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Abstract. We develop an ABox abduction algorithm for description logics based on Reiter’s minimal hitting set algorithm. It
handles abduction problems with multiple observations and it supports the class of explanations allowing atomic and negated
atomic concept and role assertions. As shorter explanations are preferred, the algorithm computes shorter explanations first and
allows to limit their length. The algorithm is sound and complete for this class of explanations and for any given maximal length
of explanations. To improve optimality, we include and even slightly extend the pruning techniques proposed by Reiter. The DL
expressivity is limited only by the DL reasoner that our algorithm calls as a black box. We provide an implementation on top of
Pellet, which is a full OWL 2 reasoner, so the expressivity is up to . We evaluate the implementation on three different
ontologies.
Keywords: Abduction, description logics

1. Introduction

Abduction as form of reasoning was first described
by Peirce [24]. Its goal is to explain why a set of axioms
 (called observation) does not follow from a knowl-
edge base: an explanation for  is another set of ax-
ioms  s.t.  follows from  ∪  . As a non-standard
reasoning task abduction has been recently studied also
in description logics (DLs) [10]. ABox abduction, i.e.
the case when both  and  are limited to ABox asser-
tions, has found applications in areas such as diagnos-
tic reasoning [10, 20, 27] or multimedia interpretation
[3, 11].
ABox abduction is useful, but general-purposeABox

abduction solvers, especially for more expressive DLs
are still underdeveloped. Some approaches are based
on translation, where the abductive task is computed in
the target formalism. Klarman et al. [22] proposed an
ABox abduction algorithm based on translation to first-
order and modal logic. This work is purely theoretical,
it is sound and complete, and the expressivity is limited
to. Du et al. [8] proposed an approach based on a

*Corresponding author. E-mail: pukancova@fmph.uniba.sk.

translation, exploiting an existing Prolog-based abduc-
tion solver. They have shown interesting computational
results; their approach is sound but it is only complete
w.r.t. a specific Horn fragment of . Other works
[15, 23] exploit directly the tableau reasoning algo-
rithm for DLs, however their expressivity is still lim-
ited to  and . The former work is a theo-
retical proposal, it is sound, but not complete. The lat-
ter was implemented, the soundness or completeness is
not shown. Del-Pinto and Schmidt [6] present an abud-
ction solver based on forgetting. Their work includes
an implementation, it is sound and complete for.

We present an ABox abduction algorithm building
on the ideas of Halland and Britz [15, 16]. It is based
on Reiter’s [28] Minimal Hitting Set (MHS) algorithm,
and it uses a DL reasoner as black box. The algorithm
supports atomic and negated atomic concept and role
assertions in explanations. It handles abduction prob-
lems with multiple observations in form of any ABox
assertions. The algorithm exploits optimization tech-
niques suggested by Reiter such as model reuse and
pruning. It computes subset-minimal explanations, and
shorter explanations are returned first. Thus the search
space is explored effectively, starting from more de-
sired explanations. Our work constitutes an extension
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of the current state of the art, as it combines the fol-
lowing contributions: (a) expressivity up to OWL 2,
i.e. ; (b) soundness and completeness w.r.t.
any given length of explanation; (c) inclusion of model
reuse and all applicable Reiter’s pruning conditions,
which are further extended to exclude more undesired
explanations from the search; (d) we provide an imple-
mentation (on top of Pellet [30]).
An empirical evaluation on three different ontolo-

gies has showed our approach to be feasible, espe-
cially when searching for explanations of lower length.
We have also showed that the implemented optimiza-
tion techniques help to significantly reduce the search
space, and an interesting comparison between two dif-
ferent approaches to compute multiple observations.

2. Description logics

While our algorithms are complete w.r.t. any DL up
to  [19] which is the highest expressivity han-
dled by the underlying reasoner, for brevity we will
only introduce the  DL [cf. 1]. This DL con-
tains all features essential to our approach, especially
due to constructions involved in handling multiple ob-
servations and role explanations. The lowest expressiv-
ity that the DL reasoner used in our abduction algo-
rithm should support is . Role hierarchies are
not strictly needed, but without them the number of ex-
planations involving roles is limited.
A DL vocabulary consists of three countable mutu-

ally disjoint sets: set of individuals NI = {a, b, c,…},set of atomic concepts NC = {A,B,…}, and set of
rolesNR = {R,S,…}. (Complex)  concepts
are recursively constructed starting from atomic con-
cepts and using any of the constructors as stated in Ta-
ble 1, where C ,D are any concepts,R, S are
roles, and a, b are individuals.
A TBox  is a finite set of GCIs, an RBox  is a

finite set of RIAs, and an ABox is a finite set of con-
cept assertions, role assertions, and negated role asser-
tions, as given in Table 1, where similarly C , D are
any  concepts, R, S are roles, and a, b are
individuals. These three parts form a knowledge base
 = ( ,,).

By the negation of any assertion ', i.e. ¬', we mean
¬C(a) for ' = C(a), ¬R(a, b) for ' = R(a, b), and
R(a, b) for ' = ¬R(a, b). Let ¬ = {¬' ∣ ' ∈ } for
any ABox. There is a clash in an ABox if ' ∈ 
and ¬' ∈ .

Table 1
Syntax and Semantics of 

Constructor Syntax Semantics
complement ¬C Δ ⧵ C

intersection C ⊓ D C ∩D

union C ⊔ D C ∪D

existential restriction ∃R.C {x ∣ ∃y (x, y) ∈ R ∧ y ∈ C}
value restriction ∀R.C {x ∣ ∀y (x, y) ∈ R → y ∈ C}
nominal {a} {a}

Axiom Syntax Semantics
concept incl. (GCI) C ⊑ D C ⊆ D

role incl. (RIA) R ⊑ S R ⊆ S

concept assertion C(a) a ∈ C

role assertion R(a, b) (a , b ) ∈ R

neg. role assertion ¬R(a, b) (a , b ) ∉ R

An interpretation of a knowledge base  is a pair
 = (Δ , ⋅), where Δ ≠ {}, and ⋅ is an interpre-
tation function s.t. a ∈ Δ for a ∈ NI, A ⊆ Δ

for A ∈ NC, and R ⊆ Δ × Δ for R ∈ NR. In-terpretation of complex concepts is inductively defined
in Table 1.  satisfies an axiom ' ( ⊧ ') as given in
Table 1.

An interpretation  is a model of  if it satisfies
all axioms included in ;  is consistent if there is a
model  of . A concept C is satisfiable w.r.t.  if
there is a model  of  s.t. C ≠ {}. An axiom ' is
entailed by (denoted by ⊧ ') if for every model 
of  it holds that  ⊧ '. A set of axioms Φ is entailed
by  ( ⊧ Φ) if  ⊧ ' for all ' ∈ Φ.
Entailment and consistency checking arewell known

to be inter-reducible [1]. Specifically, for any ABox as-
sertion ',  ⊧ ' if and only if  ∪ {¬�} is inconsis-
tent. There is a number of DL reasoners [17, 18, 29–
31], mainly solving the consistency checking using the
tableau algorithm [1].

3. ABox abduction

According to Elsenbroich et al. [10], in DL we dis-
tinguish between TBox and ABox abduction.
Definition 1 (Abduction problem). An abduction
problem is a pair  = (,), where is a DL knowl-
edge base and  is set of axioms. A set of axioms 
is an explanation of  if  ∪  ⊧ . Moreover,  is
called
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1.  a TBox abduction problem, if  and  are lim-
ited to TBox axioms;

2.  an ABox abduction problem, if and  are lim-
ited to ABox assertions.

If  and  are not limited in any way, we also
sometimes call a knowledge base abduction problem.
Such general abduction problems as much as TBox ab-
duction problems are not of our interest in this paper;
instead we concentrate on ABox abduction problems.
Hence also whenever we say just abduction problem,
wemean anABox abduction problem from here on.We
will further differentiate a special case, when  con-
tains just a sole observation and the general case when
it contains more than one observation.
Definition 2 (Single-observation and multiple-ob-
servation abduction problems). An abduction prob-
lem  = (,) is called
1. a single-observation abduction problem if  =
{O} contains only one observation O.

2. a multiple-observation abduction problem other-
wise.

By an abuse of notation, whenever we write  =
(, O)wemean the single-observation abduction prob-
lem  = (, {O}).

Definition 1 provides the basic characterization of
an explanation to an abduction problem, however not
all explanations are equally acceptable [10]. There are
some trivial cases, that we want to rule out.
Definition 3 (Consistent, relevant, and explanatory
explanations). Given an ABox abduction problem
 = (,) and its explanation  we say that:
1.  is consistent if  ∪  ̸⊧ ⊥, i.e.  is consistent

w.r.t. ;
2.  is relevant if  ̸⊧ Oi for each Oi ∈ , i.e. 

does not entail each Oi;3.  is explanatory if  ̸⊧ , i.e.  does not entail
.

An explanation should be consistent, as anything fol-
lows from inconsistency; and so, an explanation that
makes inconsistent does not really explain the obser-
vation. It should be relevant, that is, it should not imply
the observation directly without requiring the knowl-
edge base at all. And it should be explanatory, that is,
we should not be able to explain the observation with-
out it.
Even after ruling out such undesired explanations,

there can still be too many of them. Therefore some no-

tion of minimality is often used. We will use syntactic
minimality, sometimes also called subset-minimality,
already employed by [28].
Definition 4 (Syntactic minimality). Given an ABox
abduction problem  = (,) and two explanations
 and  ′ of  , we say that  is smaller than  ′ if
 ⊊  ′.We further say that a solution  of  is syntac-
tically minimal if there is no other solution  ′ of  that
is smaller than  .
This notion of minimality, based on subsets is not

the only one which has been considered in litera-
ture. Cardinality-based minimality [9, 25]. considers
as minimal only those explanations  such that for all
other explanations  ′ we have || ≤ | ′|. Although
syntactic minimality will be our main focus in this
paper, our algorithms can also be used to compute
cardinality-minimal explanations.

Further, semantic minimality [5] considers explana-
tions which cannot be logically implied by other expla-
nations. Given two solutions  and  ′ of  = (,),
we say that  is (semantically)weaker than  ′ (denoted
by  ′ ≺ ) if  ∪  ′ ⊧  but not  ∪  ⊧  ′. In such
a case  ′ is also said to be (semantically) stronger than
 . A solution  of  is semantically minimal if there is
no  ′ s.t.  ≺  ′. We do not consider semantic mini-
mality in this work and it is rarely considered in DL ab-
duction research. For instance [6] applies this notion of
minimality. Notably, while in diagnostic applications
of abduction one would expect weaker explanations to
be preferred [27], in the work of [26] who apply abduc-
tion onmultimedia interpretation semantically stronger
explanations are of interest.

In this work we are interested in explanations in form
of atomic and negated atomic ABox assertions (which
satisfy the requirements of Definitions 3–4). Let us now
define this class of observations formally.
Definition 5 (AnRn and AnR

CER,sub
n ). Given an ab-

duction problem  = (,) we define the following
classes of explanations:
1. AnRn() contains all explanations  of  such

that  ⊆ {A(a),¬A(a), R(a, b),¬R(a, b) ∣ A ∈
NC, R ∈ NR, a, b ∈ NI};

2. AnRCER,subn () contains all explanations  of 
such that  ∈ AnRn and  is explanatory, consis-
tent, relevant, and minimal.

Note that for any abduction problem  = (,)
both  and  are finite and these classes of explana-
tions are defined with resect to their finite combined
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signature, hence there is only finitely many explana-
tions in either of these classes for any abduction prob-
lem  .

4. Explaining a single observation

To stay within the class AnRn (or, in fact, its sub-
class AnRCER,subn ) we need to be able to extract all suit-
able ABox assertions from the models computed by the
tableau algorithm. This will be done by so called ABox
encoding of models.
Definition 6 (ABox encoding). The ABox encoding of
an interpretation  = (Δ , ⋅) is:
M = {C(a) ∣  ⊧ C(a), C∈{A,¬A}, A∈NC, a∈NI}

∪ {R(a, b) ∣  ⊧ R(a, b), R∈NR, a, b∈NI}
∪ {¬R(a, b) ∣  ⊧ ¬R(a, b), R∈NR, a, b∈NI} .

A DL reasoner called by our abduction algorithm as
a black box is simply represented by a function TA()
such that TA() = M returns the ABox encoding
of some model  of  if  is consistent, otherwise
TA() = {}.
Similarly as above, each and O have a finite com-

bined signature, hence each ABox encoding is finite.
What is more, observe thatM is in no way homomor-
phic with the original model ; it ignores the anony-
mous part of the model (on purpose). Hereafter we au-
tomatically assume the ABox encoding whenever we
talk about models.
In order to find an explanation for an ABox abduc-

tion problem  = (, O) we need to find a set of
ABox assertions  such that  ∪  ⊧ O, i.e., such that
∪ ∪{¬O} is inconsistent. As suggested by Halland
and Britz [15, 16], such  corresponds to a set of ABox
assertions which causes that nomodel of∪{¬O}will
be a model of∪  ∪ {¬O} anymore. As observed by
Reiter [28], such a set  can be found as a hitting set
[21] of the collection of all models of∪{¬O} and
then negating each assertion in the hitting set.
Definition 7 (Hitting Set). Given a set of sets , a
hitting set H of  is any set such that H ∩M ≠ {}
for everyM ∈.
In other words, it sufficed to find one ABox asser-

tion from the ABox encoding of each model and add
its negation into  .

To find all hitting sets for a collection of sets ,
Reiter [28] proposed to construct a hitting set tree (HS-
tree). In his HS-tree nodes are labelled by a set from

 or by ✓ (although we will use {}). Edges from a
node n are labelled by an element from the label of n.
Additional constraints ensure that the edge-labels on
every path from the root to a leaf correspond to a hitting
set.
Definition 8 (HS-tree). An HS-tree for a collection of
sets  ≠ {} is a smallest labelled tree T = (V ,E,L)
with root r, nodes and edges labelled by L(), andH(n)
being the set of edge-labels on the path from r to a node
n, such that:
1. L(r) =M for someM ∈.
2. If L(n) = {}, it has no successors in T .
3. If L(n) = Mn ∈ , then for each � ∈ Mn, nhas a successor n� , s.t. L(n, n�) = � and L(n�) =
Mn� ∈  s.t.Mn� ∩H(n�) = {} if it exists, or
L(n�) = {} otherwise.

The HS-tree respective to any empty set  = {} is
intentionally undefined.

To compute only (subset) minimal hitting sets, Re-
iter proposed to construct the HS-tree by breadth-first
search and to prune paths that would not lead to min-
imal hitting sets. This is particularly useful, as we are
only interested in minimal explanations, which corre-
spond to minimal hitting sets. In addition, we want to
filter out explanations which are not explanatory, con-
sistent, and relevant. We can do this by extending the
pruning conditions originally proposed by Reiter. All
nodes will be labelled either by M ∈ , or by {},
or by ×. The latter two labels will be used to steer the
pruning.
Definition 9 (Pruned node). Given an abduction
problem  = (, O), let  = TA( ∪ {¬O}) and
let T = (V ,E,L) be a HS-tree for a collection of sets
{¬M ∣M ∈}. A node n ∈ V in T for is pruned if:
(a) either there is n′ ∈ V s.t. H(n′) ⊆ H(n) and

L(n′) = {}
(label n by {});

(b) or there is n′ ∈ V s.t.H(n′) = H(n) and L(n′) =
M ∈
(label n by ×);

(c) or {¬O} ∪H(n) is inconsistent (label n by {});
(d) orH(n) ∪ is inconsistent (label n by {});
Condition (a) represents Reiter’s first pruning condi-

tion, i.e., when another node n′, s.t.H(n′) ⊆ H(n) cor-
responds to a smaller hitting set. However, we extend
this condition also to cases when such n′ corresponds
to a node previously pruned according to (c) or (d).
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Condition (b) corresponds to Reiter’s second prun-
ing condition, i.e., when another node n′ has the same
H(n′) = H(n). There is no need to continue in the dou-
bled path, and so one of them is pruned – node n is
labelled by ×.
Note that Reiter’s third pruning condition never ap-

plies in our case because for no two nodes L(n) ⊆
L(n′), due to node labels corresponding to ABox en-
codings of models.
Conditions (c) and (d) are new, and they are respon-

sible for pruning all paths respective to irrelevant and
inconsistent explanations (in conjunction with condi-
tion (a) which also prunes all supersets of such previ-
ously found paths).
Definition 10 (Pruned HS-tree). A pruned HS-tree is
obtained from a HS-tree by removing all pruned nodes
including their descendants.
Reiter [28] has proven, that in a pruned HS-tree, the

paths from the root to the leaves that are not pruned
correspond exactly to all minimal hitting sets. While it
was later showed by Greiner et al. [12] that this result
is not entirely correct, the problem lies in Reiter’s third
pruning condition which does not apply in our case.
But since we have extended the first two of Reiter’s

original pruning conditions taking into account addi-
tional cases in which are irrelevant or inconsistent, his
result now extends as follows.
Theorem 1. Given an abduction problem  = (, O),
let  = TA( ∪ {¬O}) and let T = (V ,E,L) be a
pruned HS-tree for a collection of sets {¬M ∣ M ∈
}. Then {H(n) ∣ n ∈ V , L(n) = {}, and n is not
pruned} = AnR

CER,sub
n ().

Proof. Let us remind, that all the pruning conditions
proposed by Reiter except the last one are included
in our pruning. The Reiter’s last condition to prune
deals with two nodes n1 and n2 labelled as follows
L(n1) = S1 ∈  and L(n2) = S2 ∈ , while
S1 ⊊ S2. This situation never appears in our approach,as our collection contains only sets containing each
atomic ABox assertion from  either in positive way
or its complement, and thus for no S1, S2 ∈  it can
hold that S1 ⊊ S2. Since this condition never applies,
and the other Reiter’s conditions are included in our
approach, only minimal hitting sets are found.
The additional conditions (c) and (d) only filter from

these all minimal hitting sets such sets, that are irrel-
evant and inconsistent. In addition, also supersets of
such previously pruned sets are filtered out, as part of
condition (a). That is, in our HS-tree, all minimal hit-

ting sets corresponding to the relevant and consistent
explanations are found.

Recall also that, an explanation  for  = (, O) is
explanatory if and only if  ̸⊧ O, i.e.  ∪ {¬O} has
at least one model. Hence, if there is a HS-tree with a
non-empty collection of minimal hitting sets, then all
these minimal hitting sets must correspond to explana-
tory explanations.

We first introduce an abduction algorithm that han-
dles a special case with just one observation, i.e., the
Single Observation Algorithm (SOA). It is listed in Al-
gorithm 1. It takes five inputs. A DL knowledge base
, a single observation O in form of any ABox asser-
tion (concept or role), and an upper bound l ≥ 1 on the
maximal explanation length, are the first three. The last
two inputs are auxiliary and they are utilized in the case
when SOA is reused to compute multiple observations.
 is the overall set of observations, and s0 is an auxil-
iary individual that is to be ignored in the explanations.
For now let us assume that  = {O} and s0 does notappear in  and O.

The algorithm first checks if ′ =  ∪ {¬O} has
at least one modelM (calling TA), because otherwise
there is nothing to explain and the algorithm immedi-
ately terminates (lines 1–5).

In lines 7–10 the root of the HS-tree is initialized
and labelled byM , together with its successors for each
� ∈M .
The algorithm then traverses all nodes n by breadth-

first search and recursively extends the HS-tree while
applying both the model-reuse and the pruning opti-
mization techniques. First, pruning conditions (a), (b),
(c), and (by checking for a clash inH(n)) partially also
(d) are tested (lines 14–17). We can afford this as these
are computationally cheap operations.

Testing full condition (d) is postponed, as it involves
an expensive TA call for  ∪H(n). Before we do this,
we check if a model for′∪H(n) is found among those
stored for reuse (line 19; note that this rules out pruning
condition (d)).

If no model can be reused we call TA for′ ∪H(n)
(line 21) to obtain a new modelM . If there is one, n is
labelled by ¬M and its successors are added to the HS-
tree. Otherwise we have found an explanation H(n).
Thanks to the pruning applied so far, this explanation is
minimal, explanatory and relevant, but consistence has
to be still checked. IfH(n) is not consistent, the node is
pruned (pruning condition (d), line 28), otherwise the
explanation is stored.
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Algorithm 1 SOA(,O,l,,s0)
Require: knowledge base , observation O, max explana-

tion length l, set of observations , individual s0
Ensure: set  of all  ∈ AnRCER,subn () s.t. || ≤ l
1: ′ ←  ∪ {¬O}
2: M ← TA(′)
3: if M = {} then
4: return "nothing to explain"
5: end if
6: M ←M ⧵ {' ∣ ' ∈M and s0 occurs in '}
7: MS ← {M} ⊳ storeM for reuse
8: create new HS-tree T = (V ,E,L) with root r
9: L(r) ← ¬M
10: for each � ∈ ¬M create a successor n� of rand label the resp. edge by �
11:  ← {}
12: n← next node w.r.t. r in T by breadth-first search
13: while n ≠ null and |H(n)| ≤ l do
14: if clash inH(n)

or (n′ ∈ V andH(n′) ⊆ H(n) and L(n′) = {})
orH(n) ∪ {¬Oi} is incons. for some Oi ∈ 

then
15: M ← {} ⊳ pruning (a) or (c)
16: else if n′ ∈ V andH(n) = H(n′) and L(n′) ≠ null
17: thenM ← × ⊳ pruning (b)
18: else if N ∈MS andH(n) ⊆ N then
19: M ← N ⊳ reuse model
20: else
21: M ← TA(′ ∪H(n))
22: M ←M ⧵ {' ∣ ' ∈M and s0 occurs in '}
23: if M ≠ {} then
24: MS ←MS ∪ {M} ⊳ storeM for reuse
25: else if  ∪H(n) is consistent then
26:  ←  ∪ {H(n)} ⊳ store explanation
27: else
28: M ← {} ⊳ pruning (d)
29: end if
30: end if
31: L(n)← ¬M
32: for each � ∈ ¬M create a successor n� of nand label the resp. edge by �
33: n← next node in T w.r.t. n by breadth-first search
34: end while
35: return 

Once the breadth-first search is over, the stored ex-
planations are returned on the output.
We will now show that the SOA algorithm is correct

w.r.t. the single-observation abduction problem.
Lemma 1 (Soundness). Let  = (, O) be a single-
observation abduction problem, and let l ≥ 1. Let 
∶= SOA(, O, l, {O}, s0). Then  ⊆ AnR

CER,sub
n ().

Proof. If SOA returned "nothing to explain",
it must have terminated in line 4, and this was because
 ∪ {¬O} was inconsistent, which is the same as  ⊧
O, and in such a case there are no explanations.

In the other case SOA returned a set  . Let  ∈
 . In such a case  = H(n) for some node n and it
was added to  in line 26. However in this case we
have also called TA for  ∪ {¬O} ∪  in line 21 and
it returned no model (as tested in line 23). Hence  ∪
 ⊧ O, i.e.,  is an explanation of  .  is relevant
and consistent, as we have tested in lines 14 and 25,
respectively. It is also explanatory because if not the
algorithm returned "nothing to explain" and
terminated already in line 4 as described above.

As we already argued, the algorithm constructs the
pruned-HS tree correctly according to Definition 10, as
it always extends each node n with successors corre-
sponding to all � ∈ L(n) if they are not pruned, and it
prunes all nodes according to Definition 9. The mini-
mality of  then follows from the fact that we only add
such  = H(n) into  in line 26 which correspond
to paths from root to a leaf which are not pruned, and
according to Theorem 1 in a pruned HS-tree all such
paths correspond to minimal hitting sets.
Lemma 2 (Completeness). Let  = (, O) be a
single-observation abduction problem, and let l ≥ 1.
Let  ∈ AnR

CER,sub
n () and let || ≤ l. Let  ∶=

SOA(, O, l, {O}, s0). Then  ∈  .

Proof. Let  ∶= SOA(, O, l, {O}, s0) and let  be
a consistent, relevant, explanatory, and minimal expla-
nation of  .

We will prove by induction on the depth k, that there
is some node n with |H(n)| = k s.t. H(n) ⊆  , that is
not pruned.

The base case: let k = 1. As  is explanatory,  ∪
{¬O} has at least one modelM . Hence the HS-tree T
constructed by SOA has at last one node r, labelled by
¬M in line 9. Note that we use the ABox encoding of
M , and hence ' ∈ ¬M or ¬' ∈ ¬M for every atomic
ABox assertion '.
It is clear that  ∪M ∪ {¬O} is consistent and so

 ⊈ M , i.e. there is an ABox assertion �1 ∈  s.t.
�1 ∉M . Hence ¬�1 ∈M , and so �1 ∈ ¬M , and also
L(r, n�1 ) = �1 for some successor n�1 of r, in line 10.
The induction step. Let us assume that SOA ex-

tended T until there is a node n�k s.t.H(n�k ) ⊆  and
|H(n�k )| = k. Wewill show that (∗) eitherH(n�k ) = 
or there is some �k+1 ∈  ⧵H(n�k )which will become
the label of some new edge leading from n�k .
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Observe that none of the pruning conditions in
line 14 applies on n�k , as  is consistent, and hence
H(n�k ) does not contain a clash; there is no H(n) ⊊
H(n�k ) s.t. L(n) = {}, because  is minimal, and
H(n�k ) ∪ {¬O} is consistent because  is relevant.
Also, if there is some other node n in T such that
H(n) = H(n�k ) we can assume w.l.o.g. that n�k is theone which is visited first and hence it is not pruned in
line 17.
Next we distinguish two cases. In the first case  ∪

H(n�k ) ∪ {¬O} is inconsistent, and so H(n�k ) =  .
As  is a consistent explanation,  ∪ H(n�k ) is alsoconsistent and therefore SOA adds H(n�k ) =  into
 in line 26. In the second case  ∪H(n�k ) ∪ {¬O}is consistent, i.e. it has a model Mk, either reused in
line 19 or found by a TA call in line 21, and L(n�k ) isset to ¬Mk in line 31. It is clear thatH(n�k ) ⊆ Mk andthat  ∪Mk ∪ {¬O} is consistent and so  ⊈ Mk, i.e.there is �k+1 ∈  ⧵ H(n�k ) s.t. �k+1 ∉ Mk, and so
�k+1 ∈ ¬Mk. Therefore SOA consequently creates a
node n�k+1 with L(n�k , n�k+1 ) = �k+1.We have proved (∗) for any k. By induction SOA
will eventually create a node n�m s.t. H(n�m ) =  and
L(n�m ) = {}. Thus SOA finally addsH(n�m ) =  into
 . Also, as we construct the HS-tree breadth-first andsince || = |H(n�m )| ≤ l, the while loop in line 13
surely does not terminate before the node n�m is visited
and fully processed.

Summing up, the algorithm is correct as it finds ex-
actly all desired explanations up to the given length l.
It also terminates, as the HS-tree construction is depth-
bound and there are only finitely many ABox asser-
tions that may serve as labels of successor edges start-
ing from any node of the tree.
Theorem 2. Let  = (, O) be a single-observation
abduction problem, and l ≥ 1. Then SOA(, O, l, {O},
s0) always terminates, and it is sound and complete
w.r.t. all  ∈ AnR

CER,sub
n () s.t. || ≤ l.

In addition, if we remove the depth limitation (i.e.,
we set l to ∞), the algorithm still terminates as the
depth of the HS-tree is also bound by the number of
possible ABox assertions. In such a case the algorithm
finds all explanations of the input abduction problem.
Corollary 1. Let  = (, O) be a single-observation
abduction problem. Then SOA(, O,∞, {O}, s0) al-
ways terminates, and it is sound and complete w.r.t.
AnR

CER,sub
n ().

Computationally, the hitting set problem is NP-
complete [21]. The MHS algorithm constructs the HS-
tree in exponential time, more precisely O(bd) where b
is the branching factor bound (i.e., the number of sets
in ) and d is maximum depth of the HS-tree (i.e.,
the number of elements in ⋃

). This brings us the
following result.
Theorem 3. The worst-case time complexity of SOA
is O(nl) ⋅ X when the observations are bound by the
maximal length l andO(nn) ⋅X in the unbounded case,
where n = b ⋅ a+ c ⋅ a2, a = |NI|, b = |NC|, c = |NR|,
andX is the worst-case time complexity of the reasoner
called as a black box.

Note that in this estimate we again assume the fi-
nite vocabulary respective to the finite knowledge base
′ =  ∪ . We can also relate this complexity to the
size of the input ′ that we will denote m. As in the
worst case n is at most polynomial with respect to m,
we obtain that the worst-case time complexity of SOA
is O(2poly(m)) ⋅X. Hence, assuming that we will use an
optimal solver for a given DL we obtain the following
corollary.
Corollary 2. The SOA algorithm is in ExpTime for
all DLs up to , , and . It is in
NExpTime for , and it is in N2ExpTime for
.

5. Explaining multiple observations

We will extend the SOA algorithm to handle mul-
tiple observations. The resulting algorithm is called
ABox Abduction Algorithm (AAA). In fact, we ex-
plore two versions of AAA. One is based on reducing
the set of observations to a single observation (AAAR),the other is based on splitting the multiple-observation
problem into separate single-observation subproblems
(AAAS).

5.1. Reduction

An observation consisting of multiple concept asser-
tions involving the same individual, say  = {C1(a),
… , Cn(a)}, can be easily reduced to an equivalent sin-gle observation O′ = C1 ⊓⋯ ⊓ Cn(a). Cases involv-ing multiple individuals or even role assertions are less
straightforward, however in DLs featuring nominals,
they may be encoded as follows.
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Lemma 3 (Reduction). Let  = (,) be a multiple-
observation abduction problem with  = {C1(a1),… ,
Cn(an), R1(b1, c1),… , Rm(bm, cm), ¬Q1(d1, e1), … ,
¬Ql(dl, el)}. Let  ⊆ {A(a), ¬A(a), R(a, b),¬R(a, b) ∣
A ∈ NC, R ∈ NR, a, b ∈ NI}. Let  ′ = (, O′)
be a single-observation ABox abduction problem with
O′ = X(s0), s.t. s0 is new w.r.t. , , and  , and

X = (¬{a1} ⊔ C1) ⊓⋯ ⊓ (¬{an} ⊔ Cn)
⊓ (¬{b1} ⊔ ∃R1.{c1}) ⊓⋯ ⊓ (¬{bm} ⊔ ∃Rm.{cm})
⊓ (¬{d1} ⊔ ∀Q1.¬{e1}) ⊓⋯ ⊓ (¬{dl} ⊔ ∀Ql.¬{el}) .

Then  is an explanation of  if and only if it is an
explanation of  ′.

Proof. Only-if part. By contradiction, assume that  is
an explanation of  , but not of  ′. Then  ∪  ̸⊧ O′,
hence  ∪  ∪ {¬X(s0)} has a model . Note that
¬X = ({a1} ⊓ ¬C1) ⊔⋯ ⊔ ({an} ⊓ ¬Cn)

⊔ ({b1} ⊓ ∀R1.¬{c1}) ⊔⋯ ⊔ ({bm} ⊓ ∀Rm.¬{cm})
⊔ ({d1} ⊓ ∃Q1.{e1}) ⊔⋯ ⊔ ({dm} ⊓ ∃Ql.{el}) .

This means that s0 either belongs to {ai} ⊓ ¬C
i for

some i ∈ [1..n] and hence also ai ∈ ¬C
i and thus

a ∉ C
i ; or s0 belongs to {bj}⊓∀Rj .¬{cj} for some

j ∈ [1..m] and hence also bj ∈ ∀Rj .¬{cj} and thus
(bj , c


j ) ∉ R


j ; or s0 belongs to {dk} ⊓ ∃Qk.{ek} for

some k ∈ [1..l] and hence also dk ∈ ∃Qk.{ek} and
thus (dk , ek ) ∈ Q

k . In the first casewe have ̸⊧ Ci(ai);in the second case we have  ̸⊧ Rj(bj , cj); and in the
third case we have  ̸⊧ ¬Qk(dk, ek). Either case con-
tradicts  being an explanation of  .
If part. By contradiction, assume that  is an expla-

nation of  ′, but not of  . Then either  ∪  ̸⊧ Ci(ai)for some i ∈ [1..n], or  ∪  ̸⊧ Rj(bj , cj) for some
j ∈ [1..m], or∪ ̸⊧ ¬Qk(dk, ek) for some k ∈ [1..l].

In the first case,  ∪  ∪ {¬Ci(ai)} has a model .
Let ′ be  extended with s0 = ai . Now, ′ is a model
of  ∪  ∪ {{ai} ⊓ ¬Ci(s0)} and thus also of  ∪  ∪
{¬X(s0)}. Thus  ∪  ̸⊧ X(s0), that is,  ∪  ̸⊧ O′
which is a contradiction.
In the second case,∪∪{¬Rj(bj , cj)} has a model

. Let ′ be  extended with s0 = bj . Now, ′ is amodel of∪ ∪{{bj}⊓∀Rj .¬{cj}(s0)} and thus alsoof  ∪  ∪ {¬X(s0)}. Thus again  ∪  ̸⊧ X(s0), thatis,  ∪  ̸⊧ O′ which is a contradiction.
In the third case,  ∪  ∪ {Qk(dk, ek)} has a model

. Let ′ be  extended with s0 = dk . Now, ′ is amodel of∪ ∪{{dk}⊓∃Qk.{ek}(s0)} and thus also

of  ∪  ∪ {¬X(s0)}. Thus again  ∪  ̸⊧ X(s0), thatis,  ∪  ̸⊧ O′ which is a contradiction.
Notice that the lemma rules out explanations involv-

ing the individual s0 introduced during the reduction. Ifthis is not the case  ′ may indeed have more explana-
tions than , as shown by the following example. These
unwanted explanations need to be filtered out.
Example 1. Let  = {A ⊑ B,C ⊑ D}, and  =
{B(a), D(b)}. The only explanation of  = (,)
is 1 = {A(a), C(b)}. Using the reduction we obtain
 ′ = (, O′) with O′ = (¬{a} ⊔ B) ⊓ (¬{b} ⊔ D)(s0).However, besides for 1 which is an explanation of  ′
courtesy of Lemma 3, in addition 2 = {A(s0), C(s0)},
3 = {A(a), C(s0)}, and 4 = {A(s0), C(b)} are expla-nations of  ′.
The AAAR algorithm is listed in Algorithm 2. It

takes a knowledge base , a set of observations  and
a length upper bound l ≥ 1 as inputs. It reduces the set
 to a single observationO′ according to Lemma 3 and
passes the reduced single-observation abduction prob-
lem to SOA.
Algorithm 2 AAAR (,,l): AAA based on Reduc-
tion
Require: knowledge base , set of observations

 = {C1(a1),… , Cn(an), R1(b1, c1),… , Rm(bm, cm),
¬Q1(d1, e1),… ,¬Ql(dl, el)}, max length of an explana-
tion l

Ensure: set  of all  ∈ AnRCER,subn () s.t. || ≤ l
1: s0 ← new individual w.r.t.  and 
2: X ← (¬{a1} ⊔ C1) ⊓⋯ ⊓ (¬{an} ⊔ Cn)

⊓ (¬{b1} ⊔ ∃R1.{c1}) ⊓⋯ ⊓ (¬{bm} ⊔ ∃Rm.{cm})
⊓ (¬{d1}⊔ ∀Q1.¬{e1})⊓⋯⊓ (¬{dl}⊔ ∀Ql.¬{el})

3: O′ ← X(s0)
4:  ← SOA(, O′, l,, s0)
5: return 

AAAR makes use of the auxiliary parameters of
SOA. Instead of filtering the unwanted explanation in-
volving the auxiliary individual s0 ex post, it does so inmuch more optimal fashion, by passing s0 to SOA as
the fifth parameter. SOA then excludes the assertions
involving s0 already from the models returned by TA,
and hence reducing the HS-tree that needs to be con-
structed.

Since for multiple-observation abduction the rele-
vance needs to be checkedw.r.t. all observations AAARalso passes the original set of observations  to SOA
as the fourth parameter.
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Theorem 4. Let = (,) be a multiple-observation
abduction problem, and let l ≥ 1. Then AAAR (,, l)
always terminates, and it is sound and complete w.r.t.
all  ⊆ AnR

CER,sub
n () s.t. || ≤ l.

The theorem is a direct consequence of Lemma 3
and the construction of Algorithm 2 which calls SOA
with an observation reduced into a single assertion, and
features only minor modifications whose only effect is
filtering out assertions involving the individual s0 fromthe candidate explanations.

Observing that SOA handles the auxiliary parame-
ters correctly, the correctness of AAAR is then conse-
quence of the correctness of SOA.
Corollary 3. Given a multiple-observation abduction
problem  = (,), AAAR (,,∞) always termi-
nates, and it is sound and complete w.r.t.AnR

CER,sub
n ().

5.2. Splitting into subproblems

Instead of reducing a multiple-observation abduc-
tion problem  = (,) to one with a single observa-
tion, we will now show how to solve it by splitting 
into n subproblems i = (i, Oi), answering each iseparately using SOA, and then combining the results.
If there is no bound on length, it is quite easy to com-

bine the subproblems: we simply combine the results
in terms of union with some additional filtering. But
the partial explanations may overlap or even repeat. If
a length bound l is given, we need to run SOA up to
l for each subproblem, and only then combine the re-
sults. Only this assures all explanations up to the length
l for (plus possibly somewhich are longer). This may
seem as unnecessary overhead compared to AAAR but
as we show below, sometimes it may be useful.
This AAAS algorithm is listed in Algorithm 3.

It receives a knowledge base , observations  =
{O1,… , On}, and a length upper bound l ≥ 1 as inputs.The algorithm starts by initializing an empty collec-
tion Σ which will be used to accumulate the partial re-
sults returned by SOA and a dummy new individual s0(lines 1–2).

We cannot just directly use  in each subproblem
i, as we may miss explanations involving individuals
from other observations. Hence′ is used, obtained by
adding ⊤(a) into  for all such individuals a (line 3).

The algorithm then loops through Oi ∈  (lines 4–
11) and calls SOA for ′, Oi and l. We also pass all
observations as the fourth parameter due to relevance
checks and the dummy s0. If one of the observations
cannot be explained (SOA returned {}) then neither the

Algorithm 3 AAAS (,,l): AAA with Splitting
Require: knowledge base, set of observations, max ex-

planation length l
Ensure: set  of all  ∈ AnRCER,subn () s.t. || ≤ l
1: s0 ← new individual w.r.t.  and  ⊳ auxiliary
2: Σ ← {} ⊳ collection of partial results
3: ′ ←  ∪ {⊤(a) ∣ a occurs in Oi, Oi ∈ }
4: for all Oi ∈  do
5: i ← SOA(′, Oi, l,, s0) ⊳ store partial result
6: if i = {} then7: return {} ⊳  has no explanation
8: else if i ≠ "nothing to explain" then
9: Σ ← Σ ∪ {i} ⊳ store partial result
10: end if
11: end for
12: if Σ = {} then
13: return "nothing to explain"
14: else
15:  ← {1 ∪⋯ ∪ m ∣ i ∈ i ,i ∈ Σ, m = |Σ|}
16:  ← { ∈  ∣  is minimal, consistent, and

relevant}
17: end if
18: return 

whole set  can be explained: the algorithm returns {}
and terminates (line 7).

Observe that  and  ⧵ {Oi ∈  ∣  ⊧ Oi} have thesame set of explanations. Therefore if SOA returned
"nothing to explain" for some Oi the result issimply excluded from Σ. If this happens for allOi ∈ ,
the overall results is "nothing to explain".

If Σ is non-empty the explanations of  are com-
puted as unions of the partial explanations 1∪⋯∪m,combining all possible i from each i ∈ Σ with the
others (line 15). While SOA already did some filtering
of the partial results, supersets, irrelevance, and incon-
sistence may have been introduced by unifying them,
hence they are filtered out (line 16).

We will now show that also AAAS is correct.
Lemma 4 (Soundness). Let  = (,) be a multiple-
observation abduction problem, and let l ≥ 1. Let 
∶= AAAS (,, l). Then  ⊆ AnR

CER,sub
n ().

Proof. If AAAS returned"nothing to explain",
Σwas empty in line 12. This can only be the case when
SOA returned "nothing to explain" for each
Oi (line 8). This means that ⊧ Oi for each Oi, and so
 ⊧ .

In the other case the algorithm returned a set  . Let
 ∈  . From lines 15–16 it is apparent that  = 1 ∪
… ∪ m where i ∈ i and each i ∈ Σ is the set of
minimal explanations forOi returned by SOA in line 5.
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From Lemma 1,  ∪ i ⊧ Oi for all i ∈ i . Ob-serve, that Σ collects i for all those Oi, for which
 ̸⊧ Oi (lines 8–9), hence  ∪  ⊧ , i.e.  explains
 = (,). Moreover, subset minimality, consistency,
and relevance of each  ∈  is consecutively verified
in line 16.  is also explanatory, as otherwise  ⊧ ,
i.e. ⊧ Oi for all i, and thus Σ = {} and the algorithmwould already terminate in line 13.
Lemma 5 (Completeness). Let  = (,) be a
multiple-observation abduction problem, l ≥ 1. Let
 ∈ AnR

CER,sub
n () and let || ≤ l. Let  ∶= AAAS

(,, l). Then  ∈  .

Proof. As∪ ⊧  = {O1,… , On}, then also∪ ⊧
Oi and hence  explains each i = (, Oi). Let i bethe smallest subset of  that explains i. For some i,
i may equal to {} but only if  ⊧ Oi. Hereafter wedisregard all such i.

Surely there is at least one i ≠ {} as otherwise
 ⊧  which is not the case. If i ≠ {} then i is aminimal explanation of i, otherwise it would not be
the smallest subset of  that explains i. It is triviallyexplanatory, and it is also consistent and relevant w.r.t.
i (because whole  is). Also trivially |i| ≤ l due to
i ⊆  . In addition  = 1∪⋯∪n because 1∪⋯∪nexplains allO1,… , On hence otherwise  would not be
minimal.
Now, the algorithm called SOA and obtained the set

of explanations i for each i. From Lemma 2 we
have that i contains all minimal, consistent, relevant,
and explanatory explanations of i up to the length l.
We have showed above that  = 1 ∪⋯ ∪ n where
i is minimal, consistent, relevant, and explanatory ex-
planation for i with |i| ≤ l. Hence for all i we have
i ∈ i , and hence in line 15  was surely added into
 . But since  is minimal, consistent, relevant, and
explanatory, it was also added to  in line 16.

We have proved that SOA terminates, hence appar-
ently AAAS does too. Putting this and the two lemmata
above together we obtain the following correctness re-
sults for the bounded and for the unbounded case.
Theorem 5. Let = (,) be a multiple-observation
abduction problem, and let l ≥ 1. Then AAAS (,, l)
always terminates, and it is sound and complete w.r.t.
all  ∈ AnR

CER,sub
n () s.t. || ≤ l.

Corollary 4. Given a multiple-observation abduction
problem  = (,), AAAS (,,∞) always termi-
nates, and it is sound and complete w.r.t.AnR

CER,sub
n ().

5.3. Complexity in case of multiple-observations

The reduction employed by AAAR is polynomial (in
fact, linear). Similarly in case of AAAS we call the al-
gorithm on slightly smaller input multiple times, how-
ever this factor is diminutive compared to the size of
the knowledge base hence the complexity results estab-
lished for SOA directly propagate to AAA in case of
both approaches.

However, an important difference between the ap-
proaches is that compared to AAAR, AAAS searches
to a larger search space in order to be complete with
respect to all explanations up to the maximum length
bound. This is an interesting issue and we will focus on
this also in our empirical evaluation in Section 7.3.

6. Implementation

Our algorithm is implemented in Java. Knowledge
base consistency is verified using the Pellet reasoner
[30] (version 2.3.1). The algorithm is integrated with
Pellet at the source-code level. After the knowledge
base  is initialized and a successful consistency
check is performed, the ABox corresponding to the
model of is obtained using thegetABox()method.
ABox encoding of the model is extracted by methods
getTypes() and getOutEdges().
All other features, including the HS-tree construc-

tion and explanation extraction and filtering are exe-
cuted by our own implementation. All optimizations
presented in this paper such as HS-tree pruning and
model reuse are implemented. Both AAAR and AAASversions are implemented and can be switched via in-
put parameter.

It is often meaningful to forbid loops (i.e., assertions
of the formR(a, a)) in explanations, which may signif-
icantly reduce the search space. The algorithm allows
to control this by an additional input parameter.

The implementation is available at: http://dai.fmph.
uniba.sk/~pukancova/aaa/ .

7. Evaluation

The goals of the evaluation was to compare the
performance of the algorithm on different ontolo-
gies, to compare the computation times for different
length bounds, and to compare the two versions of the
multiple-observation algorithm.

http://dai.fmph.uniba.sk/~pukancova/aaa/
http://dai.fmph.uniba.sk/~pukancova/aaa/
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7.1. Dataset and methodology

We have chosen three ontologies for the evaluation:
Family ontology1, Coffee ontology byCarlosMendes2,
and LUBM [Lehigh University Benchmark, 13]. The
parameters of the ontologies are stated in Table 2. Cof-
fee ontology is the biggest in the number of axioms.
It has approximately the same number of concepts as
LUBM.On the other hand, LUBMcontains more roles,
but the number of axioms is much lower. Family ontol-
ogy serves to compare these bigger ontologies with an
ontology containing a smaller number of axioms, con-
cepts, and roles.

Table 2
Parameters of the ontologies

Ontology Concepts Roles Individuals Axioms
Family 8 1 2 24
Coffee 41 6 2 291
LUBM 43 25 1 46

On each input we ran AAA iteratively, rising maxi-
mal explanation length (i.e. the maximal depth of the
HS-tree). The following properties were recorded from
each run: time of execution, number of explanations,
number of the nodes in the HS-tree, number of TA
calls, number of reused models, number of pruned
nodes.
The evaluation is split into two experiments: the first

one for single observations, the second for multiple
observations. Apart from exceptional cases all experi-
ments were repeated 10 times on the same input and the
results were averaged. The single observation experi-
ment was executed up to the depth 5, whilst themultiple
observation experiment was executed up to the depth
3.
All experiments were executed both without loops

and with loops, for the lack of space we report only
the former in this paper. On average, the experiments
with loops took 243.24 %more time and found 26.99 %
more explanations.
All experiments were done on a 6-core 3.2 GHz

AMD Phenom™ II X6 1090T Processor, 8 GB RAM,
running Ubuntu 17.10, Linux 4.13.0, while the maxi-
mum Java heap size was set to 4GB. We have used the
GNU time utility to measure the CPU time consumed

1Our own small ontology of family relations: http://dai.fmph.
uniba.sk/~pukancova/aaa/ont/

2Publicly available on Github: https://gist.githubcom/cmendesce/
56e1e16aee5a556a186f512eda8dabf3

1 2 3 4 5
100

101

102

103

104

105

106

tim
e[

s]

LUBM
Coffee
Family

Fig. 1. Depth vs. time for single observation

by AAA while running in user mode, summed over all
threads.
7.2. Single observation experiment

In this experiment we ran AAA on each ontol-
ogy with a single observation: Mother(jane) for Fam-
ily ontology, Macchiato(a) for Coffee ontology, and
Person(jack) for LUBM. Each run was repeated 10
times. Average execution times w.r.t. a given max HS-
tree depth are plotted (in logarithmic scale) in Figure 1.
The average deviation among the runs was 2.1 %.

Table 3 shows the average number of nodes in the
HS-tree and the number of explanations that were
found, after the HS-tree was fully traversed up to a
given depth. (Note that the data are accumulative.) In
Figure 2 we further analyse the generated nodes in
each depth: the proportion of nodes for which TA was
called, for which a model was reused, and those that
were pruned is plotted here.

Note that, the sum of these nodes (i.e., 100 % in each
column) amounts to the total number of nodes con-
structed by AAA in the given depth – i.e. the number of
nodes from Table 3. These are not all nodes that would
be generated if no pruning was applied at all.

We observe a significant growth of time with the
growth of the depth of the HS-tree (i.e. the maximal
length of explanations). This growth is much less steep
in the case of the simpler Family ontology, while it is
exponential with Coffee ontology and even steeper in
case of LUBM. This supports the importance of the ex-
planation length restriction. Notably, the search up to
the length of 1 or 2 takes a fraction of the time required
for greater lengths, and at least in our limited experi-
ments it returned quite high number of explanations in
a number of cases.

http://dai.fmph.uniba.sk/~pukancova/aaa/ont/
http://dai.fmph.uniba.sk/~pukancova/aaa/ont/
https://gist.github com/cmendesce/56e1e16aee5a556a186f512eda8dabf3
https://gist.github com/cmendesce/56e1e16aee5a556a186f512eda8dabf3
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Fig. 2. Proportion of pruned nodes, reused models and TA calls for single observation

Table 3
Parameters of HS-trees for single observation

Family Coffee LUBM
Depth Nodes Expl. Nodes Expl. Nodes Expl.

1 9.0 1 42.0 2 44.0 20
2 57.0 4 1600.0 2 990.0 20
3 137.0 4 7627.0 2 10923.0 20
4 177.0 4 30997.0 2 84018.7 20
5 193.0 4 108519.8 2 518596.0 20

In Figure 2 we may observe that the proportion
of the pruned nodes tends to rise with the increasing
depth of the HS-tree. On the other hand, not so for the
proportion of the reused models, which has an indif-
ferent or even a falling trend (Family ontology). The
sum of these however has an increasing trend. This re-
sult varies greatly depending on the ontology. In case
of Coffee ontology it is less apparent, while in case
of LUBM it is very significant. All in all, we con-
sider the decreasing proportion of the TA calls to be a
very positive result. For more expressive DLs TA is a
very expensive procedure; with (potentially) exponen-
tial growth of the HS-tree, it is very important to min-
imize the number of TA calls as much as possible.
7.3. Multiple observation experiment

In the multiple observation experiment the algo-
rithm was executed with the following observation

sets: {Father(jack),Mother(eva), Person(fred)} for the
Family ontology, {Milk(a),Coffee(b), Pure(c)} for the
Coffee ontology, and {Person(jack),Employee(jack),
Publication(a)} for LUBM. The aim was also to com-
pare the reduction (R) and the splitting (S) approach
therefore all experiments were run with either option.

Whilst the single observation experiment was pro-
cessed up to the depth 5, the multiple observation ex-
periment was processed only up to the depth 3, as even
in this depth the algorithm ran out of memory in half
of the cases. The reason for this is that the observations
now contain multiple individuals which increases the
search space. Most runs were repeated 10 times, with
four exceptions: LUBM (R and S), depth 3 and Cof-
fee (R), depth 3 as these runs ran out of memory; and
Coffee (S) as the execution time was too high.

Analogous data were collected during this experi-
ment, and they are shown in Table 4 and Figures 3, 4.
The out-of-memory cases are missing (except for time,
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Fig. 3. Depth vs. time for multiple observations

where the value corresponds to the timewhen themem-
ory was exceeded). The average deviation in time be-
tween runs was 2.66 % for the splitting approach and
1.6 % for the reduction approach.
Most of the conclusions from the single-observation

case were basically confirmed. Consequently we fo-
cused on the comparison between the two approaches.
The time is always higher for the splitting approach
than for the reduction approach (ignoring the out-of-
memory cases). Indeed this is because in the splitting
approach the length limit is applied to each subproblem
separately. Thus, also some explanations longer than
the limit are computed (as unions of the separate results
obtained for each subproblem).
From one point of view, the reduction approach is

more efficient, as for a length limit l it always assures
all the explanations up to l, and in our experiments it
always reached lower time than the splitting approach
for the same limit l.

On the other hand, we observed that the splitting
approach may often find higher numbers of explana-
tions much more quickly. This is apparent e.g. from Ta-
ble 4 (Family ontology). The reduction found all 9 ex-
planations up to length 3 after 3.9 hours. The splitting
found 7 of these in 93 seconds (after depth 1) and it
already found 144 explanations in 25.8 minutes (after
depth 2). In fact, it took slightly longer to run it to depth
3 (4.7 hours) but during this time it found the 9 ex-
planations up to the length 3 together with additional
804 longer explanations. Though we cannot character-
ize this additional explanations in any way (apart from
being sound), this approach may be suitable for some
applications, where completeness is not a high priority,
and the main goal is to compute as much explanations
as possible.

8. Related work

The work of Halland and Britz [15, 16] is most di-
rectly related to ours. However, Halland and Britz stay
on the theoretical level, and they also compute all DL
models in a preprocessing step, which is much less effi-
cient. Similarly to other earlier works on ABox abduc-
tion [22, 23] the DL expressivity is limited (from
to). Full soundness and completeness was only
achieved by Klarman et al. [22].

Du et al. [8] provide an implementation and an inter-
esting evaluation, however due to translation into Pro-
log the work is only complete up to a Horn fragment of
.
The approach of Del-Pinto and Schmidt [6], based

on forgetting, is sound and complete, and includes
an implementation, but the expressivity is limited to
.
In comparison, we present an approach which has

no upper limit on expressivity (any reasoner can be
plugged-in as a black box), adds the length limitation,
it is sound and complete (up to any length), and it is
implemented.

An ABox abduction service is part of RacerPro [14].
It is based on backward chaining of DL-safe rules
[3, 11]. To our best knowledge, soundness and com-
pleteness results were not published in the literature.

A closely related is the more general problem of
query abduction [2]. This generality comes at some
cost, as noted e.g. by Du et al. [7] who provide a
query-based abduction algorithm for a restricted class
of TBoxes called first-order rewritable. Our approach
is able to answer more specific abduction problems but
with no limits on the knowledge base expressivity.

9. Conclusions

We have described ABox abduction algorithm based
on MHS [28]. We have implemented this algorithm
into the AAA solver which is publicly available.

Our algorithm handles multiple observations in form
of any ABox assertion, and supports the class of expla-
nations including atomic and negated atomic concept
and role assertions. The algorithm aims at expressive
DLs, it plugs in a DL reasoner as a black box, hence the
DL expressivity is only limited by the used reasoner.
Our implementation is based on Pellet [30], thus the
expressivity ranges up to .

The algorithm always searches for the explanations
starting from the shorter and it iteratively explores
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Fig. 4. Proportion of pruned nodes, reused models and TA calls for multiple observations
Table 4

Parameters of HS-trees for multiple observations
Family Coffee LUBM

App. Depth Nodes Expl. Nodes Expl. Nodes Expl.

S
1 93.0 7 480.0 12 411.0 320
2 1545.0 144 41303.0 12 39756.3 320
3 17072.6 813 2052996.0 12 – –

R
1 31.0 0 160.0 0 137.0 0
2 931.0 0 25441.0 0 18633.0 320
3 13951.0 9 – – – –
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longer and longer explanation candidates. It is possible
to limit this search by a maximal length l.
We have formally proven soundness and complete-

ness of the algorithm.We have provided an exponential
upper bound for the algorithm (disregarding the com-
plexity of the DL reasoner called as a black box). This
reflects the overall hardness of the minimal hitting set
problem which is NP-complete [21]. Combining this
with the complexity of reasoning for expressive DLs
we obtain that for those DLs whose complexity is Exp-
Time the combined complexity is still in ExpTime, and
for more complex DLs such as  and 
the combined complexity is inherited from the DL rea-
soner.
Searching for explanations in such a general setting,

without any further restrictions is indeed computation-
ally very expensive. However, the user may not be able
to provide additional restrictions (i.e., abducibles [4]),
hence the general case is also interesting.
In line with this observation, in our empirical eval-

uation we have focused especially on the cases with
limitedmaximal length of explanations. Our evaluation
shows that computing all explanations up to a few lower
lengths is feasible. In fact, these explanations are the
most preferred. We have also showed the implemented
optimization techniques to be effective in reducing the
search space, which we were able to study on different
ontologies.
We have also empirically compared the two differ-

ent versions of the multiple observation algorithm, ob-
serving that the reduction-based approach is more ef-
fective when the task is to find all explanations up to
certain maximum length, while the splitting-based ap-
proach may be more preferred in cases when complete-
ness is not of utter importance.
The AAA solver is subject to our ongoing work. In

future we would like to extend our algorithm and the
implementation. We would like to explore possible im-
provements in the MHS algorithm [e.g., 12, 32] to fur-
ther boost the performance. We would also like to in-
troduce the option to define abducibles, and we would
like to plug in and compare different reasoners. Partic-
ularly the latter two extensions would also enable us to
conduct a more detailed and interesting evaluation.
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