o J oy s W N

Qs s s s s s s s D DWW W W W W W W W W NNNNNDNNNNN R R R R R R e R P e
HF O W © J & 0 W N O W Jdo s W N R O VW Do s W NP O LV ®Jd o W N R O WV

Semantic Web 0 (0) 1 1
10S Press

Publishing and archiving planned and live
public transport events with the
Linked Connections framework

Julian Rojas ?, David Chaves-Fraga®, Pieter Colpaert?, Oscar Corcho® and Ruben Verborgh ?

8 IDLab, Department of Electronics and Information Systems, Ghent University-imec, Belgium
b Ontology Engineering Group, Universidad Politécnica de Madrid, Spain

E-mails: julianandres.rojasmelendez@ugent.be, dchaves@fi.upm.es, pieter.colpaert@ugent.be,
ocorcho@fi.upm.es, ruben.verborgh@ugent.be

Abstract. Using Linked Data based approaches, companies and institutions are seeking ways to automate the adoption of Open
Datasets. In the transport domain, data about planned events, live updates and historical data have to coexist to provide reliable
data to route planning assistants. Linked Connections (LC) introduces a preliminary specification that allows cost-efficient pub-
lishing of the raw public transport data in linked information resources. This paper gives an overview of Linked Connections so
far and supports claims with existing and novel experiments. Furthermore, (i) an extension of the current Linked Connections
specification providing methods and vocabulary to deal with live data is provided; (ii) a Linked Connections Live server is de-
veloped that is able to process GTFS-RT feeds providing consistent identifiers; and (iii) an efficient management of historical
data taking into account the size of each fragments exposed on the Web is described. We discover that the size of the fragments
has a relevant impact on the performance of query evaluation. Based on our experiments conducted in 2018, an ideal Linked
Connections fragment — for the use case of route planning with a client developed for this work — weighs about 50kb. This
research scratches the surface on a Web ecosystem for route planning. In future works, we envision to find optimal fragmentation
strategies of larger public transit networks for automated federated route planning.

Keywords: Linked Connections, Historical Data, Real time data, Reliable data, Linked Data Fragments

1. Introduction

In the current state of the Web of Data, a wide
amount of that data are exposed following the prin-
ciples of Linked Data [1]. Giving unique identifiers
to each resource, representing the data using a shared
and common vocabulary of a domain or the possibil-
ity of dereferencing each URI are some of the rele-
vant aspects that made Linked Data as one the most
common approaches to organize and expose the data
on the Web [2]. This features allow third parties to
query the data in a standard way, using for example, the
corresponding query language for RDF, SPARQL [3],
and the possibility of doing federation across multiple
datasets [4]. However, today, a lot of domains need to
deal with live and historical data where is important to
maintain stable identifiers that remain valid over time.

The problems regarding the manage of these types of
data and the relation with Linked Data have not widely
researched. One of the most relevant domains where
contributions will have a relevant impact is the trans-
port domain, where a complex environment with mul-
tiple types of data sources have to be managed to pro-
vide reliable data to information systems.

Since March 2017, one of the main motivations for
developing solutions about multimodal and integrated
travel information services is the publication of the
new directive by the EU Commission about discover-
ability and access to public transport data across Eu-
rope!. This document proposes the making of public

Thttps://ec.europa.eu/transport/sites/transport/files/
2017-sustainable-urban-mobility-policy-context.pdf

1570-0844/0-1900/$35.00 (© 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:julianandres.rojasmelendez@ugent.be
mailto:dchaves@fi.upm.es
mailto:pieter.colpaert@ugent.be
mailto:ocorcho@fi.upm.es
mailto:ruben.verborgh@ugent.be
https://ec.europa.eu/transport/sites/transport/files/2017-sustainable-urban-mobility-policy-context.pdf
https://ec.europa.eu/transport/sites/transport/files/2017-sustainable-urban-mobility-policy-context.pdf

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

{
"@id": |
"Gtype”:

1528278000000par_5_435_T11-5_T11_1083A5283A00 2 105 5_Cé_ "

1 ‘train/stops/par 5 43",
‘train/stops/par 5 34",

"ht:
departureTine: "
arrivalTine:
"gtfs:trip':
"gtfsiroute”s “h
"gtfs:pickuplype’: "gtfs:Reqular”

b

rain/trips/5 111-5 111 1083A5283A00 2 105 5_C4__"
‘train/routes/5_C4__"

Fig. 1. Example of a connection at LC in JSON-LD

transport data from providers available on national or
common access points saved on databases, data ware-
house or repositories. All the states will provide access
to a unique common point following different static
standards as Transmodel?, Datex II° or GTFS* and
real-time standards like GTFS-RT® or SIRI®. So the
domain requires solutions able to provide reliable data
and to deal with the heterogeneity of access points and
the data formats.

One of the main challenges when the Linked Data
approaches deal with transport domain, where live and
historical data has to be taken into account for provid-
ing consistent data to the information services, is how
to ensure that the identifiers of each resource is stable
and valid over time. For example, if we define the con-
nection entity as a departure-arrival pair, as has been
done in previous works on Linked Connections [5], the
URI of each connection was defined getting informa-
tion from static GTFS datasets. At the moment that live
data is involved, those URIs are not consistent because
the live information creates new instances of a connec-
tion at different points in time. An example of the con-
ceptualization of a connection is shown in the Figure 1.
Other relevant challenge is how to manage the exposed
historical data on the Web to allow an optimal query
performance. One of the requirements of most relevant
route planning algorithms is that the data have to be
sorted by the time. In previous works of Linked Con-
nections [6], we developed a server that paginates the
list of connections in departure time intervals (10 min-
utes) and publishes these pages over HTTP. We have
noticed that the clients were able to analyze the histor-
ical data but the performance was too low.

Our work is focused on providing an improvement
of the current state of Linked Connections framework
by allowing an efficient management of historical and
live data with a standard vocabulary for the transport
domain. This is relevant because of two main reasons:

2http://www.transmodel-cen.eu
3http://www.datex2.eu
“https://developers.google.com/transit/gtfs
Shttps://developers.google.com/transit/gtfs-realtime/
Shttp://www.transmodel-cen.eu/standards/siri/

(i) currently, a lot of transport companies are starting to
provide access to their live services, but the most com-
mon way to do it, is to develop an ad-hoc solution like
APIs or web services that only work locally [7] and
(ii) the heterogeneity of the domain in terms of data
formats will be a very relevant problem next years, es-
pecially in Europe, based on the proposal of the EU
Commission so a standard framework will be needed.

In this paper we present the Linked Connections
framework to provide reliable access to live and his-
torical data. Our main contribution is the extension of
previous version of the LC server, by providing an ef-
ficient management of live and historical data. First,
we develop a library that gets information from static
GTFS datasets and GTFS-RT data streams and inte-
grate them following the LC vocabulary. Second, we
modify the approach of Linked Connections for split-
ting the fragments of the data using a specific size of
each fragment instead of the time. Third, we program
a route planning algorithm in the top of the LC server
to test if our approach is able to provide reliable data.
Finally, we evaluate the improvements comparing the
new version of the LC framework with our previous
approaches, as base line, and we analyse the impact of
the fragment size in the performance of a route plan.

The paper is organized as follows: Section 2
presents some of the related work about relevant ap-
proaches for exposing data on the web efficiently, pre-
vious steps about the Linked Connections framework,
a description of the de-facto standard GTFS and the
specification of relevant route planning algorithms.
Section 3 describes our proposal about the improve-
ments of the Linked Connections framework and a
working example description. Section 4 presents the
design of our experiments. Section 5 describes the re-
sults we obtained evaluating our main contributions.
Section 6 provides a brief discussion about the rele-
vance of our contributions, and Section 7 presents con-
clusions and areas for future work.

2. Related Work

On the current state of the Web, huge amount of data
are exposed following the principles of Linked Data. In
this section, we describe the main contributions on this
topic focused on an efficient publication of data on the
transport domain, a description of previous approaches
developed using the Linked Connections framework
and the analysis of the model for transport data that

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://www.transmodel-cen.eu
http://www.datex2.eu
https://developers.google.com/transit/gtfs
https://developers.google.com/transit/gtfs-realtime/
http://www.transmodel-cen.eu/standards/siri/

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 3

supports our work. Finally we analyse the most rele-
vant algorithms for route planning.

One of the most well-known alternatives to publish
data on the Web is Linked Data [1]. Linked Data al-
lows to identify in an unique way resources on the
Web using identifiers, or HTTP URIs. It is a method
to distribute and scale data over large organizations
such as the Web. When looking up this identifier by
using the HTTP protocol or using a Web browser, a
definition must be returned, including links towards
other related resources, a practice called dereferencing.
The triple format to be used in combination with URIs
is standardized within RDF. The URIs used for these
triples already existed in other data sources, and we
thus favoured using the same identifiers. It is up to a
data publisher to make a choice on which data sources
can provide the identifiers for a certain type of entities.

A common problem in Linked Data is the availabil-
ity of the triple stores. They provide a way to getting
data using the SPARQL query language but at the mo-
ment of queries involving long periods of time, these
approaches are not efficient [8]. The Linked Data Frag-
ments(LDF) [9, 10] solve this issue fragmenting the
data in several HTTP documents. Following this ap-
proach the store moves the load from server side to
client side improving its availability. Comunica [11]
is a framework that extends the possibilities of LDF,
allowing to query other semantic interfaces as com-
mon SPARQL endpoint, RDF data dumps or HDT
datasets [12].

Linked Connections [5] applies this approach to de-
velop a cost-efficient solution based on a HTTP inter-
face for transport data. The main assumption of LC is
that the relevant data for route planners can be based
on the connection concept. Basically, as the LC vo-
cabuleury7 defines it, a connection describes a depar-
ture at a certain stop and an arrival at a different stop
with their corresponding departure and arrival times
and without any intermediate stop. A basic implemen-
tation of LC is shown in Figure 2, where the route
planning algorithms have to analyse the connections
(small rectangles) through the pages (big rectangles)
and across time to find the expected route. The join
between the connections is possible because same re-
sources have same identifiers, based on one of the prin-
ciples of Linked Data. The Hydra Ontology [13] is
used to specify the next and previous page links as well
as how the resource itself should be discovered

7http://semweb.mmlab.be/ns/linkedconnections

nextPage

e e T o .
’lﬁ%llﬁl*lllll#illl

L 4

nextPage

Fig. 2. Linked Connections implementation

It also relevant to describe the previous works that
has been carried out using the specification of Linked
Connections. For example, [14] describes and anal-
yses the behaviour of a basic transport API and the
Linked Connections framework for public transit route
planning, comparing the CPU and query execution
time. The authors found that, at the expense of a
higher bandwidth consumption, more queries can be
answered using LC than the origin-destination APIL
In [15] studies the impact of taking into account user
preferences in a public transit route planning adding
that features both on server and client and comparing
the two solution on query execution time, cache per-
formance and CPU usage on both sides. A first step
for providing reliable access to historical and live data
using Linked Connections is described in [6], where a
mechanism is introduced to tackle the problem of the
management of data modifications when live data is in-
volved in route planning queries. Tripscore®, a Linked
Data client that consume several Linked Connections
servers with live and historical data is also described in
[16], where the Connection Scan Algorithm (CSA) is
implemented as the route planning algorithm in top of
the client [17]. Tripscore add multiple user preferences
at the client side to provide an score for each possible
route.

All the solutions that we aforementioned rely on
the de-facto standard for representing public transport
data, the General Transit Feed Specification or GTFS.
This model, and its extension for real-time (GTFS-RT)
is used by Google Maps® since 2005 but also by other
route planners like Open Trip Planner '° or Navita.io'!.
It is also the most common model used by the trans-
port companies to expose their data on open data por-
tals, like for example the Consorcio General de Trans-
portes de Madrid'?, the TRAM in Barcelona'® or the

8www.tripscore.eu

%http://maps.google.es
10http://www.opentripplanner.org
https://www.navitia.io
2http://datos.crtm.es
Bhttps://opendata.tram.cat/

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://semweb.mmlab.be/ns/linkedconnections
www.tripscore.eu
http://maps.google.es
http://www.opentripplanner.org
https://www.navitia.io
http://datos.crtm.es
https://opendata.tram.cat/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

Belgium National Train System (NMBS). GTFS de-
fines the headers of 13 types of CSV files and a set of
rules the must be take into account when the dataset
is created. Each file, as well as their headers, can be
mandatory or optional and have relations among them
as show in Figure 3. Linked Connections is getting the
necessary information from a subset of the full dataset:

— stops: Individual locations where vehicles pick up
or drop off passengers.

— calendar: Dates for service IDs using a weekly
schedule. Specify when service starts and ends, as
well as days of the week where service is avail-
able.

— calendar_dates: Exceptions for the service IDs
defined in the calendar file.

— stop_times: Times that a vehicle arrives at and de-
parts from individual stops for each trip.

— trips: Trips for each route. A trip is a sequence of
two or more stops that occurs at specific time.

— routes: Transit routes. A route is a group of trips
that are displayed to riders as a single service.

— transfers: Rules for making connections at trans-
fer points between routes.

In order to link the terms and identifiers defined in
these files with the Linked Open Data cloud, we used
the Linked GTFS'* vocabulary. We create mappings
able to transform GTFS files to Linked GTFS follow-
ing the CSV2RDF [18] W3C recommendation'> but
also using other standard OBDA mapping languages
that are able to deal with CSV files'®, like RML [19]
or R2RML [20].

The extension of GTFS for real-time, GTFS-RT!7 is
a feed specification that allows public transport agen-
cies to provide real time updates about their fleet.
The specification supports three types of information:
(1) trips updates like delays, cancellations or change
routes, (ii) service alerts like stop moved, unforeseen
events affecting stations, routes, etc and (iii) informa-
tion of vehicle positions including location and con-
gestion level. The data exchange format is based on
Protocol Buffers's.

It is also important to mention the works about route
planning algorithms that can be developed on the top
of the Linked Connections framework. The problem

4http://vocab.gtfs.org/terms
Shttps://github.com/OpenTransport/gtfs-csv2rdf
16https://github.com/dachafra/gtfsmappings
Thttps://developers.google.com/transit/gtfs-realtime/
18https://developers.google.com/protocol-buffers/

agency_id
routes agency

A
route_id trip_id
:‘ trips }—“){ stop_times }—
. service_id
shapes_id trip_id
Y stop_id
‘ shapes ‘ ‘ calendar ‘
) service_id
route_id
‘ feed_info ‘ ‘ frequencies calendar_dates
fare_attributes transfers
A
fare_id trom stop_id to_stop_id
Y
contains_id
fare_rules stops
destination_id L
origin_id

Fig. 3. The GTFS model and its primary relations

that these algorithms has to solve using the data is
the Earliest Arrival Time (EAT). An EAT query con-
sists of a departure stop, a departure time and a desti-
nation stop. The main goal is to find the fastest jour-
ney to the destination stop starting from the depar-
ture stop at the departure time. There are more com-
plex route planning questions like the Minimum Ex-
pected Arrival Time (MEAT) [17] or multi-criteria
profile queries [21-23]. The Connection Scan Algo-
rithm (CSA) [17] is an approach that models the
timetable data as a directed acyclic graph [24] using
a stream of connections. As we defined before, a con-
nection is a combination of a departure stop (Caepsiop)
with a departure time (Cgeprime) and an arrival stop
(Carrsiop) With an arrival time (Cayriime). All the connec-
tions are combined in a stream of connections, sorted
by increasing departure time. Thanks to this feature, it
is sufficient to only consider the connections where the
Cdeprime 18 €quals to or later than the desirable depar-
ture time. The CSA algorithm works as follows: when
a new scanned connection leads to a faster route to the
arrival stop, the minimum spanning tree (MST) will be
updated. This is the case when cgime 1S earlier than
the actual EAT at c¢,rg0p, Finally the algorithm ends
when the destination stop is added to the MST and the
resulting journey can be obtained by following the path
in the MST backwards.

In summary, after some proofs of concepts devel-
oped taking into account live and historical data in the
LC framework and the current advances in the state of
the work exposing the data on the Web efficiently, we

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://vocab.gtfs.org/terms
https://github.com/OpenTransport/gtfs-csv2rdf
https://github.com/dachafra/gtfsmappings
https://developers.google.com/transit/gtfs-realtime/
https://developers.google.com/protocol-buffers/

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 5

think that it is the moment to improve the features of
the current LC framework to create a standard mecha-
nism for publishing reliable public transport data. The
main motivations to do that are, on one hand, the ne-
cessity to improve the current access of the transport
information services to the data, where at the moment
that real-time is involved, the solutions are basically
ad-hoc and they are not feasible if we are based on
the proposal of the EU Commission for publish pub-
lic transport data. On the other hand, supported by
the characteristics of the transport data, where a com-
plex data management environment emerges, the new
approach that we present in this paper can serve as
a source of inspiration for historical and live Linked
Data management on the Web in other domains.

3. The Linked Connections Framework

In this section, we describe the Linked Connections
framework for providing reliable access to live and
historical data. First, we describe a summary of the
Linked Connections specification including new prop-
erties about features of live data. Second, we describe
the extensions we develop to deal with these types of
data: the linked connections library for transforming
live feeds into connections and the LC server for man-
aging and exposing that connections on the Web effi-
ciently.

3.1. The Linked Connections specification

The LC specification'® explains how to implement a
data publishing sever, and explains what you can rely
on when writing a route planning client. Following the
Linked Data principles and the REST constraints, we
make sure that from any HTTP response, hypermedia
controls can be followed to discover the rest of the
dataset. A "Linked Connections graph" is a paged col-
lection of connections, describing the time transit ve-
hicles leave and arrive. The Linked Connections vo-
cabulary?® defines the basic properties used within the
lc:Connection class:

— lc:departureTime It is a date-time, includ-
ing delay, at which the vehicle will leave for the
lc:arrivalStop.

— lc:departureStop The departure stop URI.

9https://linkedconnections.org/specification/
20http://semweb.mmlab.be/ns/linkedconnections#

— lc:departureDelay Provides time in sec-
onds when the 1c:departureTime is not the
planned departureTime.

— lc:arrivalTime It is a date-time, includ-
ing delay, at which the vehicle will arrives at
lc:arrivalStop.

— lc:arrivalStop The arrival stop URIL

— lc:arrivalDelay Provides time in second
when the 1c:arrivalTime is not the planned
arrivalTime.

We also reuse the terms from the Linked GTFS vo-
cabulary?! in order to describe other properties of a
lc:Connection class. This vocabulary it is aligned
with the de-facto standard to exchange public transport
data on the Web, GTFS:

— gtfs:trip Mustbe settolink a gtfs:Trip
with a 1c:Connection, identifying whether
another connection is part of the current trip of a
vehicle.

— gtfs:pickupType Should be set to indi-
cate whether people can be picked up at this
stop. The possible values: gtfs:Regular,
gtfs:NotAvailable, gtfs:MustPhone
and gt fs:MustCoordinateWithDriver.

— gtfs:dropOffType Should be set to indicate
whether people can be dropped off at this stop.
The possible values are the same as the defined in
the gt £s:pickupType property.

It is important to remark that each Linked Connec-
tions page must contain some metadata about itself.
The URL after redirection, or the one indicated by the
Location HTTP header, therefore must occur in the
triples of the response. The current page must contain
the hypermedia controls to discover under what condi-
tions the data can be legally reused, and must contain
the hypermedia controls to understand how to navigate
through the paged collection(s). Different ways exist
to implement the paging strategy. At least one of the
strategies must be implemented for a Linked Connec-
tions client to find the next pages to be processed:

1. Eachresponse must contain a hydra : next and
hydra:previous page link.

2. Each response should contain a
hydra:search describing that you can
search for a specific time, and that the client
will be redirected to a page containing in-

2l http://vocab.gtfs.org/terms

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://linkedconnections.org/specification/
http://semweb.mmlab.be/ns/linkedconnections#
http://vocab.gtfs.org/terms

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

"eid": "https://graph.irail.be/sncb/connections?departureTime=2017-12-22T14:00:00.0002",
dra:PagedCollection”,
: "https://graph.irail.be/sncb/connections?departureTime=2017-12-22T14:10:00.0002",

: "https://graph.irail.be/sncb/connections?departureTime=2017-12-22T13:50:00.0002" ,

"@type": "hydra:IriTemplate”,
"hydra:template”: "https://graph.irail.be/sncb/connections/{?departureTime}",
“hydra:variabl ion": "hydra:Basi ion"

“hydra:mapping": {
“etype": "IriTemplateMapping",
“hydra:variable': “departureTime",
"hydra:required”: true,
"hydra:property": "lc:departureTimeQuery"

Fig. 4. Metadata LC response

formation about that timestamp. To describe
this functionality the hydra:property
lc:departureTimeQuery is used. An
example is shown in the Figure 4

Finally, for each document that is published by a
Linked Connections server, a Cross Origin Resource
Sharing?? HTTP header must set the property Access-
Control-Allow-Origin for sharing the response with
any origin. The server also should implement thor-
ough caching strategies, as the cachability is one of the
biggest advantages of the Linked Connections frame-
work. Both conditional requests®* as regular caching®*
are recommended. As every connection will need to
have a unique an persistent identifier, an HTTP URI,
the server must support at least one RDF1.1 format,
such as JSON-LD [25], TriG [26] or N-Quads [27].
The connection URI should follow the Linked Data
principles [1].

3.2. Live data in Linked Connections

As we aforementioned, the transport domain should
involve in their route planning algorithms the live data
to provide consistent information to the passengers and
improve the current informational services. The de-
facto standard for exchange transport data on the Web,
GTEFS, has created a version for live updates, GTFS-
RT. Providing globally unique identifiers to the differ-
ent entities that comprise a public transport network is
fundamental to lower the adoption cost of public trans-
port data in route-planning applications. Specifically
in the case of live updates about the schedules is im-
portant to maintain stable identifiers that remain valid
over time. Here we use the Linked Data principles to
transform schedule updates given in the GTFS-RT for-

22http://enable-cors.org/

Zhttps://developer.mozilla.org/en- US/docs/Web/HT TP/
Conditional_requests

24https://developer.mozilla.org/en- US/docs/Web/HTTP/Caching

mat to Linked Connections and we give the option to
serialize them in JSON, CSV or RDF (turtle, N-Triples
or JSON-LD) format.

The URI strategy to be used during the conversion
process is given following the RFC 6570% specifica-
tion for URI templates. The parameters used to build
the URIs are given following an object-like notation
(object.variable) where the left side references a CSV
file present in the provided GTFS data source and the
right side references a specific column of such file.
We use the data from a reference GTFS data source
to create the URIs as with only the data present in a
GTFS-RT update may not be feasible to create persis-
tent URIs. The GFTS files that can be used to create
the URISs are routes and trips files. As for the variables,
any column that exists in those files can be referenced.
A simple example is shown in Figure 5 and an standard
template is also available?®. Next we describe how are
the entities URIs build based on these templates :

— stop: A Linked Connection references two differ-
ent stops (departure and arrival stop). The data
used to build these specific URIs comes directly
from the GTFS-RT update, so we do not specify
any CSV file and header from the reference GTFS
data source. The variable name chosen in our case
is the stop_id but it can be freely named.

— route: For the route identifier we rely
on the routes.route_short name and the
trips.trip_short_name variables.

— trip: In the case of the trip we add the
expected departure time on top of the
route URI based on the associated connec-
tion.departureTime(YYYYMMDD) and the
information about the delay.

— connection: For a connection identifier we
resort to its departure stop with connec-
tion.departureStop, its departure time with
connection.departureTime(YYY YMMDD),
and the routes.route_short name and the
trips.trip_short_name. In this case we reference
a special entity we called connection which
contains the related basic data that can be
extracted from a GTFS-RT update for every
Linked Connection. A connection entity contains
these parameters that can be used on the URIs
definition: connection.departureStop, connec-

2Shttps://tools.ietf.org/html/rfc6570
26https://github.com/linkedconnections/gtfsrt2lc/blob/master/
uris_template_example.json

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://enable-cors.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://tools.ietf.org/html/rfc6570
https://github.com/linkedconnections/gtfsrt2lc/blob/master/uris_template_example.json
https://github.com/linkedconnections/gtfsrt2lc/blob/master/uris_template_example.json

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 7

"@id": "http://example.org/connections/8861200/20180608/1C2110",
"@type": "Connection",

"departureStop": "http://example.org/stations/8861200",
"arrivalStop": "http://example.org/stations/8861416",
"departureTime": "2018-05-23T09:32:00.000Z",
"arrivalTime": "2018-05-23T09:35:00.000Z",
"departureDelay": 60,

"arrivalDelay": 0,

"direction": "Luxembourg ()",

"gtfs:trip": "http://example.org/trips/IC2110/20180608",
"gtfs:route": "http://example.org/routes/IC2110"

Fig. 5. Connection example with live updates

RFC 6570
URIS Template

GTFS v

LC

A 4

GTFSRT2LC

GTFS-RT

Fig. 6. The GTFSRT2LC tool

tion.arrivalStop, connection.departureTime and
connection.arrivalTime. As both departureTime
and arrivalTime are date objects, the expected
format can be defined using brackets.

Finally, we developed a tool?’ that analyses the in-
formation from an static GTFS dataset and the updates
from a GTFS-RT feed, exploits the implicit relations
among the CSV files and creates the live Linked Con-
nections feed in the desirable format with the help of
the URIs template, as it is shown in Figure 6.

3.3. Managing live and historical data with the
Linked Connections server

The third main contribution of this paper, after de-
velop a way to create Linked Connections feeds tak-
ing into account live data, is how to provide reliable
access to historical and live transport data in an cost-
efficiently way. For that reason, we develop a Linked
Connections server which exposes data fragments us-
ing JSON-LD serialization format. First, the server
uses the GTFS2LC? library to convert a GTFS dataset
into a time sorted directed acyclic graph of connec-
tions. After that, the fragmenting process starts using

2Thttps://github.com/linkedconnections/gtfsrt2lc
28https://github.com/linkedconnections/gtfs2lc

the information provided in the configuration of the
server about the fragment size. Once the fragmentation
process is completed it starts using the GTFSRT2LC
library for mapping real time updates into a Linked
Connections feed as we describe in the above section.

As we aforementioned, the previous process for
fragmenting LC was based on a predefined time span,
which used this variable for the pagination of the data
and created an heterogeneous environment in terms of
the fragment size. In other words, setting a fixed time
window for the creation of the fragments (e.g. 10 min-
utes) could lead to the creation of fragments contain-
ing a high number of connections, specially in the rush
hours, and thus being big fragments in terms of size.
At the same time smaller fragments could also be cre-
ated at times where there are few or no vehicles de-
parting. This is the main reason why we start to frag-
menting the historical data of the LC feed homoge-
neously providing a specific fragment size, this has a
relevant effect in terms of performance, as we demon-
strate in the Section 5. As for the LC live feed we
keep an unique timeline of connection updates that is
stored and fragmented using a predefined time span, in
contrast to static timetable updates which may contain
a complete re-write or partially overlap with previous
versions from a time perspective.

The server is able to manage both, the historical and
the live connections. First, the server create the Linked
Connections from the information provided by a GTFS
dataset and fragment the historical data into several
fragments. After that, if the transport system has an
open live service, the sever starts to process the updates
from the GTFS-RT feed and create another stream
of connections based on that information. Then the
server searches the correspondence between the his-
torical and live connections based on the URIs of the
trips and keeps an registry over time of the historical
evolution of the connections regarding delays and/or
cancellations. Finally, the server exposes the stream of
historical and live connections on an API following the
fragmentation approach. This process, shown in Fig-
ure 7, is repeated every time that the server process an
update.

The server also allows querying historic data by
means of the Memento Framework [28] which enables
time-based content negotiation over HTTP. By using
the Accept-Datetime header a client can request the
state of a resource at a given moment. If existing, the
server will respond with a 302 Found containing the
URI of the stored version of such resource. So if a re-
quest is made to obtain a Linked Connections fragment

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/linkedconnections/gtfsrt2lc
https://github.com/linkedconnections/gtfs2lc

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

Linked Connections Server

A Historical and RT
5| Historical stream of >
GTFS connections stream of
connections
K
Replace connections Expose
connections
GTFS-RT Real-time stream of
Ny API
updates connections

Fig. 7. The Linked Connections server

identified by a departure time, the headers of the frag-
ment will provide the information about the Accept-
Datetime. That means that is possible to know what is
the state of the delays at a given date-time for a set of
connections enabling different kind of analysis of the
behaviour of a transport network that may contribute
on the improvement of its design. This approach also
guarantees the coherence of the data used to answer a
give query, i.e. when a query is issued by a client, it
starts to download data fragments of relevant connec-
tions to form a MST that leads to an appropriate an-
swer, but if a new update is processed by the server
while the client is still processing the query, some of
the connections that the client has already processed
may reappear to the client in later fragments due to
updated delays, which will render invalid the MST
created so far and may lead to incoherent answers.
However, by using Memento and including a Accept-
Datetime header in the requests made by clients, the
server will guarantee that all the provided responses
will belong to the same moment and will lead to valid
answers. This mechanism is further described in [6].

3.4. A running example: Providing reliable access to
NMBS historical and real time data

The NMBS is the national company of trains in Bel-
gium. They provide their static and live data as open
data in GTFS and GTFS-RT formats. We use this case
to explain how our approach works.

As we incorporate the GTFS2LC and GTFSRT2LC
tools to the Linked Connections server, we only have to
configure it to start producing the fragments of live and
historical data. The basic configuration for the GTFS
dataset is shown in Figure 8 where the companyName
must be a unique identifier of the dataset, the down-
loadUrl must be a public URL where the server has

"companyName": "NMBS",

"downloadUrl": "http://www.belgianrail.be/opendata/transit.zip"
"downloadOnLaunch": true,

"updatePeriod": "0 0 2 * * *",

"fragmentSize": 400000,

Fig. 8. NMBS GTFS configuration

"realTimeData": {
"downloadUrl": "http://www.belgianrail.be/opendata/updates.bin",
"updatePeriod": "*/30 * * * * *",
"fragmentTimeSpan": 600,
"compressionPeriod": "0 0 3 * * *"

Fig. 9. NMBS GTFS-RT configuration

to download the GTFS dataset, the downloadOnLanch
boolean indicates if the dataset must be downloaded
and processed upon server launch, the updatePeriod is
a node-cron?® expression to check if a new version of
the dataset has been published for creating a new LC
feed and finally, the fragmentSize represents the size
of each fragment in bytes.

For the GTFS-RT feed the configuration is show
in the Figure 9 where the downloadUrl is the URL
where the updates are published, the updatePeriod is a
node-cron expression that indicates how often should
the server look for and process a new version of the
feed, the fragmentTimeSpan defines the fragmentation
of live data and it represents the time span of every
fragment in seconds and finally the compressionPeriod
is also a node-cron expression that defines how often
will the live data be compressed using gzip in order to
reduce storage consumption.

Finally, we have to configure the URIs using the
template we describe in the Section 3.2 and launch the
server. After the GTFS datasets have been processed,
we are able to start querying the data. All the frag-
ments have a uniform starting point, which is the ex-
pected departure time of its first 1c:connection.
So the clients can start accessing the transport data
using using the departure time as a parameter like
this example: http://host:port/NMBS/connections?
departureTime=2017-08-11T16:45:00.000Z. In this
example, we use a client implementing the CSA route
planning algorithm to perform a query. The client
source code is available at github*’. The parameters of
the query are as follows:

2https://www.npmjs.com/package/node-cron
30https://github.com/zoeparman/connectionscan

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://host:port/NMBS/connections?departureTime=2017-08-11T16:45:00.000Z
http://host:port/NMBS/connections?departureTime=2017-08-11T16:45:00.000Z
https://www.npmjs.com/package/node-cron
https://github.com/zoeparman/connectionscan

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 9

— Departure Stop: http://irail.be/stations/NMBS/
008811189

— Arrival Stop:
008821246

— Departure Time: 2018-06-14T15:00:00.000Z

http://irail.be/stations/NMBS/

The client starts by sending a request to the server
using the departure time defined in the query as a pa-
rameter for the fragments query URL. Once the server
receives the request, it will determine which static
fragment contains connections relevant for the query. It
does this through a binary search, looking into the first
connection of every fragment until it finds a fragment
Fy whose first connection’s departure time is greater
than the requested value and a fragment Fy; whose
first connection’s departure time is less or equal to the
requested value, determining then that F_; is the frag-
ment to be returned in the response to client. After this,
the server checks if there are live updates for the con-
nections contained in the selected fragment and if so,
it proceeds to update the departure and arrival times of
the connections according to the reported delays. This
process may involve the inclusion of new connections
that originally belonged to previous fragments but due
to the delays are now relevant for the query. In the
same way some connections may have to be removed
as their delays make them belong to further fragments
now. Once this is done, the connections are resorted by
their new departure times to ensure a correct execution
of the CSA algorithm on the client side. Finally the
server adds the necessary metadata (as shown on fig-
ure 4) and gives back the response using the JSON-LD
format.

Once the client receives the first response, it starts
looking for the first connection with a departure stop
equals to the one defined in the query. When it finds
one, the algorithm starts building a MST where each
branch represent a different vehicle departing from the
specified departure stop at a different time. The algo-
rithm process the connections and requests new frag-
ments for it, and if such a route exists within the trans-
port network, eventually it will complete at least one of
the branches of the MST. It will keep processing con-
nections until the departure time of the next connec-
tions to be processed is greater than the arrival time of
the fastest found route, as this means that is no longer
possible to find a faster route. Finally the client will re-
port the found routes in a JSON object as seen in figure
10.

1-{

2 "departureTime": "2018-86-14T15:27:00.000Z"

3 "arrivalTime": "2018-06-14T16:15:00.000Z"

4 "transfers”: @

5. "legs: [

6 {

7 "enterConnection”: {

8 “http://www.w3.0rg/1999/02/22- rdf-syntax-ns#type”: "http://semweb.mmlab.be/ns
/linkedconnections#Connection”

9 "arrivalStop": "http://irail.be/stations/NMBS/008822269"

10 "arrivalTime": "2018-06-14T15:33:00.0002"

11 "departureStop": "http://irail.be/stations/NMBS/008811189"

12 "departureTime": "2018-06-14T15:28:00.000Z"

13 http://vocab.gtfs.org/terms#dropoffType™: "http://vocab.gtfs.org
/terms#Regular”,

14 http://vocab.gtfs.org/terms#headsign™: "\ "Anvers-Centraly""

15 “http://vocab.gtfs.org/terms#pickupType”: "http://vocab.gtfs.org
/terms#Regular”,

16 "http://vocab.gtfs.org/terms#route”: “http://irail.be/vehicle/511766",

17 "gtfs:trip": "http://irail.be/vehicle/S11766/20180614"

18 "@id": "http://irail.be/connections/8811189/20180614/511766"

19

20 - "exitConnection": {

21 "http://www.w3.0rq/1999/02/22-rdf-syntax-ns#type”: "http://semweb.mmlab.be/ns
/linkedconnections#Connection”

22 "arrivalStop": "http://irail.be/stations/NMBS/008821246"

23 "arrivalTime”: "2018-06-14T16:14:00.000Z"

24 "departureStop": "http://irail.be/stations/NMBS/008821337",

25 "departureTime": "2018-06-14T16:11:00.000Z"

26 "http://vocab.gtfs.org/terns#drop0ffType”: "http://vocab.gtfs.org
/terms#Regular”,

27 “http://vocab.gtfs.org/terms#headsign®: "\"Anvers-Central\""

28 "http://vocab.gtfs.org/terms#pickupType”: "http://vocab.gtfs.org
/terms#Regular*

29 "http://vocab.gtfs.org/terms#route”: "http://irail.be/vehicle/S11766",

30 "gtfs:trip": "http://irail.be/vehicle/511766/20180614"

31 "@id": "http://irail.be/connections/8821337/20180614/511766"

Fig. 10. CSA result for a query over the NMBS Linked Connections
stream

4. Evaluation Design

We design a set of experiments in order to evaluate
our approach. In this section we describe the main fea-
tures of our developments, the data used for the exper-
iments and the testbed we created. We implement dif-
ferent components in JavaScript for the Node.js plat-
form. We chose JavaScript as it allows us to use the
components both on a command-line environment as
well as in the browser, which is ideal for client side
applications.

— GTFSRT2LC: A tool to convert live updates and
timetables as open data to Linked Connections
Vocabulary.

— LC server: Publishes streams of connections in
JSON-LD, as we explain in the Section 3.

— CSA algorithm: We developed the CSA algorithm
on the top of the Linked Connections Framework
as the client.

We also use other tools that we developed previ-
ously, as the GTFS2LC library, that it is able to convert
static timetables as open data to Linked Connections
Vocabulary and the Memento Protocol on the top of
the Linked Connections Server [6], to enable reliable
access to historical data, as we describe in the Section
3.

These tools are combined in different set-ups with a
route planning algorithm in the client-side and are used
in the following scenarios:

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

http://irail.be/stations/NMBS/008811189
http://irail.be/stations/NMBS/008811189
http://irail.be/stations/NMBS/008821246
http://irail.be/stations/NMBS/008821246

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

— Static data fragmentation by size without cache:
The first experiment executes the queries tak-
ing into account only timetable static data where
the size of the exposed fragments are always the
same. Client caching is disabled, making this sim-
ulate the LC without cache set-up, where every
request could originate from an end-user’s device.
We test different fragments size to test how it af-
fects the query answering performance.

— Static data fragmentation by size with cache: The
second experiment does the same as the first, ex-
cept that it uses a client side cache, and simulates
the LC with cache set-up.

— Historical data fragmentation by size without
cache: The third experiment does the same as the
first, except that it uses the Memento protocol to
ensure data coherence. As the Memento protocol
involves HTTP redirections to access specific re-
sources at different points in time, this experiment
is meant to measure its impact on query answer-
ing performance.

— Historical data fragmentation by size with cache:
The fourth experiment does the same as the third,
except that it uses a client side cache, and simu-
lates the LC with cache set-up.

— Live and historical data fragmentation by size
without cache: The fifth experiment does the
same as the third, but at this tame, live data is also
take into account, modifying the fragments size
due to the delays. We also test different fragments
sizes.

— Live and historical data fragmentation by size
with cache: The sixth experiment does the same
as the fifth except that it uses a client side cache,
and simulates the LC with cache set-up.

— Live and historical data fragmentation by time
without cache: The seventh experiment fragments
the data based on time as our previous approaches
with the client cache disable. We want to test if
the performance of our pagination by the size is
better than by time.

— Live and historical data fragmentation by time
with cache: The eighth does the same as the sev-
enth but it uses the client side cache.

As far as we are aware of, there are no general-
purpose benchmarks in the state of the art for testing
our main contributions with the Linked Connections
framework. Therefore, we have created a testbed as
follows: 1) we have selected and downloaded 4 dif-
ferent representative GTFS datasets, available as open

Dataset Stops | Routes Trips Connections
TBS Barcelona 27 3 5186 1957354
MLM Madrid 81 4 2872 3293575
NMBS Belgium 2615 479 12621 6941813
De Lijn Flanders | 36050 1412 305079 63006596

Table 1

Characteristics of the transport networks datasets used for the
benchmarks.

data, that also cover several geographical locations, 2)
we have created several route planning queries (depar-
ture and arrival stop with a departure time) that reflect
real-life trips, with multiple levels of complexity and
3) we have evaluated these queries in the different set
ups taking into account the features of each dataset.
The query set created for each GTFS dataset was de-
fined by randomly taking departure stops and arrival
stops with a random departure time and using the CSA
algorithm to find a route between them. This process
was repeated for each transport network and spanning
a 24 hours time frame of a regular week day. In the end
this gave us a set of queries for each network with dif-
ferent levels of complexity, measured in terms of the
amount of connections that need to be processed by
a client to obtain a valid answer. The complexity of
the queries is directly related to the complexity of the
transport network itself. Meaning that the amount of
connections that need to be processed in a query in-
crease as the amount of stops and vehicles of the net-
work also increase. Table 1 shows the characteristics
(amount of stops, routes and trips) of each transport
network and table 2 portrays the least and the most
complex queries used during the benchmarks for each
transport network.

The used GTFS datasets and GTFS-RT feeds are
available as open data on the Web. There are two
datasets that represent the Belgian Rail Transport Sys-
tem (NMBS) and the Flemish Transport Company (De
Lijn) and other two that represent the Tram Company
of Barcelona (TBS) and the Tram Company of Madrid
(MLM). NMBS also provides open access to its real-
time updates following the GTFS-RT format therefore,
we use this data to carry out the evaluation that takes
into account live updates. TBS have also developed
an ad-hoc live API*! and we are currently developing
a tool to transform the ad-hoc live information to the
GTFS-RT format but at this moment, only historical
data can be taken into account in this case. De Lijn

31 https://opendata.tram.cat/manual_en.pdf

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://opendata.tram.cat/manual_en.pdf

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 11

Query Dataset

of Connections

depStop: http://irail.be/stations/NMBS/008841608
arrStop: http://irail be/stations/NMBS/008841319 NMBS 3371
depTime: 2018-06-14T17:00:00.000Z

depStop: http://irail.be/stations/NMBS/008886504
arrStop: http://irail be/stations/NMBS/008841004 NMBS 13797
depTime: 2018-06-14T14:00:00.000Z

depStop: https://data.delijn.be/stops/120281
arrStop: https://data.delijn.be/stops/126536 De Lijn 34696

depTime: 2018-06-07T13:00:00.000Z

depStop: https://data.delijn.be/stops/112358
arrStop: https://data.delijn.be/stops/111446 De Lijn 114059

depTime: 2018-06-07T13:00:00.000Z

depStop: https://barcelona.tbs.es/stops/22
arrStop: https://barcelona.tbs.es/stops/21 TBS 41

depTime: 2018-06-07T20:00:00.000Z

depStop: https://barcelona.tbs.es/stops/14
arrStop: https://barcelona.tbs.es/stops/10 TBS 556

depTime: 2018-06-07T05:00:00.000Z

depStop: https://madrid.tram.es/stops/par_10_37
arrStop: https://madrid.tram.es/stops/par_10_32 MLM 148

depTime: 2018-06-07T21:00:00.000Z

depStop: https://madrid.tram.es/stops/par_10_37

arrStop: https://madrid.tram.es/stops/par_10_26 MLM 799

depTime: 2018-06-07T16:00:00.000Z

Table 2

Least and most complex queries of the LC testbed created for every
bechmarked transport network.

and MLM does not provide access to their live updates
which is why we only perform static and historical
evaluations over this transport datasets.

We ran the experiments on a laptop with an Intel
Core i5-7440HQ @ 2.8GHz x 4 and 16GB of RAM.
Each query is executed at least 2 times and we take
the arithmetic average response time. Our experiments
can be reproduced using the code at https://github.
com/julianrojas87/linked-connections-server and the
testbed and the data at https://github.com/cef-oasis/
linkedconnections-tests.

5. Results

Next we present the obtained results for each of the
described scenarios in the above section.

5.1. Static data with fragmentation by size

These results are obtained from the evaluation made
over Linked Connection stream derived from GTFS

datasets of each transport network. The queries exe-
cuted on this evaluation do not follow the Memento
protocol. We present the results for both the evaluation
with and without an active client-side cache, covering
the first and second experiment described above.

5.1.1. NMBS

For NMBS we created fragmentations of 10KB,
50KB, 300KB, 500KB, 1MB, 3MB, 7MB and 10MB.
We used the same query set for both cache and no
cache evaluations.

NMBS fragmentations without cache

Fragmentation (bytes)

Fig. 11. NMBS static evaluation without cache

Figure 11 shows the response time distribution for
each fragmentation in a set up without a cache. Here
we have that for a fragmentation of 300KB we have
the best performance with a median response time of
1196ms for the used query set.

NMBS fragmentations with cache

Response Time (ms)

10800 50600 300000 500000 1000000 3006000 7005000 10000000
Fragmentation (bytes)

Fig. 12. NMBS static evaluation with cache

Figure 12 shows the response time distribution for
each fragmentation in a set up with an active cache on
the client side. In this case, the best performance was
achieved with a fragmentation of SOKB and a median
response time of 704ms.

=W N

w J o U

https://github.com/julianrojas87/linked-connections-server
https://github.com/julianrojas87/linked-connections-server
https://github.com/cef-oasis/linkedconnections-tests
https://github.com/cef-oasis/linkedconnections-tests

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

12 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

5.1.2. TBS Barcelona

For TBS we used fragmentations going from 10KB
to 3MB and we used the same query set for both cache
and no cache set ups.

TBS-Barcelona Fragmentations without cache

Response Time (ms)

R

Fragmentation (bytes)

Fig. 13. TBS static evaluation without cache

Figure 13 portrays the response time distribution for
each tested fragmentation in a set up without a cache.
For this case the best performance was obtained with a
fragmentation of 50KB and a median response time of
75ms.

TBS-Barcelona Fragmentations with cache

Response Time (ms)

P

Fragmentation (bytes)

P S S

Fig. 14. TBS static evaluation with cache

Figure 14 shows the response time distribution for
each fragmentation in a set up with an active cache on
the client side. In this case, the best performance was
achieved with a fragmentation of 10KB and a median
response time of 28ms.

5.1.3. MLM

For MLM we used fragmentations going from
10KB to 3MB and we used the same query set for both
cache and no cache set ups.

Tram-Madrid Fragmentations without cache

Response Time (ms)

Fig. 15. MLM static evaluation without cache

Figure 15 portrays the response time distribution for
each tested fragmentation in a set up without a cache.
For this case the best performance was obtained with a
fragmentation of S0KB and a median response time of
128ms.

‘Tram-Madrid Fragmentations with cache

Fig. 16. MLM static evaluation with cache

Figure 16 shows the response time distribution for
each fragmentation in a set up with an active cache on
the client side. In this case, the best performance was
achieved with a fragmentation of S0KB and a median
response time of 57ms.

5.1.4. De Lijn

For De Lijn the fragmentations created go from
500KB to 15MB. The query set used for the bench-
marks is the same in both active and inactive cache set
ups.

Figure 17 portrays the response time distribution for
each tested fragmentation in a set up without a cache.
For this case the best performance was obtained with
a fragmentation of S00KB and a median response time
of 33863ms.

Figure 18 shows the response time distribution for
each fragmentation in a set up with an active cache on

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 13

De Lijn Fragmentations without cache

Lasbud

- “‘Fvaymer\mmr (bytes)

Time (me)

P

R

Fig. 17. De Lijn static evaluation without cache

De Lijn Fragmentations with cache

<
D=
>
D=
o
E—

Fragmentation (bytes)

Fig. 18. De Lijn static evaluation with cache

the client side. In this case, the best performance was
achieved with a fragmentation of S00KB and a median
response time of 33729ms.

5.2. Historical data with fragmentation by size

The results presented here correspond to the evalu-
ations made for historical queries on top of the NMBS
and the MLM datasets. We took 3 different versions
of each dataset and performed the queries defined on
the query set of each transport network, but in this case
the client and the server follow the Memento proto-
col to access historical data. By including the Accept-
Datetime header on the fragment requests the client is
able to calculate a route at a specific moment in time.
E.g. calculate a route from Ghent to Brussels using the
data as it was 3 months ago. Historical queries were
tested in set ups with and without a cache. This results
cover the third and fourth experiments, described in the
previous section.

5.2.1. NMBS

In this set up we used fragmentations going from
50KB to 10MB. We performed the evaluations using
an active and an inactive client-side cache.

NMBS fragmentations for historical data without cache

(L

;V©©©®%

Fragmertaton (byes)

Fig. 19. NMBS historic evaluation without cache

Figure 19 shows the response time distribution of
the historical queries in a set up without a cache. The
best performance is achieved with a fragmentation of
300KB and a median response time of 1207ms.

NMBS fragmentations for historical data with cache

Response Time (ms)

@
>
2o
5
e
s

Fragmentation (bytes)

Fig. 20. NMBS historic evaluation with cache

Figure 20 shows the response time distribution of
the historical queries in a set up with an active cache
on the client side. The best performance is achieved
with a fragmentation of 50KB and a median response
time of 714ms.

522, MLM

In this set up we used fragmentations going from
10KB to 7MB. We performed the evaluations using an
active and an inactive client-side cache.

Figure 21 shows the response time distribution of
the historical queries in a set up without a cache. The
best performance is achieved with a fragmentation of
50KB and a median response time of 158ms.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

Tram-Madrid Fragmentations without cache + historical data

Respanse Time (ms)

Fragmentaon(ytes
Fig. 21. MLM historic evaluation without cache

“Tram-Madrid Fragmentations with cache + historical data

Resporee Time (me)

Fragmentaton (oytes)

Fig. 22. MLM historic evaluation with cache

Figure 22 shows the response time distribution of
the historical queries in a set up with an active cache
on the client side. The best performance is achieved
with a fragmentation of S0KB and a median response
time of 76ms.

5.3. Live and historical data with fragmentation by
size

The results presented here were obtained through
the evaluation made over the NMBS dataset including
live data. We only use the NMBS dataset as is the only
one that provides a GTFS-RT feed as open data. We re-
fer to this experiment also as historical because when
we are dealing with live data, we use the Memento pro-
tocol to ensure coherence and consistency on the query
answers as described in section 3.3. We test different
set ups using a range of fragment sizes and measure the
impact of having an active cache. This results cover the
fifth ans sixth experiments, described in the previous
section.

Figure 23 shows the response time distribution for
the live and historical queries, executed in a set up
without an active cache. The best performance is ob-

NMBS Fragmentations without cache + real-time data

Response Time (ms)

Fragmentation (bytes)

Fig. 23. NMBS live and historic evaluation without cache

tained using a fragmentation of 300KB and a median
response time of 1701 ms.

NMBS Fragmentations with cache + real-time data

Response Time (ms)

g$$@©©'

Fragmentaton (bytes)

Fig. 24. NMBS live and historic evaluation with cache

Figure 24 shows the response time distribution for
the live and historical queries, executed in a set up
without an active cache. The best performance is ob-
tained using a fragmentation of SOKB and a median
response time of 859ms.

5.4. Live and historical data with fragmentation by
time

The results presented here correspond to tests run
for the NMBS transport network using their GTFS
dataset and GTFS-RT feed. We defined a fragmenta-
tion for the LC stream based on a time window of 10
minutes, as we arbitrarily did in previous versions of
the LC framework.

Figure 25 shows the response distribution for a frag-
mentation based on a time window of 10 minutes and
we can observe a median response time of 157 1ms for
a set up without a cache.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 15

NMBS Time-based fragmentation (10 minutes) without cache

/an
\

v

Fig. 25. NMBS live and historic evaluation based on time without
cache

NMBS Time-based fragmentation (10 minutes) with cache

Fig. 26. NMBS live and historic evaluation based on time with cache

Figure 26 shows the response distribution for a frag-
mentation based on a time window of 10 minutes and
we can observe a median response time of 896ms for
a set up with an active cache.

6. Discussion

In the previous section we presented the results ob-
tained for the tests we executed in 4 different scenar-
ios. The main goal of these tests was to determine how
the underlining fragmentation strategy of a LC dataset
could affect the performance of route planning queries
under different conditions. In previous versions of LC
implementations we always used an arbitrary fragmen-
tation strategy based on time windows of 10 minutes
that lead to uneven data fragments in terms of size,
which depended on the complexity of the transport net-
work and that could affect the performance of route
planning algorithms (e.g. in rush hours by having frag-
ments too big). Therefore, we decided to move to-
wards a fragmentation strategy based on even file sizes

that allow route planners to always deal with similar
fragments and thus have a more predictable behaviour.
We tested different file sizes on different transport net-
works trying to determine an optimal fragment size on
each case and also run the tests with and without an ac-
tive cache to measure its impact on the performance of
route planning queries. The first scenario consisted on
route planning queries over LC streams derived only
from GTFS datasets. We preformed these tests for all
our considered transport networks (NMBS, De Lijn,
TBS and MLM) in order to have a clear picture of the
performance of a route planning algorithm (CSA al-
gorithm) running on the client side and relying on an
implementation of the LC specification, for transport
networks of different sizes and complexities. The sec-
ond scenario focused on historical queries following
the Memento protocol. The capacity to query through-
out different versions in time of the same dataset is an
important tool for performing behavioural analysis of
a transport network. We run the tests for two differ-
ent transport networks (NMBS and MLM) and on each
case, used three different versions of the GTFS dataset
to perform historical queries. The third scenario tested
the fragmentation strategies involving live data updates
and measure its impact on answering route planning
queries. In this case we only used the NMBS transport
network as is the only company that publishes their live
updates as open data and using the GTFS-RT specifi-
cation. This scenario also takes into account historical
queries as we use the Memento protocol when dealing
with live data to maintain coherence in the query an-
swers. Finally, the fourth scenario consisted on testing
our previous fragmentation strategy based on a time
window of 10 minutes and compare the performance
of route planning queries with file size-based fragmen-
tation strategies. Again, in this case we only used the
NMBS transport network including live data.

The results allows us to draw some generals remarks
that apply for all the tested scenarios. First of all is
clear in every case that using a cache has a positive im-
pact on the performance of route planning query an-
swering. In the case of static data we can see an im-
provement on the performance of 41.1% for NMBS,
62.6% for TBS, 55.5% for MLLM and 0.39% for De
Lijn. In the case of historical queries we have an im-
provement of performance of 38.6% for NMBS and
51.8% for MLM. In the scenario of live and historical
queries we see a performance improvement of 49.5%
for NMBS. Finally, using a fragmentation based on a
time window of 10 minutes, we can observe a perfor-
mance improvement of 42.9% for NMBS. Allowing

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

the usage of caching mechanisms is one of main char-
acteristics that the LC framework brings to the route
planning ecosystem. Traditional route planning APIs
based on RPC (Remote Procedure Call) architectures
do not support caching as every route planning query
requires a new request to the API with an unique re-
sponse, in contrast to the LC framework where data
fragments can be cached and reused for multiple route
planning queries. Is important to highlight this result
as in previous work caching proved to be a main factor
for increasing server scalability and cost-efficiency for
route planning applications [14] and now it has also
proven to be a main factor for increasing the perfor-
mance of route planning algorithms executed on the
client side.

Another general remark that can be drawn is related
to the significant difference in the query response times
that can be observed from one transport network to
another. If we take into account the characteristics of
each network (shown in table 1) we can infer that the
bigger and complex a transport network is, the higher
the time to answer a specific route planning query. This
is an important issue from the usability perspective for
route planning applications as response times that are
too long could render useless all the benefits that the
LC framework brings, since users won’t be willing to
wait that long to get an answer for a query and may
resort to other route planning alternatives. In the re-
sults we can see that for a big and complex transport
network as De Lijn, with 36050 stops and 1412 de-
fined routes, the lower median response time obtained
was over 33 seconds which from an usability perspec-
tive can be perceived as unacceptable. In contrast we
can see that a much smaller transport network as TBS,
with 27 stops and only 3 defined routes, or MLM with
81 stops and 4 defined routes achieve median response
times of 28ms and 57ms respectively which, from a
usability perspective is significantly fast. These results
can be explained also from a geographical perspec-
tive. If we consider that the TBS network comprehends
only the city of Barcelona and the MLM network is
restricted only to the city of Madrid, and we com-
pare them De Lijn which covers several cities through-
out the region of Flanders in Belgium and with dif-
ferent transport modes, then we can justify the signif-
icant difference in query response times. For example
when a query is being processed for a network as De
Lijn, to go from one stop to another within the city of
Ghent, the client will need to process also connections
from vehicles departing in Antwerp, Bruges and all the
cities that the network covers. Therefore, this results

shred light over a very important requirement for the
LC framework where datasets need to be as geograph-
ically restricted as possible and clients should be able
to automatically select the LC streams that are relevant
for a particular query, in order to maximize the query
answering performance.

Zooming in on the results we can also observe that
for NMBS, handling historical queries and including
live data increment the response time of the route plan-
ning queries. For plain static data we have a median
response time of 704ms. Querying for historical data
throughout different versions of a dataset raises the
median response time to 714ms. And using live data
for answering route planning queries raises further the
median response time up to 859ms. This was the ex-
pected behaviour since using the Memento protocol
for historical queries involves additional HTTP redi-
rections for the clients which increases the processing
time. In the same way, handling live data requires addi-
tional processing by the LC server to retrieve and cor-
rectly add the live updates into the data fragments be-
fore giving them back to the clients. However, we can
argue that the increment measured by adding live and
historical data is not significantly high from a usabil-
ity perspective. For historical queries only we have an
increment of 10ms and for live data we have and in-
crement of 155ms compared to plain static data. In the
same way we observe that for MLM the increment of
the median response time when dealing with historical
queries goes from 57ms to 76ms giving and increment
of 19ms. Such increments are small enough to not
be perceived by an end-user issuing a route planning
query. These results represent an important achieve-
ment for the LC framework as they show that even
handling historical queries and taking into account live
data updates, the LC framework in conjunction with
a client implementing the CSA route planning algo-
rithm, are capable of providing an acceptable user ex-
perience for real world route planning applications.

As we previously mentioned, the main goal of these
set of experiments was to determine if there is an op-
timal fragment size for transport network datasets that
maximize the performance of answering route plan-
ning queries. Looking at the results we can observe
that there is. For NMBS, that was tested in all the de-
fined scenarios we have that SOKB fragments with an
active cache always provide the best performance for
route planning queries over this transport network. The
same goes for the case of TBS, having 50KB frag-
ments with an active cache as the enablers of the high-
est performance. In the case of MLM we have that

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 17

10KB fragments provide the best performance, how-
ever when compared to S0KB fragments, the differ-
ence is only of 9ms which can be considered not sig-
nificant and can be attributed to unpredictable delays
of the test environment. In the case of De Lijn we have
that SO0KB fragments provide the best results but then,
as previously mentioned, the De Lijn dataset does not
constitutes an acceptable input for the LC framework
as its size and complexity cause unacceptable process-
ing delays for a real world application and datasets
with this characteristics need to be further processed
in a geographical sense to be exposed as LC. There-
fore we can affirm that a SOKB fragment size, with an
active cache, provides the optimal performance for an-
swering route planning queries on top of the LC frame-
work. We can also observe that the performance de-
creases when moving away from this optimal point
which can be explain by higher processing times when
the fragment size increases and a lower probability of
caching of smaller fragments. Another particular re-
mark from these results is that when there is not an ac-
tive cache available there is also an optimal point but
this is higher than when there is a cache present. For
the case of NMBS we see such point with fragments
of 300KB which represent the balance point between
the amount of requests needed for answering a query
and the processing time on the client side for a given
fragment. For TBS and MLM we see that the optimal
point is still S0KB which seems to highlight that with-
out a cache, there may be a relation between the opti-
mal fragment size and the size and complexity of the
transport network.

Finally, we compared the performance of the NMBS
dataset with historical queries and including live up-
dates using the previous fragmentation strategy us-
ing fragments based on a time window of 10 minutes
against the current approach based on a constant frag-
ment size. The results show that using a fragment size
of 50KB and an active cache there is an improvement
of 4.1% in the performance. At first glance, this re-
sult seems to be not a significant improvement, how-
ever we need to consider that since the time-based ap-
proach does not have a constant fragment size, the per-
formance for a given query will depend on the query it-
self and the complexity of the network, thus rendering
the file size-based fragmentation approach more pre-
dictable and appropriate for real world route planning
applications supported by the LC framework.

7. Conclusions and Future work

In this work we present the Linked Connections
framework for providing reliable access to historical
and live data. First, we analyse the previous works
made over the Linked Connections and their problems
on efficiency when historical and live data are taken
into account. Second, we extend the Linked Connec-
tions vocabulary to consider these types of data. Third,
we develop a tool for creating streams of connections
based on the information provided by live updates.
Fourth, we adapt the LC server to efficiently manage
and expose the transport data on the Web. Finally, we
test our approach by analysing how the fragment size
affects the performance of the CSA route planning al-
gorithm run on the client side and compare them with
our previous approach, that fragmented the data based
on a time span.

The conclusions that can be drawn from this work
are the following:

— Using a cache mechanism significantly improves
the performance of answering route planning
queries using the CSA algorithm on top of an im-
plementation of the LC framework. In previous
work we were able to demonstrate the positive
impact that a cache mechanism has for the scala-
bility and cost-efficiency of a LC server compared
to traditional approaches where caching is not
possible. Now we have also proven how caching
data fragments reduce the processing time of
route planning queries as the clients keep in mem-
ory the data fragments that can be reused for an-
swering multiple queries that are on the a similar
time frame and do not have the need to request
them again to the server.

— The size and complexity of a transport network
are directly related to the response times for an-
swering route planning queries. We observed that
as the size and complexity in terms of number
of stops, routes an trips of a transport dataset in-
crease, the response times also increase up to a
point where it becomes unusable for a real world
route planning application. This fact allowed us to
identify a new requirement for datasets to be pub-
lished as LC where the smaller and less complex
the dataset, the higher the performance. This can
be seen from a geographical perspective where
the datasets may be also fragmented by geograph-
ical areas and also by transport modes thus low-
ering their complexity. However this will require

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

18 J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework

the clients to have the capacity to automatically
discover and consume the relevant LC sources for
a specific query taking into account the involved
geographical regions and transport modes.

— Adding the capacity to execute historical queries
by means of the Memento protocol and han-
dling live data updates openly published using
the GTFS-RT format reduce the performance of
query answering as expected. However, the mea-
sured increase in the response time for viable
datasets using the LC framework do not represent
a significant decrease to render unusable a real
world route planning application based on the LC
framework.

— The main conclusion drawn from this work is
related to the different fragmentation strategies
that may be used within the LC framework. We
observed that for a set up that includes an ac-
tive cache the best performance for route plan-
ning query answering is achieved by having a file
size-based fragmentation of 5S0KB. We also ob-
served that without a cache mechanism the opti-
mal fragment size seems to be related to the trans-
port network size and complexity, however as we
previously mentioned, caching is a main feature
of the LC framework which brings out its whole
potential and differentiates it from traditional ap-
proaches.

— Finally, we proved that by having a constant frag-
ment size it is possible to predict and maximize
the performance of route planning query answer-
ing in the LC framework, in contrast to our pre-
vious approach where we used time-based frag-
mentations that created a heterogeneous environ-
ment of fragments regarding their size where the
performance depends on the type of query and the
complexity of the transport network.

The LC framework stands as cost-efficient alterna-
tive to build knowledge graphs from open data in the
transport sector that can be reused to build richer ap-
plications within the Web of data. By relaying on the
Linked Data principles and defining a set of common
semantics, the LC framework allows to publish trans-
port datasets on the Web, optimized for route planning
applications in a decentralized fashion that lower the
adoption costs of the data. This establishes the foun-
dations for creating a route planning ecosystem sup-
ported on open data that fosters innovation on the sec-
tor and aligns to the directives given by the EU re-

garding the discoverability and accessibility of public
transport data.

For future work, we plan to develop tools/libraries
able to transform other transport format standards like
Datex II, Transmodel or SIRI and expose streams of
connections following the LC approach on the Web.
We also want to create a method able to find the op-
timal fragment size of a dataset based on several fea-
tures like the type of the transport, the size and com-
plexity of the full Linked Connections feed, the vari-
ability of the updates or the geographical location. Im-
proving the discoverability of transport datasets is an-
other line we want to take into account, we started to
work on a registry by extending DCAT-AP to a Trans-
port application profile®? to improve the discoverabil-
ity of these datasets. The implementation of an usable
client that can perform multimodal route planning and
even take into account other types of datasets through
query federation is also one of the lines of work we
plan to pursue. Finally, we want to create a standard
benchmarking with GTFS and GTFS-RT datasets, sev-
eral representative route planning algorithms and ad-
hoc relevant metrics.

Acknowledgements

This work has been partially supported by a predoc-
toral grant from the I+D+i program of the Universidad
Politécnica de Madrid and also by the CEF European
project OASIS CEF-26696297.

References

[1] C. Bizer, T. Heath and T. Berners-Lee, Linked data-the story
so far, International journal on semantic web and information
systems 5(3) (2009), 1-22.

[2] T. Heath and C. Bizer, Linked data: Evolving the web into a
global data space, Synthesis lectures on the semantic web: the-
ory and technology 1(1) (2011), 1-136.

[3] E. Prud, A. Seaborne et al., SPARQL query language for RDF
(2006).

[4] C. Buil-Aranda, M. Arenas, O. Corcho and A. Polleres, Fed-
erating queries in SPARQL 1.1: Syntax, semantics and eval-
uation, Web Semantics: Science, Services and Agents on the
World Wide Web 18(1) (2013), 1-17.

[5] P. Colpaert, A. Llaves, R. Verborgh, O. Corcho, E. Mannens
and R. Van de Walle, Intermodal public transit routing using
Liked Connections, in: International Semantic Web Confer-
ence: Posters and Demos, 2015, pp. 1-5.

3 https://github.com/cef-oasis/DCAT- AP

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/cef-oasis/DCAT-AP

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Rojas et al. / Publishing and archiving planned and live public transport events with the Linked Connections framework 19

[6] J.A. Rojas Melendez, D. Chaves, P. Colpaert, R. Verborgh
and E. Mannens, Providing reliable access to real-time and
historic public transport data using linked v-connections, in:

ISWC2017, the 16e International Semantic Web Conference,

Vol. 1931, 2017, pp. 1-4.

P. Colpaert, A. Chua, R. Verborgh, E. Mannens, R. Van de

Walle and A. Vande Moere, What public transit API logs

tell us about travel flows, in: Proceedings of the 25th Inter-

national Conference Companion on World Wide Web, Inter-
national World Wide Web Conferences Steering Committee,

2016, pp. 873-878.

R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck,

L. De Vocht, M. Vander Sande, R. Cyganiak, P. Colpaert,

E. Mannens and R. Van de Walle, Querying datasets on the web

with high availability, in: International Semantic Web Confer-

ence, Springer, 2014, pp. 180-196.

R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen,

L. De Vocht, B. De Meester, G. Haesendonck and P. Colpaert,

Triple Pattern Fragments: a low-cost knowledge graph inter-

face for the Web, Web Semantics: Science, Services and Agents

on the World Wide Web 37 (2016), 184-206.

[10] R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens,
E. Mannens and R. Van de Walle, Web-Scale Querying through
Linked Data Fragments, in: LDOW, Citeseer, 2014.

[11] R. Taelman, J. Van Herwegen, M. Vander Sande and R. Ver-
borgh, Comunica: a Modular SPARQL Query Engine for the
Web, in: International Semantic Web Conference, 2018.

[12] J.D. Fernandez, M.A. Martinez-Prieto, C. Gutiérrez,
A. Polleres and M. Arias, Binary RDF representation for
publication and exchange (HDT), Web Semantics: Science,
Services and Agents on the World Wide Web 19 (2013), 22-41.

[13] M. Lanthaler and C. Giitl, Hydra: A Vocabulary for
Hypermedia-Driven Web APIs., LDOW 996 (2013).

[14] P. Colpaert, R. Verborgh and E. Mannens, Public Transit Route
Planning Through Lightweight Linked Data Interfaces, in: In-
ternational Conference on Web Engineering, Springer, 2017,
pp. 403-411.

[15] P. Colpaert, S. Ballieu, R. Verborgh and E. Mannens, The Im-
pact of an Extra Feature on the Scalability of Linked Connec-
tions., in: COLD@ ISWC, 2016.

[16] D. Chaves-Fraga, J. Rojas, P.-J. Vandenberghe, P. Colpaert and
0. Corcho, The tripscore Linked Data client: calculating spe-

[7

—

[8

—_

[9

—

cific summaries over large time series, in: Proceedings of the
Workshop on Decentralizing the Semantic Web (DeSemWeb),
2017.

[17] J. Dibbelt, T. Pajor, B. Strasser and D. Wagner, Intriguingly
simple and fast transit routing, in: International Symposium on
Experimental Algorithms, Springer, 2013, pp. 43-54.

[18] J. Tennison, G. Kellogg and I. Herman, Model for tabular data
and metadata on the web. W3C recommendation, World Wide
Web Consortium (W3C) (2015).

[19] A.Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Man-
nens and R. Van de Walle, RML: A Generic Language for In-
tegrated RDF Mappings of Heterogeneous Data., in: LDOW,
2014.

[20] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to
RDF Mapping Language, W3C Recommendation 27 Septem-
ber 2012, Cambridge, MA: World Wide Web Consortium
(W3C)(www. w3. org/TR/r2rml) (2012).

[21] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrel-
son, V. Raychev and F. Viger, Fast routing in very large public
transportation networks using transfer patterns, in: European
Symposium on Algorithms, Springer, 2010, pp. 290-301.

[22] D. Delling, T. Pajor and R.F. Werneck, Round-based public
transit routing, Transportation Science 49(3) (2014), 591-604.

[23] S. Witt, Trip-based public transit routing, in: Algorithms-ESA
2015, Springer, 2015, pp. 1025-1036.

[24] B. Strasser and D. Wagner, Connection scan accelerated, in:
2014 Proceedings of the Sixteenth Workshop on Algorithm En-
gineering and Experiments (ALENEX), SIAM, 2014, pp. 125-
137.

[25] W.W.W. Consortium et al., JSON-LD 1.0: a JSON-based seri-
alization for linked data (2014).

[26] C. Bizer and R. Cyganiak, RDF 1.1 TriG. RDF Dataset Lan-
guage, W3C recommendation. W3C 25 (2014).

[27] R. Cyganiak, A. Harth and A. Hogan, N-quads: Extending n-
triples with context, W3C Recommendation (2008).

[28] H. Van de Sompel, R. Sanderson, M.L. Nelson, L.L. Bal-
akireva, H. Shankar and S. Ainsworth, An HTTP-based
versioning mechanism for linked data, arXiv preprint
arXiv:1003.3661 (2010).

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	Introduction
	Related Work
	The Linked Connections Framework
	The Linked Connections specification
	Live data in Linked Connections
	Managing live and historical data with the Linked Connections server
	A running example: Providing reliable access to NMBS historical and real time data

	Evaluation Design
	Results
	Static data with fragmentation by size
	NMBS
	TBS Barcelona
	MLM
	De Lijn

	Historical data with fragmentation by size
	NMBS
	MLM

	Live and historical data with fragmentation by size
	Live and historical data with fragmentation by time

	Discussion
	Conclusions and Future work
	Acknowledgements
	References

