constraints and correct-
ness criteria we refer to [17].

2.2. Concepts of the Semantic Web Rule Language

The specification of the Semantic Web Rule Lan-
guage (SWRL) is available as a proposal by Horrocks
et al. on the the W3C website [21]. SWRL is defined
as an ontology - called SWRL ontology - which inte-
grates RuleML2 and OWL. Due to the strong refer-
ence to OWL, SWRL can be rather seen as an OWL-
extension [22]. SWRL rules have several benefits over
existing OWL axioms such as higher expressiveness
and less restrictions [7]. The SWRL proposal intro-
duces an XML- and RDF-based syntax [21], whereby
it refers to the OWL specification [23] for the corre-
sponding syntax of the underlying OWL elements.

A SWRL rule consists of an antecedent - denoted
as body - and a consequent - denoted as head. Both,
the antecedent and the consequent consist of a possibly
empty set of atoms, which are connected using con-
junctions. Therefore, the order of the atoms belonging
either to the consequent or the antecedent has no se-
mantic implication for a rule. The SWRL proposal dis-
tinguishes between seven different atoms. All atoms
have parameters, which are either OWL constructs –
such as references to OWL classes, variables or data
values. For example, the Class atom of the SWRL
specification has a parameter which refers to an OWL
class. Also, the IndidvidualProperty atom has a param-
eter which refers to an OWL property.

The proposal for OWL 2 [24] was published a few
years later after the release of the SWRL proposal in
2004. Thereby, SWRL rules were not added to the
OWL 2 proposal. Rather, the introduction of OWL 2
raised compatibility issues with the SWRL proposal.
Glimm et. al. [7] state that the existing rule syntax of
the SWRL proposal is "not very well aligned with the
new OWL 2 syntax". So, they developed an updated
SWRL version to align it with the OWL 2 proposal [7].
The updated version is intended as a substitute of the

2http://ruleml.org/index.html

SWRL proposal issued by the W3C [21]. For ensuring
decidability, primarily two restrictions are introduced
- for more details we refer to [7]: (i) Safety: Variables
which occur in the consequent have to occur in the an-
tecedent (ii) DL Safety: Individuals which are used in
rules have to bind to existing individuals of the ontol-
ogy. Further, each data variable in a data range atom
has to occur in a data property atom in the antecedent.

For describing the syntax of the updated SWRL,
Glimm et. al. reverted to the generic functional syntax.
The updated SWRL - which we will use as foundation
for our subsequent elaborations - is widely supported
by reasoners, e.g. Pellet [7] and HermiT [25].

Today, a variety of syntaxes for OWL 2 ontologies
exist. For example, the current version of Stanford Pro-
tégé [26] offers eight different syntaxes for serializ-
ing ontologies. However, the OWL-XML syntax of
the W3C SWRL proposal [21] is currently not sup-
ported by this platform3. A good overview of the dif-
ferent OWL syntaxes and their development is given
by Horridge in his Ontogenesis blog [27], who stresses
the fact that the definition of OWL does not rest on
a particular concrete syntax but is rather based on a
high level structural specification that is subsequently
mapped into different concrete syntaxes. Such a struc-
tural description for the OWL 2 is given in [24], where
the W3C proposal reverts to the functional syntax -
a simple text-based syntax that operates as a bridge
to concrete syntaxes [27]. A derivation from the func-
tional to a concrete syntax is then for example de-
scribed in [28], where the development of the OWL-
XML syntax based on OWL 2’s functional syntax
is explained. Each of the syntaxes has strengths and
weaknesses [27]. E.g., the OWL-XML syntax - which
we used in our use case - benefits from a strong support
of existing XML-tools. Similar to the approaches used
for OWL 2, concrete syntaxes can be derived from the
functional SWRL syntax specified in [7].

SWRL rules are heavily used in industry and in
the scientific community. Recently, SWRL rules were
used for language processing [29], food selection
systems [30], health care [31], annotation of me-
dia data [32, 33], communication protocols [34] and
risk management [35]. Applications and frameworks
which use or support SWRL rules are e.g. Menthor
Editor [36], RuQAR [37], or i-RM [38]. SWRL also
served as a starting point for novel rule-based for-

3The files provided at https://www.w3.org/Submission/SWRL/
can therefore not be imported to the Protégé default setup (Status:
17/08/2017)

4 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

malisms and approaches. For example, a fuzzy exten-
sion for SWRL was introduced in [39]. Jajaga et al.
developed a SWRL-based language called C-SWRL
for reasoning over stream data [40] and in [41] an ap-
proach was introduced for identifying dependencies
between SWRL rules.

To the best of the authors knowledge, a compre-
hensive visual language for SWRL rules has so far
not been made available. Although a generic meta-
model for supporting the creation of visual rules was
introduced in [42], this approach does not support all
SWRL atoms. A visual language for SWRL was in-
troduced in [43, 44] which neither supports the im-
port of existing SWRL models nor the different built-in
types defined in SWRL. A further implementation pre-
sented in [45] neglects export functionalities, the visu-
alization of SWRL atoms as well as OWL constructs.
The SWRLTab bundled with Stanford Protégé allows a
text-based modification of rules. In the same way, the
ORE editor offers a text-based editing of rules4. Ax-
iome is a Protégé plugin for the visualization of SWRL
rules [46]. Modifications of rules are not supported.
Skillen et al. [8] presented a tool for the visual pro-
gramming of SWRL rules. With a strong focus on us-
ability, that approach does not support all atoms, e.g. it
misses the BuiltIn atoms. Further, the import of SWRL
rules was not considered in this work and the modifica-
tion of OWL ontologies is not supported. Rule editing
using REST webservices was introduced in [6]. In [47]
a plugin is presented which allows to create OWL on-
tologies entering textual rules. As summary of further
tools is given in [8].

In summary, our related work analysis shows that a
tool for the visual creation and editing of SWRL rules
does not exist yet. It seems however favorable to pro-
vide such a tool to enhance the usability of SWRL.
Although certain attempts have been made in this
direction, a more complete and systematic approach
for a visual, model-based representation of SWRL is
needed.

3. A Visual Modeling Approach for SWRL

The visual modeling approach for SWRL that we
present in the following is structured along three lay-
ers as depicted in Figure 1. The configuration layer
contains the SWRL model - a visual representation of

4https://sourceforge.net/projects/ore/files/?source=navbar

SWRL rules - as well as the ontologies which are refer-
enced by the SWRL model. The transformation layer
is responsible for generating the SWRL rules from the
SWRL model and for integrating them with the ontol-
ogy. The result of this step are SWRL rules in a certain
syntax, e.g. OWL-XML, including an ontology which
can be processed in the execution layer.

The ontology can either be stored as a file, as an
in-memory data structure or as a visual model. In this
section we focus on the visual modeling language for
SWRL rules which consists of the (i) syntax, (ii) a vi-
sual notation, (iii) and semantics [13].

Fig. 1. Layers of the Visual Modeling Approach for SWRL

3.1. Syntax

The syntax describes the model elements and valid
combinations of them [48]. For the description of the
syntax of visual modeling languages, it is often re-
verted to semi-formal visual metamodels [49, 50].

For the development of the modeling language we
tried to balance the trade-offs between expressiveness
and usability. For example, a large number of object
types simplifies the transformation of the model on the
transformation layer. On the contrary, large numbers of
object types aggravate modeling. Moody denotes this
trade-off as Graph Economy, which is further affected
by the usage of attributes [51]. Modeling languages
without attributes have to provide additional object
types as well as references in order to encode the cor-
responding information. In practice, both approaches
exist. Prominent languages such as ArchiMate [52] use
only object types without attributes, while other lan-
guages such as UML [53] or BPMN [54] employ ob-
ject types together with attributes extensively. Usually,
these attributes are not displayed in models so that
modeling tools offer property windows for accessing
them - see for example the modeling tools in the OMi-
LAB.org repository5.

5See http://www.omilab.org/psm/modelling-tools

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 5

Consequent Antecedent

__Atom__

ClassAtom

IndividualPropertyA. SameIndividualA.

BuiltInAtom

DataRangeAtom

DataVariableIndividualVariable DataConstantIndividualConstant

Individual

Property

Class

DataRangeAtomList

MetaInfo

Annotation

HasAtom [ConnectorType]

HasConsequent
[ConnectorType]

RepresentsClass

Individualvalue1

RepresentsProperty

Individualvalue1,
Individualvalue2

Individualvalue1

Datavalue

Represents
Property

Datavalue

individuals

individuals

BuiltInTerms

Datavalue,
Literalist

RepresentsIndividual

subclassOf

OWL
Element

Restriction

disjointWith

rdfType

range

domain

subPropertyOf

SWRLOWL

__RulePart__

DataValuePropertyA.

BuiltInTerm

Datavalue

Consequent Antecedent

Atom

ClassAtom

IndividualPropertyA.

DifferentIndividualA.

SameIndividualA.

BuiltInAtom

DataRangeAtom

DataVariableIndividualVariable DataConstantIndividualConstant
Individual

Property

DataRangeAtomList

MetaInfo

Annotation

HasAtom [ConnectorType]

HasConsequent
[ConnectorType]

RepresentsClass
[ModelHyperlink]

Individualvalue1
[ModelHyperlink]

RepresentsProperty
[ModelHyperlink]

Individualvalue1,
Individualvalue2

[ModelHyperlink]

Individualvalue1
[ModelHyperlink]

Datavalue
[ModelHyperlink]

RepresentsProperty
[ModelHyperlink]

Datavalue
[ModelHyperlink]

Individuals
[ModelHyperlink]

Individuals
[ModelHyperlink]

BuiltInTerms
[ModelHyperlink]

Datavalue,
Literalist

[ModelHyperlink]

RepresentsIndividual
[ModelHyperlink]

SWRLOWL (Excerpt, without attributes)

RulePart

DataValuedPropertyA.

BuiltInTerm

Datavalue
[ModelHyperlink]

OWL Element

Class

Individual Data

SWRL Serialization (Excerpt)

Consequent

Antecedent

ObjectPropertyA.

DifferentIndividualA.

SameIndividualA.

BuiltInAtom

DataRangeAtom

HasAtomHasAtom

0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

HasAtomHasAtom

0..*

DataUnionOf

ClassAtom
HasClassExpression: String

ClassAtom
HasClassExpression: String

ObjectIntersectionOf
HasClassExpression: String[]

ObjectIntersectionOf
HasClassExpression: String[] ObjectUnionOf

HasClassExpression: String[]

ObjectUnionOf
HasClassExpression: String[]

0..*

0..1

0..1

HasDataRange: String
HasDataRangeHasDataRange

DataOneOf

0..*

1..1

HasIArgHasIArg

HasDArgHasDArg

HasIArg, HasDArgHasIArg, HasDArg

HasIArg, HasDArgHasIArg, HasDArg

HasIArgHasIArg

Variable

HasIArgHasIArg

0..*

0..*

0..*

0..*

0..*

0..*

1..1

HasDArgHasDArg

0..*

1..1

HasDArgHasDArg

1..1

0..*

HasDArgHasDArg

1..1

0..*

HasDArgHasDArg

0..*

HasDArgHasDArg

0..*

HasIRI: String

Literal
HasValue: String

Literal
HasValue: String

HasDatatype: String

HasObjectProperty: String

DataPropertyAtom
HasDataProperty: String

DataPropertyAtom
HasDataProperty: String

0..*

0..*

0..*

0..1

0..1

HasClassExpressionHasClassExpression

HasClassExpression

HasClassExpression

HasClassExpression

HasClassExpression

HasClassExpression0..*
0..*0..1

0..1

Name: String Name: String

Name: String

Name: StringName: String

Name: String

Name: String

Datatype: Enum

Name: String

Classname: String

Propertyname: String

Propertyname: String BuiltInName: String

Value: String

1..*

1..*

1..*

1..*

1..*
1..*

1..1

1..1

1..*

1..*

1..1

1..1

1..1

1..1

1..* 1..*

1..1

1..*

1..*

1..*
1..*

1..*

1..1

1..*

1..*1..*

1..* 1..1

1..*1..*1..*

Datatype: String

HasIArgHasIArg

0..*

Fig. 2. Excerpt of the SWRL Metamodel Which Is Integrated with the OWL Metamodel, Bottom Shows an Excerpt of the Metamodel of the
Serialization

An excerpt of the metamodel of the SWRL mod-
eling language in UML class diagram notation is de-
picted in Figure 2. It is grouped into three parts: an
OWL part, a SWRL part, and a SWRL serialization
part. The OWL part and the SWRL part correspond to
the configuration layer. The SWRL serialization part
in the bottom of the figure belongs to the transforma-
tion layer and will be discussed later on. The boxes are
UML classes, which are used to represent object types.
The classes with names in italics are abstract. These
classes do not have a visual representation and can
therefore not be instantiated by modelers. The solid
connector which has an unfilled triangle (C) at its end
is used to establish a hierarchy between classes simi-
lar to inheritance in object oriented programming lan-

guages such as Java. It corresponds to the � operator
in FDMM as described in section 2.1.

The classes ClassAtom or IndividualPropertyAtom
are therefore sub-classes of the class Atom. The UML
associations which end with an arrow (←) and which
are annotated with the tag [ConnectorType] represent
object types that connect other object types. Instances
of this type thus stand for edges between objects in a
model instance. Finally, the UML associations which
are annotated with the tag [ModelHyperlink] represent
reference attributes. Such reference attributes can be
considered as model hyperlinks to other model ele-
ments or models. They are not necessarily displayed
in a model but are used to navigate between model
elements. In the following, we summarize the most

6 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

important design decisions for developing the meta-
model:

Classes / Object Types. To ensure semiotic clarity
(c.f. [51]) we mapped each core concept of SWRL
to one object type. Therefore, each atom defined in
the SWRL standard is represented by a single ob-
ject type in the visual language and vice versa. In-
deed, we splitted the SWRL atom DataRangeAtom up
in two atoms: DataRangeAtom and DataRangeAtom-
List. This is because these two datarange atoms, which
contain a datatype or data values, are semantically re-
lated, but their syntax is different. Hence, we distin-
guish between a DataRangeAtom object type contain-
ing a datatype and a DataRangeAtomList object type
containing a list of datavalues.

Attributes. We decided to use the attributes in our
metamodel to reduce the number of object types and
thereby enhance usability. In the excerpt of the meta-
model depicted in Figure 2, we do not show all the at-
tributes of the object types which we used in order to
improve readability. Therefore, only a small set of the
actually available attributes are included.

Terms. Similar to the generic rule definition meta-
model by Brockmans et al. [42], we represented the
possible terms - IndividualVariable, IndividualCon-
stant, DataVariable and DataConstant - as separate
classes / object types, which may be more convenient
for model users than a solution based on attributes. Us-
ing this approach, syntactical modeling errors can al-
ready be avoided at design time. For example, the use
of data variables for atoms that do not have data pa-
rameters is thereby prohibited.

Placeholders. If the ontology underlying a SWRL
rule is also to be stored as a visual model, its meta-
model has to be integrated with the one for the SWRL.
To support this, we integrated the SWRL metamodel
with the SeMFIS metamodel [10] for OWL, which we
will require for the use case presented later in section 6.
We specify model hyperlinks / references from the
SWRL metamodel to the OWL metamodel for keeping
the SWRL model self contained. This means that the
transformation layer should be able to produce valid
SWRL rules of the SWRL model, even if no OWL
model exists. In total, four classes contain model hy-
perlinks to the OWL metamodel: (i) ClassAtom (ii) In-
dividualPropertyAtom (iii) DatavaluedPropertyAtom
(iv) IndividualConstant. IndividualPropertyAtom and
DatavaluedPropertyAtom atoms may have a model hy-
perlink to the Property object type in the OWL model.
The object type Atom references an OWL Class, which
can either be anonymous or non-anonymous. All these

elements have an attribute of data type String called
Name. This string is used if no model hyperlink exists.
An IndividualConstant can represent an OWL Individ-
ual via the model hyperlink RepresentsIndividual. The
individual constant can be considered as a placeholder.
If the OWL model does not exist, the constant can still
be used by the atoms. An alternative to using model
hyperlinks to individual constants would be to remove
the individual constant from our metamodel and add
model hyperlinks from the atoms directly to the OWL
model. However this approach has the following draw-
back: if the OWL model does not exist, the atoms have
an empty model hyperlink. The information that two
atoms may use the same individual in the OWL model
is lost. By using an individual constant object type,
the atoms can reference the same individual constant,
which in turn can reference an individual in the OWL
model.

3.2. Notation

The visual notation of the most important object
types is shown in Table 1. For the design of the vi-
sual notation we took into account the principles of
Moody, in particular Dual Theory and Semantic Trans-
parency [51]. Dual theory requires that graphical ele-
ments are enriched with a textual description. For high
semantic transparency we used meaningful symbols or
abbreviations for the notation. This resulted in the vi-
sual notation shown in Table 1.

For improving the readability of the notation we use
dynamic notation. Such a notation changes based on
certain attribute states of model elements [12, 55]. I.e.,
textual information is dynamically added to symbols
at run-time, as shown in Figure 4. In the example,
the names of the OWL elements are dynamically dis-
played below the atoms based on the current state of
the reference attributes.

3.3. Semantics

The modeling language was developed in order to
create SWRL rules. Hence, the semantics of the model
elements is identical to the corresponding concepts of
the SWRL proposal and the updated version – see [21]
and [7] for a detailed semantic description.

In the modeling method itself, no operational SWRL
or OWL semantics are included, e.g. in the form of al-
gorithms [56]. It is rather reverted to transformations
from the model information to machine-processable
representations as will be shown in the next section.

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 7

The antecedent

(condition) of a

rule

Class atom, e.g.

Person(?x)

Different Individuals Atom,

e.g. differentFrom(?x,?y)

The consequent of

a rule

Individual-valued

Property Atom,

e.g. hasRisk(?x,?y)

Same Individuals Atom, e.g.

sameAs(?x,?y)

Constant representing a

data value

Datavalued Property

Atom, e.g.

hasName(?x,?y)

MetaInfo for describing meta

information about a rule, e.g.

about imports

Variable for storing

individual values

Datarange Atom

with datatype

Built-In Term used as

reference for composing

built-in parameters

Variable for storing data

values

Datarange Atom

with literal list

Relation for connecting

atoms to antecedents and

consequents

Constant representing a

data value

Built-In Atom, e.g.

greaterThan(?age, 17)

Relation for connecting

antecedents and

consequents

Table 1
Excerpt of the Elements Used for the SWRL Modeling Language [9]

4. Transformation of SWRL Models

The transformation layer is responsible for generat-
ing machine-processable SWRL rules from the SWRL
models on the configuration layer. Therefore, trans-
formation rules as well as a transformation engine is
necessary as depicted in Figure 3. The transformation
rules describe how to transform the models to a con-
crete syntax. The transformation engine processes the
models according to the given transformation rules.

Fig. 3. Transformation Rules and the Transformation Engine as Parts
of the Transformation Layer

An example transformation is shown in Figure 4,
which represents Example 5.1-1 of the SWRL pro-
posal [21]. The arrows between the atoms (round sym-
bols with the letter ’A’) and the properties (yellow
symbols with the letter ’P’) represent the model hyper-

links, which were added to the figure in order to im-
prove readability. The visual SWRL rule is identical
to the SWRL rule in the textual notation shown at the
bottom of the figure. Such a textual notation is typi-
cally used on platforms such as Stanford Protégé. Each
atom of the visual SWRL rule is transformed to the
corresponding string in the textual SWRL rule.

In the following, we describe the core transfor-
mation rules for transforming visual SWRL models.
Therefore, we first define both, the SWRL model as
well as the serialization using a formalism. Based
on the description, the transformation rules are intro-
duced. The description of the serialization is based on
the functional rule syntax of [7] and therefore inde-
pendent of concrete syntaxes. With a focus on SWRL,
we do not describe the transformation of OWL con-
structs such as OWL individuals or OWL properties in
the following subsections. We also neglect the descrip-
tion of exception cases where e.g. referenced OWL
concepts are missing in the model. However, we sup-
port these transformations in our prototype described
in section 6.

A description of the SWRL modeling language as
well as it’s serialization using FDMM is given in Ap-
pendix A and B. For the following transformation rules
we will only require a subset of this formalization. In

8 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

Fig. 4. Transformation of a Visual SWRL Rule to a Textual SWRL Rule

particular, we will refer to the model type for OWL as
MTOWL and the model type for the visual SWRL rules
as MTS WRL. In addition, the serialization is also repre-
sented in FDMM via the model type MTS WRL.

For navigating to an attribute, the FDMM formal-
ism requires the use of triple statements. For exam-
ple, consider an instance of an OWL Class oClass ∈
µo(Class,MTOWL) and an instance of ClassAtom
oClassAtom ∈ µo(ClassAtom,MTS WRL). The ClassAtom
instance shall now be part of an instance of a SWRL
model mS WRL ∈ MTS WRL and reference the OWL
Class instance, i.e. (oClassAtom RepresentsClass oClass) ∈
β(mS WRL). It shall also be ensured that for the OWL
Class instance, the attribute IsAnonymous is set to the
value ’Y’ - which indicates to the user that the class in-
stance is anonymous. I.e., (oClass IsAnonymous ′Y ′) ∈
β(mOWL).

In the following we use an abbreviation for the nav-
igation via triples by using a dot syntax similar to the
Object Constraint Language (OCL) in UML. Thereby,
the previously described two triples are summarized as
follows: oClassAtom.RepresentsClass.IsAnonmyous=’Y’:
the first element is an instance of an object type, while
the elements are attribute names which are used to ac-
cess the attribute value of the last attribute.

For the description of the rules, we will use the fol-
lowing arrow types. The left side of the arrow⇒ shows
the input value which the rule receives while the right
side of the arrow shows the return value of the rule.
The arrow 7→ is used as an operator to assign values to
attributes. If the attribute is a set, then the value on the
left side is added to the set. Even if the rules are inde-
pendent from its concrete serialization, we use OWL-
XML serialization examples to improve understand-
ability.

4.1. Transformation Rules

When designing transformation rules for the seri-
alization of the visual SWRL models to OWL, some
differences have to be taken into account beforehand.
This concerns the following four aspects: i. Anony-
mous Classes, ii. Model Hyperlinks, iii. BuiltIn Terms,
and iv. Variables. This will be discussed in more detail
in the following.

(i) Anonymous Classes. In OWL ontologies, anony-
mous classes are classes without a name. In the
model type MTOWL, Class elements have an attribute
IsAnonymous which indicates whether the model ele-
ment representing an OWL class is anonymous. An ex-
ample is depicted in Figure 5a which shows that class a
is a subclass of b. Class bA is anonymous and defined
as an intersection of the classes c and d.

(a) Schematic Overview of
the Model Elements (Class b
Is Anonymous)

(b) Model of an OWL On-
tology in SeMFIS (Class b Is
Anonymous)

Fig. 5. OWL Class Hierarchy Schematic (Left) and in the Model
(Right)

Figure 5b shows the corresponding visual model of
the OWL ontology using the SeMFIS modeling lan-
guage for OWL [10]. Thereby, the class b is anony-
mous. Such properties are typically set by the user by

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 9

reverting to property windows in a modeling tool. We
will use this for the prototypical implementation of the
modeling language – see Figure 9. In the serializa-
tion MTS WRL, such an attribute however does not exist.
Hence, as shown for the corresponding serialization in
OWL-XML in Listing 1, the anonymous class does not
appear any more. Instead, its content is copied directly
to the position where it is referenced. However, such
an anonymous class could e.g. be referenced in Clas-
sAtom elements.

(ii) Model Hyperlinks. While the visual model
makes use of model hyperlinks, e.g. for connecting
OWL classes with class atoms or for defining hierar-
chies as described in the previous example, such hyper-
links do not exist in the serialization. For connecting
e.g. OWL classes with class atoms, the ClassAtom el-
ement links to the corresponding OWL Class element
via a reference attribute type.

(iii) Variables. While in the model it is distin-
guished between different variables - IndividualVari-
able and DataVariable - the serialization does not dis-
tinguish between them6. In the visual model, the vari-
ables are defined using separate object types to which
the atoms refer using model hyperlinks. On the con-
trary, in the serialization variables are not defined sep-
arately - they are used directly in the atoms.

(iv) BuiltIn Terms. The visual model provides a
separate model element for BuiltIn terms to define an
order of the terms. Similarly to the variables, the terms
are not separately defined in the serialization, but they
are used directly in the BuiltIn atom.

LISTING 1: Example for the Serialization of an Anonymous
Class in OWL-XML using the Subclass Axiom

<owlx:SubClassOf / >
<owlx:Class IRI= a / >

<owlx:ObjectIntersectionOf >
<owlx:Class IRI= c / >

<owlx:Class IRI= d / >
</owlx:ObjectIntersectionOf>

</owlx:SubClassOf>>

Serialization of SWRL Models. With these con-
siderations we can now advance to the transformation

6The paper introducing the syntax we use here [7] is available at
http://webont.org/owled/2009/papers/owled2009_submission_16.pdf
were it does not distinguish between the variable, while the paper
available at https://www.cs.ox.ac.uk/files/2445/rulesyntaxTR.pdf
does make a distinction.

from visual SWRL models to a serialization. Thereby
we focus on the description of the transformation of
SWRL constructs. We will neglect OWL constructs
such as individuals in the following rules.

The following rule (R1) describes the serialization
of a ClassAtom element in a visual SWRL model:

R1. ClassAtom - Rule: m ∈ µo(ClassAtom,MTS WRL)
⇒ s ∈ µo(ClassAtom,MTS WRL):
if (m.RepresentsClass.IsAnonymous=’Y’) {

if (| m.RepresentsClass.IntersectionOf ∪
m.RepresentsClass.UnionOf | =1) {

R9(m.RepresentsClass)
7→ s.HasClassExpression,
R14(m.RepresentsClass)
7→ s.HasClassExpression

}
else {

R12(m.RepresentsClass) 7→
s.HasClassExpression

}
}
else {

m.RepresentsClass.Name 7→ s.HasClassExpression
},
R13(m.Individualvalue1.Name) 7→ s.HasIArg

If the referenced OWL Class is anonymous, then
the content of the anonymous class becomes part of
the class atom in the serialization. On the contrary, if
the referenced class is not anonymous, then the cor-
responding OWL class is referenced in the serializa-
tion using its IRI. During the serialization, references
to anonymous classes are usually resolved and the con-
tent of the anonymous class is inserted at the position it
was referenced. However, complex anonymous classes
require a special handling. For example, the ontology
depicted in Figure 6 results in the serialization shown
in Listing 2 - assuming that the anonymous class bA is
referenced by a ClassAtom element in the model.

Fig. 6. Schematic Overview of the Model Elements (Class bA Is
Anonymous)

10 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

As class atoms, but also complement of and sub
class of class description axioms are allowed to
contain only a single axiom such as intersection of
or union of [7, 21], the resolving strategy which puts
the content of an anonyomous class to the place it was
referenced leads to invalid serializations - the class
atom shown in listing 2 contains two axioms.

LISTING 2: Serialization of a Class atom

<owlx:ClassAtom / >
<owlx:ObjectIntersectionOf >

<owlx:Class IRI= c / >

<owlx:Class IRI= d / >
</owlx:ObjectIntersectionOf>
<owlx:ObjectUnionOf >

<owlx:Class IRI= e / >
</owlx:ObjectUnionOf>
[...]

</owlx:ClassAtom>>

This issue originates from a structural problem:
anonyomous classes can have multiple axioms but a
class atom can only contain a single axiom. In order
to create valid SWRL serializations even in such sce-
narios, we wrap the content of anonymous classes into
an intersection of axiom in cases in which the class
contains several class description axioms. However,
this wrapping leads to a loss of information.

The following rule describes the transformation of
the IndividualProperty atom. No anonymous proper-
ties are considered in the existing OWL metamodel.

R2.IndividualPropertyAtom - Rule: m ∈ µo(
IndividualPropertyAtom,MTS WRL)⇒ s ∈ µo(
Ob jectPropertyAtom,MTS WRL):
m.RepresentsProperty.Name 7→ s.HasObjectProperty,
R13(m.Individualvalue1.Name) 7→ s.HasIArg,
R13(m.Individualvalue2.Name) 7→ s.HasIArg

For the serialization of the DatavaluedProperty
atom, the data values need to be serialized either to a
variable or to a literal:

R3.DatavaluedPropertyAtom - Rule: m ∈ µo(
DatavaluedPropertyAtom,MTS WRL)⇒ s ∈ µo(
DatavaluedPropertyAtom,MTS WRL):
m.RepresentsProperty.Name 7→ s.HasDataProperty,
R13(m.Individualvalue1.Name) 7→ s.HasIArg,
R11(m.Datavalue) 7→ s.HasDArg

The serialization of the DataRange atom is similar to
the one of the DatavaluedProperty atom. However, the
data type has to be considered:

R4.DataRangeAtom - Rule: m ∈ µo(
DataRangeAtom,MTS WRL)⇒ s ∈ µo(
DataRangeAtom,MTS WRL):
R11(m.Datavalue) 7→ s.HasDArg
m.Datatype 7→ s.HasDataRange

For the DifferentIndividuals atom all individuals of the
list individuals have to be serialized:

R5.DifferentIndividualsAtom - Rule: m ∈ µo(
Di f f erentIndividualsAtom,MTS WRL)⇒ s ∈ µo(
Di f f erentIndividualsAtom,MTS WRL):
{ ∀ i ∈ m.Individuals:R13(i.Name)} 7→ s.HasIArg

The transformation rule for the SameIndividuals atom
is identical to the one of the DifferentIndividuals atom:

R6.SameIndividualsAtom - Rule: m ∈ µo(
S ameIndividualsAtom,MTS WRL)⇒ s ∈ µo(
S ameIndividualsAtom,MTS WRL):
{ ∀ i ∈ m.Individuals:R13(i.Name)} 7→ s.HasIArg

The model element DataRangeAtomList was intro-
duced to simplify modeling - it is a special type of
the DataRangeAtom:

R7.DataRangeAtomList - Rule: m ∈ µo(
DataRangeAtomList,MTS WRL)⇒ s ∈ µo(
DataRangeAtom,MTS WRL):
R11(m.Datavalue) 7→ s.HasDArg
R15(m) 7→ s.HasDataRange

The BuiltIn atom makes use of special term elements
in the model:

R8.BuiltInAtom - Rule: m ∈ µo(
BuiltInAtom,MTS WRL)⇒ s ∈ µo(
BuiltInAtom,MTS WRL):
m.BuiltInName 7→ s.HasIRI,
{ ∀ i ∈ m.BuiltInTerms:R11(i.Datavalue)}
7→ s.HasDArg

The following rule is called within other rules for the
serialization of OWL Class elements:

R9.OWLClass - Rule: m ∈ µo(OWLClass,MTOWL)
⇒ s ∈ µo(Ob jectIntersectionO f ,MTS WRL):

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 11

{∀i ∈m.IntersectionOf | i.IsAnonymous=’N’ : R10(i)}
7→ s.HasClassExpression,
{∀i ∈ m.IntersectionOf | i.IsAnonymous=’Y’: R9(i)}
7→ s.HasClassExpression,
{∀i ∈m.IntersectionOf | i.IsAnonymous=’Y’ : R14(i)}
7→ s.HasClassExpression

This rule is called to resolve the referenced OWL
classes, e.g. in intersection of axioms:

R10. OWLClass String Reference Helper - Rule:
m ∈ µo(OWLClass, MTOWL)⇒ s ∈ S tring:
m.Name 7→ s

With the following rule a helper rule for creating vari-
ables and literals is provided:

R11. DataItem Helper - Rule: m ∈ (µo(DataConstant,
MTS WRL) ∪ µo(DataVariable, MTS WRL))
⇒ s∈ (µo(Literal,MTS WRL)∪ µo(Variable,MTS WRL)):
if (m.Value=∅) {

m.Name 7→ s.HasIRI
s ∈ µo(Variable,MTS WRL)

}
else {

m.Value 7→ s.HasValue
m.Datatype 7→ s.HasDatatype
s ∈ µo(Literal,MTS WRL)

}

This rule is called for creating a wrapping intersection
of axiom for other axioms:

R12.OWLClass - Rule: m ∈ µo(OWLClass,MTOWL)
⇒ s ∈ µo(Ob jectIntersectionO f ,MTS WRL):
R9(m) 7→ s.HasClassExpression
R14(m) 7→ s.HasClassExpression

This Rule is used for creating a variable used within
atoms:

R13.Variable - Rule: m ∈ String
⇒ s ∈ µo(Variable,MTS WRL):
m 7→ s.HasIRI

The following rule is called within other rules for the
serialization of the OWL Class elements:

R14.OWLClass - Rule: m ∈ µo(OWLClass,MTOWL)
⇒ s ∈ µo(Ob jectUnionO f ,MTS WRL):
{∀i ∈ m.UnionOf | i.IsAnonymous=’N’ : R10(i)}

7→ s.HasClassExpression,
{∀i ∈ m.UnionOf | i.IsAnonymous=’Y’: R9(i)}
7→ s.HasClassExpression,
{∀i ∈ m.UnionOf | i.IsAnonymous=’Y’: R14(i)}
7→ s.HasClassExpression

The following rule is called for creating a list of values
used in DataRangeAtoms:

R15.DataOneOf - Rule: m ∈ µo(DataRangeAtomList,
MTS WRL)⇒ s ∈ µo(DataOneO f ,MTS WRL):
{ ∀ i ∈ m.Literallist:R11(i) } 7→ s.HasDArg

Deserialization to SWRL Models. When rule de-
scriptions that already exist in a serialized format shall
be transformed into visual models, further transforma-
tion rules for this deserialization are required. These
will be described in the following.

Due to the serialization, a loss of information oc-
curs: the references to anonymous classes are replaced
by the content of the class. If an anonymous class
is called several times, its content is inserted several
times in the serialization. In the serialization it is not
possible to find out if two identical anonymous code
sections result from the same class or from two dif-
ferent anonymous classes of the visual model. Further,
it is not possible to find out if two class description
axioms such as intersection of and union of, which
are siblings (i.e. they belong to the same hierarchical
level), occur from a single anonymous class or from
two anonymous classes in the visual model.

(a) Schematic Overview of
the Model Elements (Class bA

Is Anonymous)

(b) Schematic Overview of
the Model Elements (Class
b1A and b2A Are Anony-
mous)

Fig. 7. Schematic OWL Class Relations (of the Visual Model) with
Identical Serializations

An example is depicted in Figure 7. The classes bA, b1A

and b2A are anonymous. The serialization of both on-

12 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

tologies is identical - see the correponding Listing 4,
which will be discussed later on. Given the serializa-
tion, it is not possible to identify the original model
from which the serialization was generated as both
models are valid for generating the given serializa-
tion. Therefore, we distinguish between two strate-
gies for deserializing classes. These are denoted Non-
anonymous Class Deserialization Strategy and Anony-
mous Class Deserialization Strategy.

(i) Non-anonymous Class Deserialization Strategy.
This strategy is used for deserializing non-anonymous
classes to class elements of the visual model. We use
an example for describing this strategy. Consider the
serialization given in Listing 3. Class a is a non-
anonymous class as it has a name (attribute IRI). The
deserialization strategy creates for this serialization a
visual model with a class element a representing the
non-anonymous OWL class. It has model hyperlinks
to the other classes to which it is related with the
equivalent class axioms. For the given example, class a
has hyperlinks to the classes b and c which represent
the intersection of axiom. This strategy is also applied
for other axioms such as union axioms or subclass ax-
ioms.

However, if the serialization has two identical ax-
ioms7 – such as the union axiom in the given exam-
ple – then two anonymous classes are created in the
model in order to avoid blurring the intended mean-
ing. Instead of having direct hyperlinks to the classes
d, e, f , and g, the class element a has hyperlinks to
two anonymous class elements and the anonymous
class elements reference to the classes d, e, f, and g.
Hence, the resulting model element which represents
class a, has a hyperlink to the two anonymous classes
i, j which point to the model elements contained in the
axioms: a, i, j, d, e, f , g ∈ µo(OWLClass,MTOWL),
a.UnionOf = {i, j}, i.UnionOf = {d, e}, j.UnionOf =
{ f , g}.

(ii) Anonymous Class Deserialization Strategy.
We identified two different resolution strategies for
anonymous classes which we want to illustrate using
the serialization shown in Listing 4. The content of
the first ObjectIntersectionOf element contains anony-
mous classes - class description axioms within other
class description axioms.

We identified two fundamental strategies for their
deserialization: a) Single Class Strategy. This strategy

7Two axioms with the same name and which belong to the same
class.

LISTING 3: Non-Anonymous Class Deserialization Strategy

<owlx:Declaration >
<owlx:Class IRI= a / >

</owlx:Declaration>
[...]
<owlx:EquivalentClasses >

<owlx:Class IRI= a / >

<owlx:ObjectIntersectionOf >
<owlx:Class IRI= b / >

<owlx:Class IRI= c / >
</owlx:ObjectIntersectionOf>

</owlx:EquivalentClasses>
<owlx:EquivalentClasses >

<owlx:Class IRI= a / >

<owlx:ObjectUnionOf >
<owlx:Class IRI= d / >

<owlx:Class IRI= e / >
</owlx:ObjectUnionOf>

</owlx:EquivalentClasses>
<owlx:EquivalentClasses >

<owlx:Class IRI= a / >

<owlx:ObjectUnionOf >
<owlx:Class IRI= f / >

<owlx:Class IRI= g / >
</owlx:ObjectUnionOf>

</owlx:EquivalentClasses>

creates a single anonymous class i for the class de-
scription axioms which occur in other class descrip-
tion axioms. So we get a class element which has
two lists of model hyperlinks representing the inter-
section axiom as well as the union axiom: i,a,c,d,e
∈ µo(OWLClass,MTOWL), a.IntersectionOf = {i},
i.UnionOf = {e, f}, i.IntersectionOf = {c, d}. In other
words, the strategy groups the axioms to a single
class. Thereby, it makes the implicit assumption that
all axioms belong to a single class. b) Multiple Class
Strategy. Unlike the single class strategy, this strat-
egy does not group the axioms to a single class. For
each axiom, a separate anonymous class is created.
So, for the given listing, two anonymous classes i, j
are created: i, j, a, c, d, e, f ∈ µo(OWLClass,MTOWL),
a.IntersectionOf = {i, j}, i.UnionOf = {e, f}, j.Inter-
sectionOf = {c, d}.

As the example illustrates, the multiple class strat-
egy usually results in the creation of more anonymous
classes than the single class strategy. In the following
rules, we revert to the multiple class strategy as it does
not make any assumptions regarding the grouping.

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 13

LISTING 4: Anonymous Class Deserialization Strategy

<owlx:EquivalentClasses >
<owlx:Class IRI= a / >

<owlx:ObjectIntersectionOf >
<owlx:ObjectIntersectionOf >

<owlx:Class IRI= c / >

<owlx:Class IRI= d / >
</owlx:ObjectIntersectionOf>
<owlx:ObjectUnionOf >

<owlx:Class IRI= e / >

<owlx:Class IRI= f / >
</owlx:ObjectUnionOf>

</owlx:ObjectIntersectionOf>
</owlx:EquivalentClasses>

Our metamodel distinguishes between four different
types of terms. However, in the serialization only vari-
ables can be explicitly defined without distinguishing
between individual variables and data variables. The
atom which contains the variable has to be analyzed in
order to find out if the variable is an individual variable
or a data variable. If e.g. the defined variable is used
as individual in a class atom, then this variable is an
individual variable. If the variable is used in a BuiltIn
atom, then the variable is a data variable.

The following rule describes the transformation of
the Class atom. The serialized class atom either refers
to an existing OWL class or it contains an anonymous
class. The function rand() stands for a function that
generates a random, unique string similar to the con-
cept of UUIDs, which is used to distinguish the created
model elements.

R1. ClassAtom - Rule: s ∈ µo(ClassAtom,MTS WRL)
⇒ m ∈ µo(ClassAtom,MTS WRL):
rand() 7→ m.Name,
R11(s.HasClassExpression) 7→ m.RepresentsClass,
R12(s.HasIArg) 7→ m.Individualvalue1

The following rule describes the deserialization of
an IndividualProperty atom. Thereby, the individuals
are transformed to variables due to the negligence of
individual constants. Further, the reference to the prop-
erty - using the name of the property - is resolved.

R2.IndividualPropertyAtom - Rule: s ∈ µo(
IndividualPropertyAtom,MTS WRL)⇒ m ∈ µo(
IndividualPropertyAtom,MTS WRL) :
rand() 7→ m.Name,

R13(s.HasObjectProperty) 7→ m.RepresentsProperty,
R12(s.HasIArg.at(0)) 7→ m.Individualvalue1,
R12(s.HasIArg.at(1)) 7→ m.Individualvalue2

For the serialization of the DatavaluedProperty atom,
the datavalues need to be serialized either to a variable
or to a literal:

R3.DatavaluedPropertyAtom - Rule: s ∈ µo(
DataPropertyAtom,MTS WRL)⇒ m ∈ µo(
DatavaluedPropertyAtom,MTS WRL):
rand() 7→ m.Name,
R13(s.HasDataProperty) 7→ m.RepresentsProperty
R12(s.HasIArg) 7→ m.Individualvalue1
if (s.HasDArg ∈ µo(Literal, MTS WRL)) {

R15(s.HasDArg) 7→ m.Datavalue
}
else {

R14(s.HasDArg) 7→ m.Datavalue
}

The introduced modeling language distinguishes be-
tween DataRangeAtom and DataRangeAtomList. There-
fore, the following rule checks if a datatype exists in
order to make a correct transformation:

R4.DataRangeAtom - Rule: s∈ µo(DataRangeAtom,
MTS WRL)⇒ m ∈ µo(DataRangeAtom,MTS WRL)
∨ µo(DataRangeAtomList,MTS WRL):
rand() 7→ m.Name,
if (s.HasDArg ∈ µo(Literal, MTS WRL))) {

R15(s.HasDArg) 7→ m.Datavalue
}
else {

R14(s.HasDArg) 7→ m.Datavalue
}
if (s.HasDataRange ∈ µo(DataOneO f ,MTS WRL)) {

{ ∀ i ∈ s.HasDataRange.HasDArg:
if (i ∈ µo(Literal, MTS WRL)) {

R14(i)
}

R15(i)
}

} 7→ m.Literallist,
m ∈ µo(DataRangeAtomList,MTS WRL)

}
else {

s.HasDataRange 7→ m.Datatype
m ∈ µo(DataRangeAtom,MTS WRL)

}

14 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

For the DifferentIndividuals atom all individuals have
to be serialized:

R5.DifferentIndividualsAtom - Rule: s ∈ µo(
DataRangeAtom,MTS WRL)⇒ m ∈ µo(
DataRangeAtom ,MTS WRL):
rand() 7→ m.Name,
{ ∀ i ∈ s.HasIArg:R12(i)} 7→ m.Individuals

The transformation rule for the SameIndividuals atom
is identical to the one of the DifferentIndividuals atom:

R6.SameIndividualsAtom - Rule: s ∈ µo(
S ameIndividualsAtom,MTS WRL)⇒ m ∈ µo(
S ameIndividualsAtom,MTS WRL):
s.Name 7→ m.Name,
{ ∀ i ∈ s.HasIArg:R12(i)} 7→ m.Individuals

The BuiltIn atom makes use of special term elements
in the model which are transformed separately:

R7.BuiltInAtom - Rule: s ∈ µo(BuiltInAtom,
MTS WRL)⇒ m ∈ µo(BuiltInAtom,MTS WRL):
rand() 7→ m.Name,
s.HasIRI 7→ m.BuiltInName,
{ ∀ i ∈ s.HasDArg:R10(i)} 7→ m.BuiltInTerms }

The following rule is a helper rule for creating BuiltIn
terms:

R10.BuildInTerms Helper - Rule: s ∈ (µo(
Literal,MTS WRL) ∪ µo(Variable,MTS WRL))
⇒ m ∈ µo(BuiltInTerm MTS WRL):
if (s ∈ µo(Literal, MTS WRL)) {

R15(s) 7→ m.Datavalue
}
else {

R14(s) 7→ m.Datavalue
}

The following rule is a helper rule which creates either
a non-anonymous class or an anonymous class. Lat-
ter is done in the empty else branch - we neglected it
here with a focus on the serialization/deserialization of
SWRL constructs:

R11.Class Helper - Rule: s ∈ µo(Ob jectUnionO f ,
MTS WRL) ∪ µo(Ob jectIntersectionO f , MTS WRL) ∪
String⇒ m ∈ µo(OWLClass, MTOWL):
if (s ∈ µo(Ob jectIntersectionO f ,MTS WRL) ∨
s ∈ µo(Ob jectUnionO f ,MTS WRL)) {

’Y’ 7→ m.IsAnonymous,
rand() 7→ m.Name,
if (s ∈ µo(Ob jectIntersectionO f ,MTS WRL)) {

{ ∀ i ∈ s.HasClassExpression:R11(i)}
7→ m.IntersectionOf

} else {
{ ∀ i ∈ s.HasClassExpression:R11(i)}
7→ m.UnionOf

}
} else {
}

The following transformation rule describes the cre-
ation of a variable that is created based on a name:

R12.Individualvariable Helper - Rule:
s ∈ µo(Variable,MTS WRL),
⇒ m ∈ µo(IndividualVariable,MTS WRL):
s.HasIRI 7→ m.Name
//individual constant neglected

This rule creates or finds an OWL property based on a
given string which contains the string:

R13.Property Helper - Rule: s ∈ S tring,
⇒ m ∈ µo(OWLProperty, MTS WRL):

//refer to OWL Property
}

The following transformation rule describes the cre-
ation of a variable which is created based on a name:

R14.Datavariable Helper - Rule: s ∈ µo(Variable
,MTS WRL)
⇒ m ∈ µo(DataVariable,MTS WRL):
s.HasIRI 7→ m.Name

The following rule creates a dataconstant whereby the
name is created randomly:

R15.Dataconstant Helper - Rule: s ∈ µo(
Literal,MTS WRL)⇒m ∈ µo(DataConstant,MTS WRL):
rand() 7→ m.Name
s.HasValue 7→ m.Value
s.HasDatatype 7→ m.Datatype

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 15

5. Prototypical Technical Implementation

In order to evaluate the feasibility of the presented
approach, we created a prototypical technical imple-
mentation. This comprised the implementation of the
visual modeling language as well as the transforma-
tion rules for the serialization and deserialization of
the models. Figure 8 shows technologies and syntaxes
used for the implementation.

Fig. 8. Technologies Used for Implementing the Configuration,
Transformation, and Execution Layer

On the configuration layer we reverted to the SeM-
FIS platform, which offers a generic import and export
interface for models in the ADOxml format. The trans-
formation layer was realized using XSLT, and for the
execution layer we used Stanford Protégé and the in-
cluded APIs. In the following we will discuss the used
technologies and platforms as well as the developed
mechanisms and algorithms in more detail.

5.1. Technology and Platforms

The modeling language was implemented by ex-
tending the SeMFIS platform [10], which is based on
metamodeling platform ADOxx [12]. The modeling
languages for OWL ontologies as well as for frames
ontologies are already part of SeMFIS. The introduced
modeling language for SWRL references to constructs
of the OWL modeling language. The attributes of the
model elements can be accessed using a property win-
dow in SeMFIS. An excerpt of the property window of
a class from the ontology model (see Figure 5b) is de-
picted in Figure 9. The entries of the listbox represent
model hyperlinks to the class elements c and d.

Fig. 9. Property Window in SeMFIS for Accessing Attributes of
Model Elements - Example of Class Element b from the Ontology
Model Depicted in Figure 5b

In SeMFIS, each model can be exported to a generic,
standardized XML format called ADOxml8, which is
provided by the underlying metamodeling platform.
ADOxml has a flat structure (limited hierarchy) and
serves as input for the transformation layer.

The transformation layer has been realized with
XSLT. It transforms ADOxml to OWL-XML and vice
versa. The transformation layer has been integrated
into the SeMFIS platform to ensure a seamless user ex-
perience. For the implementation, the XSLT transfor-
mation engine Saxon9 was used. The resulting ontol-
ogy together with the rules is stored in the OWL-XML
syntax and can be processed in the execution layer. We
used Stanford Protégé10 for executing the generated
ontology including the rules. Based on the transforma-
tion rules for the deserialization, also the import of ex-
isting rules in OWL-XML to the SeMFIS platform is
supported.

5.2. Model Algorithms and Mechanisms

In addition to the import and export functionalities,
we implemented further algorithms and mechanisms
for the SWRL modeling language. In the following we
focus on a layout and a validation algorithm.

Layouting. The OWL serializations do not con-
tain any positioning information due to their lack of
a graphical representation. To compensate for this, we
used a layout algorithm that had been developed to en-
sure a proper positionining of model elements when
importing SWRL rules [9, 35]. An example is shown
in Figure 10, where a rule model is shown before and
after the layout algorithm is applied.

8The schema is defined in https://www.adoxx.org/AdoScriptDoc
/files/Message_Ports/Component_APIs/Documentation/XML_
MODELS-js.html, accessed: 14.08.2017

9http://saxon.sourceforge.net/
10http://protege.stanford.edu/

16 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

(a) Model before Running the
Layout Algorithm

(b) Model after Running the
Layout Algorithm

Fig. 10. Layout of Imported Models

The basic working of the algorithm is as follows.
For every serialization that is imported, the algorithm
first positions the Antecedent and the Consequent ele-
ments at the top of the model so that the edge of type
HasConsequent is positioned between them. Next, the
atoms connected to the antecedent are positioned in a
row below the antecedent, followed by atoms that are
connected both to the antecedent and the consequent.
The atoms that are only connected to the consequent
are placed at the end of the row. In addition, separate
rows of elements are created below for the variables
and constant terms.

In the ontology model, a separate row is created for
all intances of a certain metaclass, the order is the fol-
lowing: Namespace, Class, Property, Instance, Predi-
cate, AllDifferent and Package. The algorithm works
in a responsive way, which means that if an entire row
is being deleted, the objects below will "move up" one
row if the layout algorithm is applied again.

Validating. A basic validation algorithm has also
been implemented for the SWRL modeling language.
Before a rule is exported, it is checked if e.g. an an-
tecedent and a consequent exists and if they are con-
nected. Further, it is checked if the atoms are con-
nected to either an antecedent or a consequent. In cases
in which such a possible invalidity is detected, the
modeler is shown a warning.

6. Evaluation

For the evaluation of our approach, we took two di-
rections. First, we evaluated our approach along the ex-
amples provided by the W3C in the SWRL proposal.
These are used to illustrate the capabilities of SWRL
and can therefore serve as examples that are easily
accessible and well documented. Second, we applied
our approach to a use case to assess how the approach
would behave for an existing comprehensive rule set.

6.1. W3C Examples

From a general perspective, artifacts in design-
oriented and engineering research can be evaluated us-
ing different approaches [57]. In the case of the in-
troduced visual modeling language for SWRL, the
most important aspect was to assess, whether the mod-
els created with it conform to the recommendation
by W3C for SWRL and its extension introduced [7].
We evaluated the completeness by modeling the ex-
ample rules introduced in the SWRL recommenda-
tion11. Each example was modeled using the intro-
duced modeling method. Afterwards, we exported the
SWRL model and manually inspected its serialization.
The serialization was imported to Stanford Protégé in
order find out if the widely used components such as
the SWRLAPI12 and the OWLAPI13 are able to read
the serialization. Finally, the SWRL ontology was ex-
ported using Protégé and re-imported to the extended
SeMFIS platform. Table 2 shows that our approach
supports also the other examples provided by the W3C.

We then modeled the SWRL rule presented in Ex-
ample 5.1-3 of the SWRL recommendation14 in Fig-
ure 12. Moreover, we added an anonymous class to
the referenced OWL model in order to illustrate how
our serialization/deserialization approach works for
anonymous classes. The top left corner of the figure
shows the SWRL model, which has model hyperlinks
to the OWL model. These two models are serialized
to OWL-XML. An excerpt of the serialized code is
shown in Listing 5. This serialization can e.g. imported
to Stanford Protégé, which offers a rule engine as well
as a text-based editor for modifying and writing rules.
Rules stored in a standardized syntax can be imported
to our modeling toolkit as excerpts of the models de-
picted on the right upper corner show. The used lay-
out algorithm determines the position of the modeling
elements. This figure also reveals, that three anony-
mous classes are in the OWL ontology, while the initial
model contains two anonymous classes. This is a result
of the introduced multi-class strategy which we de-
scribed before. Listing 5 shows the three axioms which
result in an anonymous class: the two axioms con-
tained in the ObjectIntersectionOf and the ObjectIn-
tersectionOf axiom, which is contained in the UnionOf
axiom in the second EquivalentClass axiom. In the use

11https://www.w3.org/Submission/SWRL: examples 5.1-1 - 5.1-6
12https://github.com/protegeproject/swrlapi
13https://github.com/owlcs/owlapi
14https://www.w3.org/Submission/SWRL/#5.1

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 17

W3C Example Rule Supported by our Approach
Example 5.1-1 hasParent(?x1, ?x2) ^ hasBrother(?x2, ?x3) -> hasUncle(?x1, ?x3) X

Example 5.1-2 hasParent(?x1, ?x2) ^ hasSibling(?x2, ?x3) ^ hasSex(?x3, male) -> hasUncle(?x1, ?x3) X

Example 5.1-3 Artist(?x) ^ Style(?y) ^ artistStyle(?x, ?y) ^ creator(?x, ?z) -> period(?z, ?y) X

Example 5.1-4 Excerpt: LocationClass(?maploc) ^ psameLocation(?loc, ?maploc) ^ latitude(?loc, ?lat) ^
longitude(?loc, ?lon) -> latitude(?maploc, ?lat) ^ longitude(?maploc, ?lon)

X

Example 5.1-5 lengthInFeet(?instance,?feet) -> swrlb:multiply(?inches,?feet) ^ lengthIn-
Inches(?instance,?inches)

X

Example 5.1-6 hasStatus(?customer, Gold) ^ hasTotalPurchase(?customer, ?total) ^
swrlb:greaterThanOrEqual(?total, 500) -> hasDiscount(?customer, 10)

X

Table 2
Evaluation of the Approach Along the Examples Provided by the W3C

case, we did not use an anonymous class in e.g. the
class atom, as it is not supported by the SWRLtab of
Stanford Protégé15.

6.2. Use Case

In this section we describe how to use our approach
for modifying an existing set of rules. Therefore we re-
verted to the SWRL rule set published within the Pro-
tégé project16. One of these rules is depicted on the top
of Figure 12. We imported the OWL-XML serializa-
tion of this rule set with our application. The visual-
izations of the rules are depicted in the center of Fig-
ure 12. We removed other rules to improve the read-
ability of the figure. In the extended SeMFIS mod-
eling toolkit we added inter-alia an individual-valued
property atom, termed hasParent, to a rule - the newly
added atom is highlighted in Figure 12. After adding
the atom, we serialized the model so that it can be pro-
cessed by SWRL rule engines. We exported the model
to OWL-XML and re-imported it to Protégé where we
added individuals in order to infer and test the modi-
fied set of rules. Figure 13 shows the modified rule in
the Protégé SWRLTab editor before it was processed
by a rule engine. In this way the round-trip from an
existing rule set to our visual modeling approach and
back to another platform could be positively tested.

We plan further evaluations for assessing the perfor-
mance of the introduced transformation rules. Addi-
tionally, usability tests are planned for testing the us-
ability of the developed approach.

15https://github.com/protegeproject/swrlapi/wiki/SWRLAPISWRL
Syntax

16http://swrl.stanford.edu/ontologies/examples/family.swrl.owl

LISTING 5: Excerpt of the Serialization of the Use Case

[...]
<owlx:EquivalentClasses >

<owlx:Class IRI= A / >

<owlx:ObjectIntersectionOf >
<owlx:ObjectIntersectionOf >

<owlx:Class IRI= B / >

<owlx:Class IRI= C / >

</owlx:ObjectIntersectionOf>
<owlx:ObjectUnionOf >

<owlx:Class IRI= Artist / >

<owlx:Class IRI= Style / >
</owlx:ObjectUnionOf>

</owlx:ObjectIntersectionOf>
</owlx:EquivalentClasses>
<owlx:EquivalentClasses >

<owlx:Class IRI= A / >

<owlx:ObjectUnionOf >
<owlx:ObjectIntersectionOf >

<owlx:Class IRI= Artist / >

<owlx:Class IRI= Style / >
</owlx:ObjectIntersectionOf>

</owlx:ObjectUnionOf>
</owlx:EquivalentClasses>
<owlx:DLSafeRule >

<owlx:Body >
<owlx:ClassAtom >

<owlx:Class IRI= Artist / >

<owlx:IndividualVariable IRI= / >
x1

< /owl:ClassAtom>
[...]

< /owl:Body>
[...]

< /owl:DLSafeRule>
[...]

18 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

Fig. 11. Use Case - Export of Model, Processing and Import of Model

7. Discussion and Limitations

In industrial settings, the support of non-technical
users for managing complex formalisms and formal
systems is essential [9]. With the presented visual
modeling language for SWRL, domain experts can use
the predefined modeling elements and algorithms for
composing rules. In this way, the modeling language
can be considered as a substitution for the widely-used
text-based syntax for SWRL rules. An initial empirical
study, which attests the benefit of modeling rules, was
introduced in [8]. It was found that the visual approach

outperforms the text-based approach in all measured
categories in both user groups - experts and novices.
However, further empirical evaluation will be neces-
sary due to the small sample size. The described visual
approach is also useful for visualizing existing rules to
domain experts which have to document, improve and
inspect them.

Compared to the textual syntax, the introduced mod-
eling language is able to re-use existing rule parts. The
independence of our tool requires the usage of stan-
dardized serialization formats. Therefore, we imple-
mented in addition to the validation and layout algo-

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 19

Modified SWRL Rule (visual)

Modified SWRL Rule (visual)
Person(?x) ^ hasParent(?x, ?y) ^ Man(?y) ^ hasParent(?x, ?z) ^ Woman(?z) ->

hasFather(?x, ?y) ^ hasMother(?x, ?z)
Modified SWRL Rule (visual)

Person(?x) ^ hasParent(?x, ?y) ^ Man(?y) ^ hasParent(?x, ?z) ^ Woman(?z) ->

hasFather(?x, ?y) ^ hasMother(?x, ?z)

Person(?x) ^ hasParent(?x, ?y) ^ Man(?y) -> hasFather(?x, ?y) Original SWRL Rule (textual)Original SWRL Rule (textual)Person(?x) ^ hasParent(?x, ?y) ^ Man(?y) -> hasFather(?x, ?y) Original SWRL Rule (textual)

Fig. 12. Extended Visualization of the Rules (Excerpt)

Fig. 13. Screenshot of a Rule in the Stanford Protégé Editor

rithms, import and export facilities for the standardized
OWL-XML syntax. This enables compatibility with
semantic web platforms such as Stanford Proégé and
other industry applications.

Even if the visual modeling approach simplifies the
creation of SWRL rules, the modelers have to under-
stand the basic concepts of SWRL. For large rules, e.g.
with thousands of atoms, advanced visualization tech-
niques such as groupings will have to be introduced.

While we considered an inclusion of a SWRL en-
gine to our modeling toolkit, we rather decided to sup-
port standardized SWRL syntaxes so that external rule
engines can process them. This is because we see the
modeling tool as a platform- and engine- independent
application.

Currently, the support of annotations in the SWRL
modeling language is limited. We will add this func-
tionality within the next SeMFIS release.

In the current implementation, a visual ontology
model has to be created or imported. While the intro-
duced import function allows to import already exist-
ing ontologies, there are several use cases for which
direct references to OWL serializations - not to the vi-
sual model - might be beneficial. For example in cases,
in which the ontology is gathered from the web.

The current implementation focuses on the support
of the OWL-XML syntax. Libraries such as OWLAPI
or SWRLAPI can be used to convert OWL-XML seri-
alizations to other concrete syntaxes.

8. Conclusion and Further Research

In this paper we conceptualized a visual model-
ing language for SWRL rules with a special aim on
supporting non-technical domain experts and business
users. Instead of programming SWRL using a text-
based editor such as used in the SWRLtab of Stan-
ford Protégé, our modeling approach allows construct-
ing SWRL rules using predefined modeling classes.
Domain experts can use these predefined classes - by
drag and drop and thus construct the rule. Validation
algorithms support the users during the creation of the
rules.

20 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

For visualizing and modifying already existing
rules, our approach provides an import functionality.
Additionally, the rule models can be exported in order
to process the rules using rule engines. Therefore, we
introduced generic transformation rules in the paper
which can be adapted for syntaxes such as RDF-XML.
We also discussed issues which occur during the trans-
formations and strategies for handling them.

The introduced approach has been implemented
by extending the SeMFIS platform. The transforma-
tion was realized with XSLT whereby we support the
OWL-XML syntax for importing and exporting rules.

In our further research we plan to add support
for further syntaxes such as RDF-XML. With a spe-
cial aim on assisting business users we want to im-
prove validation algorithms (e.g. by making sugges-
tions for solving validity issues). We also consider pro-
viding mechanisms which allow direct references from
SWRL atoms to OWL ontology concepts - currently
OWL ontologies have to be imported as a model in
order to reference their concepts. An empirical evlau-
tion of the benefits of the introduced visual approach
is necessary and will be a main pillar for further im-
provements.

References

[1] R. Studer, V.R. Benjamins and D. Fensel, Knowledge Engi-
neering: Principles and Methods, Data Knowl. Eng. 25(1–2)
(1998), 161–197.

[2] S. Stadtmueller, S. Speiser, A. Harth and R. Studer, Data-Fu:
A Language and an Interpreter for Interaction with Read/Write
Linked Data, in: WWW Conference, 2013, pp. 1225–1236.

[3] D. Feldkamp, K. Hinkelmann and B. Thönssen, KISS -
Knowledge-Intensive Service Support for Agile Process Man-
agement, in: Proceedings of the Workshop on Semantic Busi-
ness Process and Product Lifecycle Management, Springer,
2007.

[4] T.A. Pham and N. Le Than, Checking the Compliance of Busi-
ness Processes and Business Rules Using OWL 2 Ontology and
SWRL, in: AECIA Conference 2015, Springer, 2016, pp. 11–
20.

[5] M. O’Connor, H. Knublauch, S. Tu and M. Musen, Writing
rules for the semantic web using SWRL and Jess, Protégé With
Rules Workshop, Madrid (2005).

[6] C. Keßler, A RESTful SWRL Rule Editor, in: Web Reasoning
and Rule Systems - Fourth International Conference, RR 2010,
2010, pp. 235–238.

[7] B. Glimm, M. Horridge, B. Parsia and P.F. Patel-Schneider, A
Syntax for Rules in OWL 2, in: Proceedings of the 5th Interna-
tional Workshop on OWL: Experiences and Directions, 2009.
http://ceur-ws.org/Vol-529/owled2009_submission_16.pdf.

[8] K. Skillen, L. Chen and W. Burns, VIPR: A Visual Inter-
face Tool for Programming Semantic Web Rules, in: 2016 Intl
IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of
People, and Smart World Congress, IEEE, 2016, pp. 277–284.

[9] H. Fill, B. Pittl and G. Honegger, A Modeling Environment for
Visual SWRL Rules Based on the SeMFIS Platform, in: De-
signing the Digital Transformation - 12th International Con-
ference DESRIST, 2017, pp. 452–456.

[10] H. Fill, SeMFIS: A Flexible Engineering Platform for Se-
mantic Annotations of Conceptual Models, Semantic Web 8(5)
(2017), 747–763.

[11] H.-G. Fill, On the Conceptualization of a Modeling Language
for Semantic Model Annotations, in: Advanced Information
Systems Engineering Workshops, CAiSE 2011, C. Salinesi and
O. Pastor, eds, Springer, 2011, pp. 134–148.

[12] H. Fill and D. Karagiannis, On the Conceptualisation of Mod-
elling Methods Using the ADOxx Meta Modelling Platform,
Enterprise Modelling and Information Systems Architectures
8(1) (2013), 4–25.

[13] D. Karagiannis and H. Kühn, Metamodelling Platforms, in: E-
Commerce and Web Technologies, Third International Confer-
ence, EC-Web, K. Bauknecht, A. Min Tjoa and G. Quirchmayr,
eds, 2002, p. 182.

[14] D. Bork and H.-G. Fill, Formal aspects of enterprise model-
ing methods: a comparison framework, in: 2014 47th Hawaii
International Conference on System Sciences, IEEE, 2014,
pp. 3400–3409.

[15] N. Visic, H.-G. Fill, R.A. Buchmann and D. Karagiannis, A
Domain-specific Language for Modeling Method Definition:
from Requirements to Grammar, in: Ninth International Con-
ference on Research Challenges in Information Science, IEEE,
2015.

[16] B. Schätz, Formalization and rule-based transformation of
EMF Ecore-based models, in: International Conference on
Software Language Engineering, Springer, 2008, pp. 227–
244.

[17] H. Fill, T. Redmond and D. Karagiannis, FDMM: A For-
malism for Describing ADOxx Meta Models and Models, in:
ICEIS 2012 - Proceedings of the 14th International Conference
on Enterprise Information Systems, Volume 3, L. Maciaszek,
A. Cuzzocrea and J. Cordeiro, eds, 2012, pp. 133–144.

[18] H.-G. Fill, S. Hickl, D. Karagiannis, A. Oberweis and
A. Schoknecht, A Formal Specification of the Horus Model-
ing Language Using FDMM, in: International Conference on
Business Informatics 2013, AIS, 2013.

[19] F. Johannsen and H.-G. Fill, Meta Modeling for Business Pro-
cess Improvement, Business & Information Systems Engineer-
ing 59(4) (2017), 251–275.

[20] T. Glässner, F. Heumann, L. Keßler, F. Härer, A. Steffan
and H.-G. Fill, Experiences from the Implementation of a
Structured-Entity-Relationship Modeling Method in a Student
Project, in: Proceedings of the 1st International Workshop on
Practicing Open Enterprise Modeling within OMiLAB (PrOse
2017), D. Bork, D. Karagiannis and J. Vanthienen, eds, CEUR,
2017.

[21] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, M. Dean et al., SWRL: A semantic web rule lan-
guage combining OWL and RuleML, W3C Member submis-

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 21

sion 21 (2004), 79, Accessed on 2017-07-10. https://www.w3.
org/Submission/SWRL/.

[22] T. Eiter, G. Ianni, T. Krennwallner and A. Polleres, Rules and
Ontologies for the Semantic Web, in: Reasoning Web, 4th In-
ternational Summer School 2008, 2008, pp. 1–53.

[23] D.L. McGuinness, F. Van Harmelen et al., OWL web on-
tology language overview, W3C recommendation 10(10)
(2004), 2004, Accessed on 2017-07-10. https://www.w3.org/
TR/owl-features/.

[24] B. Motik, P.F. Patel-Schneider and I. Horrocks, OWL 2 web
ontology language: Structural specification and functional-
style syntax, W3C recommendation 11 (2009), Accessed on
2017-07-10. https://www.w3.org/TR/owl2-syntax/.

[25] B. Glimm, I. Horrocks, B. Motik, G. Stoilos and Z. Wang, Her-
miT: An OWL 2 Reasoner, J. Autom. Reasoning 53(3) (2014),
245–269.

[26] M.A. Musen, The protégé project: a look back and a look for-
ward, AI Matters 1(4) (2015), 4–12.

[27] M. Horridge, OWL Syntaxes, Ontogenesis (2010), Accessed
on 2017-07-10. http://ontogenesis.knowledgeblog.org/88.

[28] S. Bechhofer, B.C. Grau, A. Fokoue, R. Hoekstra and
B. Parsia, OWL 2 Web Ontology Language XML Se-
rialization, W3C recommendation 27(65) (2009), 159,
Accessed on 2017-07-10. https://www.w3.org/TR/2009/
REC-owl2-xml-serialization-20091027/#Appendix:_The_
Derivation_from_the_Functional_Syntax_.28Informative.29.

[29] F. Khan, A. Bellandi, F. Frontini and M. Monachini, Using
SWRL Rules to Model Noun Behaviour in Italian, in: First In-
ternational Conference on Language, Data, and Knowledge,
2017, pp. 134–142.

[30] C.S. Namahoot, S. Sivilai and M. Brückner, An Ingredient Se-
lection System for Patients Using SWRL Rules Optimization
and Food Ontology, in: International Conference on Cooper-
ative Design, Visualization, and Engineering, 2016, pp. 163–
171.

[31] E. Cardillo, M.T. Chiaravalloti, C. Eccher, E. Pasceri,
V.D. Mea, L. Frattura and R. Guarasci, Towards a Rule-based
Support System for the Coding of Health Conditions in the Pa-
tient Summary, in: Proceedings of International Workshop on
Biomedical Data Mining, Modeling, and Semantic Integration,
2015.

[32] V. Lombardo, C. Battaglino, A. Pizzo, R. Damiano and A. Li-
eto, Coupling Conceptual Modeling and Rules for the Annota-
tion of Dramatic Media, Semantic Web 6(5) (2015), 503–534.

[33] P. Bonte, F. Ongenae, J. Schaballie, D. Arndt, P. Leroux,
R. Verborgh, E. Mannens, F.D. Turck and R. Wauters, Seman-
tic Intelligence for Real-time Automated Media Production,
in: Proceedings of the ISWC 2015 Posters & Demonstrations
Track, 2015.

[34] E.F. Aminu, O.N. Oyelade and I.S. Shehu, Rule Based Com-
munication Protocol between Social Networks using Semantic
Web Rule Language (SWRL), International Journal of Mod-
ern Education and Computer Science 8(2) (2016), 22.

[35] B. Pittl, H. Fill and G. Honegger, Enabling Risk-Aware Enter-
prise Modeling using Semantic Annotations and Visual Rules,
in: European Conference on Information Systems, AIS, 2017.

[36] J.L.R. Moreira, T.P. Sales, J. Guerson, B.F.B. Braga,
F. Brasileiro and V. Sobral, Menthor Editor: An Ontology-
Driven Conceptual Modeling Platform, in: Proceedings of the
Joint Ontology Workshops 2016, 2016.

[37] J. Bak, M. Nowak and C. Jedrzejek, RuQAR: Reasoning
Framework for OWL 2 RL Ontologies, in: The Semantic Web:
ESWC 2014 Satellite Events - Revised Selected Papers, 2014,
pp. 195–198.

[38] K. Kim, H. Kim, S. Kim and J. Jung, i-RM: An intelligent
risk management framework for context-aware ubiquitous cold
chain logistics, Expert Syst. Appl. 46 (2016), 463–473.

[39] T.W. Wlodarczyk, C. Rong, M.J. O’Connor and M.A. Musen,
SWRL-F: a fuzzy logic extension of the semantic web rule lan-
guage, in: Proceedings of the International Conference on Web
Intelligence, Mining and Semantics, 2011, p. 39.

[40] E. Jajaga and L. Ahmedi, C-SWRL: SWRL for Reasoning over
Stream Data, in: 11th IEEE International Conference on Se-
mantic Computing, 2017, pp. 395–400.

[41] A. Boujelben, T. Chaari and I. Amous, Towards Better SWRL
Rules Dependency Extraction, in: 16th International Confer-
ence on Intelligent Systems Design and Applications, 2016,
pp. 781–790.

[42] S. Brockmans, P. Haase and H. Stuckenschmidt, Formalism-
Independent specification of ontology mappings–a metamod-
eling approach, On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE (2006), 901–908.

[43] A. Leutgeb, W. Utz, R. Woitsch and H.-G. Fill, Adaptive Pro-
cesses in E-Government - A Field Report about Semantic-
based Approaches from the EU-Project FIT, in: ICEIS’2007,
INSTICC, 2007, pp. 264–269.

[44] A. Leutgeb, The business rules method : a modeling method
for adaptive processes - Master Thesis, University of Vienna,
Wien, 2007.

[45] J. Bak, M. Nowak and C. Jedrzejek, Graph-based Editor for
SWRL Rule Bases, in: Joint Proceedings of the 7th Interna-
tional Rule Challenge, 2013.

[46] S. Hassanpour, M.J. O’Connor and A.K. Das, A Rule Manage-
ment and Elicitation Tool for SWRL Rule Bases, in: Proceed-
ings of the 3rd International RuleML-2009 Challenge, 2009.

[47] M.K. Sarker, D. Carral, A.A. Krisnadhi and P. Hitzler, Mod-
eling OWL with Rules: The ROWL Protege Plugin, in: Pro-
ceedings of the ISWC 2016 Posters & Demonstrations Track,
2016.

[48] D. Harel and B. Rumpe, Modeling Languages: Syntax, Se-
mantics and All That Stu (2000). http://www4.in.tum.de/publ/
papers/HR00.pdf.

[49] H.-G. Fill and P. Burzynski, Integrating Ontology Models and
Conceptual Models using a Meta Modeling Approach, in: 11th
International Protégé Conference, 2009.

[50] H.-G. Fill, Design of Semantic Information Systems using a
Model-based Approach, in: AAAI Spring Symposium, AAAI,
2009.

[51] D. Moody, The “physics” of notations: toward a scientific basis
for constructing visual notations in software engineering, IEEE
Transactions on Software Engineering 35(6) (2009), 756–779.

[52] ArchiMate, ArchiMate, The Open Group (2016), Accessed
on 2017-07-10. https://www2.opengroup.org/ogsys/catalog/
C162.

[53] UML, Unified Modeling Langague Specification (UML),
OMG (2015), Accessed on 2017-07-10. http://www.omg.org/
spec/UML/2.5/PDF/.

[54] BPMN, Business Process Model and Notation (BPMN), OMG
(2013), Accessed on 2017-07-10. http://www.omg.org/spec/
BPMN/2.0.2/PDF/.

22 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

[55] H.-G. Fill, Visualisation for Semantic Information Systems,
Gabler, 2009.

[56] D. Harel and B. Rumpe, Meaningful Modeling: What’s the Se-
mantics of "Semantics"?, IEEE Computer (2004), 64–72.

[57] K. Peffers, T. Tuunanen, M.A. Rothenberger and S. Chatter-
jee, A Design Science Research Methodology for Information
Systems Research, JMIS 24(3) (2007), 45–77.

Appendix A. SWRL Modeling Language in
FDMM

In the following we list the details of the SWRL
modeling language as expressed in the FDMM for-
malism [17]. The visual modeling language for the
SWRL consists of a single model type MTS WRL. This
model type has a set of object types OT

S WRL which
have a set of attributes AS WRL which have in turn data
types DT

S WRL. The object types used in the model type
are described in the following equation. In FDMM
connectors such as HasAtom and HasConsequent are
also considered as object types. We focused on the
core elements and therefore we neglected the meta-
classes MetaInfo and Annotation.

OT
S WRL ={Consequent, Antecedent,

RulePart, Atom,

ClassAtom, IndividualPropertyAtom,

DataValuedPropertyAtom,DataRangeAtom,

Di f f erentIndividualsAtom, BuiltInAtom,

S ameIndividualsAtom,DataRangeAtomList,

IndividualVariable, IndividualConstant,

DataVariable,DataConstant, BuildInTerm,

HasAtom,HasConsequent}

(1)

All attributes used in the object types are part of the
set AS WRL. In the following, only the most important
attributes are given.

AS WRL ={Name,RepresentsClass,

RepresentsProperty,Datatype,

Individualvalue1, Individualvalue2,

Classname, Propertyname,Datavalue,

Individuals, Literallist, BuiltInName,

HasConsequent_ f rom,HasConsequent_to,

HasAtom_ f rom,HasAtom_to,

BuildInTerms,Value,RepresentsIndividual}

(2)

The datatypes of the attributes are summarized in the
set DT

S WRL. EnumbuiltIn represents a enumeration list.
Due to the space constraints we do not list all its val-
ues.

DT
S WRL ={S tring, IndividualVariable,OWLClass,

EnumbuiltIn = {greaterThan, smallerThan, ...

},OWLProperty,DataConstant,Data,

Enumdatatype = {string, integer, ...},

Consequent, Atom, IndividualConstant,

BuildInTerm,DataVariable, Individual}

(3)

The ordering of the object types is described in the
following:

Consequent � RulePart

Antecedent � RulePart

ClassAtom � Atom

IndividualVariable � Individual

IndividualConstant � Individual

DataConstant � Data

DataVariable � Data

IndividualPropertyAtom � Atom

DataValuedPropertyAtom � Atom

DataRangeAtom � Atom

Di f f erntIndividualAtom � Atom

S ameIndividualAtom � Atom

BuiltInAtom � Atom

DataRangeAtom � Atom

(4)

In the following, the domain functions are used to es-
tablish a mapping between the attributes and the object
types:

domain(Name) ={Atom,RulePart,

IndividualConstant,

IndividualVariable,

DataVariable,

DataConstant, BuiltInTerm},

domain(RepresentsClass) ={ClassAtom},

domain(RepresentsProperty) ={IndividualPropertyAtom,

DataValuedPropertyAtom},

domain(Datatype) ={DataConstant,

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 23

DataRangeAtom},

domain(Individualvalue1) ={ClassAtom,

IndividualPropertyAtom,

DataValuedPropertyAtom},

domain(Individualvalue2) ={IndividualPropertyAtom},

domain(Classname) ={ClassAtom},

domain(Propertyname) ={IndividualPropertyAtom,

DataValuedPropertyAtom},

domain(Datavalue) ={DataValuedPropertyAtom,

DataRangeAtom,

DataRangeAtomList,

BuiltInTerm},

domain(Individuals) ={Di f f erntIndividualAtom,

S ameIndividualAtom},

domain(Literallist) ={DataRangeAtomList},

domain(BuiltInName) ={BuildInAtom},

domain(BuildInTerms) ={BuildInAtom},

domain(HasConsequent_to) ={HasConsequent},

domain(HasConsequent_ f rom) ={HasConsequent},

domain(HasAtom_ f rom) ={HasAtom},

domain(HasAtom_to) ={HasAtom},

domain(Value) ={DataConstant}. (5)

The range function assigns datatypes to attributes
used in object types. The range functions are listed in
the following:

range(Name) ={S tring},

range(RepresentsClass) ={OWLClass},

range(RepresentsProperty) ={OWLProperty},

range(Datatype) ={Enumdatatype},

range(Individualvalue1) ={IndividualConstant,

IndividualVariable},

range(Individualvalue2) ={IndividualConstant,

IndividualVariable},

range(Classname) ={S tring},

range(Propertyname) ={S tring},

range(Datavalue) ={DataConstant,

DataVariable},

range(Individuals) ={IndividalConstant,

IndividualVariable},

range(Literallist) ={DataConstant},

range(BuiltInName) ={S tring},

range(BuildInTerms) ={BuildInTerm},

range(HasConsequent_to) ={Consequent},

range(HasConsequent_ f rom) ={Antecedent},

range(HasAtom_ f rom) ={Antecedent},

range(HasAtom_to) ={Consequent},

range(Value) ={S tring}. (6)

In FDMM the cardinality function - abbreviated with
card - defines how many attribute values a object type
can have. In our modeling type all attributes have at
most one value except the attributes Individuals, Lit-
erallist and BuildInTerms which can have an infinite
number of parameters. Therefore, we do not show the
cardinality functions in this paper.

In the following we describe an excerpt of the visual
OWL model using the FDMM which we require for
formalizing the model transformation.

OT
OWL ={OWLClass,OWLProperty}

AOWL ={Name, IntersectionO f ,UnionO f ,

IsAnonymous...}

DT
OWL ={S tring,OWLClass, ...} (7)

The domain functions are then described in the following.

domain(Name) ={OWLClass,OWLProperty},

domain(IntersectionO f) ={OWLClass},

domain(UnionO f) ={OWLClass},

domain(IsAnonymous) ={OWLClass} (8)

The corresponding range functions are:

range(Name) ={S tring},

range(IntersectionO f) ={OWLClass},

range(UnionO f) ={OWLClass},

range(IsAnonymous) ={Boolean}. (9)

The cardinality functions are not formally described
here. The attributes Name and IsAnonymous can have
at most one value while the attributes IntersectionOf
and unionOf can have multiple values.

24 B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL

Appendix B. SWRL Serialization in FDMM

For a clear description of the transformation from
the model to the serialization and vice versa we
mapped the functional syntax described in [7] - which
references to OWL 2 elements described in [24] - to the
FDMM. The functional syntax is described using pro-
duction rules and the mapping to FDMM was done as
follows: (i) For each terminal symbol an object type in
the FDMM was created except for the single brackets
which are used in the functional syntax for grouping.
An excerpt of a production rule used in [7] and [28] is
shown in the following:

DLSafeRule ::= [...] ’Body’ ’(’ {Atom} ’)’
’Head’ ’(’ {Atom} ’)’
Atom::=’ClassAtom’ ’(’ ClassExpression IArg ’)’
| ’DataRangeAtom’ ’(’ DataRange DArg ’)’
| ’SameIndividualAtom’ ’(’ IArg IArg ’)’
IArg::= [...] ’Variable’ ’(’ IRI ’)’
IRI ::= fullIRI | abbreviatedIRI
fullIRI ::= an IRI as defined in [RFC3987],
enclosed in a pair of < (U+3C) and > (U+3E)
characters
abbreviatedIRI ::= a finite sequence of characters
matching the PNAME_LN production of [SPARQL]
[...]

For example, the FDMM object types Body, Head, Clas-
sAtom, DataRangeAtom, SameIndividualAtom and Vari-
able are created for the corresponding terminals.
(ii) For all terminals a corresponding attribute in
the FDMM is created for each non-terminal it con-
tains using the prefix Has. So for the previous ex-
ample, the object type Body and Head get the at-
tribute HasAtom. The object type ClassAtom gets
two attributes HasClassExpression and HasIArg. Sim-
ilarly, for the object type DataRangeAtom the at-
tributes HasDataRange and HasDArg are created
while the object type SameIndividualAtom gets the at-
tribute HasIArg. For the object type Variable the at-
tribute HasIRI is created. (iii) The range of the at-
tributes are the object types created within the non-
terminal for which the attribute was created. For exam-
ple, the range of the previous used attribute HasIArg
consists of the object type Variable. Some contained
production rules do not result into object types because
the production rule refers to simple datatypes which
are used instead as range for attributes in the FDMM.
(iv) The non-terminals which are not grouped by a
terminal are replaced in the mapping process to the
FDMM by their content. So production rules which do
not consist of terminals do not result into an object type

in the FDMM. So e.g. the range of the attribute HasIRI
is a string as the production rule IRI refers finally to
string representing a IRI17.

The following description using the FDMM starts
with the production rule DLSafeRule. To stay compli-
ant with the SWRL modeling language we did not con-
sider annotations as well as all OWL constructs e.g. we
simplified production rules of the OWL Literal.

The serialization of the rules is described using the
model type MTS WRL. The model type has a set of ob-
ject types OT

S WRL
which have a set of attributes AS WRL

which have in turn data types DT
S WRL

. The object types
used in the model type are described in the following
equation.

OT
S WRL ={Head, Body,

ClassAtom,Ob jectPropertyAtom,

DataPropertyAtom,DataRangeAtom,

Di f f erentIndividualsAtom, BuiltInAtom,

S ameIndividualsAtom,Variable, Literal

Ob jectItersectionO f ,DataOneO f ,

Ob jectUnionO f , ...}

(10)

Unlike in the model where model instances exist inde-
pendent of other instances, in the serialization model
atoms can only occur within a single head or body.
Similarly, variables and class expressions such as in-
stances of the object type ObjectInstersectionOf can
only occur within a single atom leading to the fol-
lowing conditions whereby k is a placeholder for the
atoms:

∀k ∈ {ClassAtom, ...}∀i ∈ µo(k,MTS WRL) :

∃ j ∈ {µo(Head,MTS WRL) ∪ µo(Body,

MTS WRL)}|i ∈ j.HasAtom

∧ @m ∈ {µo(Head,MTS WRL) ∪ µo(Body,

MTS WRL)}|i ∈ m.HasAtom

∧ m 6= j

(11)

17a distinction between the different string content is not done in
the given transformation

B. Pittl and H.-G. Fill / A Visual Modeling Approach for SWRL 25

∀g ∈ {Variable,Ob jectUnionO f , ...}∀i ∈

µo(g,MTS WRL) :

∃ j ∈ {µo(ClassAtom,MTS WRL) ∪ µo(

Ob jectPropertyAtom,MTS WRL) ∪ ..}

|i ∈ { j.HasIArg ∪ j.HasDArg...}

∧ @m ∈ {µo(ClassAtom,MTS WRL) ∪ µo(

Ob jectPropertyAtom,MTS WRL) ∪ ..}

|i ∈ {m.HasIArg ∪ m.HasDArg...}

∧ m 6= j

(12)

All attributes used in the object types are part of the
set AS WRL. In the following, only the most important
attributes are described.

AS WRL ={HasAtom,HasClassExpression,

HasDataRange,HasIArg,HasDArg

HasIRI,HasDataProperty,

HasClassExpression,HasValue,

HasDatatype,HasOb jectProperty}

(13)

The datatypes of the attributes are summarized in the
set DT

S WRL
.

DT
S WRL ={S tring,ClassDescriptionExpression

Variable, Literal,

ClassAtom,DataRangeAtom,

Ob jectPropertyAtom,DataPropertyAtom,

S ameIndividualAtom, BuiltInAtom,

Di f f erentIndividualsAtom}

(14)

In the following, the domain functions are used to
establish a mapping between the attributes and the ob-
ject types:

domain(HasAtom) ={Body,Head},

domain(HasClassExpression) ={ClassAtom,

Ob jectIntersectionO f ,

Ob jectUnionO f},

domain(HasDataRange) ={DataRangeAtom},

domain(HasIArg) ={ClassAtom,

Ob jectPropertyAtom,

DataPropertyAtom,

BuiltInAtom,

S ameIndividualAtom,

Di f f erentIndividualsAtom},

domain(HasDArg) ={DataRangeAtom,

DataPropertyAtom,

BuiltInAtom,DataOneO f},

domain(HasIRI) ={Variable},

domain(HasDataProperty) ={DataPropertyAtom},

domain(HasValue) ={Literal},

domain(HasDatatype) ={Literal},

domain(HasOb jectProperty) ={Ob jectPropertyAtom}.
(15)

The range function assigns datatypes to attributes used
in object types. The range functions are listed in the
following:

range(HasAtom) ={ClassAtom,DataRangeAtom,

Ob jectPropertyAtom,

DataPropertyAtom,

BuiltInAtom,

S ameIndividualAtom,

Di f f erentIndividualsAtom},

range(HasClassExpression) ={Ob jectIntersectionO f ,

Ob jectUnionO f ,

S tring},

range(HasDataRange) ={S tring,DataOneO f},

range(HasIArg) ={Variable},

range(HasDArg) ={Variable, Literal},

range(HasIRI) ={S tring},

range(HasDataProperty) ={S tring},

range(HasValue) ={S tring},

range(HasDatatype) ={S tring},

range(HasOb jectProperty) ={S tring}. (16)

To save space we did not describe the cardinality func-
tion here. All attributes except HasIRI, HasDatatype
and HasValue have an infinite number of values.

