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Abstract. The current state-of-the-art for image annotation and image retrieval tasks is obtained through deep neural network
multimodal pipelines, which combine an image representation and a text representation into a shared embedding space. In this
paper we evaluate the impact of using the Full-Network embedding (FNE) in this setting, replacing the original image represen-
tation in four competitive multimodal embedding generation schemes. Unlike the one-layer image embeddings typically used by
most approaches, the Full-Network embedding provides a multi-scale discrete representation of images, which results in richer
characterisations. Extensive testing is performed on three different datasets comparing the performance of the studied variants
and the impact of the FNE on a levelled playground, i.e., under equality of data used, source CNN models and hyper-parameter
tuning. The results obtained indicate that the Full-Network embedding is consistently superior to the one-layer embedding. Fur-
thermore, its impact on performance is superior to the improvement stemming from the other variants studied. These results
motivate the integration of the Full-Network embedding on any multimodal embedding generation scheme.
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1. Introduction

One of the main challenges of the semantic web
is vagueness, the difficulty of representing imprecise
concepts. An increasing trend in the community is
to use vector representations of vague concepts. Vec-
tor representations allow for the evaluation of con-
cepts similarity simply by computing a vector distance.
Not less important is the possibility of obtaining these
vector representations automatically. The use of auto-
mated large scale semantic tagging of ambiguous con-
tent can bootstrap and accelerate the creation of the se-
mantic web [6].

Deep learning methods are representation learning
techniques which can be used to generate such vectors.
The models obtained from these methods are com-
posed of multiple processing layers that learn repre-
sentations of data with multiple levels of abstraction.

*Corresponding author. E-mail: armand.vilalta@bsc.es.

These methods have dramatically improved the state-
of-the-art in speech recognition, visual object recog-
nition, object detection and many other domains [22].
The use of deep learning vector embeddings to repre-
sent words has had an a substantial impact in many nat-
ural language processing tasks [5] through the use of
vector representations. Similarly, deep learning image
embeddings have shown great generalisation capabili-
ties, even between distant domains [11]. In this regard,
we argue that the semantic web can significantly ben-
efit from the use of deep learning based embeddings.

In this paper we focus on multimodal pipelines,
which tackle two problems in parallel. First, the prob-
lem of obtaining a semantically meaningful embed-
ding of an image representing a scene. Second, the
problem of obtaining a visually meaningful embed-
ding of a sentence describing a scene. This is done
through the construction of a joint embedding, repre-
senting both modalities: an image of a scene, and a
caption describing it.
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Information retrieval is a natural way to asses the
quality of joint embedding methods [13]. Image an-
notation (also known as caption retrieval) is the task
of automatically associating an input image with a de-
scribing text. The complementary task of associating
an input text with a fitting image is known as image
retrieval or image search.

State-of-the-art image annotation methods are cur-
rently based on deep neural network representations,
where an image embedding (e.g., obtained from a con-
volutional neural network or CNN) and a text em-
bedding (e.g., obtained from a recurrent neural net-
work or RNN) are combined into a unique multi-
modal embedding space. While several techniques for
merging both spaces have been proposed in the past
[9, 10, 14, 16, 19-21, 25, 28, 33, 36], little effort has
been made in finding the most appropriate image em-
beddings to be used in that process. In fact, most ap-
proaches use a straight-forward one-layer CNN em-
bedding [7, 31], and the only method proposed to in-
crease the quality of the image embedding relies on
obtaining more data to allow for fine-tuning the CNN
in the final stage of training [10].

The main goal of this paper is to explore the im-
pact of using a Full-Network embedding (FNE) [11]
to generate the image embedding required by multi-
modal pipelines, replacing the standard one-layer em-
bedding. We do so by integrating the FNE into the
multimodal embedding pipeline defined in Unifying
visual-semantic embeddings with multimodal neural
language models (UVS) [20]. This pipeline is based
in the use of a Gated Recurrent Units neural network
(GRU) [4] for text encoding and a single-layer CNN
embedding for image encoding. Unlike one-layer em-
beddings, the FNE represents features of varying lev-
els of abstraction by integrating information from dif-
ferent layers of the CNN. This particularity results in
a richer visual embedding space, which may be more
reliably mapped to a shared visual-textual representa-
tion. Furthermore, we hypothesise that the FNE dis-
cretization (to 3 values with contextual implications)
makes for a more natural mapping to a linguistic repre-
sentation of concepts than using a regular real-valued
embedding.

The generic pipeline defined by Kiros et al.[20]
had been outperformed in image annotation and image
search tasks by methods specifically targeting either
one of those tasks [8, 21]. However, more recent work
by Vendrov et al.[36] and Faghri et al.[10], based on
the same generic pipeline, has outperformed previous
methods in both tasks, which shows the potential of the

approach. This paper extends our previous work [38]
by integrating and thoroughly evaluating the improve-
ments proposed by Vendrov er al.[36] and Faghri et
al.[10]. Additionally, some hindrances found on Faghri
et al.[10] are studied, and a methodology for solving
them is proposed which also increases performance.

We report the consequential improvements in our
implementation, which increase the performance of
the original method [20] as well. Finally, we exhaus-
tively test the main variations on a levelled playground,
obtaining insights on the real impact on performance
of each of them. Indeed, properly assessing the sources
of empirical gains is a key aspect in research that
should be further encouraged [24]. Evaluation is done
using three publicly available datasets: Flickr8K [29],
Flickr30K [41] and MSCOCO [23].

To sum up, the contributions of this paper are:

— Integration of the FNE into the generic pipeline
defined by Kiros et al.[20].

— Integration of the FNE into the Order Embedding
by Vendrov et al.[36]

— Integration of the FNE into the Order++ and
VSE++ Embeddings by Faghri et al.[10]

— Comparative study of the impact on performance
of the main variants introduced by [36] and [10]
under equality of the rest of hyper-parameters.

— Exhaustive study of optimal hyper-parameter
configuration for the previous methods.

— Novel curriculum learning process to further in-
crease Order++ and VSE++ [10] training stability
and performance.

The rest of the paper is structured as follows: In Sec-
tion 2 the main different approaches existing in the lit-
erature for the image/caption retrieval problem are re-
viewed. This review introduces the basic methodology
by Kiros et al.[20] and the other approaches studied in
this paper. Beyond these, other proposals are consid-
ered, grouped according to their similitude with [20]
and the possibility to be integrated with the FNE. Af-
terwards, in Section 3, the FNE and multimodal em-
bedding methods studied here are described in further
detail. The last subsection contains the methodology
we propose to solve the issues found on the method
from Faghri et al.[10]. Then, Section 4 presents all
the information relative to the experiments conducted.
This includes a description of the public datasets used,
together with important notes on the choices made here
and in the related works. Follows an extensive sub-
section explaining the details of the implementation
which help to improve the results from our previous
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work [38]. Section 5 contains a discussion of the re-
sults obtained. Then, in Section 6, we focus specifi-
cally on the experimental difficulties we found when
using the methodology of Faghri er al.[10]. Finally,
Section 7 gathers the most important findings of this
work.

2. Related work

This paper builds upon the methodology described
by Kiros et al.[20], which is in turn based on previous
works in the area of Neural Machine Translation[34].
In their work, Kiros et al.[20] define a vectorized rep-
resentation of an input text by using GRU RNNs. In
this setting, each word in the text is codified into a
vector embedding, vectors which are then fed one by
one into the GRUs. Once the last word vector has been
processed, the activations of the GRUs at the last time
step conveys the representation of the whole input text
in the multimodal embedding space. In parallel, im-
ages are processed through a CNN pre-trained on Im-
ageNet [30], extracting the activations of the last fully
connected layer to be used as a representation of the
images. To solve the dimensionality matching between
both representations (the output of the GRUs and the
last fully-connected layer of the CNN) an affine trans-
formation is applied on the image representation.

Following the same pipeline [20], Vendrov et al.[36]
proposed an asymmetric order-embedding space. Its
main hypothesis is that captions convey more gen-
eral abstractions than the images, such as the hyper-
nym/hyponym relation. This relation is imposed in the
embedding using the order error similarity defined in
Eq. (3). Another improvement on the same pipeline
was proposed by Faghri ef al.[10]. This method, in-
stead of taking into account all the contrastive exam-
ples, focus only in the hardest of them. This improve-
ment has also been applied to order embeddings suc-
cessfully [10]. The present work studies the applica-
tion of the FNE to these methods and variants.

Also, using two different neural networks for im-
age and text, and the ranking loss as methodology key-
stone, we find the Embedding Network (EN) presented
in [40] and the Word2VisualVec (W2VV) model [8].
The first approach (EN) introduces a novel neighbour-
hood constraint in the form of additional loss penalties
i.e., the captions describing the same image should be
placed together and far from other captions, and anal-
ogously for images. The second approach (W2VV),
while restricted to the specific problem of image anno-

tation, also obtain competitive results. This approach
uses as a multimodal embedding space the same vi-
sual space where images are represented, involving a
deeper text processing. These two methods are very
similar to the ones presented in this work thus are good
candidates to benefit from same improvements (e.g.,
FNE).

A substantially different group of methods is based
on the Canonical Correlation Analysis (CCA). A first
successful approach in this direction is the use of
Fisher Vectors (FVs) [21]. FVs are computed with re-
spect to the parameters of a Gaussian Mixture Model
(GMM) and an Hybrid Gaussian-Laplacian Mixture
Model (HGLMM). For both, images and text, FVs
are build using deep neural network features: a CNN
for images features, and a word2vec [26] for text fea-
tures. A more recent approach based on the same CCA
methodology [9], introduces a novel bidirectional neu-
ral network architecture. This architecture is based on
two channels which share weights: one channel maps
images to sentences while the other goes in the op-
posite direction. Losses are applied in each projection
and in a middle layer. The loss in the middle layer
seeks to ensure the correlation between both repre-
sentations at this point. Instead of using the CCA, a
more efficient euclidean loss is used. Since both meth-
ods rely on a CNN representation of the image, the
introduction of the FNE in these pipelines should be
straightforward.

Attention-based models is another family of com-
petitive solutions for tackling multimodal tasks. Dual
Attention Networks (DANs) [28] currently holds the
best results on the Flickr30K dataset. On a general
pipeline similar to [20], DANs introduce two addi-
tional small neural networks as attention mechanisms
for images and captions. This allows DANs to es-
timate the similarity between images and sentences
by focusing on their shared semantics. In a similar
fashion, selective multimodal Long Short-Term Mem-
ory network (sm-LSTM) [14] includes a multimodal
context-modulated attention scheme at each time-step.
This mechanism can selectively attend to a pair of in-
stances of image and sentence, by predicting pairwise
instance-aware saliency maps for image and sentence.
All attention-based methods rely on CNN representa-
tions of the images, as the previously described meth-
ods did. However, they differ in that the representa-
tions are obtained from the last convolutional layer. At
this level, information on the features position is avail-
able allowing for the use of attention mechanisms. On
the contrary, FNE obtains a compact representation of
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the whole image at the cost of losing the spatial infor-
mation. Application of the FNE methodology to those
techniques would require to modify significantly the
FNE schema and is one of our main lines of future
work.

3. Methods

The multimodal embedding pipeline of Kiros et
al.[20] represents images and textual captions within
the same space. The pipeline is composed of two main
elements, one which generates image embeddings and
another one which generates text embeddings. In this
work we replace the original image embedding gen-
erator by the FNE, resulting in the architecture shown
in Figure 1. In subsection 3.1 the main characteristics
and methods of the FNE are described. Subsection 3.2
explains the generic multimodal embedding pipeline
by Kiros et al.[20] alongside with the main modifica-
tions proposed, including the integration of the FNE.
Following subsections 3.3 and 3.4 explain the varia-
tions introduced by Vendrov et al.[36] and Faghri et
al.[10] respectively. Finally, 3.5 explains the method-
ology developed to overcome the hindrances found in
maximum loss methods.

3.1. Full-network Embedding

The FNE [11] generates a vector representation of
an input image by processing it through a pre-trained
CNN, extracting the neural activations of all convolu-
tional and fully-connected layers. After the initial fea-
ture extraction process, the FNE performs a dimen-
sionality reduction step for convolutional activations,
by applying a spatial average pooling on each convo-
lutional filter. After the spatial pooling, every feature
(from both convolutional and fully-connected layers)
is standardized through the z-values, which are com-
puted over the whole image train set. This standardiza-
tion process puts the value of each feature in the con-
text of the dataset. At this point, the meaning of a sin-
gle feature value in an image is the degree with which
the feature value is atypically high (if positive) or atyp-
ically low (if negative) for that image in the context of
the dataset. Zero marks the typical behavior.

The last step of the FNE is a feature discretiza-
tion process. The previously standardized embedding
is usually of large dimensionality (e.g., 12,416 fea-
tures for VGG16 [32]) which entails problems related
with the curse of dimensionality. A common approach

to address this issue would be to apply some dimen-
sionality reduction methods (e.g., PCA) [1, 27]. In-
stead, the FNE reduces expressiveness through the dis-
cretization of features, while keeping the dimensional-
ity. Specifically, the FNE discretization maps the fea-
ture values to the {—1,0,1} domain, where -1 indi-
cates an unusually low value (i.e., the feature is sig-
nificant by its absence for an image in the context of
the dataset), O indicates that the feature has an aver-
age value (i.e., the feature is not significant) and 1 in-
dicates an uncommonly high activation (i.e., the fea-
ture is significant by its presence for an image in the
context of the dataset). The mapping of standardized
values into these three categories is done through the
definition of two constant thresholds. The optimal val-
ues of these thresholds can be found empirically for a
labeled dataset [12]. However, we use certain thresh-
old values shown to perform consistently across sev-
eral domains [11].

3.2. Multimodal embedding

In our approach, we integrate the FNE with the mul-
timodal embedding pipeline of Kiros et al.[20]. To do
so we obtain the FNE image representation instead of
the output of the last layer of a CNN, as the original
model does. The encoder architecture processing the
text is used as in the original pipeline, using a GRUs
recurrent neural network to encode the sentences. Each
word in the sentence is first encoded in a one-hot vec-
tor using a dictionary containing all the words in the
train and validation sets. Next, it is encoded through
a trainable linear embedding into a word embedding
of lower dimensionality. Finally, the embeddings are
fed to a GRU and the final state of the GRU’s hidden
units is normalised to obtain the sentence embedding.
To combine both embeddings, Kiros et al.[20] use an
affine transformation on the image representation (in
our case, the FNE) analogous to a fully connected neu-
ral network layer with identity activation function. We
simplified it by removing the bias term, resulting in a
linear transformation as in [36]. This simplification is
also motivated by the good results of W2VV [8], where
the transformation is completely removed. The output
of the linear transformation is normalised to obtain the
embedding. This linear transformation is trained si-
multaneously with the GRUs and the word embedding.
The elements of the multimodal pipeline that are tuned
during the training phase of the model are shown in
orange in Figure 1 (notice the image embedding is not
fitted to the data).
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Fig. 1. Overview of the proposed multimodal embedding generation pipeline with the integrated full-network embedding. Elements colored in
orange are components modified during the neural network training phase. During testing, only one of the inputs is provided.

In simple terms, the pipeline training procedure con-
sists of the optimisation of the pairwise ranking loss
between the correct image-caption pair and a random
pair. Assuming that a correct pair of elements should
be closer in the multimodal space than a random pair,
the loss Lg can be formally defined as follows:

a—S(,¢)+ S, ¢e)) (1)

Ls=) zk:max(o
I
+3° > max(0,@ = S(i,¢) + S(e. i)

C k

Where i is an image vector, ¢ is its correct caption
vector, and i; and ¢; are sets of random images and
captions respectively. I and C are, respectively, the sets
of images and captions in the train subset. The operator
S(e, ) stands for a similarity metric. This formulation
is a Hinge Loss as it includes a margin term « to avoid
pulling the image and caption closer once their dis-
tance is smaller than the margin. This makes the opti-
misation focus on pulling together distant pairs instead
of improving the ones that are already close.

The similarity metric proposed in [20] is the cosine
similarity Scps defined in Eq. (2). In our case, since all
embeddings (c, i) are already normalised to have unit
norm, it is equivalent to the dot product of the vectors.

c-i

(R

3.3. Multimodal Order Embedding

@

Scos (¢,1) =

Using the same general schema, Vendrov et al.[36]
proposed an asymmetric order embedding space. Their
main hypothesis is that captions are abstractions of
the images, including information such as the hyper-
nym/hyponym relation. In the resulting shared embed-
ding space, an image corresponds to a caption if the
value of all components of the image embedding have
higher values than the components of the caption em-
bedding (iy > ¢;Viy € i,¢; € ¢). This relation is im-
posed during training, using the order error similarity
Sor defined in Eq. (3) instead of the cosine similarity
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in the same contrastive loss formulation defined in Eq.

(1.

Soe(e,i) = — || max(0,¢ — i) ||? 3)

Notice that since image and caption embeddings are
normalised to have unit L2-norm, both lay on an hyper-
sphere centred on its coordinate origin, thus a perfect
order-embedding will not be achieved unless they are
the same vector, which is extremely unlikely to hap-
pen.

3.4. Maximum error loss

A recent contribution to the field [10] proposes to
compute the loss focusing only on the worst contrast-
ing example (i.e., the closest mistake) instead of tak-
ing into account all the examples. To achieve it, Eq.
(1) is modified substituting the sum over all contrast-
ing examples for the maximum contrasting example,
as shown in Eq. (4).

Ly = Z ml?x{max(o, a—S(i,c)+ S, cr)) J4@)
1
+ ; m]?x{max(o, a—S(i,¢)+ S(c i)}

3.5. Curriculum learning

Faghri et al.[10] reported problems in training when
using their proposed Maximum of Hinge Loss (MH).
They indicate that a rough form of curriculum learning
[2] could be applied, but do not develop or experiment
it further as in their preliminary experiments it ob-
tained worse performance than the proposed method.
Our experiments replicated their training problems, as
well as an unstable behaviour with respect to hyper-
parameter selection. As a result, on several occasions,
the model is unable to start learning within a reason-
able number of epochs.

To fix that, we define a sort of curriculum learning
approach to combine the benefits of the sum loss Lg
and the max loss £),. The basic idea is to train us-
ing one method until there is no improvement in the
validation set. Then, take this pre-trained model and
train it again using a different method. Several of those
training steps can be concatenated.

We propose to train the model using the sum of er-
rors loss Lg, to obtain the best performing model and,

in a second step, to re-train it using the maximum error
loss L. Notice that different hyper-parameters may
be used in each training phase as long as the dimen-
sionalities of the embeddings are not changed. The
motivation to define this process is the intuition that
using the sum loss Lg help to a achieve first a gener-
ally correct embedding which is refined using the max
loss Ly that focus on improving single misplaced ex-
amples.

We performed preliminary experiments using this
methodology to apply a learning rate reduction, which
resulted in small performance gains for some algo-
rithms. We kept these results out of the paper as we
do not consider them to be conclusive enough, and to
avoid shadowing more relevant contributions.

4. Experiments

In this section, we evaluate the impact of using the
FNE in a multimodal pipeline for both image annota-
tion and image retrieval tasks. We extend our previ-
ous work [38] introducing the FNE in different mul-
timodal pipelines. To properly measure the relevance
of the FNE, we compare the results obtained with
those of the original multimodal pipelines (i.e., without
the FNE). Given the discrepancies in the experimen-
tal setup of the different contributions, we define base-
lines by keeping as much of the original setup as possi-
ble while leveling the playground (i.e., using the same
training and test sets, the same text preprocessing, the
same source CNN, the same data augmentation, efc.).

We identify the different combinations of embed-
ding and multimodal pipeline with a notation in the
form of EMB-PIPE. EMB denotes the embedding be-
ing either FNE (for the full network embedding) or
FC7 (for the baselines using the last CNN layer, fc7).
PIPE denotes the multimodal pipeline used, one of
SH, MH, SOE, MOE, PH, POE. The details of each
pipeline and the hyper-parameters used in the experi-
ments can be found in Section 4.2.

4.1. Datasets

In our experiments we use three different and pub-
licly available datasets:

The Flickr8K dataset [29] contains 8,000 hand-
selected images from Flickr, depicting actions and
events. Five correct captions are provided for each im-
age. Following the provided splits, 6,000 images are
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used for train, 1,000 are used for validation and 1,000
are kept for testing.

The Flickr30K dataset [41] is an extension of
Flickr8K. It contains 31,783 photographs of everyday
activities, events and scenes. Five correct captions are
provided for each image. In our experiments 29,000
images are used for training, 1,014 conform the vali-
dation set and 1,000 are kept for test. These splits are
the same ones used in [15, 20].

The MSCOCO dataset [23] includes images of ev-
eryday scenes containing common objects in their
natural context. For captioning, 82,783 images and
413,915 textual descriptions are available for training,
while 40,504 images and 202,520 captions are avail-
able for validation. Captions from the test set are not
publicly available. Previous contributions consider us-
ing a subset of the validation set for validation and the
rest for test. In most cases, such subsets are composed
by either 1,000 or 5,000 images per set, with their cor-
responding 5 captions per image. In our experiments
we only consider the 1K test set to simplify results
presentation. Some previous work extend the training
set by adding the images and captions in the original
validation set that are not used for validation or test
[10, 36]. This split raises the number of training im-
ages to 113,287, consequently increasing the perfor-
mance of algorithms [10]. We did not consider using
this extended training set since the effect of the quan-
tity of training data is already seen on the performance
obtained for the 3 different datasets (which have dif-
ferent sizes).

4.2. Experimental Setup

We investigate the impact of the FNE on the meth-
ods proposed in [10, 20, 36], and on the curriculum
learning methodology proposed in Section 3.5. The
methods are named following the convention of [10].
Notice all losses are actually based on a Hinge Loss:

— Sum of Hinge Loss (SH). Uses the sum loss Lg
with cosine similarity Scps. Analogous to UVS
[20]

— Maximum of Hinge Loss (MH). Uses the max
loss Ly, with cosine similarity Scps. Analogous
to VSE++ [10]

— Sum of Order Embedding Loss (SOE). Uses the
sum loss Lg with order embedding similarity
Sok- Analogous to Order [36]

— Maximum of Order Embedding Loss (MOE).
Uses the max loss £, with order embedding sim-
ilarity Spg. Analogous to Order++ [10]

— Pre-trained Hinge Loss (PH). Use curriculum
learning. Pre-train using the sum loss Lg and fine-
tune using the max loss £y, using always cosine
similarity Scos -

— Pre-trained Order Embedding Loss (POE). Use
curriculum learning. Pre-train using the sum loss
Ls and fine-tune using the max loss £, using al-
ways order embedding similarity Sog.

The details of the hyper-parameters used in the ex-
periments for each method can be found in Table 1.

4.3. Implementation Details

The devil is in the details. To facilitate the repro-
ducibility and interpretability of our work, we provide
in this section all the details regarding our implementa-
tion. The Theano [35] based implementation we used
is available at [37].

4.3.1. Training

During a training epoch, all images are presented
with one caption chosen randomly from the five cap-
tions available. This approach differs from the usual
of presenting all five captions per image each epoch
[20, 38]. If all five image-caption pairs are included in
the dataset, it may be the case that more than one cor-
rect image-caption pairs can be included in the same
random batch. Since the method uses all image-caption
combinations in the batch as contrastive examples, a
correct pair could be wrongly used as an incorrect pair
during the loss computation, leading to noise during
the training. By using only one correct caption, we re-
move this possibility. On the other hand it is now pos-
sible (although highly unlikely depending on the num-
ber of training epochs) that a correct caption is never
used during training. In fact, the probability that a cor-
rect caption is never used during training is in the or-
der of 10~8 for our setups. Practically, this approach
implies that to achieve similar training it requires five
times the number of epochs (but with the same compu-
tational cost). On the other side, it reduces the memory
requirements to almost 1/5.

The models are trained until a maximum number of
epochs is reached, and the best performing model on
the validation set is chosen. Notice that the result of
this process is very similar to what could be obtained
through an early stopping policy. In the case of base-
line experiments, the maximum number of epochs is
set to 200 for all our executions. In MH experiments
on Flicker8k and Flicker30k, we raise the maximum
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Table 1

Hyper-parameter configuration for the experiments

Model SH SH-bl MH  MH-bl SOE SOE-bl MOE MOE-bl PH POE

Loss sum sum max max sum sum  max max  sum-max” sum-max®

Similarity cos cos cos cos  order order  order order cos order

8k 1536 2048 1024 1024 1024 1024 1536 1024 1536 1024

Embed. dim. 30k 1536 2048 1536 1024 1024 1024 1536 1024 1536 1024
coco 1536 2048 2048 1024 1536 1024 2048 1024 1536 2048

Word embed. dim. 1024 1000* 1024 300 1024 300 1536 300 1024 1024
Learning rate  0.0002  0.0002* 0.0002  0.0002  0.001 0.001  0.001 0.0002 0.0002  0.001 - 0.0001°

Margin 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.2 0.2 0.05

Absolute value embed. X X X X v v v X X v

2 For MSCOCO Word embedding dimensionality is 2000 and Learning rate is 0.00025.

number of epochs to 400 as we observed results kept
improving after 200 epochs.

On all our experiments (for both the FC7 and the
FNE variants) the batch size is of 128 image-caption
pairs. Within the same batch, every possible alterna-
tive image-caption pair is used as contrasting exam-
ple (i.e., we sum over 127 contrasting examples or we
choose the worst example out of 127, depending on the
loss used). In the GRUs we use gradient clipping with
a threshold of 2. We use ADAM [17] as optimisation
algorithm.

4.3.2. Caption processing

The caption sentences are word-tokenized using the
Natural Language Toolkit (NLTK) for Python [3]. We
did not remove punctuation marks as in [10, 38], and
in contrast to [36]. Also, unlike some previous works
[20, 38] we do not remove long sentences from the
training split. We did not observe a significant impact
on performance with this reduction of the text pre-
processing.

The choice of the word embedding size and the
number of GRUs has been analyzed to obtain a range
of suitable parameters to test in the validation set. Pre-
vious contributions [10, 20, 36] set the word embed-
ding dimensionality to 300. In our preliminary exper-
iments we found that a higher dimensionality helps to
obtain better results. We also found that very different
dimensionalities between the word embedding and the
multimodal embedding (i.e., 300 - 2048) slow down
the convergence speed during training. For word em-
beddings, a dimensionality between 1,024 and 1,536
performs competively on all methods.

Similarly we found that multimodal embedding di-
mensionalities (i.e., number of GRU units) between
1,024 and 2,048 gives good results for all methods
considered. Previous methods usually adopt 1,024 as

Y First training - second training parameters

the dimensionality of the multimodal embedding space
[10, 36], while others consider a much small dimen-
sionality of 300 [20].

4.3.3. Image processing

For generating the image embedding we use the
classical VGG16 CNN architecture [32] pretrained for
ImageNet [30] as source model. This architecture is
composed by 16 convolutional layers combined with
pooling layers, followed by two fully connected lay-
ers and a final softmax output layer. Using only the
activations of the last fully connected layer before the
softmax (f£c7), the dimensionality of the image em-
bedding is 4,096. When using the FNE, features from
different layers are combined in an image embedding
space of 12,416 dimensions.

To obtain a better representation of the image, the
full network embedding resizes the image to 256x256
pixels and extracts 5 crops of 224x224 pixels (one
from each corner and the center). Mirroring these 5
crops horizontally we obtain a total of 10 crops which
are processed through the CNN independently. The
activations collected from each of these 10 crops are
averaged to obtain a single representation of the im-
age before further processing. For the baseline we use
the same process before L2-normalization. Although a
similar process is common for data augmentation, no-
tice that we are not actually doing data augmentation
since the number of training samples does not increase.

4.4. Evaluation metrics

To evaluate the image annotation and image re-
trieval tasks we use the following metrics:

— Recall@K (R@K) is the fraction of images for
which a correct caption is ranked within the top-
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K retrieved results (and vice-versa for sentences).
Results are provided for R@1, R@5 and R@10.

— Median rank (Med r) of the highest ranked
ground truth result.

To obtain a comparable performance metric per model,
we use the sum of the recalls on both tasks. This has
been done before in [38] and in [10], the latter us-
ing only R@1 and R@10. We only use the score ob-
tained on the validation set to select the best perform-
ing model for early stopping and hyper-parameter se-
lection.

5. Results

Table 2 shows the results of the proposed full net-
work embedding on the Flickr8K dataset, for both
image annotation and image retrieval tasks. The top
part of the table includes the current state-of-the-art
(SotA) results as published. The second part sum-
marises the results published by the original contribu-
tions this work is based on. Following parts contain
the results produced by us for each of the models de-
fined in Section 4.2. Each of these blocks comprises
two pairs of results, the first pair corresponds to the re-
sults while using a configuration of hyper-parameters
as close as possible to the original (i.e., baseline or -
bl), while the second pair corresponds to the results
while using the best configuration we found for the
FNE. Within each pair, the first experiment uses the
FC7 embedding and the second uses the FNE, keeping
all hyper-parameters unchanged. Best results for each
pair are underlined. Tables 3 and 4 are analogous for
the Flickr30K and MSCOCO datasets. Additional re-
sults of the UVS model [20] were made publicly avail-
able later on by the original authors [18]. We include
these for the MSCOCO dataset, which was not evalu-
ated in the original paper.

First, let us consider the effect of all modifications in
the pipeline (detailed in sections 3 and 4.3) compared
to our previous work [38]. In the first block of experi-
ments, we can compare the results from [38] (FC7-SH-
bl and FNE-SH-bl) with the ones obtained in this work
for the same model (FC7-SH and FNE-SH). Notice
that in FC7-SH-bl and FNE-SH-bl hyper-parameters
were already optimized for FNE. We can see a signif-
icant improvement in results obtained using both the
FC7 and the FNE image embeddings. With an aver-
age increase in recall of 4.75% on MSCOCO, these
results validate globally the improvements made in

the pipeline and the exhaustive hyper-parameter fine-
tuning.

Results obtained in this work for the original pipeline
from Kiros et al.(FC7-SH) are now very close to the
ones obtained by other studied methods (FC7-MH,
FC7-SOE and FC7-MOE) dimming the benefits of the
proposed variants. In Table 4, we can easily compare
the results claimed in the original papers [10, 20, 36]
with the ones obtained under equal conditions (notice
that not all methods were tested on Flickr datasets in
original works). The most explicit differences are in re-
call@1 for both image annotation and image retrieval.
For instance, VSE++ [10] obtains 21.2% and 21.0%
increments over UVS [20], while the increments of our
analogous versions (FC7-MH and FC7-SH) are now
of 0.6% and 0.5% respectively. We hypothesise that
most of the previously reported increment was due to
different dataset sizes, CNN architectures and hyper-
parameter fine tuning; factors that we set equal for all
methods.

These results highlight the difficulty to perform a
consistent comparison between different multimodal
approaches since different authors make different
choices in the settings of their experiments (and some-
times fail to detail them thoroughly). Notably, signif-
icant differences arise depending on the data used for
training and testing. This is especially significant when
experimenting with the MSCOCO dataset as we have
seen in Section 4.1. Similarly, data augmentation tech-
niques, a standard approach in most SotA methods,
can give a boost to performance. In our experiments,
we did our best to avoid such differences or to specify
them entirely when they are unavoidable. In this con-
text, the results we provide are as comparable as pos-
sible. It is essential to keep in mind all these consider-
ations, when comparing the results we report with the
ones from other publications.

Comparing the results of the family of methods
based on [20] with the state-of-the-art we see that
their relative performance increases with dataset size
(larger datasets lead to more competitive performances
of these methods). Since the methods tested are more
data-driven (i.e., fewer assumptions are made apriori),
it is to be expected that they can benefit more from the
increase of available data. These results are congru-
ent with the ones in [10] where the experiments using
more data obtain state-of-the-art results.

Now, let us focus on the differences between a
model and the same model using the FNE image em-
bedding. This is the most significant contribution of
this paper, as it incorporates the FNE on several mul-
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Results obtained for the Flickr8K dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 -

Table 2

FNE comparison are shown in underline. Best results for SotA and our experiments are shown in bold

Image Annotation

Image Retrieval

Model

R@l R@5 R@10 Medr R@] R@5 R@10 Medr
FV  [21] 21.2 50.0 64.8 5 31.0 59.3 73.7 4
m-CNN  [25] 24.8 53.7 67.1 5 20.3 47.6 61.7 5
Bi-LSTM  [39] 29.3 58.2 69.6 3 19.7 47.0 60.6 5
W2VV 8] 33.6 62.0 75.3 3 - - - -
2WayNet  [9] 43.4 63.2 - - 29.3 49.7 - -
Uvs  [20] 18.0 40.9 55.0 8 12.5 37.0 51.5 10
FC7-SH-bl* 21.0 45.7 60.4 7 14.0 358 48.6 11
FNE-SH-bl* 233 50.8 66.8 5 15.0 382 51.6 10
FC7-SH 224 49.8 62.9 6 16.6 412 54.3 8
FNE-SH 250  50.8 64.3 5 186 449 58.0 7
FC7-MH-bl 22.6 48.6 61.9 6 17.7 42.7 54.9 8
FNE-MH-bl ® 242 52.0 65.2 5 194 443 51.3 7
FC7-MH 23.0 49.0 63.3 6 18.5 432 56.1 8
FNE-MH 273 56.8 69.3 4 212 471 59.7 6
FC7-SOE-bl 20.6 454 58.0 7 154 38.8 52.7 9
FNE-SOE-bl 215 485 60.7 6 162 40.7 53.8 9
FC7-SOE 21.2 48.1 61.7 6 17.8 43.6 56.5 8
FNE-SOE 240 524 639 5 187 442 511 7
FC7-MOE-bl 226 482 62.3 6 169 415 54.2 9
FNE-MOE-b® 0.1 0.3 04 2476 0.1 0.5 1.0 501
FC7-MOE 21.5 46.1 60.0 7 15.6 39.0 51.9 9
FNE-MOE 255 555 67.8 4 187 444 584 7
FC7-PH 229 48.8 62.5 6 17.1 41.7 54.6 8
FNE-PH 263 557 68.5 4 205 458 58.1 7
FC7-POE 21.0 48.3 62.0 6 16.9 41.7 553 8
FNE-POE 262 53.6 65.8 5 197  45.6 58.4 7

2 Results from [38].  ° Trained for 400 epochs.

timodal embedding pipelines. We can see through the
tables of results that every method on every dataset
obtains better results when using the FNE embedding
when compared to the FC7. Moreover, even with the
original hyper-parameter configuration (sub-optimal
for FNE) the FNE obtains better results on all tests.
The only exception is FNE-MOE-bl where training
problems occur with the original configuration (in Sec-
tion 6 we analyze this issue). Even in this case, results
using an appropriate hyper-parameter selection are su-
perior to those of the baseline (FC7-MOE-bl). Consid-
ering all the experiments on MSCOCO dataset (includ-
ing baselines), the average increase in recall using the
FNE embedding is 3.7%.

Considering the methods tested in our consistent ex-
perimental setup, we see that FNE-MH tend to obtain
the best results on image annotation while FNE-POE is
usually superior in image retrieval tasks. With these re-

sults, we can not consider one method preferable to the
other except in the smallest Flicker8K dataset, where
FNE-MH is superior. In any case, the performance dif-
ferences between the best versions of each method re-
main lower than the impact of the FNE. For instance,
in the experiments on MSCOCO, the recall gap be-
tween the best and the worst method (for each task sep-
arately) is on average 2.1%.

Finally, we observe that the proposed methodology
of curriculum learning increases the already good per-
formance of the original FC7-MOE [10] and the FNE-
MOE 1.7% on average at MSCOCO. On the other
hand, on methods based on the cosine similarity Scos ,
the second training step (using max loss £,,) adds min-
imal improvement on the sum loss Ly results. Final re-
sults of FC7-PH and FNE-PH are in general inferior to
those achieved by single training using max loss Ly
(FC7-MH, FNE-MH).
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Table 3

Results obtained for the Flickr30K dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 -
FNE comparison are shown in underline. Best results for SotA and our experiments are shown in bold

Image Annotation

Image Retrieval

Model

R@l R@5 R@I10 Medr R@l R@5 R@10 Medr
FV  [21] 25.0 52.7 66.0 5 35.0 62.0 73.8 3
m-CNN  [25] 33.6 64.1 74.9 3 26.2 56.3 69.6 4
Bi-LSTM  [39] 28.1 53.1 64.2 4 19.6 43.8 55.8 7
W2vV  [8] 39.7 67.0 76.7 2 - - - -
sm-LSTM®*  [14] 424 67.5 79.9 2 28.2 57.0 68.4 4
2WayNet  [9] 49.8 67.5 - - 36.0 55.6 - -
DAN (VGG)  [28] 414 73.5 82.5 2 31.8 61.7 72.5 3
DAN (ResNet)  [28] 55.0 81.8 89.0 1 394 69.2 79.1 2
EN  [40] 432 71.6 79.8 - 31.7 61.3 72.4 -
UvsS  [20] 23.0 50.7 62.9 5 16.8 42.0 56.5 8
VSE++(1C)  [10] 31.9 - 68.0 4 23.1 - 60.7 6
VSE++(ResNet)®  [10] 529 - 87.2 1 39.6 - 79.5 2
FC7-SH-bl® 304 580 69.5 4 18.9 44.6 57.0 7
FNE-SH-bI® 304 618 732 3 221 416 598 6
FC7-SH 324 60.9 72.6 3 24.1 51.1 64.1 5
FNE-SH 364  64.6 75.7 3 255 538 65.7 3
FC7-MH-bl ¢ 29.5 59.9 70.8 4 23.0 48.9 60.4 6
FNE-MH-bl ¢ 347 63.1 75.6 3 251 523 647 5
FC7-MH 33.6 59.4 69.3 3 23.6 50.0 61.8 5
FNE-MH 317 66.6 78.6 2 27.8  56.0 67.1 4
FC7-SOE-bl 31.6 60.0 724 3 24.0 52.1 64.1 5
FNE-SOE-bl 337 63.8 75.3 3 26.0  55.1 67.7 4
FC7-SOE 30.2 59.4 70.4 4 23.8 50.5 62.7 5
FNE-SOE 355 634 753 3 268  56.1 67.5 4
FC7-MOE-bl 311 562 67.8 4 208  47.1 582 7
FNE-MOE-bl 0.1 0.4 04 2461 0.1 0.5 0.9 498
FC7-MOE 319 61.3 72.7 3 23.8 50.2 61.5 5
FNE-MOE 353 650 77.1 3 273 552 680 4
FC7-PH 31.8 60.1 73.6 3 24.0 51.8 63.3 5
FNE-PH 36.6  63.9 75.0 3 259 543 66.2 4
FC7-POE 314 60.9 723 3 24.5 51.3 63.7 5
FNE-POE 372 671 779 2 281 578 69.1 4

aSingle model. P CNN fine-tuned. € Results from [38]. 9 Trained for 400 epochs.

6. Experiments on MOE training behaviour

When training models using the maximum order
embedding (MOE and MOE-bl), we observed in-
stability issues. For some configurations of hyper-
parameters, the model does not start learning, even af-
ter extending the number of epochs significantly. To
obtain some insights on that behaviour, we trained the
same model five times with different random initial-
isations. The configurations tested are shown in Ta-
ble 5. The combinations of learning rate, margin and

absolute value are taken from the original works of
[10, 36].

The rest of the hyper-parameters are kept the same
for all experiments. The dimensionality of the word
embedding is 300, and the multimodal embedding has
1,024 dimensions. The maximum number of epochs is
200. We run all the tests on Flickr8K to minimise com-
putational cost, although we observed this behaviour
in Flickr30K and MSCOCO too.

To evaluate these experiments, we count the num-
ber of times the algorithm succeeded in starting train-
ing. We consider it does not train if validation and test
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Results obtained for the MSCOCO dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 -
FNE comparison are shown in underline. Best results for SotA and our experiments are shown in bold

Image Annotation

Image Retrieval

Model
R@l R@5 R@I10 Medr R@l R@5 R@10 Medr
FV  [21] 25.1 59.8 76.6 4 394 67.9 80.9 2
m-CNN  [25] 42.8 73.1 84.1 2 32.6 68.6 82.8 3
sm-LSTM #  [14] 524 81.7 90.8 1 38.6 73.4 84.6 2
2WayNet  [9] 55.8 75.2 - - 39.7 63.3 - -
EN  [40] 54.9 84.0 922 - 433 76.4 87.5 -
UvVst [20] 434 75.7 85.8 2 31.0 66.7 79.9 3
Order ¢ [36] 46.7 - 88.9 2 37.9 - 85.9 2
VSE++(1C)  [10] 43.6 - 85.8 2 33.7 - 81.0 3
VSE++(ResNet)®d [10] 64.6 - 95.7 1 52.0 - 92.0 1
Order++¢  [10] 53.0 - 91.9 1 423 - 88.1 2
FC7-SH-bl® 41.2 72.8 85.1 2 26.2 58.6 73.9 4
FNE-SH-bl® 413 76.8 85.8 2 314 654 8.7 3
FC7-SH 44.0 71.0 86.0 2 33.6 68.8 81.1 3
FNE-SH 50.6  80.0 88.4 1 367 713 82.7 2
FC7-MH-bl 43.8 74.7 84.5 2 32.8 67.5 80.5 3
FNE-MH-bl 49.6 789 89.5 2 315 721 83.6 2
FC7-MH 44.6 75.8 85.7 2 34.1 68.2 80.7 3
FNE-MH 502 80.5 90.5 1 312 719 83.0 2
FC7-SOE-bl 41.5 74.4 86.0 2 33.8 69.0 82.6 3
FNE-SOE-bl 471 785 89.6 2 36.8  71.6 84.2 2
FC7-SOE 443 74.8 84.4 2 34.9 69.2 81.9 3
FNE-SOE 4.7 79.8 88.9 2 364 728 84.7 2
FC7-MOE-bl 40.7 753 85.9 2 322 664 8.3 3
FNE-MOE-bl 0.1 0.3 04 2472 0.1 0.5 0.9 499
FC7-MOE 439 75.4 84.9 2 34.2 68.0 81.2 3
FNE-MOE 471 19.6 88.3 2 366 717 83.3 2
FC7-PH 453 75.0 85.5 2 33.8 68.4 81.0 3
FNE-PH 50.6  80.0 88.4 1 367 713 82.7 2
FC7-POE 45.6 759 86.6 2 35.2 69.7 83.1 2
FNE-POE 482  81.5 89.7 2 388 735 85.0 2

b Results provided on [18].
¢ Results from [38].

2 Single model.
4 CNN fine-tuned.

scores are below 10 (regular scores are higher than
200). The results obtained are shown in Table 5.
Results, quite surprisingly, do not point to a single
variable as the cause of the problem. For the FC7 em-
bedding, it did not train when absolute value was used,
independently of the learning rate and margin. The ex-
periment with the same configuration that worked well
with FC7 does not train with FNE. On the other hand,
the original configuration from [36] (but using max
loss) successfully trained on FNE embedding, but this
behaviour is not entirely robust since it failed once.
These experiments show that the instability of the
training does not come from the choice of embedding,

¢ Extra training data from validation set.

but instead on the hyper-parameter selection and pa-
rameter initialisation. While these experiments help to
shed light on the problem, further work is required to
completely understand the cause.

The proposed curriculum learning methodology
(see Section 3.5) effectively solved this problem in all
our experiments, as it initialises the network using the
more robust sum loss. None of the experiments we did
using the proposed curriculum learning methodology
for different hyper-parameters configurations failed to

start training.
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Table 5

Hyper-parameter configuration and results for the experiments on
MOE training behaviour. Success indicates the number of times that
experiment succeeded in starting training (i.e., score > 10) over total
repetitions

Model L.rate Margin  Abs.val.  Success

FC7-MOE-bl  0.0002 0.2 X 5/5
FC7-MOE-bl-abs  0.0002 0.2 v 0/5
FC7-MOE-abs  0.0001 0.05 v 0/5
FNE-MOE-bl  0.0002 0.2 X 0/5
FNE-MOE-bl-abs  0.0002 0.2 v 0/5
FNE-MOE-abs  0.0001 0.05 v 4/5

7. Conclusions

For the multimodal pipeline of Kiros ef al.[20] and
the other methods based on it [10, 36], using the FNE
results in consistently higher performances than using
a one-layer image embedding. These results suggest
that the visual representation provided by the FNE is
superior to the current standard for the construction of
most multimodal embeddings. In fact, the impact FNE
has on performance is significantly superior to the im-
provement resultant of combining the main contribu-
tions from [36] and [10]. These results confirm our ini-
tial hypothesis that the richer and discrete representa-
tion obtained with FNE is more convenient for the con-
struction of multimodal embeddings than the widely
used single-layer real-valued embeddings.

The results of our comparative study of the differ-
ent variants from [10, 20, 36] pointed up the need of
properly assessing the sources of empirical gains. We
consider it is a key aspect of research that should be
further encouraged.

When compared to the current state-of-the-art, the
results obtained from the studied variants using FNE
are below the results reported through other methods.
This difference is often the result of using a more sub-
stantial amount of training data. Indeed, results given
in [10] indicate that models based on the pipeline
of [20] can obtain state-of-the-art results when using
enough data.

Another issue we tackled was the instability of MOE
models. Depending on the random initialization of the
weights, the same model may start training or not. Our
experiments showed that the combination of hyper-
parameters also plays a role in these difficulties. How-
ever further study is required to get a real insight into
the mechanisms causing this problem. In any case, the
proposed curriculum learning method of pre-training
using a sum of losses effectively alleviates this prob-
lem while increasing performance.

Finally, let us remark that the FNE is straight-
forward compatible with most multimodal pipelines
based on CNN embeddings. The constant improve-
ment in the results observed here for the variants pro-
posed by [10, 20, 36] suggest that other methods can
also boost its performance incorporating the FNE.
These results also encourage us to consider the modifi-
cations required to be able to introduce attention mech-
anisms (e.g., DAN) in our methodology in a future
work.
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