
Semantic Web 0 (0) 1 1
IOS Press

Similarity-based Knowledge Graph Queries
for Recommendation Retrieval
Lisa Wenige *, Johannes Ruhland
Chair of Business Information Systems, Friedrich-Schiller-Universität Jena, Germany
E-mail: lisa.wenige@uni-jena.com

Abstract. This paper investigates how similarity-based retrieval strategies can be combined with graph queries to enable users or
system providers to explore repositories in the Linked Open Data (LOD) cloud more thoroughly. For this purpose, we developed
a content-based recommender system (RS). It relies on concept annotations of Simple Knowledge Organization System (SKOS)
vocabularies and a SPARQL-based query language that facilitates advanced and personalized requests for openly available and
interlinked datasets. We have comprehensively evaluated the novel search strategies in several test cases and example applica-
tion domains (i.e., travel search and multimedia retrieval). The results of the web-based online experiments showed that our
approaches increase the recall and diversity of recommendations or at least provide a competitive alternative strategy of resource
access when conventional methods do not provide helpful suggestions. The findings may be of use for Linked Data-enabled
recommender systems (LDRS) as well as for semantic search engines that can consume LOD resources.

Keywords: Recommender Systems, Linked Open Data, Information Retrieval, SPARQL, Semantic Search, SKOS

1. Introduction

A recommender system (RS) component is usually
one of the key search features in online portals. It
helps users to discover items that reflect their interests
[3]. Personalized recommendations are based on a user
profile that contains either implicit (e.g., access statis-
tics or click behavior) or explicit preference informa-
tion (e.g., ratings for items). Common RS techniques
are collaborative filtering (CF) or content-based (CB)
algorithms. CF approaches derive suggestions from
users with similar tastes, whereas CB methods are
based on similar items according to metadata descrip-
tions [26]. Descriptions in CB engines are often struc-
tured in the table-like format of attribute-value pairs.
The flat data structure tremendously reduces the mul-
tidimensionality of preferences as well as item charac-
teristics and can therefore produce weak recommenda-
tions.
This is why the complex data structure of RDF graphs
in the Linked Open Data (LOD) cloud can help to im-
prove the representation of user tastes in CB engines.

*Corresponding author. E-mail: lisa.wenige@uni-jena.com.

Consider the following example for illustration: Sup-
pose a user has stated that he likes a particular movie
director and would like to receive suggestions for other
interesting filmmakers. A conventional RS would de-
termine similar directors from these metadata. How-
ever, the director descriptions may be predominantly
comprised of irrelevant information, e.g., the national-
ity or the won prizes of the filmmakers.1 Such meta-
data would not yield useful results in a purely content-
based system and only achieve a few random hits. On
the other hand, a request that is issued against the LOD
collection DBpedia could explore the semantic net-
work that surrounds the director. By this means, all
movies that were shot by the favored director are iden-
tified. Additional interesting movies, that were not di-
rected by the filmmaker, but share certain characteris-
tics with his movies (e.g., the same genres or main ac-
tors) could enhance the metadata descriptions and user
profile information further. The data web can answer
such requests because the LOD technology stack pro-
vides the SPARQL Protocol and RDF Query Language

1http://dbpedia.org

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:lisa.wenige@uni-jena.com
mailto:lisa.wenige@uni-jena.com


2 L. Wenige et al. / Similarity-based Graph Queries

(SPARQL) and suitable query engines that enable fast
retrieval [55].
However, graph-based queries alone are not yet suffi-
cient to generate personalized suggestions, since they
only return results for graph patterns that exist in
the repository. Consider the following example: Con-
sumers may like to use recommendation engines that
work on multiple domains simultaneously. For in-
stance, a user who has stated that he likes certain
items from one domain may like to receive suggestions
from another domain as well (i.e., for cross-domain re-
trieval). In case a user profile contains feedback infor-
mation for books, it would be desirable if the system
could generate movie suggestions based on this data.
While the approach of querying RDF graphs can be
useful for this recommendation scenario (since it can
identify matching objects based on entity type declara-
tions or typed link information), it may also be the case
that there are no direct links from a preferred book to
a suitable movie in the RDF graph.
Therefore, RS designers should not rely too heavily on
graph-based queries, but also explore possibilities of
similarity-based retrieval. A possible solution would
be to identify books that are similar to the ones in
the user profile. In a subsequent processing step and
through a graph-based query, the engine could explore
whether the similar books have any connections to
movie items in the repository. This approach can re-
veal implicit connections in the data and might help
to return fewer empty result sets to the user. There-
fore, the system should process the data online. This
is because one processing step (identification of suit-
able movies through graph pattern matching) relies on
the outcome of a preceding one (computation of sim-
ilar book items). For this purpose, it is important that
recommendations can be quickly generated on-the-fly
without further preprocessing. Only then, a system will
be able to switch between processing of graph- and
similarity-based query parts in a flexible manner.
Almost none of the existing Linked Data recommender
systems (LDRS) addresses these issues, which pre-
vents efficient usage of available knowledge sources
for retrieval tasks. Instead, current LDRS rely on a
fixed set of item features, which have to be extracted
from the LOD cloud before suggestions can be gen-
erated [12, 13, 22, 24, 29, 50, 64]. However, the ad-
hoc retrieval and processing of item features for sim-
ilarity computation in combination with graph-based
queries can be facilitated by concepts from Simple
Knowledge Organization System (SKOS) vocabularies
[38]. SKOS annotations occur in more than half of the

repositories in the LOD cloud and often describe real-
world entities [53]. For instance, in the DBpedia repos-
itory, an LOD resource representing a music act is
characterized by SKOS-based subject descriptors (e.g.
stating the genre or the label of the music act). The de-
scriptors are part of the DBpedia category graph [11].
A recommendation framework that utilizes SKOS an-
notations for item-to-item similarity calculation is ap-
plicable to a wide range of data collections and do-
mains. Additionally, SKOS subjects are uniquely iden-
tified URI resources. Therefore, they can be conve-
niently processed for ad-hoc retrieval without further
preprocessing [38].
This paper presents a SKOS-based recommendation
engine, called SKOSRecommender (SKOSRec), that
can flexibly combine on-the-fly similarity calculation
and SPARQL-like techniques to leverage the full po-
tential of LOD repositories. Its effectiveness has been
proven in a series of user studies. In summary, the main
contributions of our paper are:

– Comprehensive literature review of the state-of-
the-art in LOD-enabled information retrieval (IR)
and recommender systems (Sect. 2).

– Development of the recommendation framework
SKORecommender that is applicable to numer-
ous LOD collections and works in an open sys-
tem architecture. It provides novel retrieval ap-
proaches through:

• Syntax and processing units for a SPARQL-
based recommendation query language (Sect.
3).

• The ability to flexibly switch between simi-
lar resource retrieval and graph pattern match-
ing at different stages of the recommendation
workflow (e.g., by being able to apply graph-
based filter conditions on recommendation re-
sults or by utilizing recommendations as part
of a SPARQL-based subquery) (Subsects. 3.2-
3.5).

– Extensive evaluation of the SKOSRec system in a
series of web-based user experiments, which have
proven the effectiveness of the novel retrieval ap-
proaches, especially in terms of diversity and re-
call (Sect. 4).

2. Related Work

Effective answering of retrieval requests has been
investigated by researchers for many years. Even be-



L. Wenige et al. / Similarity-based Graph Queries 3

fore the evolution of the LOD cloud, scientists de-
veloped strategies for extracting relevant information
from text data. The most prevalent IR systems perform
relevance rankings for unstructured resources and of-
fer means to state filter conditions that complement
queries in a faceted search interface. The approaches
can combine query constraints with similarity-based
retrieval. In these systems, user requests are quickly
answered due to extensive preprocessing and index-
ing of resources before runtime execution [58]. How-
ever, low latency of search results comes at the cost of
a hard-wired data model which prevents flexible cus-
tomizations and causes limitations in terms of ad-hoc
retrieval [18].
Other researchers have developed query-based RS for
table data. For instance, Adomavicius et al. propose
the REQUEST query language that generates sugges-
tions from a relational database which contains in-
formation on both user profiles and items. Thus, per-
sonalized recommendation queries can be formulated
[2]. Another interesting approach in the category of
query-based RS is the FlexRecs system by Koutrika
et al. The key advantage of their course RS is that it
enables highly individual requests in which different
query parts (i.e., profile generation, filtering of rec-
ommendations or like-minded peers) can be flexibly
combined into so called recommendation workflows.
Hence, highly individual recommendation queries can
be formulated with FlexRecs [32].
Despite the strengths and weaknesses of the discussed
approaches, it has to be taken into account that they
are not designed to consume LOD. LOD-enabled sys-
tems, on the other hand, use RDF data for retrieval.
There exist many index-based Linked Data IR systems
[4, 9, 10, 20, 25, 40, 46, 47, 61]. However, they index
RDF resources before runtime retrieval and can there-
fore neither facilitate on-the-fly similarity calculation
nor do they provide extensive SPARQL-based query
options.
Another interesting engine category are on-the-fly
Linked Data IR systems. These systems process in-
formation from the LOD cloud through spreading ac-
tivation algorithms. While they enable fast retrieval,
the downside of these approaches is that graph-based
query constraints are only possible to a limited ex-
tent due to the applied probabilistic path traversal tech-
niques [16, 17, 28, 33, 35, 56].
Existing LDRS, on the other hand, mostly perform
offline computation of item-to-item similarities from
LOD metadata descriptions. While this approach of-
fers more control over the retrieval process, it pre-

vents individual customizations and runtime responses
[12, 13, 22, 24, 29, 50, 64].
To this date, there are only a few query-based LDRS
[5, 43, 49]. Most of these systems rely on the assump-
tion that user preferences and item metadata reside in
the same repository. But this goes against the notion of
the LOD cloud as a decentralized and openly accessi-
ble data space, which can be queried through API-like
interfaces. Additionally, while query-based LDRS pro-
vide SPARQL-based query options to filter recommen-
dation results, they are not capable to flexibly combine
similar resource retrieval with graph filters (e.g, sub-
querying with recommendation results).
In summary, existing non-Linked Data as well as
Linked Data-enabled retrieval and RS engines already
provide useful features for personalized resource ac-
cess. Nevertheless, the full potential of LOD for rec-
ommendation and search tasks has yet to be realized
(see Tab. 1). The novel query strategies of the SKOS-
Rec engine are attempts to tackle the previously out-
lined research gaps to improve existing RS as well as
to offer new search strategies for LOD repositories that
are guided by personal preferences.

3. The SKOS Recommender

3.1. System Overview

The SKOSRecommender is designed to consume
recommendation requests and was developed with the
help of the Apache Jena framework.2 A SKOSRec
query triggers a recommendation workflow, in which
similarity-based retrieval steps can be joined with
SPARQL-like filter expressions. Listing 1 shows the
syntax of the SKOSRec query language that needs to
be applied to formulate recommendation requests.

In the given grammar, underlined parts represent
SPARQL syntax elements that have been directly taken
from the latest W3C specification [21]. Words in cap-
ital letters denote query keywords, which are also
SPARQL expressions except for the ones listed in the
language parts SimProjection and ServiceIntegration.
As a regular SPARQL SELECT query, a SKOSRec
query always generates a table-like result set that con-
tains at least a mapping to a single variable. A detailed
explanation of each part of the SKOSRec grammar can
be found in the Appendix A of this paper.
Figure 1 depicts the overall architecture of the system

2https://jena.apache.org



4 L. Wenige et al. / Similarity-based Graph Queries

Table 1
Summary of existing retrieval and recommendation approaches

System Type LOD-enabled A: SPARQL-based queries B: On-the-fly similarity C: Flexible combination of
A and B

IR systems x x x x

Query-based RS x x X (X)

Index-based Linked
Data IR systems

X x x x

On-the-fly Linked
Data IR systems

X x X x

LDRS X x x x

Query-based LDRS X X x x

Listing 1 Grammar of the SKOSRec query language
SKOSRecQuery : : = Prologue S e l e c t P a r t ? S i m P r o j e c t i o n PREF I t e m P a r t + RecWhereClause ?
S e l e c t P a r t : : = SELECT ( DISTINCT | REDUCED) ? Var+ RecWhereClause

LimitClause? A g g r e g a t i o n ?
A g g r e g a t i o n : : = AGG IRIref Var (SUM | MAX | AVG )
S i m P r o j e c t i o n : : = RECOMMEND Var TOP INTEGER S e r v i c e I n t e g r a t i o n ?
S e r v i c e I n t e g r a t i o n : : = FROM SERVICE IRIREF
I t e m P a r t : : = ( V a r P a r t | IRI ) Sim?
V a r P a r t : : = [ Var RecWhereClause ]
Sim : : = SIM R e l a t i o n DECIMAL
R e l a t i o n : : = ( > | >= | = )
RecWhereClause : : = WHERE RecGroupGraphPa t t e rn
RecGroupGraphPa t t e rn : : = ’{ ’ RecGroupGraphPa t t e rnSub ’} ’
RecGroupGraphPa t t e rnSub : : = TriplesBlock? ( R e c G r a p h P a t t e r n N o t T r i p l e s ’ . ’ ? TriplesBlock?)∗
R e c G r a p h P a t t e r n N o t T r i p l e s : : = RecGroupOrUnionGraphPat te rn | R e c O p t i o n a l G r a p h P a t t e r n |

RecMinusGraphPa t t e rn | Filter | Bind | InlineData
RecGroupOrUnionGraphPa t te rn : : = RecGroupGraphPa t t e rn ( ’UNION’ RecGroupGraphPa t t e rn )∗
R e c O p t i o n a l G r a p h P a t t e r n : : = ’OPTIONAL’ RecGroupGraphPa t t e rn
RecMinusGraphPa t t e rn : : = ’MINUS’ RecGroupGraphPa t t e rn

with all its components. The most important parts are
the SKOSRec query processing units (i.e., the parser
and the compiler). They check the syntax of recom-
mendation requests and regulate the correct execu-
tion of critical operations of the engine (e.g., graph-
based filtering, result set joins, similarity calculation).
The architecture does not dictate a particular SPARQL
server implementation for LOD repositories since the
system is decoupled from the endpoint that is accessed
over HTTP during retrieval. However, the prototypi-
cal implementation of the SKOSRec engine utilizes the
OpenLink Virtuoso server.3.

Fig. 1 also shows the sequential order of a typical
recommendation workflow for a complex request that
consists of the following retrieval steps:

1. Issuing a SKOSRec query
2. Parsing the SKOSRec query

3https://virtuoso.openlinksw.com/

3. Loading information on the LOD repository/S-

PARQL endpoint to be queried from the config-

uration

4. Retrieval of preferred items and setting up of the

user profile (see Subsect. 3.3 Preference Query-

ing)

5. Optimization of the retrieval process through

workload reduction

6. Determination of similar LOD resources based

on the user profile (see Subsect. 3.2 On-the-Fly

Recommendations

7. Ranking of LOD resources

8. Sending of recommendation results to the com-

piler and joining them with postfilter statements

9. Retrieval of the final result set (see Subsect. 3.5

Postfiltering & Combinations)

10. Output to the user



L. Wenige et al. / Similarity-based Graph Queries 5

Fig. 1. Architecture and workflow of the SKOSRec engine

3.2. On-the-Fly Recommendations

A simple on-the-fly request is the most basic form of
a SKOSRec query. It is based on the engine’s ability to
generate ad-hoc recommendations from a user profile
containing preference statements for LOD resources.
Listing 2 depicts an example SKOSRec on-the-fly re-
quest that obtains suggestions based on a user’s pref-
erence for the western movie “They Call Me Trin-
ity”. In the given query, the preferred movie is rep-
resented by the DBpedia resource (dbr:They_Call_
Me_Trinity). The shown query also contains a prefix
with a namespace declaration and a specification re-
garding the number of suggestions the engine should
generate.

Listing 2: A simple recommendation query for the
movie domain (Q1)

PREFIX dbr: <http://dbpedia.org/resource/>

RECOMMEND ?movie TOP 5
PREF dbr:They_Call_Me_Trinity

In this basic form, the query does neither con-
tain any pre- or postfilter conditions nor a preference
query statement. Thus, the engine simply identifies all

movies that are similar to the preference in the profile.
When executed over DBpedia, the query returns the
solution set that is depicted in Table 2.

Table 2
Result set for Q1

?movie
dbr:God_Forgives...’_I_Don’t!
dbr:Ace_High_(1968_film)
dbr:Boot_Hill_(film)
dbr:Trinity_Is_Still_My_Name
dbr:Troublemakers_(1994_film)

For determining recommendations in an ad-hoc
fashion, the system identifies SKOS annotations by
matching a suitable property (i.e., annotation property)
in an RDF dataset (Definition 1).

Definition 1 (Annotation property). An annotation
property is an IRI (Listing 3), that is defined in the
Dublin Core Metadata Initiative (DCMI) specification
for subject annotations. It can occur in conjunction
with one of the two namespaces, which are stated by
the standard [15].

Listing 3: Annotation property

<ANNOT.PROP> ::= dc:subject | dct:subject

dbr:God_Forgives...'_I_Don't!
dbr:Ace_High_(1968_film)
dbr:Boot_Hill_(film)
dbr:Trinity_Is_Still_My_Name
dbr:Troublemakers_(1994_film)


6 L. Wenige et al. / Similarity-based Graph Queries

These properties help to retrieve SKOS annotation
triples for items preferred by a user (Definition 2).

Definition 2 (SKOS annotation triple). A SKOS anno-
tation triple (st) is a triple that is comprised of an IRI
in the subject position, an annotation property (AN-
NOT.PROP) as predicate and a concept c in the object
position. The concept is part of a knowledge organiza-
tion system S in SKOS format (C = {c | c ∈ S }) (Eq.
1).

st ∈ I × <ANNOT.PROP>×C (1)

The identification of SKOS annotation triples facil-
itates a fast retrieval of potential similar items. There-
fore, the engine evaluates shared features between re-
sources from the SKOS annotation dataset (Definition
3).

Definition 3 (SKOS annotation dataset). A SKOS an-
notation dataset (AD) is a subset of an RDF dataset
that contains SKOS annotation triples (Eq. 2).

AD ⊂ I × <ANNOT.PROP>× C (2)

Before the similarity calculation process starts, the
engine determines SKOS annotations for each LOD
resource (r) from the user profile by issuing a sub-
sequent SPARQL query to the LOD repository from
which the user intends to receive suggestions. The no-
tion of SKOS annotations is specified in Definition 4.

Definition 4 (SKOS annotations). In the annotation
dataset, LOD resources directly link to concepts of
a SKOS system via a predefined annotation property.
SKOS annotations for an input resource r are defined
as in Equation 3.

Annot(r) = {c ∈ S | ∃(r,<ANNOT.PROP>, c) ∈ AD} (3)

Afterwards, the engine identifies which of the other
resources in the dataset shares annotations with it.
Similarities only have to be computed for items with
matching concepts [13, 52]. Therefore, triples can
be efficiently joined along item features, since native
RDF storage systems usually index triples rather than
columns [41]. Thus, the quick identification of mu-
tual annotations through SPARQL requests facilitates
ad-hoc similarity calculation. Definition 5 specifies the
notion of relevant resources and their annotations that
are needed to identify similar items. The applied syn-
tax follows Pérez et al. [42].

Definition 5 (Relevant resources and their annota-
tions). The conjunctive graph pattern Pr matches all
items and subjects that are potentially relevant for rec-
ommendation retrieval (Eq. 4).

Pr = (r,<ANNOT.PROP>, ?c) AND (?q,<ANNOT.PROP>, ?c)

(4)

The mapping Ωr of relevant resources and their
SKOS annotations is obtained by retrieving all re-
sources q that share at least one SKOS concept c with
resource r from AD (Eq. 5). The corresponding result
set contains mappings for all variables (i.e., ?c and ?q)
in the triple statements of Pr.

Ωr = [[Pr]]AD (5)

Upon extraction of relevant resources and annota-
tions, the process of similarity calculation can start.
The engine determines the information content (IC) of
the shared SKOS annotations of two resources. This
approach is based on the hybrid similarity metric pro-
posed by Meymandpour and Davis for LOD-enabled
RS [37]. However, while their measure considers all
types of IRI resources for the retrieval, our similarity
metric purely relies on SKOS annotations (Definition
6).

Definition 6 (SKOS similarity). Let Annot(r) be the
set of SKOS features of resource r and Annot(q) the set
of SKOS features of resource q and q ∈ {µ(?q) | µ ∈
Ωr}, then their similarity can be derived from the IC of
their shared concepts Cshared = Annot(r) ∩ Annot(q)

sim(r, q) = IC(Cshared) (6)

The IC of a set of SKOS concepts is measured by
the sum of the inverse logarithms of each concept’s fre-
quency in relation to the maximum frequency among
relevant resources (Definition 7).

Definition 7 (SKOS Information Content). The SKOS
IC is defined as an aggregation of the individual IC
values of each concept that is contained in the set of
shared features (c ∈ Cshared), where f req(c) is the
frequency of c among all relevant resources and n is
the maximum frequency among these resources. The fi-
nal similarity score of two resources r and q is deter-



L. Wenige et al. / Similarity-based Graph Queries 7

mined by summating the IC values of each concept of
the shared feature set.

IC(Cshared) = −
∑

c∈Cshared

log
(

f req(c)

n

)
(7)

After having obtained resource annotations as well
as IC values, similarity scores between the input re-
source r and each potentially relevant resource q can
be calculated. When a user profile contains more than
a single item, similarity values are aggregated through
summation to determine the final recommendation
score (Definition 8).

Definition 8 (Recommendation score). The recom-
mendation score of a potentially relevant resource q is
quantified by the sum of similarities with each resource
r that can be found in the profile (Pr).

score(Pr, q) =
∑
r∈Pr

sim(r, q) (8)

Upon calculation of similarity values for each po-
tentially relevant item q, the engine ranks the retrieved
resources based on a given limit (k) that is specified by
the user in the SKOSRec query.
With the presented methods of on-the-fly retrieval, rec-
ommendations can be generated from LOD reposito-
ries through an API interface without requiring lo-
cal metadata or excessive preprocessing operations
other than the mapping of profile items with LOD re-
sources.4

3.3. Preference Querying

In the previous subsection, it was assumed that users
express their tastes in the form of preference state-
ments for a certain item in the form of an IRI refer-
ring to a LOD resource. However, it may also be the
case that likings are only vaguely known, for instance,
when users prefer products with specific features but
are not able or willing to specify the actual items.
The engine obtains such a profile by issuing a sub-

4Di Noia et al. describe, how a mapping procedure can be
conducted for a real-world implementation. For their LDRS, they
matched movie titles with the corresponding LOD resources in DB-
pedia. The authors extracted IRIs, labels and publication dates for
all movie resources. They applied the Levenshtein distance on these
resources to identify matching movies items [13].

sequent SPARQL query that contains the preference
graph pattern (Ppre f ) in the WHERE condition. Sup-
pose a user is interested in Quentin Tarantino movies
(dbr:Quentin_Tarantino), but does not specify the
precise items he likes. He could send a preference
query to the SKOSRec engine. The graph pattern in
the request would match all movies that are con-
nected to dbr:Quentin_Tarantino with the prop-
erties dbo:director or dbo:producer (see Listing
7).

Listing 4: SKOSRec query to generate recommenda-
tions based on a preference query in the movie domain
(Q2)

PREFIX dbr: <http://dbpedia.org/resource/> .
PREFIX dbo: <http://dbpedia.org/ontology/> .

RECOMMEND ?movie TOP 5
PREF [ ?prefMovie
WHERE {
{?prefMovie dbo:director dbr:Quentin_Tarantino .}
UNION
{?prefMovie dbo:producer dbr:Quentin_Tarantino .}
} ]

Table 3.5 shows the corresponding solution set to
the preference query containing films from DBpedia
that are similar to Quentin Tarantino movies.

Table 3
Result set for Q2

?movie
dbr:The_Godfather_Part_II
dbr:The_Prestige_(film)
dbr:The_Dark_Knight
dbr:Planet_Terror
dbr:Clerks

The notion of a queried profile is specified in Defi-
nition 9.

Definition 9 (Queried profile). A queried profile is a
user profile that has been compiled by retrieving all
LOD resources r that are part of an annotation graph
AD and are contained in the solution mappings result-
ing from the evaluation of a specified graph pattern
(Ppre f ) over a dataset D (Eq. 9).

Pr = { µ(?r) | µ ∈ [[Ppre f ]]D, ?r ∈ dom(µ), r ∈ AD}

(9)

dbr:The_Godfather_Part_II
dbr:The_Prestige_(film)
dbr:The_Dark_Knight
dbr:Planet_Terror
dbr:Clerks


8 L. Wenige et al. / Similarity-based Graph Queries

3.4. Prefiltering

To facilitate exploratory search in LOD reposito-
ries, users should also have the option to formulate
conditions in their queries. A possible way to enable
filters during retrieval is before similarity calculation.
Thus, recommendation lists can be adjusted to individ-
ual needs.
Due to the expressiveness of RDF data, filter condi-
tions can not only be applied on attributes that are di-
rectly connected to potentially relevant items but can
also be declared as a graph pattern. By this means, it is
possible to retrieve LOD resources that are both simi-
lar to the user profile as well as fulfill an advanced con-
dition.
The strengths of the approach will be illustrated with a
travel recommendation request that was executed over
DBpedia. Suppose a customer expressed a preference
for the Lake Baikal region (e.g., as indicated by a pos-
itive rating on a travel community site). With simple
on-the-fly retrieval, he would receive a recommenda-
tion list that primarily consists of travel destinations
that are located in the proximity to this geographical
area. A graph-based filter, on the other hand, facili-
tates advanced retrieval options. In the given example,
it enables the user to obtain suggestions for Southeast
Asian travel destinations that have similar features as
the Lake Baikal region, even though the resource dbr:
Lake_Baikal is not directly connected to any desti-
nation with the annotation dbc:Southeast_Asia but
can only be identified by exploring the surrounding
graph structure of the filter attribute.
The advanced constraint ensures that the generated
result set is not empty. A simple attribute-level fil-
ter, which is commonly utilized in faceted search sys-
tems, would not generate any search hits. By these
means, graph-based filter patterns can help users to
better explore knowledge graphs thereby overcoming
data quality issues in LOD repositories. The corre-
sponding SKOSRec query to this example is shown in
Listing 5.

Listing 5: SKOSRec query with an expressive pre-
filter condition to retrieve Southeast Asian destinations
based on a preference for the Lake Baikal region (Q3)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

RECOMMEND ?destination TOP 5
PREF dbr:Lake_Baikal
[ WHERE
{ ?destination dbo:country ?country.

?country dct:subject ?countrySubject.
?countrySubject skos:broader* dbc:Southeast_Asia.
?destination rdf:type dbo:Place.

}]

Table 3.4 shows the solution to this query. It con-
tains travel destinations and regions of interest that
are both similar to the previously liked destination
dbr:Lake_Baikal and are located in Southeast Asia.
Ecoregions around lakes, rivers or mountains from
Southeast Asian countries, such as Cambodia, Vietnam
or Malaysia are presented to the user.

Table 4
Result set of Q3

?destination
dbr:Tonle_Sap
dbr:Mekong
dbr:Mount_Kinabalu
dbr:Laguna_de_Bay
dbr:Lake_Toba

The technical details for this type of query are given
in the following definitions. Before the extraction of
relevant resources and annotations, the recommenda-
tion engine identifies the resources that satisfy the fil-
ter. (Definition 10).

Definition 10 (Prefiltered resources). The mapping of
filtered resources Ωpre f ilter is obtained by matching a
specified graph pattern (P) to the RDF graph of a
dataset D (Eq. 10).

Ωpre f ilter = { µ|?q | µ ∈ [[P]]D} (10)

After preselection, resources are brought together
with user profile data to retrieve the final set of recom-
mendations (Definition 11).

Definition 11 (Annotations and relevant resources
(prefiltered retrieval)). The solution mappings of an-
notations and relevant resources in prefiltered retrieval
mode is obtained by joining the set of prefiltered re-

dbr:Tonle_Sap
dbr:Mekong
dbr:Mount_Kinabalu
dbr:Laguna_de_Bay
dbr:Lake_Toba


L. Wenige et al. / Similarity-based Graph Queries 9

sources with the mappings Ωr of all relevant resources
and annotations as determined from the user profile.

Ωpre = Ωpre f ilter ./ Ωr (11)

After retrieving annotations and relevant resources
in prefiltering mode, the system generates constraint-
based recommendations. In this context, the ranking
procedure is adapted to the restricted set of relevant re-
sources and annotations. Hence, IC values of match-
ing annotations and respective SKOS similarities are
quantified according to the user filter (Definitions 12
and 13). By this means, recommendation scores reflect
the similarity of items for the actual set of filtered LOD
resources.

Definition 12 (Conditional SKOS similarity). Let
Annot(r) be the set of SKOS features of r and Annot(q)
the set of SKOS features of resource q, which is con-
tained in the filtered set of annotations and relevant
resources (q ∈ {µ(?q)| µ ∈ Ωpre}), then the similarity
can be derived from the IC of their shared concepts
(Ccond = Annot(r) ∩ Annot(q)) (Eq. 12).

simcond(r, q) = IC(Ccond) (12)

Definition 13 (Conditional SKOS Information Con-
tent). The conditional IC of a set of SKOS annota-
tions is defined by the sum of the IC of each concept
c ∈ {µ(?c) | µ ∈ Ωpre}, where f reqcond(c) is the fre-
quency of c among all filtered resources and n is the
maximum frequency among these resources (Eq. 13).

IC(Ccond) = −
∑

c∈Ccond

log
(

f reqcond(c)

n

)
(13)

The system carries out the calculations (i.e., deter-
mination of similarity values, the ranking of LOD re-
sources) in the same way as in non-filtering mode.

3.5. Postfiltering & Combinations

The SKOSRec engine cannot only combine simi-
larity calculation and graph pattern matching to pre-
filter relevant LOD resources, it can also apply user
constraints after similar items have already been de-
termined. By this means, recommendations are filtered
ex-post to the similarity detection process. This fea-
ture enables novel retrieval patterns, in which sugges-
tions are part of a subquery. As an example scenario

Table 5
Result set of Q4

?director ?movie
dbr:Kirk_Douglas dbr:Scalawag_(film)
dbr:Kirk_Douglas dbr:Posse_(1975_film)
dbr:Kevin_Costner dbr:The_Postman_(film)
dbr:Kevin_Costner dbr:Dances_with_Wolves
... ...
dbr:Gene_Kelly dbr:Hello,_Dolly!_(film)
dbr:Gene_Kelly dbr:Invitation_to_the_Dance_(film)
... ...
dbr:Alan_Alda dbr:Goodbye,_Farewell_and_Amen
dbr:Alan_Alda dbr:Margaret’_s_Engagement
... ...
dbr:Steve_Buscemi dbr:Interview_(2007_film)
dbr:Steve_Buscemi dbr:Animal_Factory

for a postfilter recommendation task, consider the fol-
lowing SKOSRec query which obtains suggestions for
movies and directors based on a user’s preference for
the director dbr:Quentin_Tarantino (see Listing
6). For the given request, the engine would identify
similar directors based on Quentin Tarantino’s char-
acteristic features (e.g., geographic origin or awards
won) and would determine the movies these similar di-
rectors have shot. Thus, users may receive interesting
movie recommendations.

Listing 6: SKOSRec query to generate simple post-
filtered recommendations in the movie domain (Q4)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT ?director ?movie
WHERE {
?movie dbo:director ?director .
?director rdf:type yago:Director110014939 .
}
LIMIT 50
RECOMMEND ?director TOP 5
PREF dbr:Quentin_Tarantino

Table 6 shows the solution the SKOSRec system re-
turns when Q4 is issued against DBpedia. The ellipses
in the displayed tables indicate records that have been
excluded for brevity reasons.

However, this approach can still be improved upon.
For instance, the engine only considers the metadata
descriptions of the director, whereas related movies
have to be retrieved anew, upon execution of the post-
filter section. Thus, they are not ranked according to
similarity in the final output table.

dbr:Kirk_Douglas
dbr:Scalawag_(film)
dbr:Kirk_Douglas
dbr:Posse_(1975_film)
dbr:Kevin_Costner
dbr:The_Postman_(film)
dbr:Kevin_Costner
dbr:Dances_with_Wolves
dbr:Gene_Kelly
dbr:Hello,_Dolly!_(film)
dbr:Gene_Kelly
dbr:Invitation_to_the_Dance_(film)
dbr:Alan_Alda
dbr:Goodbye,_Farewell_and_Amen
dbr:Alan_Alda
dbr:Margaret'_s_Engagement
dbr:Steve_Buscemi
dbr:Interview_(2007_film)
dbr:Steve_Buscemi
dbr:Animal_Factory


10 L. Wenige et al. / Similarity-based Graph Queries

Another weakness is the biased semantics of the query.
Usually, when a person favors a movie director, this
preference refers to the movies this director has shot
and not to the personal features of the person. Two di-
rectors might be similar according to certain features
such as birth year, nationality or received awards, but
the style and genre of the movies they have created
can still be different. A third factor is that recommen-
dation retrieval for movie directors should also take
into account that a film artist is likely more relevant,
the more movies he/she has shot that are in line with
the preferred movies of the user. Hence, the SKOSRec
engine enables another postfiltering strategy, which is
called aggregation-based retrieval. This strategy can
be helpful whenever an entity type is linked to a cou-
ple of LOD resources in a dataset, such that similarity
scores of related entities (e.g., movies) can be aggre-
gated to an overall recommendation score for a certain
item (e.g., for a movie director).
Aggregation-based requests can be well combined
with other retrieval patterns, such as preference queries.
In the case of the movie recommendation scenario,
a user could state that he enjoyed Quentin Tarantino
movies in the past and would like to receive sugges-
tions for directors that shot similar film. Usually, this
kind of question can typically only be answered by
another human being, e.g., in a personal interaction
among friends or in an online forum. The fact that the
language facilitates these kinds of queries is one of its
key advantages.

Listing 7: SKOSRec query to generate post-filtered
recommendations based on a preference query in the
movie domain (Q5)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT ?director ?movie
WHERE {
?movie dbo:director ?director .
?director rdf:type yago:Director110014939 .
}
LIMIT 50
AGG dbr:Quentin_Tarantino ?director SUM
RECOMMEND ?movie TOP 100
PREF [ ?prefMovie
WHERE {
?prefMovie dbo:director dbr:Quentin_Tarantino .
} ]

Table 6
Result set of Q5

?director ?movie
dbr:Steven_Spielberg dbr:Indiana_Jones...
dbr:Steven_Spielberg dbr:Jurrasic_Park_(film)
... ...
dbr:Francis_Ford_Coppola dbr:The_Godfather_Part_II
dbr:Francis_Ford_Coppola dbr:The_Godfather_Part_III
... ...
dbr:Christopher_Nolan dbr:The_Prestige_(film)
dbr:Christopher_Nolan dbr:The_Dark_Knight
... ...
dbr:Robert_Rodriguez dbr:Planet_Terror
dbr:Robert_Rodriguez dbr:Machete_(film)
... ...
dbr:Kevin_Smith dbr:Clerks
dbr:Kevin_Smith dbr:Clerks_II

Table 6 depicts the results of Q5 as retrieved from
DBpedia. When comparing the solutions sets for Q4
and Q5, it becomes clear that they are totally dif-
ferent. While Q5 generated a list of directors, who
have mostly created action and thriller movies with a
twist (i.e., Tarantino’s unique filmmaking style5), Q4
provided a completely different output. It shows US
American actor-directors, whose movies range from
musical films (dbr:Hello,_Dolly!_(film)) to
western movies (dbr:Dances_with_Wolves) or
drama films (dbr:Interview_(2007_film)).
Thus, the directors in the solution table of Q4 (Tab.
5) seem rather arbitrary and not exceptionally helpful
concerning the initial user request.

The combined aggregation-based query can also be
described as a rollup request since suggestions are
based on preferences for sublevel entities. Another ex-
ample for a roll-up request stems from the application
scenario of travel search. This recommendation query
derives suggestions for city trip destinations from the
points of interest (POI) a user has visited and liked in
another city (e.g., London). Listing 8 shows the corre-
sponding SKOSRec query for this scenario.

5https://en.wikipedia.org/wiki/Quentin_Tarantino

dbr:Steven_Spielberg
dbr:Indiana_Jones...
dbr:Steven_Spielberg
dbr:Jurrasic_Park_(film)
dbr:Francis_Ford_Coppola
dbr:The_Godfather_Part_II
dbr:Francis_Ford_Coppola
dbr:The_Godfather_Part_III
dbr:Christopher_Nolan
dbr:The_Prestige_(film)
dbr:Christopher_Nolan
dbr:The_Dark_Knight
dbr:Robert_Rodriguez
dbr:Planet_Terror
dbr:Robert_Rodriguez
dbr:Machete_(film)
dbr:Kevin_Smith
dbr:Clerks
dbr:Kevin_Smith
dbr:Clerks_II


L. Wenige et al. / Similarity-based Graph Queries 11

Listing 8: SKOSRec query to generate post-filtered
recommendations (aggregation-based) for a preference
profile containing the city of London (Q6)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dul:
<http://www.ontologydesignpatterns.org...>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?city
WHERE {
?poi ?property ?city .
?city rdf:type dbo:City .
?property rdfs:subPropertyOf dul:hasLocation .
}
LIMIT 3
AGG dbr:London ?city SUM
RECOMMEND ?poi TOP 100
PREF
dbr:Oxford_Street
dbr:Notting_Hill
dbr:South_Bank

The SKOSRec request contains subquery com-
mands that refer to the user’s preferred POIs. It spec-
ifies, how similarity scores of the generated sugges-
tions should be aggregated (i.e., sum-based). The re-
trieval is based on the 100 POIs that are most simi-
lar to the ones in the preference section. Additionally,
the subquery part refers to the DBpedia resource that
represents London (AGG dbr:London ?city) thus
indicating that the list of recommendations should not
contain any POIs in this city. Upon processing the de-
picted query over the DBpedia repository, the engine
displays the three cities, for whom the highest aggre-
gated scores have been detected (see Listing 7).

Table 7
Result set of Q6

?city
dbr:Oxford
dbr:Abingdon-on-Thames
dbr:Wallingford,_Oxford

The motivation for formulating such a query is that
when searching for cities, preferences might be better
represented through the sights a user has visited else-
where rather than through a simple on-the-fly request
solely containing a preference statement for a city in
the user profile section.
Besides the above presented roll-up retrieval patterns,
the SKOSRec grammar may facilitate the formula-
tion of additional types of advanced recommendation
queries. For instance, cross-domain queries are an in-
teresting additional pattern to be explored for personal-

ized retrieval. Listing 9 shows an example request that
generates movie suggestions based on the preference
for a music band (i.e., dbr:The_Jackson_5).

Listing 9: SKOSRec query to generate cross-domain
recommendations (Q7)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?participated ?musicalAct
WHERE {
?movie rdf:type dbo:Film .
VALUES
{ dbo:basedOn dbo:musicComposer
dbo:genre dbo:starring }
{ ?musicalAct ?participated ?movie . }
UNION
{ ?movie ?participated ?musicalAct . }
}
LIMIT 10
AGG dbr:The_Jackson_5 ?movie MAX
RECOMMEND ?musicalAct TOP 100
PREF dbr:The_Jackson_5
WHERE {
VALUES ?actType { dbo:MusicalArtist dbo:Band }
?musicalAct rdf:type ?actType .
}

The query contains a prefilter condition that triggers re-
trieval of music artists and bands. Afterwards, the scores
of the top 100 suggestions are summarized with maximum-
based aggregation. Thus, the highest similarity value among
the set of music acts determines the ranking score of the
film. Also, note because of the aggregation-based retrieval
procedure, connections between movies and the LOD re-
source dbr:The_Jackson_5 are excluded from similar-
ity calculation. The scenario exemplifies, how semantic re-
lationships can help to generate suggestions for a target do-
main (i.e., movies) that are based on a profile containing
items from a different source domain (i.e., music acts). While
regular SPARQL queries perform exact matching of triple
statements, the SKOSRec syntax facilitates the integration
of similarity- and graph-based retrieval to enrich result lists
with other potentially relevant items.
As a point of reference, consider the SPARQL query for the
given cross-domain scenario (Listing 10).

The query omits the similarity calculation part. Thus, it
only retrieves movies linked to the resource dbr:The_
Jackson_5. By this means, the SPARQL results have a
better chance of being related to the initial user profile. On
the other hand, empty result lists can occur when the pre-
ferred LOD resource does not have any direct connections to
recommendable items. This assumption is backed up by the
result lists of the two queries (Tabs. 8 and 9): The SKOS-
Rec query produces a more comprehensive solution than a
regular SPARQL query.

The following of definitions will formalize the postfiltered
and aggregation-based retrieval forms. Definition 14 speci-

dbr:Oxford
dbr:Abingdon-on-Thames
dbr:Wallingford,_Oxford


12 L. Wenige et al. / Similarity-based Graph Queries

Listing 10: SPARQL query to generate cross-domain
recommendations (Q8)

PREFIX dbr: <http://dbpedia.org/resource/> .
PREFIX dbo: <http://dbpedia.org/ontology/> .
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

SELECT ?movie ?musicalAct
WHERE {
?movie rdf:type dbo:Film .
VALUES { dbo:basedOn dbo:musicComposer
dbo:genre dbo:starring }
{ dbr:The_Jackson_5 ?participated ?movie . }
UNION
{ ?movie ?participated dbr:The_Jackson_5 . } }
LIMIT 5

Table 8
Result set of Q7

?movie ?musicalAct
dbr:Moonwalker dbr:Michael_Jackson
... ...
dbr:The_Wiz_(film) dbr:Ashford_&_Simpson
dbr:Garfield_Gets_a_Life dbr:The_Temptations
dbr:Pipe_Dreams_(1976_films) dbr:Gladys_Knight_&_the_Pips
dbr:The_Jacksons:... dbr:Jermanine_Jackson

Table 9
Result set of Q8

?movie ?musicalAct
dbr:The_Jacksons:... dbr:The_Jackson_5

fies the notion of SKOSRec recommendations that may po-
tentially undergo postprocessing.

Definition 14 (SKOSRec recommendations). SKOSRec rec-
ommendations (R(Pr)) are the set of suggestions generated
by processing the solution mappings (Ω.) obtained from rec-
ommendation retrieval. They can be a result of simple on-
the-fly retrieval, prefiltering or a result of a combination of
these techniques. Pr represents the input profile that contains
at least one preference for an item. The cardinality of R(Pr)
is the intended number of recommendations (k) that is spec-
ified by the user, based on which the engine selects the re-
sources with the highest recommendation scores that are not
contained in the profile (Eq. 14).

R(Pr) = {x | x ∈ {q | score(Pr, q) > kmax
q∈Ω.

score(Pr, q), q /∈ Pr}}

(14)

The approach of subquerying with recommendation re-
sults builds on the idea that SKOSRec suggestions R(Pr) can
be joined with any graph pattern Ppost past to the process of

similarity calculation (Definition 15). It does not make a dif-
ference how the engine obtained these recommendations.

Definition 15 (Postfiltered recommendation mapping). The
postfiltered recommendation mapping is obtained by joining
solution mappings generated from SKOSRec recommenda-
tions with the results of matching a postfilter graph pattern
(Ωpost) (Eqs. 15 and 16).

Ωpost f ilter = {µ | µ ∈ [[Ppost]]D, ?x ∈ dom(µ)} (15)

Ωpost = {µ|?x | x ∈ R(Pr)} ./ Ωpost f ilter (16)

As the prefilter, Ppost can be comprised of triple state-
ments that are eligible in the RecGroupGraphPattern part of
the SKOSRec grammar. Aggregation-based queries have to
be treated differently than a regular postfilter request. Apart
from excluding sublevel items of the profile from the set
of similar resources, the engine should also omit any con-
nections between the preferred superordinate item (a) and
similar sublevel entities. Additionally, the user has to spec-
ify the variable in his profile (e.g., ?y) that represents the
items within the postfilter graph pattern Ppost. By this means,
aggregation-based recommendations can be generated (Def-
inition 16).

Definition 16 (Resources for aggregation-based retrieval).
The set of resources for aggregation-based retrieval is ob-
tained by retrieving LOD resources that have a connection
to a previously generated suggestion thereby excluding all
resources that are linked to the specified superordinate item
a in the profile (Eq. 17).

Ragg(a) = {µ(?y) | µ ∈ Ωpost , ?y ∈ dom(µ), a /∈ µ(?y)} (17)

For each potential aggregation-based suggestion (y), sim-
ilarity scores of connected entities (x) have to be considered
for the final ranking. In this context, different approaches
to aggregation can be applied. In cases when both similar
items and aggregation-based recommendations are entities
on comparable levels of granularity, then choosing the max-
imum similarity score might be the best way to represent the
relatedness of the resource to the user profile. On the other
hand, when postfiltered recommendations are based on sim-
ilarity scores of their sublevel entities (e.g., as in the movie
recommendation example), the scores of related suggestions
should be aggregated by the sum or the average of individual
scores.

Definition 17 (Aggregation-based ranking score). The rank-
ing score of an LOD resource y that is connected to a set of
recommended items is determined by aggregating scores of

dbr:Moonwalker
dbr:Michael_Jackson
dbr:The_Wiz_(film)
dbr:Ashford_&_Simpson
dbr:Garfield_Gets_a_Life
dbr:The_Temptations
dbr:Pipe_Dreams_(1976_films)
dbr:Gladys_Knight_&_the_Pips
dbr:The_Jacksons:...
dbr:Jermanine_Jackson
dbr:The_Jacksons:...
dbr:The_Jackson_5


L. Wenige et al. / Similarity-based Graph Queries 13

connected entities either by the maximum (Eq. 18), the sum
(Eq. 19) or the average (Eq. 20) of individual scores.

scoreaggMAX(y) = max
x∈µ(?x,y)

score(Pr, x) (18)

scoreaggS UM(y) =
∑

x∈µ(?x,y)

score(Pr, x) (19)

scoreaggAVG(y) =

∑
x∈µ(?x,y) score(Pr, x)

|x ∈ µ(?x, y)| (20)

4. Evaluation of the SKOS Recommender

4.1. Experimental Setup

The novel recommendation strategies of the SKOSRec en-
gine were evaluated in the context of web-based experiments
for the usage scenarios of travel destination search and mul-
timedia RS. The online approach helped to reach out to more
participants with diverse demographic backgrounds, which
would not have been possible in a laboratory experiment.
Another positive side-effect of the web-based setting was
that participants could test and rate recommendations with-
out being directly observed by an experimenter, which might
have caused biased results otherwise. Hence, the online ap-
proach softened common limitations of laboratory studies
[19].
The experiments were carried out in the defined usage
scenarios with metdata descriptions from DBpedia. The
database containing the local mirror of DBpedia ran on a vir-
tual server. Besides the triple store, a web application was
hosted on the same machine. The website ran on an Apache
Tomcat 7 application server and was implemented with the
help of Java servlet technology.6 ,7

We conducted the online experiments between April 2016
and January 2017. Upon setting up the web application, a
pretest was carried out to control for potential pitfalls, such
as misleading navigation. Two test users ran step by step
through the web interface and provided their feedback. Be-
cause of their insights, we slightly modified the interface
(e.g., through rephrasing user instructions) to increase the
chances of successful completion. In case the SKOSRec en-
gine is applied in a live setting, the design of the user inter-
face will have to be tested with more users. Our experimental
series focused on algorithmic performance, which was tested
with numerous participants.

6http://tomcat.apache.org/
7http://www.oracle.com/technetwork/java/javaee/servlet/index.html

Subjects were recruited through the clickworker.com plat-
form.8 Participants received a compensation fee of 1.00e or
1.50e for a completed survey. 103 participants took part in
the study on travel destination search. In the multimedia do-
mains, in total 154 subjects evaluated the SKOSRec engine.
For each part of the evaluation, it was ensured that partici-
pants had not just run through the evaluation screen. When-
ever there appeared to be irregularities in the log files (e.g.,
the default settings of the screen were not changed), these
assessments were excluded from further analysis. The sur-
vey template started with a consent form. It informed partic-
ipants about the context and the procedure of the study. Af-
ter having filled in the consent form, participants were nav-
igated to the first part of the experiment. It collected data
on subjects’ demographics and their consumption and search
habits. After the preparation phase, participants worked on
the first test case (TC1) in each usage scenario. In this test
case, the performance of the SKOSRec engine was assessed
in the simple execution mode of on-the-fly recommendations
(see Subsect. 3.2). It was done to gather data on the useful-
ness of suggestions resulting from a simple content-based
approach (i.e., baseline method), with which more advanced
recommendation strategies were compared at a later stage.
In cases, where users did not state any items, the application
showed an error page. While setting up a profile required
some effort on the side of the user, it was a necessary step
for the experiment. Since we did not have access to the log
files of a live application, profile generation had to be sim-
ulated. The process was facilitated by a specifically tailored
interface (see Fig. 2), where subjects could search for items
through an autocomplete field that applied AJAX technol-
ogy.9

It enabled users to type in keywords (e.g., the name of a
music act or the author of a book), for which matchings were
instantaneously displayed without reloading the site. Hence,
participants could quickly find and select their items of in-
terest. Whenever a user entered a query through the AJAX
interface, the system matched the query keywords against an
Apache Solr/Lucene search index.10 The index was built with
item metadata, which had been extracted from DBpedia prior
to setting up the website. The index comprised the names
and abstracts of items. Whenever available, information on
thumbnail pictures were saved in the index to be ready for
display in the AJAX interface. In case, the Apache Sol-
r/Lucene search engine found index keywords that matched
the user query, metadata information for these items were
immediately shown on the screen. This information was dis-
played to help participants make an informed decision on
whether the AJAX result list contained suitable items for pro-
file generation.
Aside from the AJAX feature, the appeal of the interface

8https://www.clickworker.de/
9http://api.jquery.com/jquery.ajax/
10http://lucene.apache.org/solr/



14 L. Wenige et al. / Similarity-based Graph Queries

Fig. 2. User profile generation, TC1 (music domain)

was increased by a progress bar at the top of the webpage
(see Fig. 2). Progress bars are commonly utilized tools for
web surveys. In conventional paper-based studies, subjects
usually see, how far ahead they are, while in a web survey
they cannot check their progress immediately. This is espe-
cially true for studies that apply a screen-by-screen naviga-
tion, which was the chosen approach for the conducted web
experiments. Progress bars prevent users from tiring of the
questionnaire and withdrawing from the study altogether by
showing, how close participants are to complete the experi-
ment [14].
Upon profile generation, the SKOSRec engine calculated on-
the-fly recommendations for a simple query (similar to Q1,
Sect. 3), which were shown to users in a separate screen.
Suggestions were displayed with a sufficient amount of in-
formation e.g., thumbnails, labels or a short description to
help participants assess the quality of the recommendation.
In addition to this information, users could also access the
respective Wikipedia article by following the hyperlink on
the label. Relevance sliders were used to assess the utility of
each recommendation. They are often applied in evaluations
of IR systems [51, 54]. Scores were handled as points on a
0 to 100 scale of the relevance slider (outer left side: lowest
relevance, outer right side: highest relevance, see Fig. 3).

This approach facilitated the calculation of an accurate
precision score and the application of tests with higher sta-
tistical power than an ordinal 5-star scale. The score, called
mean relevance (mrs), was measured with Equation 21.

mrs =

k∑
i=1

scorei

k
(21)

In addition to the precision score, the web application also
determined the size of the recommendation list produced by

the engine as an indicator for recall. However, recommenda-
tion list size can only be utilized for this purpose when mrs
scores reach a reasonable level.
While accurate recommendations are useful, because they
build trust in a system [57], they only capture a narrow as-
pect of performance [36]. For instance, an online retailer can
tremendously profit from an RS that provides both relevant
and unobvious recommendations, since it enables users to
explore the product catalog more thoroughly. On the other
hand, in the case of an RS only suggesting popular prod-
ucts, it is likely that the user already knows them [3, 23].
A pure accuracy-based evaluation disregards these aspects,
which is why other performance indicators, such as novelty,
were measured as well. Thus, the evaluation interface also
contained a section, where subjects had to tick a radio but-
ton that indicated, whether an item was new. In the backend
of the web application, novelty was measured as the ratio of
relevant items not familiar to the user (|#nov|) among the
total number of relevant items (|#tp|) (Eq. 22).

nv =
|#nov|
|#tp| (22)

An item was considered relevant, when it achieved an mrs
score of 50 or higher. In addition to novelty and diversity,
the web application also tracked the diversity of recommen-
dation lists since a topically diversified result set has been
found to increase overall user satisfaction [31, 65]. In the
RS literature, the most widely explored diversification met-
rics are the ones that measure the similarity between each
item pair in the recommendation list. The more the items are
alike; the less diverse is the result set [19]. The study series
of this paper applied the metric by Castells et al. [8]. It de-
termines item-to-item similarity values with the cosine sim-



L. Wenige et al. / Similarity-based Graph Queries 15

Fig. 3. Recommendations resulting from on-the-fly recommendation retrieval, TC1 (music domain)

ilarity measure. Scores are then converted to distance values
(Eq. 23) and averaged for the recommendation list (Eq. 24)

d(il, im) = 1− cos(il, im) (23)

divC =
2

k(k − 1)

∑
l<m

d(il, im) (24)

The content-based diversity scores (divC) were calculated
in the backend of the web application and saved in a log file
for each generated recommendation list of the SKOSRec en-

gine during runtime execution. In addition to the measure-
ment of divC scores, we asked participants about their opin-
ions on recommendation list diversity directly. Following the
RS evaluation framework by Pu et al. two Likert items were
posed for this purpose [44]:

– The recommendations of list [...] are diverse.
– The recommendations of list [...] are similar to each

other.

Besides the above listed algorithmic performance metrics,
the authors gathered assessments from users regarding the
overall usefulness of the suggestions. This approach is also
in line with the empirically verified evaluation framework by
Pu et al., which proposes to measure the psychometric con-



16 L. Wenige et al. / Similarity-based Graph Queries

struct of Perceived Usefulness to get a comprehensive under-
standing of user opinions on recommendation results. Thus,
participants were instructed to state their agreement to pos-
itive statements regarding the relevance of the suggestions
[44]. The statements were adapated to the specificities of
each usage scenario. Figure 4 shows an example collection
of Likert questions for the domain of music RS.

After participants had provided the required information,
their answers were saved in a log file and they were navi-
gated to test case 2 (TC2), which evaluated the SKOSRec
engine’s performance for constraint-based queries (similar
to Q3, Sect. 3). We tried to find out if the engine was able
to improve user satisfaction through filter conditions. Even
though IR systems already successfully apply facet filters
on result sets, the experiments still had to prove whether
LOD-enabled constraints have the same effect on the Per-
ceived Usefulness of recommendations. For the comparisons
of non-filtered and filtered suggestions, we applied a within-
subjects design, in which participants had to rate two recom-
mendation lists resulting from regular (non-filtered) and fil-
tered requests in TC2. We favored this setup over a between-
subjects design, where subjects would have been assigned to
only one result list. While the between-subjects design more
closely resembles a real-world setting since it does not re-
quire participants to interact with more than one approach
at a time, differences among subjects (e.g., regarding demo-
graphics or topic expertise) can potentially have a consider-
able impact on quality judgments [19]. Hence, when apply-
ing a between-subjects design one does not know whether
differences in performance are caused by the approaches or
by the variability among participants. Therefore, researchers
need to conduct between-subjects experiments with a suffi-
cient number of study subjects to level out these differences.
Within-subjects studies, on the other hand, require fewer
participants, while still achieving the same level of statisti-
cal power since between-subject variability is not an issue
[30, 31]. Beel et al. have shown that even small variations in
an RS test setting could cause substantial differences in per-
formance outcomes [6]. To keep the extent of variations even
lower, comparisons between non-filter and constraint-based
recommendations, were based on the same profile for each
user in TC2. Therefore, the user profile from TC1 served
as a starting point for filtered retrieval. The web application
showed the recently generated profiles to users and asked
them to provide an additional filter condition. Figure 5 de-
picts an example web form for a constraint-based recommen-
dation request in the music domain. It comprises the user
profile and an additional text field, where users stated their
constraint.

Afterwards, the engine applied this filter condition on the
set of potential recommendation results before similarity cal-
culation started. For each usage scenario, different types of
constraints were available. Regarding suitable filter options,
the author sought to achieve a balance between assisting
users in finding filter conditions that would adequately rep-

resent their information needs, while keeping the variabil-
ity among users as low as possible. Therefore, the specifici-
ties of each scenario and the availability of the respective
data sources were determined. For instance, for the multime-
dia domains (movie, music, and books) it was assumed that
users would like to filter recommendations according to the
specific genre of the item. Fortunately, the DBpedia dataset
contains this kind of information for the music domain. In
this domain, the genre can be retrieved through the proper-
ties dbo:genre. However, in the movie and book domains,
DBpedia does not provide sufficient information. Many LOD
resources, which represent books, were not assigned a genre.
In the movie domain, a genre property is missing entirely,
and genre-specific information can often only be found in the
subject categories describing the movie. Hence, in contrast
to the experiment on music recommendations, participants
in the domains of books and films did not filter their rec-
ommendation lists by genre. On the other hand, the property
dc:subject was applied as recommendation filter in each
multimedia domain. Since the subject property often links to
many informative features of multimedia items (e.g., release
period, geographic information or content information), the
author decided that this feature represents a powerful filter
dimension.
In the experiment on travel destination search, the web inter-
face offered two filters: a subject and a location-specific fil-
ter. The subject filter enabled users to state their preferences
regarding the characteristics of a location (e.g., being a na-
ture reserve). The location-specific filter, on the other hand,
gave participants the option to specify, where the desired des-
tination should be located.11

The second fundamental research issue of TC2 concerned
the question whether expressive constraints can boost rec-
ommendation quality even further. Hence, apart from ex-
ecuting a constraint-based workflow with a simple filter
(i.e., a direct attribute of an item), the SKOSRec engine
generated suggestions with the help of an expressive fil-
ter as well. This second procedure, while still applying the
same user constraint as the simple filter, utilized an ex-
pressive graph pattern to include additional LOD resources
in the result set. For instance, in case a subject filter was
selected, result set expansion was facilitated by exploring
the wider semantic space of the DBpedia category graph
through a property path declaration in the graph pattern
(e.g., skos:broader[,2]). In the travel experiment, an
additional expressive filter retrieved place-related informa-
tion (dul:hasLocation) for location-specific subprop-
erty relations that are not materialized in DBpedia. Hence,
the expressive graph pattern expanded the filter, such that
additional properties were matched (e.g., dbo:country,
dbo:city or dbo:state), while still applying the spec-
ified user constraint on the set of LOD resources. Upon ex-
ecution of constraint-based recommendation requests, users

11http://dbpedia.org



L. Wenige et al. / Similarity-based Graph Queries 17

Fig. 4. Evaluation screen for recommendations resulting from on-the-fly recommendation retrieval, TC1 (music domain)

received two recommendation lists (resulting from simple
and expressive filtering accordingly) in a separate evaluation
screen. Participants evaluated result sets in the same manner
as in TC1. For each result set, the screen contained an addi-
tional Likert item asking subjects to give their agreement to
the statement: “The filter has improved the recommendation
results of list...”. The sequence of suggestions resulting from
the different methods was randomly assigned in each user
session to avoid order effects.
After study subjects had completed TC2, they were navi-
gated to test case 3 (TC3). In the TC3 section of the travel
experiment, participants could choose between three similar
rollup query patterns (similar to Q6, Sect. 3). Users could ob-
tain recommendations for travel destinations based on POIs,
they had visited during the stay in another destination (i.e.,
a city, region or country). Upon entity type selection, the
SKOSRec engine generated appropriate suggestions. Figure
6 shows the web form from the travel experiment that facili-
tated the formulation of advanced rollup requests in TC3.

When users had selected an entity type, stated their fa-
vorite travel destination and three belonging POIs, the appli-
cation generated a SKOSRec query from these parameters.
A simple on-the-fly request was sent to the engine as well to
retrieve baseline recommendations, with which the sugges-
tions resulting from the advanced request were compared at

a later stage of the experiment. The simple query only con-
tained the user’s favorite travel destination and the selected
entity type option thus omitting information on the POIs.
During the travel experiment, the engine processed both the
simple and the advanced query and produced two recom-
mendation lists. As in the previous parts of the experiment,
participants assessed the quality of the result sets, which ap-
peared in random order on the screen.
The multimedia experiments also contained a section on
rollup retrieval (TC3). As the advanced travel queries, the
multimedia requests aggregated similarity scores of sublevel
entities through summation, which the engine joined with a
postfilter. In addition to these features, the pattern contained
a preference query part. This section identified a set of pre-
ferred items through a single user statement. Participants ei-
ther specified their favorite director/actor (music domain),
music act (music domain) or author (book domain) and re-
ceived recommendations based on the features of the works
created by the artist (similar to Q5, Sect. 3). The SKOSRec
engine generated recommendations based on the creative
works of the favored artist. Participants also received sug-
gestions from a simple on-the-fly query, which computed re-
sults according to the artist’s characteristics. As in the travel
experiment, recommendations from the advanced rollup re-
quest were compared with the on-the-fly query without let-



18 L. Wenige et al. / Similarity-based Graph Queries

Fig. 5. Web form for a contraint-based recommendation request (music domain)

Fig. 6. Travel - User profile generation, TC3

ting participants know which approach they were assessing
and through random assignment of result set positions.
After participants of the multimedia experiments had eval-
uated the results of TC3, they were guided to test case 4
(TC4), which evaluated cross-domain queries. The experi-
ment on travel RS ended with TC3 because no suitable graph
patterns could be identified to facilitate these kinds of sug-

gestions for the travel usage scenario. In the multimedia do-
main, however, the data from DBpedia was sufficient for this
retrieval task. The entity type of the study (i.e., movie, music
act or book) defined the source domain based on which the
engine generated suggestions for items from another multi-
media target domain (similar to Q7, Sect. 3). Figure 7 depicts
the cross-domain web form of the music experiment.



L. Wenige et al. / Similarity-based Graph Queries 19

Fig. 7. Music - User profile generation, TC4 (page 9)

The web form assisted subjects in formulating a request,
which then obtained movie suggestions based on the fa-
vorite music act of the user. Parameters from users were en-
tered in the placeholders of the query pattern in the back-
end of the application. We formulated the query templates
in such a way that the query engine matched any properties
or graph patterns that could potentially connect two items
from the specified target and source domains. For instance,
such matchings can occur when a user states his favorite
movie that is written by a particular author. In case the same
author has also written some books, they might be of in-
terest to the user as well. Another example stems from the
movie domain. Suppose in his/her profile; a consumer has
declared a preference for a movie that links to the corre-
sponding soundtrack. It might well be the case that the user
likes the soundtrack and the music acts that were involved in
creating it just as much as he/she likes the movie. The prac-
tice to distinguish homonymous LOD resources through the
property dbo:wikiPageDisambiguates is another in-
teresting linking pattern from DBpedia that was exploited for
cross-domain requests in TC4 since it connects similar enti-
ties (i.e., the book edition of a certain movie).
Cross-domain SPARQL queries (similar to Q8, Sect. 3)
were posed as baseline requests in this test case. While the
SPARQL query only matched cross-domain relations for a
single LOD resource, the SKOSRec request expanded the
search space by considering links from more than one item.
As in the previous test cases, TC4 ended with an evaluation
screen where users assessed the SPARQL-based as well as
the SKOSRec suggestions in random order without knowing
which recommendation list belonged to which method. Ta-
ble 10 gives an overview of the test cases and the methods
that were applied in the experiments in each usage scenario.

4.2. Results

The gathered samples from the experiments contained an-
swers from both genders with a slight overrepresentation of
male participants (53.7%). The prevailing number of study
subjects was between 20 and 40 years of age (65.8%). The
evaluation of the demographics section also revealed that the
majority of participants already perceives the search in their
domain of interest as either “manageable” (38.5%) or even

as “easy” or “very easy” (44.0%).
Prior to analyzing the performance results of the novel re-
trieval approaches of the SKOSRec engine, it was checked
whether the respective Likert items for Perceived Usefulness
and user-based diversity (divU) reached acceptable reliabil-
ity levels. For this purpose Cronbach’s α values were deter-
mined. Table 11 shows the outcome of this analysis for the
Perceived Usefulness construct. Given the acceptable values
throughout the domains, (Cronbachs’ s α > 0.7), it could be
treated as an interval-scaled variable in the statistical tests.

Besides usefulness, user-based diversity scores were also
measured by multiple Likert items. However, Cronbach’s α
values for this concept did not reach acceptable levels. In or-
der to avoid that valuable user assessments remained unused,
agreements to the statement „The recommendations of list
[...] are diverse “ were taken into account as an ordinal vari-
able (divU).
Based on these results, subsequent tests could be carried out.
The first part of the analysis concerned the performance of
the on-the-fly retrieval method (baseline) of the SKOSRec
engine in TC1. The outcome of this analysis confirms that
the on-the-fly approach represents a viable recommendation
strategy. Table 12 shows the mean (M)12, standard deviation
(S D) and number of participants (N) for each performance
dimension and metric. It can be seen that users assessed the
engine’s performance in almost each quality dimension to be
above mediocrity. Aside from the positive user evaluations
with regard to Perceived Uselfulness, related quality aspects,
such as Accuracy, Novelty and Diversity received good as-
sessments as well. For instance, each domain mean relevance
score (mrs) was higher than 50 score points. It means that
participants were often convinced of the relevance of the re-
sults. Given these positive user assessments with regard to
item relevance, it seems to be justified to consider the mean
of result list sizes as an indicator of recall. The engine was
able to generate the required number of recommendations in
almost each test case (see Tab. 12). The on-the-fly retrieval
approach was also tested with regard to the Novelty dimen-
sion. Table 12 shows the mean novelty scores (nv) for the

12In case of the user-based diversity score (divU), M denotes the
median, because of the ordinal scale of the variable.



20 L. Wenige et al. / Similarity-based Graph Queries

Table 10
Test Cases in the web experiments

Test Case Evaluation Purpose Query Type Travel Movie Music Book
TC1 On-the-fly Recommendations (Baseline) Q1 X X X X

TC2 Constraint-based Recommendations Q3 X X X X

TC3 Advanced Queries (Rollup) Q5, Q6 X X X X

TC4 Advanced Queries (Cross-Domain) Q7 x X X X

Table 11
Cronbach’s α values for the concept of Perceived Usefulness

Domain Cronbach α
Travel 0.7002

Movie 0.8579

Music 0.8515

Book 0.8949

baseline recommendation approach. Novelty scores indicate
that the majority of items in a result list were deemed to be
new in the travel and book RS, whereas in the experiments
on movie and music RS only one third of the recommenda-
tion list was unfamiliar to users. In contrast to that, content-
based Diversity scores (divC) were rather high in each do-
main. Hence, it can be concluded that items in a result set
usually have a low rate of matching SKOS annotations. In
addition to content-based scores, user assessments of recom-
mendation list Diversity (divU) were also taken into account.
The median level of agreement to the Diversity-related Lik-
ert item stating that recommendations are diverse lied at 3
(“neutral”) in the multimedia domains and at 4 (“agree”) in
the travel domain.
In summary, the baseline approach achieved fairly good
performance results in TC1. The findings demonstrate that
LOD-enabled recommendations can potentially enhance a
user’s search experience. They also allow for subsequent
tests of advanced retrieval techniques, which can be com-
pared to this standard method.

In the analysis of performance results from TC2 (constraint-
based recommendations), particular attention was paid to
participants’ agreements with the statement: “The filter has
improved the recommendation results of the list”. Figure
8 shows the distribution of domain-wise agreement ratios.
On average, they were fairly high. Throughout the domains,
the vast majority of participants either selected 5 (“strongly
agree”), 4 (“agree”) or 3 (“neutral”). Hence, a filter often had
a positive impact on results.

The authors gathered responses to the question on im-
provement for recommendation lists resulting from both the
simple and the expressive filtering approaches. Hence, they
give clues about the general performance of constraint-based
retrieval. However, since this section of the study revealed
the experimental condition to participants (i.e., application
of a filter), answers to the Likert statement have to be in-
terpreted cautiously. Results may be slightly biased as par-

Table 12
Performance results in TC1 (M = Mean, S D = Standard Deviation,
N = No. of participants)

Dimension (Metric)
[Max. Score]

Domain Results

M SD N

Accuracy (size) [10]

Travel 10.00 0.00 103
Movie 10.00 0.00 50
Music 10.00 0.00 53
Book 9.80 1.40 51

Accuracy (mrs) [1]

Travel 56.49 0.00 103
Movie 62.25 19.15 50
Music 55.70 0.10 53
Book 57.47 15.55 50

Novelty (nv) [1]

Travel 0.60 0.34 101
Movie 0.36 0.31 50
Music 0.36 0.39 52
Book 0.61 0.29 47

Diversity (divU) [5]

Travel 4 - 102
Movie 3 - 50
Music 3 - 53
Book 3 - 50

Diversity (divC) [1]

Travel 0.80 0.16 103
Movie 0.87 0.12 50
Music 0.86 0.10 50
Book 0.92 0.08 50

Usefulness [5]

Travel 3.34 0.85 103
Movie 3.55 0.73 50
Music 3.18 0.85 53
Book 3.43 0.81 50

ticipants were able to guess the underlying agenda. How-
ever, these limitations do not exist for comparisons between
simple and expressive filters. Since the web application ran-
domly assigned the list order, participants did not know
which approach they were assessing. This enables us to take
a closer look at the differences between the two filtering ap-
proaches. It was hypothesized that advanced filters improve
recommendation quality, as they may identify more relevant
resources thereby overcoming problems of data quality or
data sparsity in LOD repositories. Table 13 lists response
rates of the two methods. The rate measures the ratio of non-
zero result sets among all result sets. Throughout the do-



L. Wenige et al. / Similarity-based Graph Queries 21

0.00

0.25

0.50

0.75

1.00

Digital Library Travel Movie Music Book

Domain

P
er

ce
nt

ag
e 

of
 A

gr
ee

m
en

t

Degree of Agreement

1

2

3

4

5

"The filter has improved the recommendations of the list"

Fig. 8. Participants’ agreement with the statement that the filter has improved the result list (domain-wise) (TC2)

mains, recommendation lists resulting from expressive filter-
ing achieved higher response rates.

Table 13
Response Rates (TC2)

Domain Constr.-based
(Regular)

Constr.-based
(Expanded)

N

Travel 23% 57% 103

Movie 86% 88% 50

Music 72% 75% 53

Book 73% 76% 51

In addition to response rates, user assessments and scores
in the defined quality dimensions were compared. Table 14
depicts the outcome of this analysis. Significantly higher
scores are marked in bold figures. In case statistical tests
identified no meaningful variations, the results of the better
performing approach are underlined. A-levels were adjusted
with the false discovery rate (FDR) in order to decrease the
probability of making a type I error due to multiple testing.

According to mean scores, expressive requests generated
more comprehensive recommendation lists (size). This find-
ing is in line with the increased response rates shown in Table
13. However, subsequently conducted t-tests confirmed sig-
nificant differences only for the travel experiment (t(102) =
−7.89, p < 0.001). In contrast, precision scores were higher
in most of the domains (travel, movie, music), when the
SKOSRec engine processed a simple constraint-based query.
However, statistical tests did not confirm any systematic dif-
ferences. The authors applied Wilcoxon tests for mrs scores
and the remaining performance metrics, because of the small

sample sizes resulting from the low response rates of the sim-
ple constraint-based approach.
Regarding Novelty, none of the approaches was superior. In
the Diversity dimension, expressive filters generated sugges-
tions that were at least as topically diversified as the re-
sults from simple constraint-based retrieval. Even though no
significant differences were identified between the two ap-
proaches, increased mean scores (divU in the travel domain
and divC in each domain) indicate a slight superiority of ex-
panded filter requests in this quality dimension. The same ap-
plies to usefulness scores (mean values were higher in 3 out
of 4 domains, when expressive filtering was applied). How-
ever, these statements are speculative at best, because statis-
tical tests were not significant.
In summary, it can be concluded that expressive filters im-
prove recall, potentially leading to a slight loss in precision
scores (see Tab. 14). It may also be the case that expanded
user constraints diversify as well as increase the usefulness
of recommendation lists. However, these claims are unveri-
fied. In contrast, it is safe to say that expressive query pat-
terns generate results of at least the same quality as simple
patterns while increasing the number of relevant suggestions.
The few differences may be explained by the high Jaccard
scores (JI) (see Tab. 15) of recommendation lists. Through-
out the domains, result sets were much alike. Given these
similarities and the increases in list sizes for expressive fil-
ters, it is supposed that an expanded constraint produces an
enhanced version of the recommendation list resulting from
simple filtering. Therefore, expanded filters should be the de-
fault setting in a constraint-based retrieval context.



22 L. Wenige et al. / Similarity-based Graph Queries

Table 14
Performance results in TC2 (M = Mean, S D = Standard Deviation, N = No. of participants)

Dimension (Metric)
[Max. Score]

Domain Simple Expressive N

M SD M SD

Accuracy (size) [10]

Travel 1.17 2.70 4.52*** 4.62 103
Movie 6.72 4.08 7.20 3.92 50
Music 5.96 4.64 6.36 4.51 53
Book 4.59 4.50 5.00 4.51 51

Accuracy (mrs) [1]

Travel 66.73 20.51 65.34 22.36 23
Movie 60.95 22.98 60.29 22.79 43
Music 63.77 16.05 62.96 16.44 34
Book 56.17 18.18 56.81 16.81 37

Novelty (nv) [1]

Travel 0.48 0.41 0.61 0.49 21
Movie 0.44 0.36 0.55 0.80 42
Music 0.55 0.39 0.52 0.37 38
Book 0.77 0.34 0.76 0.33 33

Diversity (divU) [5]

Travel 3 - 3.5 - 24
Movie 4 - 4 - 43
Music 4 - 4 - 38
Book 3 - 3 - 37

Diversity (divC) [1]

Travel 0.68 0.18 0.72 0.21 19
Movie 0.70 0.24 0.73 0.23 41
Music 0.86 0.13 0.87 0.12 34
Book 0.84 0.24 0.95 0.63 29

Usefulness [5]

Travel 3.33 0.93 3.50 0.77 24
Movie 3.32 0.85 3.31 0.86 43
Music 3.55 0.81 3.64 0.78 38
Book 3.39 0.83 3.62 1.21 37

Table 15
Jaccard Indices (TC2)

Domain Mean Jaccard Index (JI) SD N

Travel 0.57 0.47 25

Movie 0.71 0.38 43

Music 0.82 0.35 37

Book 0.92 0.26 35

In TC3 (i.e., evaluation of roll-up query patterns), the
SKOSRec engine almost always generated non-empty rec-
ommendation lists (see Tab. 16). In the travel and the book
experiment, the response rate was higher for aggregation-
based queries, whereas in the movie domain, the engine more
often provided recommendations for regular requests. How-
ever, these differences are only marginal and do not indicate
a clear superiority of one method.

Figure 9 depicts participants general agreement to Lik-
ert statements concerning the Perceived Usefulness of the
approaches in TC3. The diagram shows similar results for
regular as well as advanced requests. On average, satisfac-
tion scores reached levels, which lay slightly above neutral

Table 16
Response Rates (TC3)

Domain Regular Aggr.-based N

Travel 99% 100% 103

Movie 96% 92% 50

Music 100% 100% 53

Book 96% 100% 51

agreement. A subsequent t-test confirmed no significant dif-
ferences between the two methods. In fact, the approach with
the highest average score of Perceived Usefulness was dif-
ferent in each experiment. While mean values were higher
for regular requests in the studies on travel and music RS,
advanced queries produced higher scores in the movie and
book experiments.

Content-based Diversity (divC) was the only metric with
systematic differences. Here, scores went up for advanced
retrieval patterns in the travel (t(98) = −5.50, p < 0.001),
the music (t(52) = −4.51, p < 0.001) and the book domain
(t(47) = −4.90, p < 0.001) (see Table 17). This finding
is not surprising, given that the aggregation-based approach



L. Wenige et al. / Similarity-based Graph Queries 23

0

1

2

3

Travel Movie Music Book

Domain

A
gr

ee
m

en
t

Method

Regular

Roll−up

Perceived Usefulness (Regular vs. Roll−up Queries)

Fig. 9. Participant’s overall satisfaction with regular and roll-up recommendation retrieval (TC3)

explores the wider semantic network of each item in the pro-
file.

Hence, it can be assumed that both approaches produce
recommendation lists of similar quality and can provide ben-
efits to potential consumers. It depends on the underlying in-
formation need, the respective domain and the available data
in the LOD repository, whether or not a particular approach
is better suited for a given retrieval task, since neither ap-
proach outperformed the other one. This conclusion is espe-
cially impressive, given the low mean Jaccard scores for rec-
ommendation lists resulting from regular and aggregation-
based retrieval (see Tab. 18). The mean score never exceeded
0.1 throughout the domains. It indicates a low concordance
between result sets. It is remarkable that participants per-
ceived the recommendations as equally good, given the high
dissimilarity of the lists. Thus, advanced queries have an
added-value, as they provide additional interesting results.
They can help to explore LOD repositories in different ways
than a regular retrieval approach. Therefore, it is worthwhile
to offer aggregation-based query patterns as an alternative re-
trieval strategy, when the regular approach has not produced
any helpful recommendations.

In addition to TC3, user assessments for TC4 (cross-
domain recommendations) were also evaluated. However,
since the authors conducted experiments for TC4 only in the
multimedia domains, the samples were considerably smaller.
Nevertheless, it is assumed that the amount of completed
user sessions is only just enough to conduct further statisti-
cal analyses. Table 19 shows the response rates for the two
retrieval methods. Cross-domain patterns had a higher suc-
cess rate of generating non-zero result sets throughout the

domains. Participants almost always received a recommen-
dation for this query type, whereas in case a regular SPARQL
query was executed, often they did not receive a single sug-
gestion at all.

We applied non-parametric tests for the performance met-
rics mrs, nv, divU, divC, and Perceived Usefulness, due
to the low response rates of the SPARQL-based approach,
which led to a low number of comparable data points accord-
ingly. Overall the FDR-adjusted pairwise Wilcoxon tests de-
tected no significant differences, except for user-based Di-
versity scores (divU) in the movie (Z = −2.69, p < 0.05)
and the book domain (Z = −2.56, p < 0.05). The results
for the content-based Diversity (divC) metric seem to point
in the same direction, because of the high mean values for
cross-domain queries in each domain. But the significance of
these results was not verified. The mrs scores indicate a bet-
ter performance of regular SPARQL queries, but the within-
subjects test did not confirm this assumption statistically (see
Tab. 20).

However, the most important finding of the analysis was
that SKOSRec cross-domain queries generated significantly
more suggestions throughout the domains. (movie: t(49) =
−17.92, p < 0.001, music: t(52) = −25.73, p < 0.001,
book: t(50) = −12.75, p < 0.001) (see Tab. 20). Figure 10
illustrates this graphically.

Whenever the SPARQL request provided recommenda-
tions, which was the case in less than half of the user sessions
(see Tab. 19), the SKOSRec suggestions were assessed to be
of almost equal quality as the SPARQL recommendations
(see Tab. 20, Usefulness). Hence, when SPARQL querying
did not produce any results in more than the other half of



24 L. Wenige et al. / Similarity-based Graph Queries

Table 17
Performance results in TC3 (M = Mean, S D = Standard Deviation, N = No. of participants)

Dimension (Metric)
[Max. Score]

Domain Regular Aggr.-based N

M SD M SD

Accuracy (size) [10]

Travel 9.90 0.99 9.42 2.07 103
Movie 2.88 0.59 2.76 0.82 50
Music 10.00 0.00 10.00 0.00 53
Book 2.88 0.59 3.00 0.00 51

Accuracy (mrs) [1]

Travel 48.21 24.98 44.93 25.59 102
Movie 54.58 22.88 56.69 25.42 44
Music 53.95 18.31 58.24 16.19 52
Book 51.53 23.90 49.25 22.30 49

Novelty (nv) [1]

Travel 0.43 0.39 0.38 0.40 98
Movie 0.35 0.38 0.28 0.41 41
Music 0.49 0.36 0.46 0.39 50
Book 0.61 0.42 0.62 0.44 47

Diversity (divU) [5]

Travel 3.5 - 3 - 100
Movie 4 - 3 - 43
Music 4 - 3 - 50
Book 3 - 3 - 48

Diversity (divC) [1]

Travel 0.79 0.17 0.89*** 0.13 99
Movie 0.75 0.20 0.66 0.27 44
Music 0.83 0.17 0.93*** 0.07 53
Book 0.74 0.27 0.93*** 0.06 48

Usefulness [5]

Travel 3.36 0.77 3.22 0.74 101
Movie 3.20 0.92 3.26 0.94 44
Music 3.45 0.84 3.44 0.85 51
Book 2.95 0.87 3.03 0.96 48

Table 18
Jaccard Indices (TC3)

Domain Mean Jaccard Index (JI) SD N

Travel 0.07 0.11 101

Movie 0.03 0.07 44

Music 0.02 0.05 53

Book 0.02 0.06 50

Table 19
Response rates (TC4)

Domain Regular (SPARQL) SKOSRec N

Movie 32% 96% 50

Music 62% 98% 53

Book 53% 100% 51

the test cases, the SKOSRec approach may still have pro-
vided useful suggestions. Therefore, it is reasonable to as-
sume that the capability of the SKOSRec engine to flexibly
switch between processing steps of similarity calculation and

0.0

2.5

5.0

7.5

10.0

Movie Music Book

Domain

N
o.

 o
f i

te
m

s

Method

Regular

Cross−Domain

Recommendation List Size

Fig. 10. Mean recommendation list sizes for SPARQL and SKOS-
Rec cross-domain requests (TC4)

pattern matching, can facilitate an improved exploration of
LOD repositories.

Table 21 also shows that the items in the two sets often
did not match, as is indicated by low Jaccard indices. This
finding further demonstrates that the execution of an addi-
tional step of similarity calculation can help to retrieve other
relevant items.



L. Wenige et al. / Similarity-based Graph Queries 25

Table 20
Performance results in TC4 (M = Mean, S D = Standard Deviation, N = No. of participants)

Dimension (Metric)
[Max. Score]

Domain Regular (SPARQL) Cross-Domain N

M SD M SD

Accuracy (size) [10]
Movie 0.82 2.09 8.66*** 2.73 50
Music 0.89 1.59 9.30*** 2.03 53
Book 2.90 3.98 10.00*** 0.00 51

Accuracy (mrs) [1]
Movie 67.41 27.62 53.65 14.71 16
Music 62.36 31.76 48.32 22.49 20
Book 66.42 21.28 55.59 16.84 27

Novelty (nv) [1]
Movie 0.59 0.49 0.41 0.34 16
Music 0.72 0.44 0.59 0.40 19
Book 0.54 0.41 0.63 0.30 27

Diversity (divU) [5]
Movie 3 - 4* - 16
Music 3 - 3 - 20
Book 3 - 4* - 27

Diversity (divC) [1]
Movie (0.64) (0.35) (0.99) (0.02) (6)
Music (0.90) (0.13) (0.98) (0.03) (10)
Book (0.84) (0.12) (0.87) (0.1) (8)

Usefulness [5]
Movie 3.57 0.83 3.35 1.57 15
Music 3.53 1.17 3.11 0.98 20
Book 3.41 1.04 3.41 0.94 27

Table 21
Jaccard Indices (TC4)

Domain Mean Jaccard Index (JI) SD N

Movie 0.03 0.07 44

Music 0.01 0.02 21

Book 0.16 0.27 33

5. Discussion & Future Work

This paper has presented the query-based SKOSRec en-
gine that facilitates new types of recommendation requests
for LOD repositories. The evaluations have shown that the
SKOSRec system can often generate relevant and useful sug-
gestions when certain query templates are utilized. In many
cases, the application of expressive or advanced query pat-
terns (i.e., in the context of constraint-based retrieval or
cross-domain requests) helped to significantly improve recall
values, while still providing the same level of quality in the
remaining performance dimensions. Additionally, advanced
recommendation requests can be used to generate diversified
recommendation lists, in case users are not satisfied with the
results of regular recommendation requests (i.e., roll-up or
cross-domain retrieval vs. regular requests). While not being
superior in each domain and test case, is at least safe to say
that the novel recommendation approaches of the SKOSRec
engine considerably extend common retrieval methods and
at least provide an alternative search strategy when conven-
tional methods fail to provide useful results. Additionally, the

increase in diversity and recall is in line with findings from
previous research on LOD-enabled RS [45].
It is a strength of the developed approaches that they facil-
itate combinations of graph-based and similarity-based re-
trieval at different stages of the recommendation workflow.
This feature extends general search capabilities for semantic
networks. It requires future research to investigate whether,
in addition to SKOS, further RDF vocabularies can be used
for ad-hoc item-to-item similarity computation to increase
the range of potential usage scenarios. It this context, it also
needs to be determined whether the representation of the user
profile in the SKOSRec query language can be substituted
with free-text expressions to enable search-like functionali-
ties. LOD researchers have already developed engines that
can process natural language queries over RDF data [59],
[34], [66]. It will have to be investigated how the SKOSRec
engine profitably fits into this landscape of existing retrieval
tools.
Another open research question concerns the aspect of in-
terfaces to other applications. In its standard configuration,
the system is not an end-user retrieval engine, but a back-
end application, with which an administrator, who has do-
main knowledge (e.g., of RDF vocabularies and data mod-
els of a particular LOD repository and usage scenario), cre-
ates the respective query patterns. Although the websites of
the online experiments represent possible implementations
of suitable end-user applications for the SKOSRec engine,
there are still many other possibilities and extensions to de-
sign such a user interface (UI). For instance, the selection of



26 L. Wenige et al. / Similarity-based Graph Queries

LOD items for the profile was made possible by previously
storing the data in an index that could then be accessed and
searched before issuing a recommendation query. However,
this runs against the idea of ad-hoc retrieval. In this context,
future research will have to determine whether it is feasible
to generate an on-the-fly mapping from items to the respec-
tive LOD resources. In the case of a commercial application,
the engine needs to match items with the corresponding en-
tries in the product catalog. Even if it is not yet clear which
UI components can make the best possible use of the SKOS-
Rec engine’s features, the results from the user experiments
can give at least a few suggestions.
The following retrieval options should be the default setting
in an interface that contains a LOD-enabled RS component
to assist users in finding interesting items: Since the reg-
ular approach of on-the-fly retrieval achieved good results
throughout the domains, the display of simple recommen-
dations generated from previously stated user preferences
represents a suitable starting point for retrieval. On-the-fly
queries could be refined by providing filter options. Since
the evaluations have shown that expressive constraints of-
ten lead to increased recall values, the application of such
a filter might be the best option for assisted retrieval. As
in the preparations for the experiments, appropriate graph-
based query patterns for the usage scenario in question would
also have to be determined by a domain expert before setting
up the application. The same applies to advanced retrieval
patterns, which should be available to the end user to refine
the query when both the simple as well as the constraint-
based approach have failed to provide relevant items. This
suggestion is made because roll-up queries were competi-
tive with regular recommendations in the web-based experi-
ments. Therefore, they represent a viable alternative retrieval
strategy. For some domains (e.g., for multimedia retrieval)
it is also possible to use an optional selection field to en-
able the formulation of cross-domain requests. Evaluations
for this query type suggest that users might receive interest-
ing results (i.e., diversified and comprehensive recommenda-
tion lists) from such a request.
The prototypical implementation and the evaluation of the
SKOSRec engine in different usage scenarios have demon-
strated that the freely available knowledge sources on the
LOD cloud can be successfully applied to advance LOD-
enabled retrieval approaches. The novel SKOS-based recom-
mendation methods proposed by this work, namely expres-
sive graph-based filters and advanced queries are promising
alternatives to existing retrieval strategies for semantic net-
works.

Appendix A. The SKOSRecommender Query
Syntax

SKOSRecQuery A SKOSRec query can be comprised of
up to six elements, of which the parts SimProjection

and ItemPart are obligatory. Hence, users need to state
at least their preferences and how many recommen-
dations they would like to receive. Advanced retrieval
patterns can be formulated as well. For instance, sim-
ilar resource retrieval can be combined with prefilter-
ing (RecWhereClause) and/or postfiltering (SelectPart)
of LOD resources. As in SPARQL, the query can start
with a prologue that abbreviates IRIs with namespace
declarations [21].

SelectPart The SelectPart part enables subquerying with
recommendation results. The surrounding query is
a SELECT query with a slightly simplified WHERE
clause (i.e., RecWhereClause), with which postfilter
conditions can be formulated. In this section users have
the option to formulate aggregation-based retrieval re-
quests (Aggregation).

Aggregation This query part handles aggregation-based
postfiltering. Users specify the IRI (IRIref ) resource,
for which similarity scores of sublevel entities are sum-
marized. Additionally, it is stated how the data should
be aggregated (i.e., SUM, MAX or AVG) as well as
which variable (Var) represents the aggregation-based
recommendations in the postfilter section. The com-
piler makes sure that this variable is actually contained
in the RecWhereClause of the SelectPart.

SimProjection This part of a SKOSRec query refers to the
list of generated suggestions. It defines the recommen-
dation variable to which all similar LOD resources are
mapped. In case pre- and postfilter conditions are set
in the other sections; the compiler checks whether the
variable (Var) appears in these sections as well. Other-
wise, the required join operations cannot be executed. It
is specified how many recommendations should be dis-
played (Integer) and whether the request will be issued
against a default repository or as a cross-repository re-
quest (ServiceIntegration).

ServiceIntegration This section indicates that a user in-
tends to receive recommendations from a different
SPARQL endpoint than the default endpoint that is
stated in the standard configuration of the SKOS-
Rec engine. It specifies the target SPARQL endpoint
(IRIref ), from which a user wants to receive recom-
mendations. Upon extraction of SKOS annotations
from the default source endpoint, a subsequent request
is sent to the specified target endpoint.

ItemPart This section of a SKOSRec query represents a sin-
gle preference in the user profile. However, recommen-
dation queries can contain a couple of preference state-
ments. A preference is either expressed as a LOD re-
source (IRIref ) or as a variable, which is bound to a
preference query (VarPart). In the latter case, the re-
sources are obtained by matching the graph pattern in
the VarPart with the triple statements in the reposi-
tory. The ItemPart statement can be additionally sup-
plemented with a concept-to-concept similarity thresh-



L. Wenige et al. / Similarity-based Graph Queries 27

old (Sim) that triggers concept expansion with the ap-
proach of flexible similarity detection, which is exten-
sively described in one of our previous works [63].

VarPart The construct initiates preference querying. Indi-
vidual likings are expressed as a graph pattern in a
RecWhereClause. The variable (Var) is a placeholder
for the LOD resources that will be used to set up the
user profile. The compiler has to make sure that the
specified variable occurs in the RecWhereClause as
well. Otherwise, the extraction of LOD resources can-
not be carried out correctly.

Sim The Sim part of a SKOSRec query denotes the threshold
of concept-to-concept scores for flexible similarity de-
tection. Even though knowledge-based similarity val-
ues usually range between 0 and 1, the specification al-
lows a broader range of digits in the Decimal datatype
to enable application of other similarity metrics, in case
they are needed.

Relation This section specifies, how concept-to-concept
similarity scores should be determined. Users can state
whether scores should be “larger”, “larger than” or
“equal to” the threshold value.

RecWhereClause This clause can occur in three different
sections of a SKOSRec query, i.e., either in the pre-
filter (ItemPart), the postfilter (SelectPart) or the pref-
erence filter section (VarPart). The RecWhereClause
closely resembles the “WhereClause” of the SPARQL
1.1 specification with all its subsequent parts [21].
Hence, it enables different combinations of graph pat-
tern matching. However, the RecWhereClause of the
SKOSRec language allows fewer pattern matching
expressions than the “WhereClause” of the regular
SPARQL syntax specification [21]. For instance, it is
neither permitted to formulate subqueries nor to direct
filter requests to more than one repository (see Rec-
GraphPatternNotTriples for further explanations). This
modification has been made to simplify similarity cal-
culation. After parsing this section, the compiler makes
sure that recommendation, preference or postfilter vari-
ables occur at least once in the RecWhereClause to
guarantee that subsequent steps of the recommendation
workflow can be applied on existing LOD resources.
In case the RecWhereClause comprises a RecMinus-
GraphPattern, it also has to be checked that the vari-
able is not only contained in the MINUS part of the
group.

RecGroupGraphPattern A RecGroupGraphPattern can
contain one to many basic graph patterns which can
be differently combined according to RecGroupGraph-
PatternSub.

RecGroupGraphPatternSub This section defines the graph
patterns that are applied to identify suitable LOD re-
sources. User filters can be either expressed as basic
graph patterns (TriplesBlock) or as combinations of

them (RecGraphPatternNotTriples). The sequence of
different kinds of patterns can be flexibly specified.

RecGraphPatternNotTriples This query part closely re-
sembles the similar named “GraphPatternNotTriples”
of the SPARQL 1.1 specification [21]. The only dif-
ference to SPARQL is that the RecGraphPatternNot-
Triples section is a little more restricted in terms of
admissible graph patterns than the “GraphPatternNot-
Triples” section of the regular SPARQL specification.
For instance, it does not allow to retrieve LOD re-
sources other than from the default graph that is speci-
fied in the configuration of the SKOSRec engine since
filter patterns have to be applied to datasets that contain
SKOS annotations. Hence, they need to be specified be-
fore runtime execution to ensure that similarity calcu-
lation can be carried out correctly. If a user was able
to formulate filter conditions that referred to different
RDF graphs and endpoints accordingly, this would not
be possible.

RecGroupOrUnionGraphPattern This query section marks
an alternative graph pattern in the style of the “Group-
OrUnionGraphPattern” of the SPARQL syntax speci-
fication [21]. However, it neither allows SPARQL-like
subqueries, nor federated queries for filtered resources,
because this would complicate similarity calculation.

RecOptionalGraphPattern In this part of a SKOSRec-
Query users are enabled to specify additional graph
patterns which might extend the query solution but do
not necessarily have to match the data.

RecMinusGraphPattern This section handles exclusion of
LOD resources for cases when users want to omit cer-
tain triple statements from the solution.

References

[1] G. Adomavicius, A. Tuzhilin.: Toward the next generation of
recommender systems: A survey of the state-of-the-art and pos-
sible extensions. In: IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[2] G. Adomavicius, A. Tuzhilin, R. Zheng: REQUEST: A query
language for customizing recommendations. In: Information
Systems Research, vol. 22, no. 1, pp. 99–117, 2011.

[3] C. Aggarwal: Recommender systems, Springer, 2016.
[4] M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska, D.

Zheleznyakov: Faceted search over ontology-enhanced RDF
data. In: Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management, pp. 939–948,
2014.

[5] V. Ayala, M. Przyjaciel-Zablocki, T. Hornung, A. Schätzle, G.
Lausen: Extending SPARQL for recommendations. In: Seman-
tic Web Information Management, 2004.

[6] J. Beel, C. Breitinger, S. Langer, A. Lommatzsch, B. Gipp:
Towards reproducibility in recommender systems research. In:
User Modeling and User-adapted Interaction. vol. 26, no. 1, pp.
69–101, 2016.



28 L. Wenige et al. / Similarity-based Graph Queries

[7] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole: CP-
nets: A tool for representing and reasoning with conditional ce-
teris paribus preference statements. In: Journal of Artificial In-
telligence Research (JAIR), vol. 21, pp. 135–191, 2004.

[8] P. Castells, S. Vargas, J. Wang: Novelty and diversity metrics for
recommender systems: choice, discovery and relevance, 2011.

[9] G. Cheng, W. Ge, Y. Qu: Falcons: searching and browsing en-
tities on the Semantic Web. In: Proceedings of the 17th ACM
International Conference on World Wide Web, pp. 1101–1102,
2008.

[10] J. Davies, R. Weeks: QuizRDF: Search technology for the Se-
mantic Web. In: Proceedings of the 37th Annual Hawaii Inter-
national Conference on System Sciences, 2004.

[11] DBpedia, URL: https://wiki.dbpedia.org/, 2017.
[12] T. Di Noia, R. Mirizz, V. Ostuni, D. Romito: Exploiting the

web of data in model-based recommender systems. In: Proceed-
ings of the 6th ACM Conference on Recommender Systems (Rec-
Sys), pp. 253–256, 2012.

[13] T. Di Noia, R. Mirizzi, V. Ostuni, D. Romito, M. Zanker:
Linked Open Data to support content-based recommender sys-
tems. In: Proceedings of the 8th International Conference on
Semantic Systems, 2012.

[14] D. Dillman, D. Robert, D. Bowker: Principles for construct-
ing web surveys. In: Joint Meetings of the American Statistical
Association, 1998.

[15] DCMI metadata terms, URL: http://dublincore.org/documents/
dcmi-terms/, 2004

[16] I. Fernandez-Tobias, I. Cantador, M. Kaminskas, F. Ricci:
A generic semantic-based framework for cross-domain recom-
mendation. In: Proceedings of the 2nd International Workshop
on Information Heterogeneity and Fusion in Recommender Sys-
tems, pp. 25–32, 2011.

[17] A. Freitas, J. Oliveira, S. O’Riain, E. Curry, J. Da Silva, C.
Pereira: Querying Linked Data using semantic relatedness: a vo-
cabulary independent approach. In: Natural Language Process-
ing and Information Systems, pp. 40–51, 2011.

[18] T. Grainger, T. Potter, Y. Seeley: Solr in ation. Cherry Hill:
Manning, 2014.

[19] A. Gunawardana, G. Shani: Evaluating recommender systems.
In: Recommender Systems Handbook. Springer, pp. 265–308,
2015.

[20] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M.
Bürgle, H. Düwiger, U. Scheel: Faceted Wikipedia search. In:
International Conference on Business Information Systems, pp.
1–11, 2010.

[21] S. Harris, A. Seaborne, E. Prud’hommeaux: SPARQL 1.1
query language. In: W3C recommendation, 2013.

[22] B. Heitmann, C. Hayes: Using Linked Data to build open, col-
laborative recommender systems. In: AAAI Spring Symposium:
Linked Data Meets Artificial Intelligence, pp. 76–81, 2010.

[23] J. Herlocker, J. Konstan, L. Terveen, J. Riedl: Evaluating col-
laborative filtering recommender systems. In: ACM Transac-
tions on Information Systems (TOIS), vol. 22, no. 1, pp. 5–53,
2004.

[24] Y. Hu, Z. Wang, W. Wu, J. Guo, M. Zhang: Recommendation
for movies and stars using YAGO and IMDB. In: 12th Inter-
national Asia-Pacific Web Conference (APWEB), pp. 123–129,
2010.

[25] D. Huynh, D. Karger: Parallax and companion: Set-based
browsing for the data web. In: Proceedings of the 18th ACM In-
ternational Conference on World Wide Web, 2009.

[26] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich: Recom-
mender systems: an introduction. Cambridge University Press,
2010.

[27] Y. Kabutoya, R. Sumi, T. Iwata, T. Uchiyama, T. Uchiyama. In:
IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology (WI-IAT), pp. 625–630, 2012.

[28] M. Kaminskas, I. Fernandez-Tobias, F. Ricci, I. Cantador:
Knowledge-based music retrieval for places of interest. In: Pro-
ceedings of the 2nd International ACM Workshop on Music In-
formation Retrieval with User-centered and Multimodal Strate-
gies, pp. 19–24, 2012.

[29] H. Khrouf, R. Troncy: Hybrid event recommendation using
Linked Data and user diversity. In: Proceedings of the 7th ACM
Conference on Recommender Systems, pp. 185–192, 2010.

[30] P. Kirk: Experimental design. John Wiley & Sons, 1982.
[31] B. Knijnenburg, M. Willemsen, Z. Gantner, H. Soncu, C.

Newell: Explaining the user experience of recommender sys-
tems. In: User Modeling and User-Adapted Interaction, vol. 22,
no. 4-5, pp. 441–504, 2012.

[32] G. Koutrika, B Bercovitz, H. Garcia-Molina: FlexRecs: ex-
pressing and combining flexible recommendations. Proceedings
of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, 2009.

[33] M. Lee, W. Kim: Semantic association search and rank method
based on spreading activation for the Semantic Web. In: IEEE
International Conference on Industrial Engineering and Engi-
neering Management, pp. 1523–1527, 2009.

[34] J. Lehmann, L. Bühmann: Autosparql: Let users query your
knowledge base. In: 8th Extended Semantic Web Conference
(ESWC), 2011.

[35] N. Marie, F. Gandon, M. Ribiere, F. Rodio: Discovery hub: on-
the-fly Linked Data exploratory search. In: Proceedings of the
9th International Conference on Semantic Systems, pp. 17–24,
2013.

[36] S. McNee, J. Riedl, J. Konstan: Being accurate is not enough:
how accuracy metrics have hurt recommender systems. In:
CHI’06 Extended Abstracts on Human Factors in Computing
Systems, 2006.

[37] R. Meymandpour, J. Davis: Recommendations using Linked
Data. In: Proceedings of the 5th PhD Workshop on Information
and Knowledge, 2012.

[38] A. Miles, S. Bechhofer: SKOS Simple Knowledge Organiza-
tion System Reference. In: W3C Recommendation, 2009.

[39] B. Mobasher, X. Jin, Y. Zhou: Semantically enhanced collab-
orative filtering on the web. In: Web Mining: From Web to Se-
mantic Web, pp. 57–76, 2004.

[40] A. Musetti, A. Nuzzolese, F. Draicchio, V. Presutti, E.
Blomqvist, A. Gangemi, P. Ciancarini: Aemoo: Exploratory
search based on knowledge patterns over the Semantic Web. In:
Semantic Web Challenge, 2012.

[41] T. Neumann, G. Weikum: The RDF-3X engine for scalable
management of RDF data. In: The VLDB Journal, vol. 19 no. 1,
pp. 91–113, 2010.

[42] J. Pérez, M. Arenas, C. Gutierrez: Semantics and Complexity
of SPARQL. In: 5th International Semantic Web Conference,
pp. 30–43, 2006.

[43] S. Policarpio, S. Brunk, G. Tummarello, G.: Implementation of
a SPARQL integrated recommendation engine for Linked Data
with hybrid capabilities. In: AImWD, 2012.

https://wiki.dbpedia.org/
http://dublincore. org/documents/dcmi-terms/
http://dublincore. org/documents/dcmi-terms/


L. Wenige et al. / Similarity-based Graph Queries 29

[44] Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework
for recommender systems. In: Proceedings of the 5th ACM Con-
ference on Recommender Systems, 2011.

[45] S. Oramas, V.C. Ostuni, T. Di Noia, X. Serra, E. Di Scias-
cio: Sound and music recommendation with knowledge graphs.
ACM Transactions on Intelligent Systems and Technology
(TIST), 8(2), 21. (2017).

[46] E. Oren, R. Delbru, S. Decker: Extending faceted navigation
for RDF data. In: 5th International Semantic Web Conference,
pp. 559–572, 2006.

[47] G. Pirro: Explaining and suggesting relatedness in knowledge
graphs. In: International Semantic Web Conference. pp. 622–
639. 2015

[48] G. Rizzo, R. Troncy: NERD: A framework for evaluating
named entity recognition tools in the Web of data. 10th Inter-
national Semantic Web Conference (ISWC’11), Demo Session,
Bonn, Germany. 2011.

[49] J. Rosati, T. Di Noia, T. Lukasiewicz, R. De Leone, A. Mau-
rino: Preference queries with Ceteris Paribus semantics for
Linked Data. In: OTM Confederated International Conferences,
pp. 423–442, 2015.

[50] T. Ruotsalo, K. Haav, A. Stoyanov, S. Roche, E. Fani, R. Deliai,
E. Mäkelä, T. Kauppinen, E. Hyvönen: SMARTMUSEUM: A
mobile recommender system for the Web of Data. In: Web Se-
mantics: Science, Services and Agents on the World Wide Web,
vol. 20, pp. 50–67, 2013.

[51] I. Ruthven, M. Lalmas, K. van Rijsbergen: Incorporating user
search behavior into relevance feedback. In: Journal of the As-
sociation for Information Science and Technology, vol. 54, no.
6, pp. 529–549, 2003.

[52] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, J: Item-based col-
laborative filtering recommendation algorithms. In: Proceedings
of the 10th International Conference on World Wide Web, 2001.

[53] M. Schmachtenberg, C. Bizer, H. Paulheim: Adoption of the
Linked Data best practices in different topical domains. In: In-
ternational Semantic Web Conference (ISWC), pp. 245–260,
2014.

[54] H. Schütze, C. Manning, P. Raghavan: Introduction to informa-
tion retrieval, Cambridge University Press, 2008.

[55] SparqlImplementations. URL: https://www.w3.org/wiki/
SparqlImplementations, 2016.

[56] M. Stankovic, W. Breitfuss, P. Laublet: Discovering rel-
evant topics using DBPedia. In: Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology, pp. 219–222, 2011.

[57] K. Swearingen, R. Sinha: Beyond algorithms: An HCI perspec-
tive on recommender systems. In: ACM SIGIR 2001 Workshop
on Recommender Systems, vol. 13, no. 5-6, 2001.

[58] D. Tunkelang: Faceted search. In: Synthesis Lectures on Infor-
mation Concepts, Retrieval, and Services, pp. 1–80, 2009.

[59] C. Unger, L. Bühmann, J. Lehmann, A. Ngonga Ngomo, D.
Gerber, P. Cimiano: Template-based question answering over
RDF data. In: Proceedings of the 21st ACM International Con-
ference on World Wide Web, 2012.

[60] C. Varnhagen, M. Gushta, J. Daniels, T. Peters, N. Parmar, D.
Law, T. Johnson: How informed is online informed consent? In:
Ethics & Behavior, vol. 15, no. 1, pp. 37–48, 2005.

[61] J. Waitelonis, H. Sack, H: Towards exploratory video search
using Linked Data. In: 11th IEEE International Symposium on
Multimedia, pp. 540–545, 2009.

[62] L. Wenige: Knowledge Organization Systems for Linked Data-
enabled on-the-fly recommendations.

[63] L. Wenige, J. Ruhland: Retrieval by recommendation: using
LOD technologies to improve digital library search. In: Interna-
tional Journal on Digital Libraries, 2017.

[64] F. Zarrinkalam, M. Kahani: A multi-criteria hybrid citation rec-
ommendation system based on Linked Data. In: 2nd Interna-
tional EConference on Computer and Knowledge Engineering
(ICCKE), pp. 283–288, 2012.

[65] C. Ziegler, S. McNee, J. Konstan, G. Lausen: Improving rec-
ommendation lists through topic diversification. In: Proceedings
of the 14th International Conference on World Wide Web, pp.
22–32, 2005.

[66] L. Zou, R. Huang, H. Wang, J. Yu, W. He, D. Zhao: Natu-
ral language question answering over RDF: a graph data driven
approach. In: Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 313–324, 2014.

https://www.w3.org/wiki/SparqlImplementations
https://www.w3.org/wiki/SparqlImplementations

	Introduction
	Related Work
	The SKOS Recommender
	System Overview
	On-the-Fly Recommendations
	Preference Querying
	Prefiltering
	Postfiltering & Combinations

	Evaluation of the SKOS Recommender
	Experimental Setup
	Results

	Discussion & Future Work
	Appendix A. The SKOSRecommender Query Syntax
	References

