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Abstract. Link prediction is the task of finding missing or unknown links among inter-connected entities in knowledge graphs.
It can be accomplished with a classifier that outputs the probability of a link between two entities. However, the way in which
entities and networks are represented strongly determines how well classification works. Recently, several works have success-
fully used neural networks to create entity embeddings which can be fed into binary classifiers. Moreover, it was proposed in
literature that creating specialized embeddings separately for each relation type in the knowledge graph yields better classifier
performance, as opposed to training a single embedding for the entire knowledge base. The drawback of these specialized ap-
proach is that they scale poorly as the number of relation types increases. In this work we formalize a unified methodology for
training and evaluating embeddings for knowledge graphs, which we use to empirically investigate if, and when, the generalized
neural embeddings – trained once on the entire knowledge graph – attain performance similar to specialized embeddings. This
new way of training the neural embeddings and evaluating their quality is important for scalable link prediction with limited
data. We perform an extensive statistical validation to empirically support our claims, and derive relation-centric connectivity
measures for knowledge graphs to explain our findings. Our evaluation pipeline is made open source, and we aim to draw more
attention of the community towards an important issue of transparency and reproducibility of the neural embeddings evaluations.
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1. Introduction

Link prediction is the task of finding missing or un-
known links among inter-connected entities. This as-
sumes that entities and links can be represented as a
graph, where entities are nodes and links are edges (if
relationships are symmetric) or arcs (if relationships
are asymmetric). Link prediction was first character-
ized in the social network analysis community [1],
but soon became popular in other domains such as
large-scale knowledge bases [2], where it is used to
add missing data and discover new facts. When deal-
ing with link prediction in knowledge bases, the se-
mantic information contained within is usually en-
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coded as a knowledge graph (KG). For the purpose
of this manuscript, we treat a knowledge graph as a
graph where the links may have different types. We re-
fer the reader to [3] for a more detailed presentation
of knowledge graphs. In addition, we conform to the
closed-world assumption. This means that all the ex-
isting (asserted) links are considered positive, and all
the links which are unknown are considered negative.
For what follows, consider a knowledge graph KG in
Figure 1, consisting of three entities e1, e2, e3 intercon-
nected with links of two types r1 and r2, where bold
arcs indicate the known links (positive), and the dotted
arcs unknown (negative).

This separation into positive and negative links (ex-
amples) naturally allows us to treat the link predic-
tion problem as a supervised classification problem
with binary predictors. However, while this separa-
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Fig. 1. A sample KG with three entities and two relation types.
Positive links are drawn in bold, negative in dotted edge styles.

tion makes it possible to use a wide array of well-
studied machine learning algorithms for link predic-
tion, the main challenge is how to find the best rep-
resentations for the links. This is the core subject of
the recent research trend in learning suitable represen-
tations for knowledge graphs, largely dominated by
so-called neural embeddings (initially introduced for
language modeling [4]). Neural embeddings are nu-
meric representations of nodes, and/or relations of the
knowledge graph, in some continuous and dense vec-
tor space. These embeddings are learned through neu-
ral networks by optimizing a specific objective func-
tion. Usually, the objective function models the con-
straints that the neighboring nodes are embedded close
to each other, and the nodes that are not directly con-
nected, or separated via long paths in the graph, are
embedded to stay far apart. A link in a knowledge
graph is then represented as a combination of node
and/or relation type embeddings. See [2, 5] for an
overview of these approaches.

Our work is an extension of the framework to both
learn and evaluate neural embeddings for the knowl-
edge graphs, as proposed in [6]. Throughout this
manuscript we refer to this approach as the specialized
embeddings approach. This approach learns and evalu-
ates specialized embeddings for each relation type ri of
entities of KG as follows: a) we generate the retained
graph where we delete some of the triples involving ri,
then b) we compute the embeddings of the entities on
this resulting retained graph, finally, c) we assess the
quality of these specialized embeddings on relation ri

by training and testing binary predictors on positive
and negative triples involving ri. These three steps are
detailed in Figure 2 in the specialized embeddings box.
The arrows labeled with “a” in Figure 2 symbolize the
generation of retained graphs for relations r1 and r2,
those marked with “b” computation of the entity em-
beddings, and “c” represents the training and testing
binary classifiers for each relation type. The drawback

of this approach is that we need to compute entity em-
beddings for each relation type separately, this will
soon become a scalability issue when the number of
relation types in the knowledge graph becomes big.

1.1. Related work

There are two major ways of measuring the qual-
ity of (neural) embeddings of entities in a knowledge
graph for link prediction tasks, inspired by two differ-
ent fields: information retrieval [2, 7–10] and graph-
based data mining [6, 11–15]. Information retrieval in-
spired approaches seem to favor node-centric evalu-
ations, which measure how well the embeddings are
able to reconstruct the immediate neighbourhood for
each node in the graph; these evaluations are based on
the mean rank measurement and its variants (mean av-
erage precision, top k results, mean reciprocal rank).
Graph-based data mining approaches are based on the
standard evaluation measurements of classifiers’ per-
formance based on false positive rate to true positive
rate curves (e.g., ROC AUC, F-measure). In the litera-
ture, the former measures are also referred to as node-
equality, and the latter as link-equality [16].

Some research examined issues that come up dur-
ing the data splitting in train and test phases. The is-
sue of imbalanced classes when the link prediction in
graphs is treated as a classification problem is well
presented in [13]. In the bioinformatics community
the problem of imbalanced classes for the binary clas-
sification problem can be circumvented by consider-
ing negative links that have a biological meaning, thus
omitting many potential negative links that are highly
improbable biologically [6]. Other work demonstrated
that if no care is taken while splitting datasets, one
might end up producing biased train and test exam-
ples, such that implicit information from the test set
may leak into the train set [17, 18]. Kadlec et al. [8]
have mentioned that fair optimization of hyperparam-
eters for competing approaches should be considered,
as some of the reported KG completion results are sig-
nificantly lower than what they potentially could be.
Evaluation of machine learning tasks for the seman-
tic web domain that use neural embeddings from the
knowledge graphs is explored in [19, 20]. In the life
sciences domain, the time-sliced graphs as generators
for train and test examples have been proposed as a
more realistic evaluation benchmark [16], as opposed
to the randomly generated slices of graphs.

In [16, 18] authors use node-centric connectivity
measures (e.g., incoming/outcoming node degree, or



A. Agibetov, M.Samwald / Generalized neural embeddings for link prediction 3

e1

e2r1

e3r1
r2

r2

e1

e2

e3r1
r2

r2

e1

e2r1

e3r1
r2

e1 e3 1
e3 e1 0

train test
e1 e2 1
e2 e1 0 

e2 e1 1
e1 e2 0

e2 e3 1
e3 e1 0

train test

e1

e2r1

e3r1
r2

r2

e1

e2

e3r1
r2

specialized embeddings

generalized embeddings

a

a

a

c

c

c

c

e1 e3 1
e3 e1 0

train test
e1 e2 1
e2 e1 0 

e2 e1 1
e1 e2 0

e2 e3 1
e3 e1 0

train test

retained on r1

retained on r2

retained on r1 and r2

binary predictor r1

binary predictor r2

binary predictor r1

binary predictor r2

b

b

b

input knowledge graph

input knowledge graph

specialized embeddings 
for r1

specialized embeddings 
for r2

generalized embeddings 
for r1 and r2

Fig. 2. Overview of the pipeline for training specialized and generalized neural embeddings for link prediction.

PageRank) to explain the performance of different
neural embedding techniques.

1.2. Contribution of this work

We investigate empirically and analyze statistically the
potential of training generalized neural embeddings
for all relation types once, as opposed to training spe-
cialized embeddings for a specific relation ri (Figure 2,
generalized embeddings box). Specifically, we gener-
ate only one retained graph, where we delete a fraction
of triples for each relation type ri (arrow marked with
“a” on the bottom of Figure 2). This retained graph
is then used as a corpus for the computation of en-
tity embeddings (“b”), which are then assessed with
binary predictors for each relation type ri as in the spe-
cialized case (arrows marked with “c” on the bottom
of Figure 2). Evidently, this approach is more scalable
and economic, since we only compute and keep one
set of entity embeddings per knowledge graph. To ex-
plain the correlations with the classifiers’ performance,
we introduce relation-centric connectivity measures
for the knowledge graphs to quantify these conditions.
Additionally, in our analysis we take into considera-
tion the ratios of missing examples during train and
test phases. Our statistical validation tests the robust-
ness of the neural embeddings, by evaluating their per-
formances with different amounts of available infor-
mation (i.e., percentage of available positive links), to

simulate realistic scenarios where we have only lim-
ited data. We believe that the relation-centric connec-
tivity measures, the analysis of missed examples, and
statistical validation with limited data are an important
addition to the state-of-the-art evaluation toolbox for
knowledge graphs, which has not been proposed be-
fore. Our evaluation pipeline is formalized and made
1open source, and with this we aim to draw more at-
tention of the community towards an important issue
of transparency and reproducibility of the results.

The rest of this manuscript is organized as fol-
lows: in the Methods section (Section 2) we present
the datasets we used to evaluate our approach (Sec-
tion 2.2), and we introduce formally our methodol-
ogy (Section 2.3). In Section 3 we report our results
and analysis, which we complement with a discussion
on limitations of our approach and possible directions
(Section 4). Finally, we conclude our manuscript in
Section 5.

2. Methods

2.1. Notation and terminology

Throughout this manuscript we use a triple-oriented
representation of knowledge graphs. As such, a knowl-

1https://github.com/plumdeq/neuro-kglink
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edge graph KG is simply a set of triples (ei, ri, e j) ∈
KG, where ei, e j ∈ ENTITIES(KG) are some enti-
ties, and ri ∈ RELATIONS(KG) are its relation types,
or simply relations. We assume that entities and re-
lation types are disjoint sets, i.e., ENTITIES(KG) 6=
RELATIONS(KG). The character _ denotes a free vari-
able in the triple, any value is assumed in its place. For
instance, when we write ∀(ei, _, e j) ∈ KG we refer to a
set of triples where ei, e j are fixed, and the relation type
_ ∈ RELATIONS(KG) is free (i.e., all the links of dif-
ferent relation types that connect fixed entities ei, e j).

Let PosKG denote all the existing triples in the KG,
i.e., triples (ei, ri, e j) ∈ KG, and let NegKG denote
the non-existing triples (ēi, r̄i, ē j) 6∈ KG, such that
ēi, ē j ∈ ENTITIES(KG) and r̄i ∈ RELATIONS(KG).
Similarly, Posri and Negri denote the existing and
non-existing triples involving a relation ri, respec-
tively. Obviously, in every triple of Posri or Negri

the relation type is fixed to ri. For each relation
type ri, DOMAIN(ri) = {ei|∀(ei, ri, _) ∈ KG}, and
RANGE(ri){e j|∀(_, ri, e j) ∈ KG} indicate the enti-
ties that belong to the domain and range of a rela-
tion ri (i.e., left and right entities). To describe the
process of sampling some triples, we use the notation
αX, α ∈ [0, 1], where X is any set of triples. For in-
stance, (α = 0.8)Posri is a sampled set of triples in-
volving ri, and consisting of 80% of triples from Posri .

For each relation type ri ∈ RELATIONS(KG), Gri =
(Vri , Eri) refers to a graph obtained by extracting all the
triples involving the relation type ri from the knowl-
edge graph (i.e., Vri = DOMAIN(ri)

⋃
RANGE(ri), and

E = ∀(_, ri, _) ∈ KG).

2.2. Datasets and their characterization

We run our experiments on four different knowl-
edge graphs: WN11 [17] (subset of original Word-
Net dataset [21] brought down to 11 types of rela-
tions, and without inverse relation assertions), FB15k-
237 [17] (a subset of Freebase knowledge graph [22]
where inverse relations have been removed), UMLS
(subset of the Unified Medical Language System [23]
semantic network) and BIO-KG (comprehensive bio-
logical knowledge graph [6]). WN11, FB15k-237 and
UMLS have been downloaded (December 2017) from
the ConvE [18] 2GitHub repository, and BIO-KG has
been downloaded (September 2017) from the official
link indicated in the 3supplementary material for [6].

2https://github.com/TimDettmers/ConvE
3http://aber-owl.net/aber-owl/bio2vec/bio-knowledge-graph.n3

Details on the derivation of subsets for Wordnet and
Freebase knowledge graphs can be found in [17, 18].

2.2.1. Properties of the knowledge graphs
Each of the four knowledge graphs has distinct prop-
erties. To better assess these differences, in Table 1 we
provide different statistics of these four datasets. We
describe a) global properties with the total number of
types of relations and entities; b) relation-based prop-
erties with minimum, maximum and mean number of
triples for all relations in a knowledge graph (Equa-
tions 1, 2, 3, respectively); and c) multi-relatedness –
a term that we use to quantify how many pairs of en-
tities are connected with more than one relation type
(see Figure 3).

min|Posri | = min(|Posr1 |, . . . , |Posrn |), (1)

max|Posri | = max(|Posr1 |, . . . , |Posrn |), (2)

mean|Posri | = 1/|RELATIONS(KG)|
∑

ri

|Posri |. (3)

Formally, the multi-relatedness φ(KG) (Equation 4) is
computed as the ratio of the size of the set of all triples,
where a fixed pair of entities is connected with more
than one link of different relation types, to the total
number of triples in the knowledge graph.

e1 e2

r1
r2

r3
r4

e1 e2r3

Fig. 3. One the left we have an example of a pair of entities (e1, e2)
connected with four relation types, i.e., four positive links for the
same entities. The same pair of entities is connected with only one
relation type on the right. The multi-relatedness is bigger on the left.

φ(KG) =
|{(ei, r1, e j), . . . , (ei, rn, e j)|∀(ei, _, e j), n > 2}|

|PosKG|
.

(4)

2.2.2. Relation-based connectivity distributions
We define µri (Equation 5) as the measure of connect-
edness of Gri , a graph consisting of all the triples in-
volving relation ri of a knowledge graph (Figure 4)

µri =
|Posri |

|DOMAIN(ri)| × |RANGE(ri)|
. (5)

https://github.com/TimDettmers/ConvE
http://aber-owl.net/aber-owl/bio2vec/bio-knowledge-graph.n3
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Multi-relatedness Relation-based properties Global properties
dataset φ(KG)× |PosKG| |PosKG| φ(KG) (%) max|Posri |

min|Posri |
mean|Posri |

|RELATIONS(KG)| |ENTITIES(KG)|

WN11 124 93003 0.133 % 37221 86 8459 11 40943
FB15k-237 23700 310116 7.642 % 16391 45 1308 237 14541
UMLS 1343 6527 20.576 % 1021 1 142 46 137
BIO-KG 0 1619239 0.000 % 554366 6159 179915 9 346225

Table 1
Global and relation-specific properties of the four knowledge graphs used.

To this end, the maximum number of triples for rela-
tion ri is attained when all entities in the domain of the
relation are connected to all the entities in the range
(i.e., µri = 1, see Figure 4, right). Another interpre-
tation of µ is the potential for the generation of neg-
ative examples, that is, low values of µri suggest that
there might be many negative examples, i.e., the graph
Gri is highly incomplete. We hypothesize that the per-
formance of a binary link predictor of type ri should
be positively correlated with µri , i.e., the more training
examples of type ri there are (the more connected Gri

is) the better is the performance of the binary predictor
for ri.

Fig. 4. µri - measure of connectedness of graph Gri for the relation
ri. Lighter nodes indicate domain and darker nodes indicate range
of ri.

Distribution of µri for all relations ri in each of the four
graphs is shown in Figure 5. We also provide the dis-
tributions of normalized number of triples zri (Equa-
tion 6) for each relation ri for all knowledge graphs.
We normalize the number of triples for each relation
type, where 0 (minumum) is the relation with the least
number of triples, and 1 (maximum) is the relation
with the biggest number of triples in the knowledge
graph, with

zri =
|Posri | − min|Posri |

max|Posri | − min|Posri |
. (6)

All distributions in Figure 5 are estimated and nor-
malized with kernel density interpolation from the ac-
tual histograms.

2.2.3. Connectivity characterization of datasets
Globally, we have one small (in terms of number of
entities) knowledge graph (UMLS), two medium-sized
graphs (WN11, FB15K-237) and one very large bi-
ological graph (BIO-KG). UMLS is however much
denser (in terms of multi-relatedness φ(KG)) and has
a more uniform µri distribution over all relation types
as compared to all the others. We hypothesize that
this denseness is what makes relation-based link pre-
diction an easier task for binary classifiers. WN11
and BIO-KG have similar µri and zri distributions, for
both the graphs Gri are sparsely connected. Differ-
ently to WN11, BIO-KG has much more training ex-
amples for the classifier (i.e., mean|Posri |(BIO-KG) �
mean|Posri |(WN11)). Overall, this variability in the
properties allows us to better evaluate our approach
and identify the specific use-cases when such an ap-
proach for link prediction will be most beneficial.

2.3. Link prediction with neural embeddings

Herein, we formalize the pipeline for link prediction
with specialized and generalized neural embeddings,
which we briefly presented in Figure 2. The pipeline
consists of three main steps: a) generation of retained
graphs and train/test examples, b) training neural em-
beddings on the retained graphs, c) assessment of the
quality of the neural embeddings with binary predic-
tors. In the rest of this section we give a thorough de-
scription of these steps.

2.3.1. Generation of retained graphs (step a)
The preparation of datasets for neural embedding
training is inspired by the methodology presented
in [6]. In the following we present our generalized ap-
proach to this problem, as we think it is crucial for the
transparent and reproducible evaluation pipeline, and
has not been detailed enough in [6]. In addition to spe-
cialized retained graphs, where only triples of a speci-
fied relation ri were removed (as used in [6]), we also
consider generalized retained graphs for all relations
∀ri ∈ KG.
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Fig. 5. Distributions of connectivity measure (µri ) and the normalized number of available triples (zri ) per relation for four graphs. Left-skewed
distribution of µri reveals sparse connectivity of the knowledge graph (i.e., the graph is highly incomplete). Uniform distribution of zri represents
a well-balanced prediction task, i.e., each classifier will have an equal amount of train/test examples.

training embeddings
on 

train classifier

test classifier

Fig. 6. Schematic representation of the pipeline for the evaluation of the embeddings. NegKG and its derivations (e.g., αNegri ) appear bigger
visually to indicate that the elements are sampled from a much bigger set of all possible negative links.
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By treating the problem of evaluation of the quality
of the embeddings in a set-theoretic approach, we can
define the following datasets:

1. PosKG−(1−α)Posri a specialized retained graph
on ri (in Figure 6 this set is demarcated with bold
contour in the upper left corner),

2. PosKG −
⋃

ri
(1− α)Posri a generalized retained

graph on all relations ri ,
3. ∀ri, αPosri

⋃
αNegri – train examples for the bi-

nary classifier for ri,
4. ∀ri, (1− α)Posri

⋃
(1− α)Negri – test examples

for the binary classifier for ri.

We also note the following properties, which must
hold and serve as validation criteria for the generation
of train and test data. In particular,

1. PosKG−(1−α)Posri ⊆ PosKG, PosKG−
⋃

ri
(1−

α)Posri ⊆ PosKG retained graphs must be sub-
graphs of full graph,

2. PosKG −
⋃

ri
αPosri =

⋃
ri
(1 − α)Posri the dif-

ference between the full and the retained gener-
alized graph are the positive links, which we use
in the test set, i.e., the embeddings will be used
to predict these positive links,

3. ∀ri, αPosri

⋂
(1 − α)Posri = ∅, αNegri

⋂
(1 −

α)Negri = ∅ there should be no link shared be-
tween the train and test sets,

4. ∀ri∀xi, x̄i ∈ Negri , x̄i 6∈ KG all generated nega-
tive links do not exist in the original full graph.

The last two properties reflect what is usually done
in the literature during the generation of negative links,
and for this work we also conform to these two proper-
ties. However, we elaborate more on the issue, where
the negative examples set generation is disjoint from
the positive examples set in Section 4.2.2.

2.3.2. Neural embedding model (step b)
In this work we employ a shallow unsupervised neu-
ral embedding model [15], which aims at learning en-
tity embeddings in a dense d-dimnesional vector space.
The model is simple and fast, and it embeds the en-
tities that appear in the positive triples close to each
other, and places the entities that appear in negative
triples farther appart. As in many neural embedding
approaches, the weight matrix of the hidden layer of
the neural network serves the role of the look-up ma-
trix (the matrix of embeddings - latent vectors). The
neural network is trained by minimizing, for each pos-
itive triple xi = (ei, _, e j) in the specialized (xi ∈
PosKG − (1 − α)Posri ), or generalized graphs (xi ∈
PosKG −

⋃
ri
(1−α)Posri ), the following loss function

∑
(ei ,_,ē j)∈NegKG

ψ(ei, e j), ψ(ei, ē1), . . . , ψ(ei, ēk).

Where, for each positive triple xi, we embed entities
ei, e j close to each other, such that ei stays as far as pos-
sible from the k negative entities ē1, . . . , ēk. The simi-
larity function ψ is task-dependent and should operate
on d-dimensional vector representations of the entities
(e.g., standard Euclidean dot product).

2.3.3. Missing examples at train and test phases
Since we are learning embeddings for the entities from
the retained graphs (some links are excluded), the al-
gorithm may miss to learn an embedding for an entity,
which will result in missing examples at train or test
phases. To see it clearer, suppose that during the gen-
eration of the retained graph all triples (ek, _, _) ∈ KG
(only ek fixed) involving entity ek are not assigned to
the retained graph (i.,e., (ek, _, _) 6∈ PosKG − (1 −
α)Posri ), then the algorithm will not learn an embed-
ding γ(ek), which will lead us to a situation where
all the triples (ek, _, _) ∈ KG (examples at train/test)
will be missing during training or testing of the binary
classifier (depending whether these are assigned to to
the train or test sets). Intuitively, the amount of pos-
sible missing examples is inversely proportionate to
the α parameter, i.e., the more information we include
during the embedding learning phase, the fewer em-
beddings will be missed. We also hypothesize that the
sparsely connected relations (i.e., sparsely connected
graphs Gri ) and the relations with very few examples
(i.e., small |Posri |) will yield higher amounts of missed
examples.

2.3.4. Link prediction evaluation with binary
classifiers (step c)

To quantify confidence in the trained embeddings,
we perform the repeated random sub-sampling vali-
dation for each classifier fri . That is, for each rela-
tion ri we generate k times: retained graph PosKG −
(1 − α)Posri corpus for unsupervised learning of en-
tity embeddings γri(ei)) and train αPosri

⋃
αNegri and

test (1 − α)Posri

⋃
(1 − α)Negri splits of positive

and negative examples. Link prediction is then treated
as a binary classification task with a classifier fri :
op(γ(ei), γ(e j))) 7→ [0, 1], where op is a binary oper-
ator that combines entity embeddings γ(ei), γ(e j) into
one single representation of the link (ei, ri, e j) (e.g.,
element-wise sum or multiplication, or vector concate-
nation). The performance of the classifier is measured
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with the standard performance measurements (e.g., F-
measure, ROC AUC).

2.4. Experiments

Algorithm 1 Evaluation of specialized and general-
ized knowledge graph embeddings
Precondition: KG, α, J

for each sub-sample validation run
1 for j ∈ 1, . . . , J do

generate retained graph on all ri,
and compute generalized embeddings

2 X← PosKG −
⋃

ri
(1− α)Posri

3 γ(ei)← Embeddings(X)

4 for ri ∈ RELATIONS(KG) do
generate retained graph on ri,
and compute specialized embeddings

5 Xri ← PosKG − (1− α)Posri

6 γri (ei)← Embeddings(Xri )

generation of train/test examples for ri

7 trainri ← αPosri

⋃
αNegri

8 testri ← (1− α)Posri

⋃
(1− α)Negri

evaluate quality of specialized embeddings
9 F1 j

ri ← fri (trainri , testri , γri (ei))
10 end for

evaluate quality of generalized embeddings
11 F1 j ← fri (trainri , testri , γ(ei))
12 end for

average specialized embeddings evaluations
13 for ri ∈ RELATIONS(KG) do
14 F̃1ri ←

∑
j F1 j

ri

15 end for

average generalized embeddings evaluations
16 F̃1←

∑
j F1 j

The goal of our experiments is to empirically investi-
gate if, and when, the generalized neural embeddings
attain similar performance as the specialized embed-
dings, for the four considered datasets. To do so, we
first generate the retained graphs, and the train and test
datasets. The retained graphs are generated for each
relation type ri in the case of specialized embeddings,
and only once for the generalized embeddings. We al-
ways keep the 1:1 ratio for the positive and negative
examples. When we sample the negatives for a relation
ri, we only consider the triples (ēi, ri, ē j) where the en-
tities come from the domain (ēi ∈ DOMAIN(ri)) and
the range (ēi ∈ RANGE(ri)) of ri. The embeddings are

computed from the retained graphs, and then evaluated
on the train and test datasets. Note that we only provide
the results for the generalized embeddings for FB15k-
237, since the computation of specialized embeddings
for 237 relations of FB15k-237 would take months (on
our machine) to finish (the computation of specialized
embeddings grows linearly with the number of rela-
tions, and exponentially in the number of repeated sub-
sample validation runs). The evaluation of the embed-
dings for one relation type ri is performed with the
logistic regression classifier fri(concat(γ(ei), γ(e j)))
(we use vector concatenation for link representation
in this work, see Section 4.2.1 for a detailed discus-
sion on the choice of operators). To test the robust-
ness of the embeddings we perform the evaluations
with limited information, i.e., the size of the retained
graphs controlled by α ∈ {20, 50, 80}, and we analyze
the amount of missed embeddings in all experiments.
All of our results are presented as averages of 10 re-
peated random sub-sampling validations. We thus re-
port mean F-measure scores and their standard devia-
tions. This pipeline is formalized in Algorithm 1.

The neural embeddings are trained with the StarSpace
toolkit [9] in train mode 1 (see StarSpace specification)
with the fixed hyperparameters: the embedding size is
set to d = 50, and number of epochs is set to 10. All
other hyperparameters for StarSpace are set to default,
in particular, the maximum number of negative entities
per one positive triple is 10 (k = 10). Classification
results are obtained with the scikit Python library [24],
grouping of classification results and their statistical
analysis are performed with Pandas [25]. All of our
experiments were performed on a modern desktop PC
with a quad core Intel i7 CPU (clocked at 4GHz) and
32 Gb of RAM.

2.4.1. Hyperparameter search
While we report our statistical evaluation only for a
fixed set of hyperparameters for the neural embed-
ding model, we did experiment with different set-
ting of the hyperparameters. In particular, we ex-
perimented with the different dimension sizes (d =
5, 10, 20, 50, 100, 512), and with the different number
of epochs (e = 5, 10, 20, 50) for a smaller number
of validation runs, and on medium-sized knowledge
graphs only. In general, only slight improvements on
the classification performance were observed. Conver-
gence of distributions for specialized and generalized
embeddings being our primary target, we decided to
perform full-scale statistical evaluation with the cho-
sen fixed set of hyperparameters (d = 50, e = 10).
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3. Results

3.1. Generalized vs. specialized embeddings:
comparing distributions

In Figure 7 we present the distributions of averaged
F1 scores, which measure the performance of the em-
beddings, and the ratios ([0, 1]) of missed examples
at training and testing of the binary classifiers fri . As
such, the overall performance of the specialized or
generalized embeddings on one knowledge graph is
characterized by these three distributions over all rela-
tions in the given knowledge graph. The performance
of embeddings is compared with varying amount of in-
formation present at the time of training of the neu-
ral embeddings (parameter α). All distributions in Fig-
ure 7 are estimated and normalized with kernel density
interpolation from the actual histograms.

In the three knowledge graphs: BIO-KG, UMLS and
WN11, the distributions converge as we increase the
amount of available information (e.g., α → 1), which
supports the main hypothesis of this manuscript, that
the generalized embeddings may yield the similar (if
not the same) performance as the specialized embed-
dings. When we consider BIO-KG, the F1 and miss-
ing examples distributions for the specialized and gen-
eralized neural embeddings converge almost to identi-
cal distributions, even when the overall amount of in-
formation is low (e.g., only 20 % of available triples).
This may be explained by a relatively big size of avail-
able positive examples per relation type |Posri | (hun-
dreds of thousands of available triples per relation).
Though, distributions of zri and µri (Figure 5) are very
similar for BIO-KG and WN11, the differences be-
tween the specialized and generalized embeddings for
WN11 are much more characterized, than in the case
of BIO-KG. In particular, the neural embeddings for
WN11 are very sensitive to α, the less information
there is the more the generalized and specialized dis-
tributions diverge (different shapes of distributions for
F1 and the ratio of missed examples). The amount of
missed examples is very high for both specialized and
generalized cases, for smaller values of α < 0.8, and
the distributions converge when α = 0.8. The most
regular behavior is demonstrated by the neural embed-
dings trained on UMLS corpora, where the missing ex-
amples rates are all almost zero, even when α = 0.2.
The shapes of the F1 distributions are very similar for
all the values of α, the intra-discrepancies are very low.
These observations allow us to hypothesize that the
similar trends might exist for the FB15k-237 knowl-

edge graph, since UMLS and FB15k-237 have similar
uniform distributions of µri and zri .

To summarize, as we increase the amount of avail-
able information during the computation of neural em-
beddings (α → 1) the intra-discrepancies between the
specialized and the generalized embeddings become
negligible. And this is good news, since training gener-
alized embeddings is |RELATIONS(KG)|-times faster
than training the specialized embeddings for each rela-
tion ri, with the strong evidence that if we have enough
information we can achieve the same performance.

3.2. Generalized vs. specialized embeddings:
comparing means and stds of distributions

We recall that each distribution’s sampled point is ob-
tained by averaging the results of k repeated experi-
ments for one relation ri. To directly compare the dis-
tributions, we compare their means and standard devi-
ations, and, as such, we are comparing the average per-
formance of |RELATIONS(KG)| binary classifiers for
specialized and generalized neural embeddings, with
the varying parameter α. Figure 8 depicts the aver-
age performance of all binary classifiers and its stan-
dard deviation for the four knowledge graphs. As ex-
pected, the performance of the specialized embeddings
is better than the performance of the generalized em-
beddings, however the differences are very slim. BIO-
KG and UMLS demonstrate that, as we increase α,
the average F1 score increases in both cases, how-
ever, so does the standard deviation as well. WN11, on
the other hand, demonstrates a counter-intuitive trend
where the best performance of specialized embeddings
occurs when less information is available. For the spe-
cialized embeddings, the F1 score decreases slightly
when we include more information during the compu-
tation of neural embeddings. This may be explained by
an increased amount of missing examples, both during
training and testing of the binary classifier. Due to a
very sparse connectivity of graphs Gri of WN11, when
we only consider 20% of available triples – we exclude
80 % of available links –, many entities are likely to
become disconnected. This means that no embeddings
are learned for them, and, as a result, the binary classi-
fier is both trained and tested on fewer examples.

3.3. Correlation of average performance with the
connectivity

Our experiments show that almost in all settings there
is a positive correlation between the performance of a
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BIO-KG FB15k-237

UMLS WN11

F-measure Train miss Test missF-measure Train miss Test miss

Fig. 7. Averaged distributions of F1 scores, train and test missed examples ratio, for generalized and specialized neural embeddings, for four
datasets. These distributions reflect the average performance of fri binary classifiers for each relation type ri that operate on learned embeddings.
Robustness of classifiers is measured by varying the amount of positive links available during learning phase of the embeddings (i.e., sampling
controlled by α). Due to time constraints we did not compute the generalized distributions for FB15k237. For BIO-KG, UMLS and WN11 the
averaged distributions for specialized and generalized embeddings converge.

binary classifier fri for a specific relation ri, and µri .
Figure 9 depicts the this dependency for four knowl-
edge graph for the varying parameter α, and the Fig-
ure 10 summarizes it with the Pearson correlation
scores (we also report Pearson correlation with zri ).
We found out that the performance of binary classi-
fiers evaluated on UMLS knowledge graph exhibits
the strongest positive correlation with µri for both spe-
cialized and generalized embeddings (Figure 9). The
higher the connectivity of the graph Gri (µ → 1) the
better is the performance of the binary classifier fri

(F1 → 1). The dependency F1 vs. µ is positive, yet
slightly smaller, for all other datasets. The Pearson co-
efficients for BIO-KG and WN11 should be interpreted
with caution, since the variance of the µri distributions
for these two is significantly smaller than that for the

other datasets (Figure 5). We also observe positive cor-
relations of the performance of the classifiers with the
size of the available positive triples for a given rela-
tion zri for BIO-KG and UMLS. This trend is however
broken by the negative correlations for FB15k-237 and
WN11, which leads to believe that µri is a better candi-
date to explain positive correlations of the classifiers’
performance.

4. Discussion

The main insight that gained from our experiments is
that as long as the knowledge graph exhibits densely
connected structure across all the relations, or contains
hundreds of thousands of available triples for each re-
lation type, the performance of the specialized embed-
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FB15k-237

UMLS

WN11

Fig. 8. Averaged F1 and train/test missed example ratio over all re-
lations for four graphs.

dings for link prediction will be quasi-equal to that of
the generalized embeddings. In all cases that means
|RELATIONS(KG)|-times faster training times for the
embeddings and |RELATIONS(KG)|-times less mem-
ory to store the embeddings. If researchers work with
small or medium-sized, but dense knowledge graphs,
and they aim at fast and scalable training of neural
embeddings, generalized embeddings approach should
be their primary target. We would also recommend
StarSpace as the implementation of shallow neural em-
bedding models, as its optimized implementation is of-
ten more scalable than an equivalent neural embedding
model in 4Pytorch. Also, we found that the statistical
evaluation of the performance of the binary classifiers
with repeated sub-sampling yields very small variance
for the considered datasets, we thus encourage the re-
searchers to invest their time in preparing less compu-
tationally intensive validation schemes (i.e., well pre-
pared hold-out test sets). We would also suggest to in-
vest more time to focus on the structural analysis of the
knowledge graphs and their correlation with the clas-
sifiers’ performance.

In what follows we outline some considerations
which might affect link prediction experiments and
limit the applicability of our approach.

4https://pytorch.org

4.1. Neural embedding model complexity

The focus of our study was not on obtaining best clas-
sification performance, but rather supporting statisti-
cally and empirically the hypothesis that cheaper and
more scalable generalized embeddings can attain per-
formance similar to more computationally expensive
specialized embeddings. In doing so, we sought to use
a simpler neural embedding model for faster, more
scalable and broader evaluation of our results. The
neural embedding model we use is a model that is shal-
low, in the number of model parameters (e.g., num-
ber of hidden layers), and first-order, in terms of how
much neighborhood information is used. More com-
plex models with deeper and more sophisticated archi-
tectures (i.e., involving more fully-connected and/or
convolutional hidden layers [5, 18]), and/or models
taking into account higher order neighborhood infor-
mation (i.e., models based on random walks [6, 11],
and/or based on graph depth traversal [12]) have not
been considered in this work. These models most
likely would yield superior classification results. How-
ever, we have not investigated the convergence of the
overall performance distributions of specialized and
generalized embeddings, trained with these models,
due to increased complexity (time-wise) for statistical
evaluations. Evaluation of performance distributions
of binary predictors with generalized and specialized
embeddings, trained with complex neural embedding
models, would definitely be an interesting extension of
this work.

4.2. Link prediction

4.2.1. Link representation or node combination
Based on the embeddings of the nodes of the graph, we
can come up with different ways of representing a link
between an entity ei and e j. This is usually achieved
with a binary operator (or a node combination strat-
egy) that transforms entity embeddings representations
γ(ei), γ(e j) into one single representation of the link
(ei, ri, e j). Popular choices for this operator include op-
erations that preserve the original d dimension of the
entity embeddings to represent links (e.g., element-
wise sum or mean [12]), as well as the operations that
concatenate entity embeddings [15, 16, 18]. In our ex-
periments with 10 cross-validation runs for the WN11
we observed that the concatenation operator outper-
formed other considered binary operators, and that all
the considered node combination strategies resulted in
the convergence of performance distributions for spe-

https://pytorch.org
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FB15k-23 UMLS WN11BIO-KG

Fig. 9. Dependence of classifier performance (measured with F1) against the connectivity measure µ for each relation type.

BIO-KG

FB15k-237

UMLS

WN11

Fig. 10. Pearson correlations to summarize the dependence of clas-
sifier performance (measured with F1) against the connectivity mea-
sure µ and the normalized number of triples zri for each relation
type.

cialized and generalized embeddings [15]. In this work
we thus stuck with the concatenation as our binary op-
erator for a broader evaluation with additional datasets.
Using different node combination strategies on differ-
ent knowledge graphs, may or may not have significant
impact on the performance.

4.2.2. Negative sampling
In general, the link prediction problem for knowledge
graphs is different from other classification problems
where positive and negative examples are well defined,
and the iid (independent and identically distributed

random variables) assumption is valid. Obtaining a
representative test set with a prototypical distribution
is often not trivial [13], and usually what is done is that
we randomly remove some links which we then use as
our test positives. Moreover, during the generation of
negative links both for train and test sets, we impose
that no negative link appears as a training positive or
test positive. We therefore implicitly leak information
about the test positives when we generate train nega-
tives. In other words, during the generation of nega-
tive links (ēi, ri, ē j) 6∈ PosKG) we should account to
the possibility that this link might actually turn out to
be true, and our binary classifiers should be robust and
generalize well to these realistic situations. In our pre-
liminary investigations on the impact of this bias we
have not seen big discrepancies in the classifiers’ per-
formance, however, a more elaborate analysis into this
issue would be very interesting to the community.

4.3. Properties of knowledge graphs

In our experiments we considered relation-centric
metrics φ(KG), µri and zri to characterize the knowl-
edge graphs. In particular, we used µri and zri to iden-
tify the correlations of classifier performances, and
studied the impact of multi-relatedness φ(KG) on
overall classifier performance. While we showed that
they help identify the use-cases when the generalized
embeddings perform almost identical on average as
the specialized embeddings, other characterizations of
knowledge graph may better explain other trends. For
instance, we have not observed conclusive correlations
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of relation-centric metrics with the ratio of missing
examples at train/test phases. Perhaps entity-centric
metrics (e.g., incoming and/or outcoming node degree,
PageRank centrality) might be more suitable metrics
to characterize missing ratios.

5. Conclusions

In this paper we focused on link prediction for knowl-
edge graphs, treated as a binary classification problem
on entity embeddings, trained in two different modes:
specialized for each relation in the knowledge graph,
and generalized for the whole knowledge graph. The
advantage of generalized embeddings is that one only
needs to train the embeddings once, as opposed to
training embeddings for each relation type, as it is usu-
ally done in the literature. We used a simple, shallow
and first-order neural embedding model to statistically
evaluate and demonstrate, that the generalized embed-
dings provide on average a similar, or even, under cer-
tain constraints, quasi-equal performance as the spe-
cialized embeddings. The main advantage of the gener-
alized embeddings is that they are much more scalable
and require less memory space than the specialized
embeddings. In our analysis we compared the distribu-
tions of classifiers’ performances for all relations in the
knowledge graph, and outline the conditions, which
strengthen the convergence of performance distribu-
tions for the specialized and generalized embeddings.
We introduced relation-centric connectivity measures
for the knowledge graphs to quantify these conditions,
and to explain the correlations with the classifiers’ per-
formance. In particular, we found that the performance
distributions converge even with very limited available
information (20% of all positive triples), provided that
the knowledge graph is dense and exhibits uniform
connectivity over all relation types. However, the per-
formance distributions would need more available in-
formation to converge, for the knowledge graphs with
sparse connectivity and the low number of positive
triples per relation type. Finally, we made our code for
the evaluation pipeline for link prediction tasks open
source, and hope that it will contribute to the standard-
ization of neural entity embedding evaluation bench-
marks.
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F. Lecue, F. FlÃűck and Y. Gil, eds, Lecture notes in com-
puter science, Vol. 9982, Springer International Publishing,
Cham, 2016, pp. 186–194, ISSN 0302-9743. ISBN 978-3-
319-46546-3. doi:10.1007/978-3-319-46547-0_20. http://link.
springer.com/10.1007/978-3-319-46547-0_20.

[20] M. Cochez, P. Ristoski, S.P. Ponzetto and H. Paulheim,
Global RDF vector space embeddings, in: The seman-
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