
Semantic Web 0 (0) 1 1
IOS Press

Building Relatedness Explanations from
Knowledge Graphs
Giuseppe Pirrò a,*

a ICAR-CNR, Italian National Research Council, Rende (CS), Italy
E-mail: pirro@icar.cnr.it

Abstract. Knowledge graphs (KGs) are a key ingredient to complement search results, discover entities and their relations
and support several knowledge discovery tasks. We face the problem of building relatedness explanations, that is, graphs that
can explain how a pair of entities is related in a KG. Explanations can be used in a variety of tasks; from exploratory search
to query answering. We formalize the notion of explanation and present two algorithms. The first, E4D (Explanations from
Data), assembles explanations starting from all paths interlinking the source and target entity in the data. The second algorithm
E4S (Explanations from Schema) builds explanations focused on a specific relatedness perspective expressed by providing a
predicate. E4S first generates candidate explanation patterns at the level of schema; then, it assembles explanations by proceeding
to their verification in the data. Given a set of paths, found by E4D or E4S, we describe different criteria to build explanations
based on information-theory, diversity and their combination. As a concrete use-case of relatedness explanations, we introduce
relatedness-based KG querying, which revisits the query-by-example paradigm from the perspective of relatedness explanations.
We implemented all machineries in the RECAP tool, which is based on RDF and SPARQL. We discuss an evaluation of the
explanation building algorithms and a comparison of RECAP with related systems on real-world data.

Keywords: Knolwedge Graphs, Explanations, Patterns, Relatedness-based querying

1. Introduction

Knowledge graphs (KGs) storing structured data
about entities are becoming a common support for
browsing, searching and knowledge discovery activ-
ities [1]. Search engines like Google, Yahoo! and
Bing complement the classical search results with facts
about entities in their KGs. An even larger number
and variety of KGs, based on the Resource Descrip-
tion Framework (RDF) data format, stem from the
Linked Open Data project [2]. DBpedia, Freebase,
DBLP and Yago are just a few examples that witness
the popularity and spread of open KGs. KGs are a
type of heterogeneous information network [3] where
nodes represent entities and edges different types of
relationships. Using knowledge from KGs has appli-
cations in many domains including information re-
trieval [4], radicalization detection [5], twitter analy-

*Part of this work was done while the author was working in the
WeST group at the University of Koblenz-Landau, Germany.

sis [6], recommendation [7], clustering [8], entity res-
olution [9], and generic exploratory search [10]. One
common need for many classes of knowledge discov-
ery tasks is that of explaining the relatedness between
entities. The availability of (visual) explanations helps
in understanding why entities are related while at the
same time allowing to discover/browse other entities
of interest. The availability of explanations is useful
in several areas including: terrorist networks, to un-
cover the connections between two suspected terror-
ists [11]; co-author networks, to discover interlinks be-
tween researchers [12]; bioinformatics, to discover re-
lationships between biomedical terms [13]; generic ex-
ploratory search [10]. Fig. 1 (e) shows an excerpt of
explanation for the pair of entities (Metropolis, F. Lang)
obtained from the DBpedia KG. The explanation in-
cludes relationships among entities of different types
(e.g., Film, Actors, Cinematographer). We can see that R.
Klein-Rogge starred in Metropolis and other films (e.g.,
Destiny, Spione) all directed by F. Lang. We can also see
that T. von Harbou has been married with both R. Klein-

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:pirro@icar.cnr.it

2 Building Relatedness Explanations from Knowledge Graphs

Metropolis

starring

cinematography

Destiny

starring

Spione

director

Fritz
Lang

director

ci
ne
ma
to
gr
ap
hy

director

dire
ctor

starring

st
ar
ri
ngWalter

Ruttmann

Rudolf
Klein-Rogge

The Testament
of Dr. Mabuse

sta
rri

ng

Die Nibelungen

Thea
von Harbou

writer

writer

spouse

spouse

writer

wr
it
er

director

Metropolis Fritz Lang

director

Film Person

Explanation TemplateInput (a) (b)

PersonFilmPersonFilm directorcinematographycinematography
PersonWorkActorWork directorstarringstarring

PersonFilmPersonFilm directordirectorwriter

Candidates Explanation Patterns (c)
Fritz LangMetropolis directorstarringstarring

Fritz LangMetropolis
directorcinematographycinematography

Fritz LangMetropolis directordirectorwriter

Explanation Patterns Verification (d)(e)
Fig. 1. An excerpt of explanation from the DBpedia KG (left). Overview of the E4S algorithm (right).

Rogge and F.Lang and that she has written some films
with the latter. We can also notice that W. Ruttmann
has been the cinematographer for both Metropolis and
Die Nibelungen. The computation of relatedness expla-
nations is usually tackled by first discovering paths
that link entities in the data and then filtering them
(e.g., [14–19]). Our first explanation-building algo-
rithm called Explanations From the Data (E4D pre-
sented in Section 3) [10] follows the same philosophy.
However, to guarantee more generality and scalability
E4D is SPARQL-based. It reduces the problem of find-
ing paths to that of evaluating a set of (automatically
generated) SPARQL queries; thus, it can leverage any
SPARQL-enabled (remote) KG. However, working di-
rectly at the data level may have some shortcomings.
In fact, E4D and related research (e.g., [16, 19, 20])
do not allow to build focused explanations, that is, ex-
planations concerning a particular relatedness perspec-
tive. For pairs of entities interlinked by a large and
semantically diverse number of paths, it can be diffi-
cult to identify a precise subset of them that concerns
a specific knowledge domain; for instance, explaining
the relatedness between a pair of entities by focusing
on the domain of movies. The possibility to specify
a knowledge domain by providing one or more target
predicates can drive the explanation building process
toward data that concern these (and semantically re-
lated aspects) only.

To meet these needs, we introduce a second algo-
rithm called Explanations from the Schema (E4S pre-
sented in Section 4). E4S that starts from the KG
schema; the idea is to build explanation templates from
the entity types of the input pair along with a target
predicate. Fig. 1 (b) shows the explanation template for
the entity pair (Metropolis, F. Lang) when considering di-
rector as a target predicate. The explanation template
is then used to generate candidate explanation pat-

terns, that is, schema-compliant paths having as end-
points entity types (e.g., Film, Person) instead of entity
instances (e.g., Metropolis, F. Lang). As the search space
for candidate patterns can be very large, E4S leverages
a predicate relatedness measure to isolate the portion
of the schema that is most related to the target predi-
cate. Fig. 1 (c) shows some candidate explanation pat-
terns of length 3. These are all plausible ways to link
the input pair. We can see for instance, that a Work
(Metropolis is a Film, which is a subclassOf Work) has
some Actor starring in it. The same Actor starred other
Works whose director is a Person. Nevertheless, not all
explanation patterns will have a counterpart in the data;
they need to be verified to extract knowledge useful
to build an explanation. Fig. 1 (d) shows that only the
first two patterns are verified in the data. This can be
seen by looking at Fig. 1 (e) where we notice that
the first pattern leads from Metropolis to F. Lang via R.
Klein-Rogge and Spione or Destiny or The Testament of Dr.
Mabuse. As for the second patter, it leads from Metropo-
lis to F. Lang via W. Rotmann and Die Nibelungen. The
separation between candidate explanation pattern gen-
eration and verification allows to chose only those pat-
terns that are of most interest and proceed to their ver-
ification according to some ranking (e.g., average re-
latedness between predicates in the pattern and target
predicate). The possibility to focus on the most inter-
esting explanations first, offers a significant advantage
wrt related research.

We note that E4D and E4S look at the problem of
building explanations from different perspectives. The
former builds general explanation by considering all
possible paths interlinking a pair of entities while the
latter allows to build focused explanations by setting a
precise relatedness perspective via the input predicate.
We are not aware of any previous work that starts from
the KG schema to build relatedness explanations.

Building Relatedness Explanations from Knowledge Graphs 3

Contributions. We contribute: (i) a SPARQL-based
algorithm called E4D, which starting from a pair of en-
tities can retrieve paths interlinking them directly look-
ing at the data; (ii) a KG-schema-based algorithm E4S,
which traverses the schema to build candidate expla-
nation patterns and an algorithm for their verification
in the data; (iii) different ways to rank paths (found by
E4D or E4S) based on informativeness, diversity and
combinations of them; (iv) a (visual) tool called RE-
CAP; (v) an approach to query KGs by relatedness;
(vi) an experimental evaluation.

A preliminary version of this work, which does not in-
clude the E4S algorithm, appeared in ISWC2015 [10].

Outline. The remained of the paper is organized as fol-
lows. We introduce the problem along with the nec-
essary background in Section 2. Section 3 introduces
the E4D algorithm. Section 4 introduces our second al-
gorithm E4S, which builds explanations starting from
the KG schema. Section 5 describes different strategies
to rank/combine paths in order to build explanations.
We describe the RECAP tool implementing our algo-
rithms in Section 6. Section 7 discusses the experimen-
tal evaluation. Related Work is treated in Section 8. We
conclude in Section 9.

2. Background and Problem Description

We now introduce the notions of KG and knowledge
base. Although there are several KGs today available
(e.g., Yahoo!, Google) we will focus on those encoded
in RDF1 widely and openly accessible on the Web for
querying via the standard SPARQL language [21].

Let U (URIs) and L (literals) be countably disjoint
infinite sets. An RDF triple is a tuple of the form
U×U×(U∪L) whose elements are referred to as sub-
ject, predicate and object, respectively. As we are in-
terested in discovering explanations in terms of nodes
and edges carrying semantic meaning for the user, we
do not consider blank nodes. We also assume an infi-
nite set V of variables disjoint from the sets U and L.
In the SPARQL language, variables in V are prefixed
with a question mark (e.g., ?x is a variable).

Definition 1. (Triple and Graph Pattern). A triple
pattern τ is a tuple (xs, yp, zo)∈ (U ∪ V)(U ∪ V)(U ∪
L∪V). We denote by var(τ) the variables in τ. A graph
pattern of length k is a set of triple patterns τ1, ..τk

where (var(τi) ∩ var(τi+1) 6= ∅), i ∈ [1, k − 1].

1A list is available at http://lod-cloud.net

A Knowledge Graph (KG) is a directed node and
edge labeled multi-graph G = (V, E ,T) where V is a
set of uniquely identified vertices representing entities
(e.g., D. Lynch), E a set of predicates (e.g., director) and
T a set of triples of the form (s, p, o) representing di-
rected labeled edges, where s, o ∈ V and p ∈ E .

To structure knowledge, KGs can resort to an un-
derlying schema S , which can be seen as a set of
triples defined by using some ontology vocabulary
(e.g., RDFS, OWL). In this paper, we focus on RDFS
and specifically on entity types (and their hierar-
chy) and domain and range of predicates. We denote
by type(e) the set of types of an entity e and by
domain(p) (resp., range(p)) the set of nodes (i.e., en-
tity types) in G having an outgoing (resp., incoming)
edge labeled with p. Our approach leverages RDFS in-
ference rules to construct the RDFS closure of the KG
schema [22, 23]. From the closure of the schema we
build the corresponding schema graph.

Definition 2. (Schema Graph). Given a KG, its
schema graph is defined as Gs = (Vs, Es,Ts), where
each vi ∈ Vs is a node denoting an entity type, each
pi ∈ Es denotes a predicate and each (vs, pi, vt) ∈ Ts is
a triple where vi (resp., vt) is the domain (resp., range)
of the predicate pi.

Fig. 2 (a) shows an excerpt of the DBpedia schema;
the figure also shows one of the triples that can be

inferred via RDFS reasoning. Fig. 2 (b) shows an ex-
cerpt of the corresponding schema graph; here, dashed
lines represent inferred triples. For instance, the previ-
ous triple (Work, director, Person) is inferred from (Film,
subclassOf, Work) and (Film, director, Person).

Definition 3. (Knowledge Base). A knowledge base
is a tuple of the form K=〈G,Gs, A〉where G is a knowl-
edge graph, Gs is the schema graph and A is a query
endpoint used to access data in G.

2.1. Problem Description

Motivation. The high-level objective of this paper is
to tackle the problem of explaining knowledge in KGs.
In particular, we face the problem of building related-
ness explanations, that is, graphs that can shed light on
how a pair of entities is interlinked in a KG. This is
an important problem in several contexts; for instance,
a doctor can be interested in understanding the rela-
tionship between a symptom and a disease or a pair of
genes; a financial analyst can be interested in finding
how a pair of companies is related or to explain the
association of a company and supply-chain materials.

http://lod-cloud.net

4 Building Relatedness Explanations from Knowledge Graphs

KG Schema

Artist subclassOf Person
Actor subclassOf Actor
Film subclassOf Work
Place subclassOf Agent
Person subclassOf Agent

producer domain Work
producer range Agent
starring domain Work
starring range Actor
director domain Film
director range Person
writer domain Work
writer range Person
editing domain Film
editing range Person

director domain Work

influencedBy domain Person
influencedBy range Person

 Agent

Person

Artist

 Place

Work

Musical
Work

deathPlace

notableWorks
starring

cine
mato

grap
hy

wr
it
er

Film

pr
od
uc
er

influencedBy

di
re
ct
or

lyrics

(b)
Actor

cine
mato

grap
hy

(a) Schema Graph

edi
tin

g

dire
ctor

Inferred

subclassOf

su
bc
la
ss
Of

subclassOfsu
bc

la
ss

Of

su
bc

la
ss

Of
su

bc
la

ss
Of

Fig. 2. A KG schema (a) and its corresponding schema graph (b).

The need for relatedness explanations as a knowl-
edge discovery tool also emerged in the context of the
SENSE4US FP7 project2, which aimed at creating a
toolkit to support information gathering, analysis and
policy modeling. Here, relatedness explanations were
useful to investigate and show to the user topic and en-
tity connectivity. In particular, starting from a set of
topics and entities extracted from policy documents,
the purpose of explanations was to show to the pol-
icy maker how these were connected. As an example,
given the entities Renewable energy and Germany, one
of the explanations enabled to discover intermediate
entities like Senvion, Aleo Solar and Wirsol. The ben-
efit to the policy maker was the possibility to find out
previously unknown information (viz., specific Ger-
man companies in the field of renewable energy) that
wa of relevance, understand how it was of relevance,
and navigate it (e.g., to find details about the company
Senvion).

Input. The input of our problem is a pair (ws,wt) of
entities defined in some knowledge base K=〈G,Gs, A〉.

Output. Given K=〈G,Gs, A〉 and a pair of entities
(ws,wt), the output is a graph Ge ⊆ G; we call such a
graph the relatedness explanation between ws and wt.

Challenges. The problem that we tackle in this pa-
per, the algorithmic solutions and their implementation
pose several challenges, among which:

(1) how to meaningfully capture the notion of ex-
planation between entities? How to control the
size of an explanation? Which kind of informa-
tion in G is useful for building an explanation?

2http://www.sense4us.eu

(2) what role can the KG schema Gs have?
(3) how to make available the machinery discussed

in the paper in a variety of KGs?

2.2. Basic Definitions

Before further delving into the discussion of the so-
lutions to the above challenges, we introduce some
definitions.

Definition 4. (Explanation). Given a knowledge
graph G and a pair of entities (ws,wt) where ws,wt∈ G,
an explanation is a tuple of the form E=(ws,wt,Ge)
where ws,wt ∈ Ge and Ge ⊆ G.

This definition is very general; it only states that two
entities are connected via nodes and edges in a graph
Ge, which is a subgraph of the knowledge graph G and
has an arbitrary structure. The challenging aspect that
we face concerns how to uncover the structure of Ge.
To tackle this challenge, we shall characterize the de-
sired properties of Ge. Consider the explanation shown
in Fig. 3 (a); Ge contains two types of nodes: nodes
such as n1, n3, n4 that belong to some path between ws

and wt and others (e.g., n2) that do not.

Ge

ws
n1 n4

n3

wt
n2

p1
p1

p4 p2

p2
Ge

ws
n1 n4

n3

wt
p1

p4 p2

p2
(a) (b)

Fig. 3. An explanation (a) and a minimal explanation (b).

Although the edge (n2, p1, n3) can contribute to
better characterize n3, such edge is in a sense non-
necessary as it does not directly contribute to explain
how ws and wt are related. Hence, we introduce the
notion of necessary edge.

http://www.sense4us.eu

Building Relatedness Explanations from Knowledge Graphs 5

Definition 5. (Necessary Edge). An edge (ni, pk, n j)∈G
is necessary for an explanation E=(ws,wt,Ge) if it be-
longs to a simple path (no node repetitions) between
ws and wt.

The necessary edge property enables to refine the no-
tion of explanation into that of minimal explanation.

Definition 6. (Minimal Explanation). Given a knowl-
edge graph G and a pair of entities (ws,wt) where
ws,wt∈ G, a minimal explanation is an explanation
E=(ws,wt,Ge) where Ge is obtained as the merge of
all simple paths between ws and wt.

Fig. 3 (b) shows a minimal explanation. Minimal
explanations enable to focus only on nodes and edges
that are in some path between ws and wt; hence,
minimal explanations preserve connectivity informa-
tion only. Representing explanations as graphs enables
users to have (visual) insights of why/how two enti-
ties are related and discover/browse other entities. An
investigation of the usefulness of graph visualization
supports is out of the scope of this paper; the reader
can refer to Herman et al. [24] for a comprehensive
discussion about the topic. We are now ready to intro-
duce our first algorithm, which discovers paths useful
to build different kinds of relatedness explanations by
directly looking at the KG data.

3. Explaining Relatedness from the Data (E4D)

Relatedness explanations are graphs that provide a
(concise) representation of the relatedness between a
pair of entities in a KG in terms of predicates (carry-
ing a semantic meaning) and other entities. The chal-
lenging question is how to retrieve explanations. Con-
sider the minimal explanation shown in Fig. 3 (b); it
could be retrieved by matching the pattern graph Gp

shown in Fig. 4 (nodes and edges are query variables)
against G. Hence, if the structure of Gp were available
one could easily find Ge; however, such structure, that
is, the right way of joining query variables represent-
ing nodes and edges in Gp is unknown before knowing
Ge. Nevertheless, since minimal explanations are built
by considering (simple) paths in the data between ws

and wt, the retrieval of such paths is the first step to-
ward building explanations via the E4D (Explanations
from the Data) algorithm.

Generally speaking, paths between entities can have
an arbitrary length; in practice it has been shown that
for KGs like Facebook the average distance between

Gp

ws wt
?n1 ?n4

?n3
?p1

?p2

?p2

?p4

Fig. 4. The pattern graph for the minimal explanation in Fig. 3 (b).

entities is bound by a value [25]. The choice of con-
sidering paths of length k in our approach is reason-
able on the light of the fact that we focus on provid-
ing explanations of manageable size that can be visu-
alized and interpreted by the user. Fig. 5 outlines our
first explanation building approach.

Building Explanations from Data (E4D)

Input: A pair (ws,wt), an integer k, the address of
the query endpoint A
Output: A graph Ge

(1) Find paths: we are going to describe in Section 3.1
an approach based on SPARQL queries against A to
retrieve paths between ws and wt of length k.

(2) Rank paths: we describe in Section 5 different
mechanisms to rank paths.

(3) Select and merge top-m paths: we discuss in Sec-
tion 5.4 different ways of selecting ranked paths to
build an explanation Ge.

Fig. 5. Building explanations from the data.

We now describe step (1); step (2) and (3) will be de-
scribed in Section 5.

3.1. Finding Paths from the Data

A path is a sequence of edges (RDF triples) bound
by a length value k. The underlying assumption of the
E4D algorithm is to data via the query endpoint A only.
This allows to work on top of any SPARQL-enabled
KG thus making the approach readily usable in a va-
riety of domains and without the need to setup cus-
tom infrastructures in terms of storage and computing
power.

Definition 7. (k-connectivity Pattern). Given a knowl-
edge graph G, a pair of entities (ws,wt) where ws,wt∈
G and an integer k, a k-connectivity pattern is a tuple of
the form Ξ=〈ws,wt, T , k〉 where T is a graph pattern
of length k.

6 Building Relatedness Explanations from Knowledge Graphs

An example of graph pattern T is shown in Fig. 6.
Here, both nodes (but ws and wt) and edges represent
query variables. Note that in the figure, edge directions
are not reported; each edge has to be considered both
as incoming and outgoing, which corresponds to join
triple patterns in all possible ways. Indeed, by joining
each of the k triple patterns in Fig. 6 in all different
ways it is possible to obtain a set of 2k graph patterns.
These patterns are used to generate SPARQL queries.

?n1ws ?n2 wt...... ?nk
?p1 ?p2 ?p3 ?pk

Fig. 6. Structure of a query to find paths of length k.

Example 8. (Example of k-connectivity Pattern).
The 2-connectivity pattern between Metropolis (:Mt)
and F. Lang (:FL) allows to generate the following set
of 4 queries:

SELECT DISTINCT * WHERE{:Mt ?p1 ?n1. ?n1 ?p2 :FL}
SELECT DISTINCT * WHERE{:Mt ?p1 ?n1. :FL ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :?n1. :FL ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :Mt. ?n1 ?p2 :FL}

As we are going to discuss in the following, these
queries are executed in parallel (by using multi-
threading) by E4D thus significantly speeding-up the
retrieval of paths. Note that SPARQL 1.1 supports
property paths (PPs) [21, 26], that is, a way to discover
routes between nodes in an RDF graph. However, since
variables cannot be used as part of the path specifi-
cation itself, PPs are not suitable for our purpose; we
need information about all the constituent elements of
a path (both nodes and edges) to build explanations.

Definition 9. (Path). Given a graph G and a pair of
entities (ws, wt), a path ξ is a set of edges (i.e., RDF

triples): ξ(ws,wt)=ws
p1
− n1

p2
− n2

p3
− n3..nd

pk
− wt, ni ∈

G ∀i ∈ [1, d], p j ∈ G ∀ j ∈ [1, k] and − ∈ {←,→}.

In the above definition, the symbol − models the
fact that in a path we may have edges pointing in dif-
ferent directions. We denote by Lab(ξ) the set of la-
bels (RDF predicates) in ξ.

Practically speaking, paths are obtained by evalu-
ating queries deriving from a k-connectivity pattern;
hence, ni and p j are solutions (variable bindings) ob-
tained from some query evaluated on A. While in a
k-connectivity pattern all edges and nodes (but ws

and wt) are variables, in a path there are no vari-
ables. Fig. 7 shows an example of path ξ where
Lab(ξ)={writer,spouse}. We want to stress the
fact that the set of queries to retrieve paths are automat-
ically generated and evaluated on the (remote) query

Fritz
LangMetropolis

writer spouse

Thea
von Harbou

Fig. 7. An example of path between Metropolis and F. Lang.

endpoint A. A sketch of the multi-thread algorithm to
find paths is shown in Fig. 8. The algorithm leverages
a monitor class (not reported here); an instance of such
class is denoted with m in the pseudocode. This class
controls: (i) the concurrent access to the shared data
structures by the threads (e.g., to add paths retrieved
by queries); (ii) the termination of the algorithm that
will happen when no more queries have to be executed
and no thread is active (see lines 3-4 PATHTHREAD).
Moreover, the method SUBMITJOB (not reported here)
takes care of submitting threads for the executions to
an executor service, which can be configured to create
a maxT number of threads. This enables to control the
degree of concurrency.

Function FINDPATHS
(
ws,wt, k, A,m,maxT)

Input: A pair (ws, wt), an integer k, the address of the query
endpoint A, monitor class m, max num. of threads maxT .
1: Q=GENQUERIES

(
ws,wt, k) /* queries */

2: for q ∈ Q do
3: CREATEDTHREAD t=PATHTHREAD(q, A,m)
4: SUBMITJOB(t,maxT)

Function PATHTHREAD(q, A,m)
Input: Query q, address A, monitor m.

/* Methods in m are thread-safe */

1: Res=EXECQUERY
(
q, A) /* evaluates the query */

2: m.ADDRESULTS(Res)
3: if (m.GETQCOUNT()==0 AND m.ISLAST()) then
4: m.RETURNRESULTS

(
)

Fig. 8. Finding paths: an overview.

We now move to the description of the E4S algo-
rithm, which adopts a different philosophy; instead of
starting from the evaluation of queries directly in the
KG data to obtain all paths between ws and wt, it lever-
ages the schema to filter paths according to a specific
relatedness perspective.

4. Explaining Relatedness from the Schema (E4S)

E4D can lead to a potential large and semantically
varied number of paths. In some contexts one may be
interested in the generation of explanations focused
on a specific relatedness perspectives. As an exam-

Building Relatedness Explanations from Knowledge Graphs 7

ple, when explaining the relatedness between the film
Metropolis and F. Lang one could focus on explanations
in the domain of movies.

To meet this requirement, we now introduce the E4S
(Explaining Relatedness from the Schema) algorithm,
which builds domain-driven explanations. The target
domain is expressed by using predicates available in
the KG schema. For instance, explanations in the do-
main of movies can be sought by giving as input pred-
icates like director, actor or writer. From an algorithmic
point of view, E4S leverages the domain-specific input
predicate to restrict the portion of the KG accessed.

Definition 10. (Explanation Template). Given a
knowledge base K=〈G,Gs, A〉, a source entity ws ∈ G,
a target entity wt ∈ G, a schema graph Gs=(Vs, Es,Ts)
and a target predicate p∗ ∈ Es, an explanation tem-
plate is a triple (x, p∗, z) where x∈ domain(p∗) and
z∈ range(p∗).

Explanation templates are the building blocks of ex-
planation patterns.

Definition 11. (Explanation Pattern). Given a schema
graph Gs = (Vs, Es,Ts), an explanation template (x1,
p∗, xd) and an integer d, an explanation pattern is

T(p∗) = x1
p1
− x2

p2
− x3

p3
− x3..xd

pd
− xd+1 where xi ∈

Vs ∀i ∈ [1, d +1], p j∈Es ∀ j ∈ [1, d] and− ∈ {←,→}.

By looking at Fig. 2 (b), an example of explanation
pattern is T(director)=Work

starring→ Actor
starring← Work

director←
Person). As it can be noted, this explanation pattern
only contains predicates that are semantically related
to the target predicate, that is, director. Fig. 9 gives an
overview of the step performed by the E4S algorithm
to build relatedness explanations. Note that while E4D
builds explanation by considering all possible related-
ness perspectives (all paths), E4S sets a precise relat-
edness perspective via the input predicate.

4.1. Predicate Relatedness

The first ingredient of the E4S algorithm is a pred-
icate relatedness measure, which given a target predi-
cate p∗ allows to focus on the part of the schema most
related to p∗ during the candidate explanation gener-
ation, and thus of the data during candidate verifica-
tion. Given a knowledge graph G = (V, E ,T) and a
pair of predicates (pi, p j)∈ E , the relatedness measure
takes into account the co-occurrence of pi and p j in
the set of triples T and weights it by the predicate pop-
ularity [27, 28]. This approach resembles the TF-ITF

Explanations from Schema (E4S)

Input: An explanation template (domain(p∗), p∗,
range(p∗)), an integer k, and integer d, the address
of the query endpoint A
Output: A graph Ge

(1) Find top-k related predicates: we are going to de-
scribe in Section 4.1 a data-driven approach to com-
pute relatedness between predicates, which will be
used to find predicates most related to p∗.

(2) Find Candidate Explanation Patterns: we describe
in Section 4.2 an algorithm that generates candidate
explanation patterns of length d leveraging the KG
schema and predicates found in (1).

(3) Verify Candidate Explanation Patterns: we dis-
cuss in Section 4.3 a SPARQL-based algorithm to
verify candidate patterns that are used to build ex-
planations.

(4) Select and merge paths: paths found from verified
patterns can be ranked and merged as described in
Section 5.

Fig. 9. Building Explanations from the Schema.

scheme used in information retrieval to weight the im-
portance of words in documents. We now introduce the
building blocks of the predicated relatedness measure,
starting from the Term Frequency T F(pi, p j).

T F(pi, p j) = log(1 + Ci, j) (1)

In the above formula, Ci, j counts the number of sub-
jects (s) and objects (o) in triples of the form (s, pi, o),
and (s, p j, o) or (o, pi, s) and (o, p j, s). The Inverse
Term Frequency (IT F) is defined as follows:

IT F(p j, E) = log
|E|

|{pi : Ci, j > 0}|
(2)

Having co-occurrences for each pair (pi, p j) weighted
by the ITF allows to build a co-occurrence matrix with
entries defined as follows:

wi, j(pi, p j, E) = T F(pi, p j)× IT F(p j, E) (3)

At this point, the relatedness between pi and p j can be
computed by looking at their relative rows as:

Rel(pi, p j) = Cosine(Wi,W j) (4)

where Wi (resp., W j) is the row of pi (resp., p j).

8 Building Relatedness Explanations from Knowledge Graphs

To give some hint about the results obtained by the
predicate relatedness measure, Table 1 shows the top-
5 most related predicates when giving as input some
predicates (in bold) defined in the DBpedia ontology.
We can see, for instance, that director is very related
to writer and producer; that spouse is very related to
child and relative and so forth. The predicate relatedness
measure seems to reasonably output semantically re-
lated predicates given a target predicate.

Table 1
Examples of related predicates in DBpedia.

director writer spouse influenced birthPlace

writer producer child influencedBy deathPlace
producer director relative author residence

musicComposer musicComposer parent notableWork country
executiveProducer composer relation spouse restingPlace

starring author starring child hometown

4.2. Finding Candidate Explanation Patterns

We now describe how the E4S algorithm generates
candidate explanation patterns. This process is handled
via Algorithm 1, which takes as input a schema graph,
a target predicate p∗, an integer d to bound the length
of the pattern, an integer k to pick the top-k most re-
lated predicates to p∗, and uses a priority queue to store
candidate explanation patterns ranked by their related-
ness wrt the target predicate p∗.

The algorithm for each of the most related predi-
cates (line 4) runs in parallel a traversal of the schema
graph by checking that predicate pi and predicate p∗

both have as source node tr (lines 7) (resp., ts (line
13)); this allows to build length-1 explanation patterns
that are added to the results if they allow to reach
the same node ts (line 9) (resp., tr (line 15)). Length-
1 explanation patterns are possibly expanded; the al-
gorithm takes a q-length (partial) pattern (with q<d)
and expands it by only considering the top-k most re-
lated predicates to p∗ (lines 22 and 24). The expansion
is done both in forward and reverse direction as the
schema graph is treated as undirected. Candidate ex-
planation patterns of at most length d are added to the
results (line 34) after checking that the pattern starts
from one of the nodes in domain(p∗) and ends in one
of the nodes in range(p∗) (line 33). The algorithm runs
(in parallel) a d-step traversal of the graph and at each
step at most |Es| edges (note that the algorithm in prac-
tice considers a subset R of all predicates) can be vis-
ited. checkTypes can be done in constant time by
hashing domain(s) and range(s) of predicates.

Input: A schema graph Gs=(Vs, Es, Ts), a target predicate p∗,
maximum depth d, number of related predicates k

Output: Candidate Explanation Patterns P

1 P = ∅; /* priority queue on average relatedness to p∗ */
2 R= getRelatedPredicates(p∗,k)
3 Parallel execution:
4 for each predicate pi ∈ R do
5 Let ∆1 = ∅
6 for (tr , pi, ts) ∈ Ts do
7 if tr ∈ inNodes(p∗) then
8 ∆1=∆1 ∪ {(tr ,

pi→, ts)}
9 if ts ∈ outNodes(p∗) then

10 P = P ∪ {(tr ,
pi→, ts)}

11 end
12 end
13 if ts ∈ inNodes(p∗) then
14 ∆1=∆1 ∪ {(tr ,

pi←, ts)}
15 if tr ∈ outNodes(p∗) then
16 P = P ∪ {(tr ,

pi←, ts)}
17 end
18 end
19 end
20 for j = 2, ..., d do
21 Let ∆ j = ∅;
22 for each explanation pattern τ ∈ ∆ j−1 do
23 for each ns ∈ outNodes(τ) do
24 for each triple (ns, p, nt) ∈ Ts s.t. p ∈ R

do
25 ∆ j = ∆ j ∪ {τ · (ns,

p→, nt)}
26 end
27 for each triple (nt , p, ns) ∈ Ts s.t. p ∈ R

do
28 ∆ j = ∆ j ∪ {τ · (ns,

p←, nt)}
29 end
30 end
31 end
32 for each explanation pattern τ ∈ ∆ j do
33 if (checkTypes(τ, p∗) = true) then
34 P = P ∪ {τ}
35 end
36 end
37 end
38 end
39 return P
Algorithm 1: findCandidateExplPatterns

4.3. Verifying Explanation Patterns

Candidate explanation patterns found via Algo-
rithm 1 represent schema-compliant ways in which
type(ws) (viz., domain(p∗)) and type(ws) (viz.,
range(p∗)) could be connected in the underlying data.

To understand which explanation patterns actually
contribute to build a relatedness explanation there is
the need to verify them. A pattern is verified if starting

Building Relatedness Explanations from Knowledge Graphs 9

from ws it is possible to reach wt by traversing the se-
quence of edges in it. In other words, to verify a pat-
tern we need to instantiate its endpoints with ws and wt

and then check if it has a solution in the data.
As an example, by instantiating the first explanation

pattern in Fig. 1 (c), we obtain the explanation pattern
in Fig. 1 (d). This pattern is actually verified as can be
seen in Fig. 1 (e). On the other hand, the last one is not
verified. We now outline our approach for candidate
patterns verification, which builds upon the notion of
path pattern.

Definition 12. (Path Pattern). Given a source entity
ws a target entity wt and a candidate explanation pat-

tern T(p∗) = x1
p1
− x2

p2
− x3

p3
− x3..xd

pd
− xd+1, its corre-

sponding path pattern is: Π(ws,wt,T(p∗))=τ1.τ2,, τd

where τ1= ws p1 ?v2 (resp., ?v2 p1 ws) if
p1
−=

p1→ (resp.,
p1
−=

p1←), τi= ?vi pi ?vi+1 (resp., ?vi+1 pi ?vi) if
pi
−=

pi→
(resp.,

pi
−=

pi←) for 2 < i < d, τd=?vd pd wt (resp.,

wt pd ?vd) if
pd
−=

pd→ (resp.,
pd
−=

pd←); here, ?vi are query
variables and . denote the join operator.

A path pattern basically transforms a candidate ex-
planation pattern into a SPARQL graph pattern [29]
where individual triple patterns are joined (via .)
thanks to shared variables, and the endpoints are re-
placed with the source (ws) and target entity (wt). Note
that an additional triple pattern can be used to check
that, for each triple pattern, the bindings (viz. entities
in the KG) of the variable ?vi are of the right type. As
an example, given the pair (Metropolis, F. Lang) and the
candidate explanation pattern T(director)=Work

starring→
Actor

starring← Work
director← Person), by enforcing the type

constraint we obtain the path pattern Π(Metropolis, F.
Lang, T(director))= Metropolis starring ?v1. ?v1 type Actor.
?v2 starring ?v1. ?v2 type Work. ?v2 director F. Lang.

4.3.1. Building a SPARQL Query for the Verification
At this point, from a path pattern we can build

a SPARQL query whose evaluation allows to check
whether the original candidate explanation pattern is
verified and, if so, to get a set of paths that conform to
it. The prototypical SPARQL query has the form:

SELECT DISTINCT * WHERE {

Π(ws,wt,T(p∗)) }

As an example, the SPARQL query obtained from the
path pattern Π(Metropolis, F. Lang, T(director)) when also
enforcing intermediate type constraints, is:

SELECT DISTINCT * WHERE {

Metropolis starring ?v1. ?v1 type Actor.
?v2 starring ?v1. ?v2 type Work.
?v2 starring F. Lang. }

E4S has the advantage of requiring the evaluation
of SPARQL queries more specific than those required
by E4D as predicates are fixed (i.e., there are no vari-
ables in the predicate position of triple patterns) and
the bindings of variables can be forced to be of specific
types. Moreover, note that since candidate explanation
patterns work at the level of schema, they do not need
to be generated from scratch; they can be reused when
the target predicate is the same.

5. Ranking Paths to build Explanations

We have described two different algorithms to find
paths connecting two entities ws and wt in a KG. In
both cases we may have that the number of such paths
can be prohibitively large, which can hinder the pro-
cess of making sense of an explanation. As an exam-
ple, considering the merge of all paths, as done in mini-
mal explanations (see Definition 6) may be an obstacle
toward providing concise explanations to the users. To
cope with this issue, we are going to introduce differ-
ent criteria to rank paths. Having a rank among paths
gives flexibility in choosing the set of paths that will
form an explanation. Cheng et al. provide an overview
on the topic [30].

5.1. Path Informativeness

The first approach to rank paths leverages the notion
of informativeness. Given a graph G, the informative-
ness of a path connecting a pair of entities (ws,wt)∈ G
is estimated by investigating the informativeness of its
constituent RDF predicates. This reasoning is analo-
gous to that of associating relative importance to words
in a document [31] contained in a set of documents.
We leverage the notion of Predicate Frequency Inverse
Triple Frequency (pfitf) [27].

Definition 13. (Predicate Frequency). Given a knowl-
edge graph G=(V, E ,T), an entity w ∈ V and a pred-
icate p ∈ E appearing in some triple involving w, the
Predicate Frequency (pf) quantifies the informative-
ness of p wrt w.

10 Building Relatedness Explanations from Knowledge Graphs

producer

birthYear

director

writer

starring

influences

spouse

screenplay

occupation

influenced

surname

birthName

......

Predicate itf

......

0

1

2

3

4

5

6

7

8

9

10

11

63

8.06

8.58

7.97

7.89

10.60

9.15

9.35

6.73

11.18

8.27

9.05

11.27

Fritz
Lang

birthName
spouse

influenced

occupation

producer

writer

director

pf=0.017

pf=0.236

pf=0.094

pf=0.004

pf=0.008

pf=0.017

pf=0.013

63

........
0 1 2 3 4 5 6

0.137 2.02 0.330 0.086 0.307

directorproducer writer starring influences spouse owl:
sameAs

foaf:
primaryTopic

0.054 0.167 0.026

pfitf- Incoming predicates

63

........
0 1 2 3 4 5 6

0.073 0.037 0.029 0.048 0.190 0.107 0.132 0

pfitf- Outgoing predicates

spouse birthName occupationsurname influenced sameAs basedOnname

Metropolis

album
basedOn

foaf:
primaryTopicbasedOn

writer

director

pf=0.006

pf=0.005

pf=0.131

pf=0.004

pf=0.008

pf=0.003

63

........
0 1 2 3 4 5 6

0.073 0.037 0.020 0.048 0 0 0.047 0

pfitf- Incoming predicates

pfitf- Outgoing predicates

........
0 1 2 3 3 4 6 63

0 0 0 0 0 0 0 0.043

spouse birthName occupationsurname influenced sameAs basedOnname

directorproducer writer starring influences spouse owl:
sameAs

foaf:
primaryTopic

Fig. 10. An example of pfitfcomputation.

We distinguish between incoming pfw
i (p) and outgo-

ing pfw
o (p):

pfw
i (p,G) =

|Ti||p
|Ti|

(5) pfw
o (p,G) =

|To||p
|To|

(6)

where |Ti||p (resp., |T0||p) is the number of triples in G
where the predicate p is incoming (resp., outgoing) in
w and |Ti| (resp., |To|) is the total number of incoming
(resp., outgoing) triples in which w is involved.

Definition 14. (Inverse Triple Frequency). Given
G=(V, E ,T) and a predicate p ∈ E , the inverse triple
frequency of p, denoted by itf(p), is defined as:

itf(p,G) = log
|T |
|T ||p

(7)

where |T | is the total number of triples in G and |T ||p
the total number of triples containing p.

Definition 15. (Predicate Frequency Inverse Triple
Frequency). The Predicate Frequency Inverse Triple
Frequency is defined as pfitf(p,G)=pf×itf. One
can consider the incoming pfitfi(p,G)=pfi × itf
and outgoing pfitfo(p,G)=pfi × itf case.

An example of pfitf computation is shown in
Fig. 10. Having a way to assess the relative informa-
tiveness of a predicate wrt to an entity in a path, we
can now define the informativeness of a path.

Definition 16. (Path Informativeness). Consider a

path ξ=ws
p1
− e1

p2
− e2

p3
− e3..ed

pk
− wt . . . of length k.

For k=1, the informativeness of ξ is:

I(ξ,G) = [pfitfws
o (p1) + pfitfe1

i (p1)]/2 (8)

It considers the predicate p1 as outgoing from w1

and incoming to e1. The second case for k=1 is
ξ(w1, e1)=w1

p←− e1 where p1 is an incoming edge for
w1 and outgoing from e1 and can be treated in a simi-
lar way. For paths of length k > 1, the informativeness
is computed as follows:

I(ξ,G) =
I(ξ(w1, e1)) + ...+ I(ξ(wk, ek))

k
(9)

5.2. Explanation Pattern Informativeness

We have discussed a method to compute path infor-
mativeness based on pfitf values obtained by con-
sidering nodes (entities), edges (predicates) and their
directions in a path. We now introduce a way of as-
sessing informativeness using patterns. Intuitively, a
pattern summarizes, via variables, all paths that con-
form to a specific sequence of predicates (according to
their directions.) As an example, the pattern (Metropolis
starring→ Actor

starring← Work
director← F. Lang) captures different

paths where actors (e.g., R. Klein-Rogge) starred other
films directed by F. Lang besides Metropolis. According
to DBpedia there are 10 such paths that involve actors
like A. Abel and B. Helm. In the case of E4D, a set of
paths having the same set of edges along with their di-
rections and a different set of nodes can be abstracted
into a path pattern by replacing nodes with variable.
In the case of E4S, path patterns are verified candidate
patterns. We now define path pattern informativeness.

Building Relatedness Explanations from Knowledge Graphs 11

Fritz
Lang

Metropolis Fritz
Lang

director

(a) (b) spousebasedOn

Fritz
Lang

(c)

Fritz
Lang

writerwriter ?v1 ?v2 director

Person Film
Metropolis Metropolis

writer spouse

Thea
von Harbou

Metropolis

Fritz
Lang

?v1 ?v2

Person FilmMetropolis

producer writerproducer

Metropolis
Novel

author

Fig. 11. Path ranking examples: (a) most informative paths; (b) least informative path patterns; (c) most diverse path.

Definition 17. (Path Pattern Informativeness). Let
P be the set of path patterns and G a KG. The infor-
mativeness of a path pattern Π ∈ P is defined as:

I(Π,G) = log
|P|

|(Π,G)|
(10)

where |(Π,G)| is the number of paths sharing Π in a
graph G. In other words, |(Π,G)| is the number of dif-
ferent bindings in the solutions to the SPARQL query
used to verify Π. The usage of path patterns enables to
abstract information to be included into an explanation
by only focusing on specific patterns.

5.3. Path Diversity

We have discussed two approaches for ranking paths
based on informativeness. We now introduce a differ-
ent approach, which takes into account the variety of
predicates in a set of paths. As an example, paths of
length 3 between Metropolis and F. Lang often include
predicates related to the fact that there are actors that
(besides Metropolis) starred in other films directed by
F.Lang; this will potentially rule out other predicates
that appear in some paths if the informativeness of
such paths is lower.

Definition 18. (Path Diversity). Given a source en-
tity ws, a target entity wt and two paths ξ1(ws,wt) and
ξ2(ws,wt) we define path diversity as:

δ(ξ1, ξ2) = 1− |Lab(ξ1) ∩ Lab(ξ2)|
|Lab(ξ1) ∪ Lab(ξ2)|

(11)

where Lab(ξ) is the set of labels (predicates) in
ξ. The above equation computes the Jaccard index be-
tween paths in terms of their constituent RDF predi-
cates. The above definition is used to compute the pair-
wise diversity of a set of paths P . This in general re-
quires O(|P|2) computations. To avoid pairwise com-
putations, one can use min-wise hashing [32].

5.3.1. Path Ranking Strategies: an example
Consider the entity pair (Metropolis, F. Lang) and the

graph G shown in Fig. 1 (e), which includes a set of
paths some of which resulting from the verification of
the candidate explanations patterns in Fig. 1 (d). In
some cases, presenting such a set of paths altogether
may hinder the interpretation of the explanation by the
user. Hence, the ranking of paths results very useful.

Fig. 11 shows paths obtained according to the rank-
ing strategies introduced before. In particular, Fig. 11
(a) shows the two most informative paths according to
the pfitf (see Section 5.1). For k = 1 the path in-
volves the predicate director while for k = 2, the in-
formativeness takes into account the fact that Metropolis
has been written by T. von Harbour who was married to
F. Lang. Fig. 11 (b) shows two path patterns. The first
pattern involves the predicates producer with intermedi-
ate nodes representing entities of type People and Film.
Information about the 6 movies produced by E. Pommer
and directed by F. Lang is abstracted by the pattern plus
the type of entity abstracted, which enables to reduce
the size of the explanation shown to the user. The sec-
ond pattern allows to abstract the fact that 11 movies
have been co-written by T. von Harbour and F. Lang.

Fig. 11 (c) shows the most diverse path, which in-
cludes the predicates basedOn and author that were dis-
carded when considering path informativeness. The
three strategies for path ranking give great flexibility
in selecting the set of paths to form an explanation.

5.4. Selecting and Merging Paths

Table 2 summarizes different strategies for building
explanations. The six strategies reported in the table
(but E∪), given a value m, select a subset of paths (pat-
tern) according to one of the three strategies described
in Section 5. Moreover, two strategies combine path
(pattern) informativeness and diversity. The last line in
Table 2 refers to all paths without merging them. The
merge of paths considers all entities sharing the same
identifier as the same node in the explanation graph Ge.

12 Building Relatedness Explanations from Knowledge Graphs

Table 2
Path selection strategies.

Symbol Meaning
E∪ Merge all of paths without any pruning

Eξ
m Merge the top-m most informative paths

Eξ
m Merge paths belonging to the top-m most informative

path patterns

Eδ Merge pairs of paths whose value of diversity falls
in [(max − r), max] where max is the max diversity
value over all pairs of paths and r is a % value.

Eξ,δ Merge the results of Eξ
m and Eδ

Eξ,δ Merge the results of Eξ
m and Eδ

P Set of all paths (without merge)

6. The RECAP tool and its application for
Querying Knowledge Graphs by Relatedness

We now outline the implementation of our expla-
nation framework (Section 6.1) and then describe a
concrete application of explanations for querying KGs
(Section 6.2).

6.1. Implementation

We have implemented our explanation framework
in Java in a tool called RECAP, which leverages the
Jena3 framework to handle RDF data and SPARQL
to access KGs via their endpoints. As previously de-
scribed, our explanation algorithms make usage of
queries with the SELECT query form for path find-
ing and candidate explanation pattern verification;
SPARQL queries with COUNT are used for path rank-
ing. The tool along with all the datasets are available
online4. Fig. 12 gives an overview of the architecture
of the system.

The architecture consists of three main components.
The E4D component implements the E4D algorithm
(Section 3) and is responsible for both generating and
executing (in parallel) queries to retrieve paths. Note
that the implementation of E4D discards predicates
related to the schema (e.g., rdf:type); this allows to
speedup the path retrieval process by focusing on rela-
tions that interlink pairs of entities only. The E4S com-
ponent implements the E4S algorithm (Section 4). The
verification of candidate patterns is done (in parallel)
via SPARQL and allows to retrieve a set of paths.

The choice of the algorithm depends on the specific
scenario. If one is interested in discovering explana-

3http://jena.apache.org
4http://goo.gl/cP1s3B

Explanations
From the Data

E4D
d

SPARQL
 Endpoint….

Parallel
queries

Knowledge
Graph

Explanation
Builder

ws
Target
entity

Source
entity

wt
Max

distance

Input

Paths of
distance

<= d

Explanation Framework Knowledge Base

d

ws
Target
entity

Source
entity

wt
Max

distance

Input

p*Target
Predicate

Schema
Graph

Candidate
Explanation

Patterns

Verification

kRelated
Predicates

Explanations
From the
Schema

E4S

Parallel
queries

RECAP GUI

Fig. 12. The RECAP architecture.

tions that consider all paths interlinking the input pair,
then E4D can be useful. On the other hand, if one wants
to reduce the search space and focus only on specific
relatedness perspectives, then E4S can be of help. Both
algorithms enable to assemble a set of paths although
E4S (as we will show in Section 7) retrieves less paths.

The Explanation Builder takes a set of paths either
from E4D or E4S and ranks them according to the in-
put method chosen by the user. Paths are then merged
to build an explanation, which is passed to the RE-
CAP GUI. Fig. 13 (a) shows the main GUI of the tool.
The user can specify the pair of input entities and get
a short description. Fig. 13 (b) shows the part of the
GUI that deals with explanations. It is possible to se-
lect different kinds of explanations (Fig. 13 (c)), and
obtain a description of each entity (Fig. 13 (d)) and
edge (Fig. 13 (e)) in the explanation graph. RECAP
goes beyond related approaches (e.g., REX [18], Ex-
plass [20]) that provide visual information about con-
nectivity as it allows to build different types of expla-
nations (e.g., graphs, sets of paths), thus controlling
the amount of information visualized. RECAP has the
advantage of not requiring data preprocessing; infor-
mation is obtained by querying SPARQL endpoints.

6.2. Querying Knowledge Graphs by Relatedness

As a concrete application scenario, we now de-
scribe how explanations can support query answering
in KGs. An explanation E=〈ws,wt,Ge〉 can be seen as
a graph including paths that link a source and target
entity. The idea is to turn an explanation graph Ge for
an entity pair (ws, wt) into a query pattern, which will
possibly allows to retrieve other entities.

http://jena.apache.org

Building Relatedness Explanations from Knowledge Graphs 13

(a) (b)

(c)

(d)
(e)

Fig. 13. The RECAP tool.

Knowledge Graph Querying using Explanation

Input: A pair (ws,wt) of entities, an integer k, the
address of a query endpoint A
Output: A set of ranked (pairs of) entities

(1) Find an explanation E=(ws,wt,Ge) between ws

and wt by using E4D or E4S.

(2) Build the entity query pattern Qe associated to Ge.

(3) Query the KG with Qe (via A) and get a set of
(pairs of) entities.

(4) Rank the answers to Qe.

Fig. 14. An overview of the query answering algorithm.

Fig. 14 summarized our approach for querying KGs
using relatedness explanations. We now describe step
(2) and (3) that allow to obtain the entity query pattern
Qe from an explanation graph Ge and, from it, a set of
entity pairs. Step (4) is described in Section 6.2.1.

Definition 19. (Query Pattern). Let E=〈ws,wt,Ge〉
be a relatedness explanation with Ge=(Ve, Ee,T e).
Let fn:Ve →V a function such that fn(vi)=?vi where
V is a set of variables. A query pattern is a tu-
ple E=〈?ws, ?wt,Gv

e〉 where ?ws, ?wt∈V and Gv
e =

(Vv, E ,T v) with Vv={ fn(vi), ∀vi ∈ Ve} and T v =
{(fn(si), pi, fn(oi)), ∀(si, pi, oi) ∈ T e}

Gv
e is the query graph obtained by replacing all

nodes in Ge with query variables. Basically, a query
pattern generalizes the structure of an explanation by
keeping edge labels only. Query patterns are used to
generate entity query patterns.

Definition 20. (Entity Query Pattern). An entity
query pattern Qe, given the query pattern E=〈?ws, ?wt,Gv

e〉
with Gv

e=(Vv, E ,T v) and ti∈T v, i∈[1, k], is a SPARQL

query of the form:
SELECT DISTINCT ?ws ?wt WHERE { t1 . t2. ... tk }

In the above definition, t1, ...tk are triple patterns
and . denotes the join operator; moreover, the vari-
ables ?ws and ?wt are used in lieu of the entities
in input. Note that query patterns are automatically
derived from explanations; our approach neither re-
quires familiarity with SPARQL nor with the underly-
ing data/schema. The evaluation of a query pattern re-
turns a set of pairs of entities sharing the same related-
ness perspective as the input pair.

6.2.1. Ranking of Results
As the number of results of Qe can be large, we de-

scribe an approach for ranking results. The problem
of ranking results of SPARQL queries has been al-
ready studied (e.g., [34, 35]) and is not the main pur-
pose of the present paper. Inspired by the Google KG,
we consider a simple result ranking mechanism based
on the popularity of entities; specifically, we lever-
age the PageRank [33] algorithm. Given a pair of en-
tities (w1,w2) returned when evaluating Qe, we esti-
mate their popularity as (PR(w1) +PR(w2)) /2, where
PR(wi) is the PageRank value of the entity i.

Fig. 15 shows the GUI that handles querying an-
swering using relatedness explanations. In particular,
Fig. 15 (a) shows path patterns (see Definition 12)
while Fig. 15 (b) shows the instantiation of the pat-
tern selected. We can see that T. von Harbou was mar-
ried with F. Lang and she wrote the novel Metropolis on
which the film Metropolis was based. Fig. 15 (c) shows
the automatically generated SPARQL query (see Def-
inition 20). The underlying idea of our approach is to
look for other pairs of entities that share a similar re-
latedness perspective. In other words, are there other
pairs beside (Metropolis, F. Lang) for which there exist a

14 Building Relatedness Explanations from Knowledge Graphs

(Query patterns)

(Pattern Instances)

(d)

(b)

(a)

(c)

Fig. 15. Querying Knowledge Graphs Using Relatedness Explanations. Path patterns (a), explanation (b), SPARQL query (c), and suggested
entities (d) ranked by popularity (PageRank [33] in this case).

spouse that wrote a novel that inspired a film? Fig. 15
(d) shows some entity pairs that share this relatedness
perspective. As an example, the pair (Tales of Terror, V.
E. C. Poe) shares the perspective since the movie Tales
of Terror was based on the novel Tales of Terror written
by E. A. Poe with whom V. E. Clemm Poe was married.
Ditto for the pair (The Black Cat, V. E. Clemm Poe).

7. Evaluation

We describe an experimental evaluation of our ex-
planation framework having the following main goals:

G1: Investigate the performance and scalability of
E4D, our knowledge-graph-agnostic approach for
building explanations, which allows to: (i) use
any SPARQL-enabled KG as a source of back-
ground knowledge; (ii) avoid to set up complex
processing infrastructures (in terms of data stor-
age and computing power); (iii) work with fresh
data without having to replicate and keep them
up to date locally.

G2: Compare E4D, which builds explanations directly
by looking at paths in the data with E4S, which
starts from candidate explanation patterns found
in the KG schema. This will allow to understand
the trade-off between working with all paths
(found by E4D) and performing a later refinement
and selecting explanations patterns that are of in-
terest beforehand and then verify only those in
the data (via E4S).

G3: Investigate the usability of the RECAP tool as
compare to related tools. This allows to have an
account for its practical usability.

We describe the datasets and experimental setting in
Section 7.1. Then, in Section 7.2 we report on G1. We
discuss G2 in Section 7.3 and Section 7.4. Finally, G3
is dealt with in Section 7.6.

7.1. Datasets and Experimental Setting

There is no standard benchmark for evaluating re-
latedness explanation algorithms and tools. Neverthe-
less, some query-sets have been defined to evaluate the
discovering of semantic associations, that is, paths be-
tween an entity pair. We considered a dataset of 74 en-
tity pairs5, by extending a dataset of 24 pairs defined by
Cheng et al. [20]. The dataset covers a fair large num-
ber of knowledge domains (i.e., entertainment, sport,
movies, companies) and thus can give insights about
the performance of our approach in different scenarios.
Table 3 summarized the algorithmic parameters used
in the experiments. Note that k 6 i, i ∈[1,3] means that
in the same run we consider paths of length up to i. As
we will discuss in Section 7.6, paths of length k > 3
provide little insight on the relatedness of the input pair
as there is a very large number of such paths that in-
volve intermediate nodes and edges that have very lit-
tle in common.

All the experiments were performed on a MacBook
Pro with a 2.8 GHz i7 CPU and 16GBs RAM. Results
are the average of 3 runs.

5Reported in reported in Appendix B

Building Relatedness Explanations from Knowledge Graphs 15

Table 3
Algorithm parameters and their values

Parameter Value Meaning
k 1-3 Max. path length

m 5 Top-m most informative
paths

p 5 Top-q related predicates
used in E4S

r 0.5 Diversity range

7.1.1. Knowledge Graphs Used
We evaluated our explanation building algorithms

by considering two different knowledge graphs (sum-
marized in Table 4). Table 4 also reports the address of
the remote SPARQL endpoint used to access the KGs.
The first KG is DBpedia, which includes more than
400 millions of triples6 while the second one is Wiki-
data, which includes more than 5 billions of triples6.

We decided to use online available endpoints to have
an account of how the system works in a real-world
scenario. On one hand, this allows to benefit from
computational resources made available by the data
provider and does not require any maintenance (e.g.,
data update). On the other hand, this choice brings the
cost of network delays, possible load of the endpoint
and does not allow to pre-filterer data used to build ex-
planations (e.g., by excluding literals that do not play
any role in building explanations). A more comprehen-
sive discussion about this and other design choices is
available in Section 7.5.

Table 4
Knowledge Graphs used in the evaluation.

KG #triples Query Endpoint (A)

DBpedia ∼438M http://dbpedia.org/sparql

Wikidata ∼5B http://query.wikidata.org/
sparql

7.2. E4D: Finding Explanations From the Data

We start our analysis of the performance of E4D by
looking at the running times of finding paths of in-
creasing length.

7.2.1. E4D: Running time
Fig. 16 shows the running times of E4D (the mean

and variance are shown in Table 5) while Fig. 17 plots
the number of paths found for different values of k.
Recall that for each k our algorithm retrieves paths of

6This number has been obtained by submitting a SPARQL count
query to the endpoint.

length up to k. In the figures, each input pair (x-axis)
is identified by a different color.

Table 5
Mean and variance of running times (secs).

Distance
DBpedia Wikidata

Mean Variance Mean Variance
k61 0.09 0.009 0.002 1.558e-06

k62 0.347 0.181 1.040 71.679

k63 0.436 1.422 3.803 220.890

For k 6 1 the running time is below one second on
both DBpedia and Wikidata. However, we can note in
Fig. 17 that only ∼1/3 of the input pairs have at least
a path of length 1 (i.e, a direct link). For k 62, on
DBpedia, we can see that the number of paths stays in
the order of tens for most pairs with a few pairs having
a relatively large number of paths (e.g., pair 38, that
is, (France, Paris)). On Wikidata the number of paths is
almost an order of magnitude larger with some pairs
(again pair 38) having a very large number of paths.
By comparing DBpedia and Wikidata we can observe
a similar trend, although translated in terms of absolute
numbers since in the Wikidata KG most pairs have a
large number of paths interlink them. The running time
stays in the order of a second on both DBpedia and
Wikidata with a few pairs requiring a longer time. In
particular, the pair (France, Paris) is somehow a corner
case; it is reasonable to have a very large number of
path between the very general entities France and Paris.

However, we believe that relatedness explanations
are much more interesting for other kinds of, less obvi-
ously related, input pairs like pair 74 (C. Manson, Beach
Boys). For k 63, we notice the same relation between
running times and number of paths both on DBpedia
and Wikidata. In the case of the latter, running times
are now in the order of ten seconds (excluding some
outliers). This time the number of paths is in the order
of hundreds for most pairs with a larger number of en-
tities having thousands of paths; in Wikidata the num-
ber of paths is in general much larger. This comes as no
surprise due to the different sizes of the KGs, counting
∼0.5M and∼5B of triples, respectively. It is also inter-
esting to observe that pairs like (S. Spielberg, M. Report)
and (York, M. Prescott), for instance, were linked by a
lager number of paths in DBpedia than Wikidata, de-
spite the much larger size of this latter KG. The aim of
relatedness explanations is to provide concise (visual)
graphs that can shed light about why two entities are
connected. Therefore, in what follows we investigate
the size of explanations.

http://dbpedia.org/sparql
http://query.wikidata.org/sparql
http://query.wikidata.org/sparql

16 Building Relatedness Explanations from Knowledge Graphs

20 40 60
Input Entity Pair (ws, wt)

0.0

0.2

0.4

0.6

Ti
m

e
(s

)

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

10 1

100

DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

10 1

100

101
DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0.000

0.002

0.004

0.006

Ti
m

e
(s

)

Wikidata: K 1

20 40 60
Input Entity Pair (ws, wt)

10 2

100

102
Wikidata: K 2

20 40 60
Input Entity Pair (ws, wt)

10 2

100

102
Wikidata: K 3

Fig. 16. E4D: Time to find paths of increasing length in DBpedia and Wikidata.

20 40 60
Input Entity Pair (ws, wt)

0

1

2

3

Nu
m

be
r o

f P
at

hs

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

100

101

102

103 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

100

101

102

103

104 DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0

1

2

3

4

Nu
m

be
r o

f P
at

hs

Wikidata: K 1

20 40 60
Input Entity Pair (ws, wt)

101

103

105
Wikidata: K 2

20 40 60
Input Entity Pair (ws, wt)

101

103

105
Wikidata: K 3

Fig. 17. E4D: Number of paths of increasing length in DBpedia and Wikidata.

Building Relatedness Explanations from Knowledge Graphs 17

100 101
Number of Nodes

100

101

Nu
m

be
r o

f E
dg

es

DBpedia: E - K 1

100 101 102 103 104
Number of Nodes

100

101

102

103

104
DBpedia: E - K 2

100 101 102 103 104
Number of Nodes

100

101

102

103

104
DBpedia: E - K 3

100 101 102 103 104
Number of Nodes

100

101

102

103

104

Nu
m

be
r o

f E
dg

es

Wikidata: E - K 1

100 101 102 103 104
Number of Nodes

100

101

102

103

104

Wikidata: E - K 2

100 101 102 103 104
Number of Nodes

100

101

102

103

104

Wikidata: E - K 3

Fig. 18. Size of E∪ explanations in DBpedia and Wikidata consisting in the merge of all paths found by E4D.

7.2.2. E4D: Explanation Size
Fig. 18 shows the explanation size in terms of num-

ber of unique nodes and all edges. Explanations con-
sidered are built by merging all paths and are referred
to as E∪ (see Table 2). We can notice that for k 6 1,
there are a few available explanations, having 2 nodes
and between 2 and 4 edges. These numbers are con-
sistent in both DBpedia and Wikidata. On DBpedia,
for k 6 2, most explanations have around 10 nodes
with a few exceptions where the number of nodes can
be in the order of hundred. On Wikidata, the cluster is
centered between 10 and 100 nodes with a few having
more than 1000 nodes. For k 6 3 explanations have a
larger size variety on both DBpedia and Wikidata.

We can notice that quite many explanations have
a number of nodes and edges is in the order of hun-
dreds. Note that now the distribution is more shifted
toward higher numbers, especially on Wikidata where
the majority of explanations have between 200 and 600
nodes and between 100 and 1000 edges. We want to
stress the fact that already for k 6 3, most explana-
tions become very large. This analysis suggests that
considering larger values of k can even worsen the situ-
ation. Moreover, considering explanations build by the
merge of all paths may hinder the understandability of

an (visual) explanation already for k 6 3. Therefore,
having the possibility to control the amount of infor-
mation to put into an explanation becomes crucial. Our
path ranking strategies specifically deal with this as-
pect.

7.2.3. Refining Explanations
We now discuss explanations built by considering a

subset of paths interlinking an entity pair. In terms of
running time, explanations based on path informative-
ness Eξ

m (we discuss the case m=5) require to compute
pfitf scores; our approach computes these scores in
parallel and can leverage the merge of all paths as un-
derlying graph (see Definition 13) thus not requiring
to perform any remote query. Explanations based on
pattern informativeness Eξ

m (we discuss the case m=5)
are less expensive since they do not analyze the infor-
mativeness of all edges in a path. Again, to count the
instances satisfying a path we can use the merge of
all paths as reference graph (see Definition 17). Build-
ing these kinds of explanations had a minor impact
(i.e., between 0.3 and 1 seconds) on the overall running
time. We do not report times since they are almost the
same as those already discussed.

What changes is the size of explanations built by
considering a subset of paths only. Indeed, Eξ

5, based

18 Building Relatedness Explanations from Knowledge Graphs

on path informativeness, are much smaller; the typi-
cal size is ∼8 nodes and ∼10 edges on DBpedia and
∼15 nodes and ∼20 edges on Wikidata, when k 6 2 .
On the other hand, Eξ

5, based on path pattern instance,
have variable size as it depends on the number of paths
for each of the top-5 most informative patterns. In gen-
eral these are bigger than Eξ

5 explanations (∼15 nodes
and ∼20 edges on DBpedia and ∼20 nodes and ∼25
edges on Wikidata). Note that Eξ

5 explanations enable
to focus on specific aspects as they include all the in-
stantiations of each of the top-5 most informative path
patterns. We will come back on this aspect in Sec-
tion 7.3.2 when discussing E4S, which allows to chose
patterns before finding paths instead of emerging and
selecting such patterns after discovering paths as done
by E4D.

We now discuss explanations built by using a diver-
sity criterion, that is, Eδ; these explanations are a bit
more expensive in terms of running time (between 1
and 3 seconds) since they require the computation of
distances between paths, even if this task leverages a
multi-thread approach. In terms of size, these expla-
nations are in the same order of magnitude as Eξ

5 on
DBpedia, while are a bit larger in Wikidata. We hy-
pothesize that this behavior is due to a larger num-
ber of predicates present in Wikidata, which allows to
consider a higher number of paths with the same δ
value than in DBpedia. The important point of Eδ ex-
planations is that they guarantee to also include rare
edges potentially discarded by path or pattern infor-
mativeness. We also looked into explanations combin-
ing (top-5) path/pattern informativeness and diversity
(r=25%). In this case the typical size is ∼20 nodes
and ∼25 edges in DBpedia and a bit larger in Wiki-
data. The flexibility of our approach to build explana-
tions allowing to decide the amount of information to
be included into an explanation is crucial toward un-
derstanding relatedness between entities.

7.3. E4S: Explanations from the Schema

We now discuss the E4S algorithm, which makes
usage of the KG schema. Recall that differently from
E4D, E4S allows to build explanations about a specific
relatedness perspective by giving as input both a pair
of entities and a predicate. For the experiments, we
took the latest version of the DBpedia ontology7 and
considered statements about rdf:type, rdfs:subClassOf,

7http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2

rdfs:subPropertyOf rdfs:domain and rdfs:range only. In
fact, these are at the core of the notion of schema
graph (see Definition 2), which is used by E4S to gen-
erate candidate explanation patterns. These pieces of
schema information are also available in other KGs
like Wikidata (under a different naming) and Yago,
among the others. In order to generate candidate ex-
planation patterns in DBpedia, the first step of E4S is
to identify domain-specific predicates. With RECAP
the user can select one or more predicates for a do-
main. However, to run the experiments we automa-
tized the identification of seed predicates. For each in-
put pair, we took the top-6 most informative predicates
(see Definition 14) common to the source and target
entity; when there were no predicates in common, we
took the top-3 most informative predicates from the
source and target entity, respectively.

We ran Algorithm 1 by using each of the 6 seed
predicates as input and obtained an overall set of candi-
date explanation patterns; from these, we obtained a set
of SPARQL queries used to verify such patterns (see
Section 4.3.1). Fig. 19 shows the number of SPARQL
queries generated for each input pair. We observe that
the number of queries varies from pair to pair and can
reach the order of thousands when k > 1. These queries
contain predicates that are related to the seed predicate
in the “middle” position of triple patterns. In contrast,
with E4D we have a fixed number of 2k queries con-
taining variables in the predicate position of triple pat-
terns. The peculiarity of E4S is that it allows to reduce
the number of candidates queries by focusing on those
that are interesting before verifying them in the data;
interestingness can be defined according to e.g., infor-
mativeness and/or diversity. In what follows we inves-
tigate this aspect.

7.3.1. E4S: Running Time
We now report the running time of E4S in two dif-

ferent settings: (i) when considering all queries shown
in Fig. 19; (ii) when only considering the top-5 queries
having the highest semantic relatedness wrt the seed
predicate. Running times are show in Fig. 20. We can
notice that running times when considering all queries
are larger than those obtained by E4D. This comes as
no surprise since the number of queries is much larger
in this case. Nevertheless, getting reasonably (and vi-
sually) understandable explanations from E4D requires
to apply some posteriori filtering criterion like consid-
ering top-k paths, patterns, or applying a diversity cri-
terion. Hence, the final cost of building explanations
via E4D should also consider the cost of the refinement.

http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2

Building Relatedness Explanations from Knowledge Graphs 19

20 40 60
Input Entity Pair (ws, wt)

0

100

200

#q
ue

rie
s

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

101

102

103 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

101

102

103
DBpedia: K 3

Fig. 19. E4S: Number of queries generated to verify candidate explanation patterns for each input pair.

20 40 60
Input Entity Pair (ws, wt)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

100

101 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

100

101

DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0.0

0.1

0.2

Ti
m

e
(s

)

DBpedia (top-5): K 1

20 40 60
Input Entity Pair (ws, wt)

10 2

10 1

100

101
DBpedia (top-5): K 2

20 40 60
Input Entity Pair (ws, wt)

10 2

10 1

100

101 DBpedia (top-5): K 3

Fig. 20. Running times of E4S when considering all queries (top) and the top-5 most related to the seed predicate (bottom).

On the other hand, E4S allows to decide a filtering cri-
terion beforehand, thus drastically reducing the num-
ber of queries that have to be verified. To further in-
vestigate this aspect, we ran additional experiments by
verifying only the top-5 queries. In particular, we start
the verification from the query most semantically re-
lated wrt the target predicate and proceed with the ver-
ification until 5 queries are verified (i.e., returned some
path). Running times in this case are reported in the
bottom part of Fig. 20. As an example, for k63, run-
ning times now never exceed ten seconds. Filtering the

queries to be verified introduces a significant reduction

of the running times of E4S, bringing the values to be

compatible with those of E4D. Nevertheless, recall that

E4D still requires some pruning in order to produce (vi-

sually) understandable explanations while those pro-

duced by E4S (when applying query filtering) poten-

tially contain less nodes and edges as these are built

considering specific predicates. We investigate this as-

pect in the next section.

20 Building Relatedness Explanations from Knowledge Graphs

100 101 102 103 104
Number of Nodes

100

101

102

103

104

Nu
m

be
r o

f E
dg

es

DBpedia: E - K 1

100 101
Number of Nodes

2

4

6

8

10
DBpedia: E - K 2

100 102 104
Number of Nodes

5

10

15

20

DBpedia: E - K 3

Fig. 21. E4S: Explanation size on DBpedia for the top-5 most related queries.

7.3.2. E4S: Explanation Size
Fig. 21 reports that size of explanations found by

E4S when considering the verification of the top-5
most semantically related queries to the seed predicate.
We note that these explanations contain a few edges
while the number of nodes can be a bit larger (when
k63). It is interesting to compare the explanation sizes
with those found by E4D (reported in Fig. 18). The size
reduction is clear; for instance, when k62 the num-
ber of nodes is around 10 for E4S while it can be up
to thousand for E4D. This difference is more evident
when k63 where we have that the number of nodes
for E4D can be much larger. We note that explanations
found by E4S (when filtering the queries) contain a
subset of all nodes and edges that can be found when
considering all paths (as done by the merge of all paths
via E4D or evaluating all queries generated by E4S).
The main point of E4S is exactly to allow the gen-
eration of focuses explanations, that is, explanations
whose filtering criterion has been decided a priori and
that can be directly (visually) “parsed" by the user.

7.4. Comparing E4D and E4S

We now provide a more direct comparison between
E4D and E4S. Although both algorithms face the prob-
lem of building relatedness explanations, they adopt
two different strategies, each with its own peculiari-
ties. E4D, which builds explanations by looking at all
paths between an input pair, is useful when one wants
to look at all possible ways in which the pair is inter-
linked. This, in some sense, allows to build general ex-
planations where previously unknown and unexpected
interesting facts can emerge. On the other hand, E4S is
useful when one is interesting in finding explanations
focused on a certain relatedness perspective, which is
expressed via the target predicate and its top-k most re-

lated predicates. Operationally, E4D explores a larger
portion of the KG than that explored by E4S in order to
find out interesting information. Moreover, E4S will by
construction return smaller graphs thus facilitating the
visual exploration, but it can miss pieces of knowledge
expressed by using predicates that are semantically far
from the input predicate. To have a more precise ac-
count of how the two approaches behave, we now re-
port on an analysis of the kinds of paths found in terms
of the most informative and most diverse paths.
Most Informative Path. Fig. 22 reports the values of
the most informative path discovered by the two al-
gorithms when k 6 3. We note that there is a broad
range of informativeness. As an example, for pairs like
(France, Paris) the value are 0.07 and 0.05 for E4D and
E4S, respectively; this value can be explained by the
fact that entities in this pair are very generic in the
sense that the incoming outgoing links of these and in-
termediate entities do not provide a high contribute in
terms of informativeness (see Definition 16).

Input Pair0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa
th

 In
fo

rm
at

iv
en

es
s

AlgoData
AlgoSchema

Fig. 22. Values of informativeness of the most informative path dis-
covered by E4D and E4S for k 6 3.

Building Relatedness Explanations from Knowledge Graphs 21

We also note that the values of informativeness
given by E4D is higher than that provided by E4S. This
comes as no surprise since the former algorithm con-
siders all paths while the latter only a subset of them.
By further investigating the values of informativeness,
we noted that the values provided by the two algo-
rithms usually different of about 10% for most pairs,
although there are other pairs for which this difference
is higher (e.g., pair 27 (Last Action Hero, Terminator 2)).
Despite the values reported in Fig. 22, it is difficult ot
compare the algorithms in terms of path informative-
ness since this value does not have a fixed range as it
depends on the nodes and edges inside paths. There-
fore, to have further insights on the relative perfor-
mance of the two algorithms we investigate the values
of path diversity.
Most Diverse Path. Path diversity is more abstract than
informativeness; while the former depends on the va-
riety of predicates in a path only, the latter also de-
pends on the nodes in the path in terms of their in-
coming and outgoing edges. Differently from path in-
formativeness, path diversity always falls in the inter-
val [0,1], where 0 means that all paths share the same
predicates and 1 means that there is at least a pair of
paths that predicate-wise are different. Fig. 23 reports
the highest values of path diversity when k 6 3.

Input Pair0.0

0.2

0.4

0.6

0.8

1.0

Pa
th

 D
iv

er
sit

y

AlgoData
AlgoSchema

Fig. 23. Highest value of path diversity for E4D and E4S for k6 3.

We note that for most pairs it is possible to find a
path that includes predicates not shared with any other
path (i.s., value of diversity equals to 1); this is true
for both E4D and E4S. For other pairs it is not possi-
ble to find a diverse path; these are typically pairs that
are linked by a low number of paths (e.g., pair 1(C.
Martínez, M. Seles) and pair 60 (D. Beckham, M. United)).

Note that in terms of diversity the fact that E4S con-
siders a smaller number of paths did not have an im-
pact on the task of finding most diverse paths.

7.5. Discussion
We now discuss some design choices made.
Local vs Remote Data. One of the cornerstones of the
proposal is to make available an explanation build-
ing framework that can work on top of any KG. This
has the advantage of making the tool available even to
whom does not have resources to build an infrastruc-
ture in terms of computing and storage power. The va-
riety of KGs available as Linked Open Data and acces-
sible via SPARQL endpoints offer a unique opportu-
nity toward reaching this objective. Online endpoints
allow to seamlessly use the explanation framework in
a variety of domains with continuously updated data.
On the other hand, a custom and local working mode
would require to process, store, made available and up-
date a KG for each of the domain of interest.

In general, RECAP can benefit from the compu-
tational resources of online SPARQL endpoints, when
submitting queries to retrieve paths, in the same way
as any other user (or application) that submits queries.
Note that this can also bring the drawbacks of online
endpoints like temporary unavailability and long run-
ning times in case of high processing load. The exper-
iments were conducted on online endpoints with the
precise purpose of testing how the system works on
normal (in the sense that do not depend on the tool)
working conditions.
Schema Availability. Another aspect that needs to be
clarified concerns the E4S algorithm. This algorithm
assumes the KG to be endowed with a minimal schema
definition including a hierarchy of classes (and prop-
erties) and domains and ranges of properties. This as-
sumption is realistic in practice; popular KGs like DB-
pedia, Yago and Wikidata feature even richer schema
definitions. Another aspect concerns the completeness
of the schema as it can be the case that some classes
and properties are underspecified (e.g., missing do-
main and range). Our experiments on DBpedia sug-
gest that for the dataset considered, which covers a
quite broad number of domains the schema specifica-
tion was sufficient. In general, one can refine/complete
the portion of schema that touches a particular do-
main of interest. Besides proceeding manually, RE-
CAP can benefit from approaches that surface/refine a
KG schema from the data or rely on other schema defi-
nitions like schema.org or Wordnet to complete under-
specified aspects in the schema of the KG of interest.

22 Building Relatedness Explanations from Knowledge Graphs

7.6. Explanation Building Tools

We now report on a user study. The overall goal was
to investigate the different functionalities of RECAP
as compared to those of tools tackling similar prob-
lems. In particular, we considered RelFinder8 and Ex-
plass9 that are tools publicly available. RelFinder is a
tool that given a pair of entities and a value of distance
d produces a (visual) graph composed of all paths up
to distance d interlinking them. Explass takes the same
input as RelFinder but tackles a slightly different prob-
lem; it focuses on finding the top-k ontological pat-
terns that abstract a set of paths. We note that both Ex-
plass and RelFinder starts from the data to fulfill their
goals; moreover, both of them only work on DBpedia.
To test similar functionalities, we considered explana-
tions found by the E4D algorithm and used DBpedia.
Experimental Setting. Twenty participants were as-
signed each six random pairs among the 26 entity pairs
used to evaluate Explass and described in [20]. Par-
ticipants were shown how the three systems work and
asked to use each system (with no other support) to
understand the relatedness between entities in an input
pair. In order to collect the opinions from the partic-
ipants, we followed the methodology adopted for the
evaluation of Explass [20]. It was based on a set of
five questions where the response to each question was
given with an agreement value from 1 (minimal agree-
ment) to 5 (maximal agreement). We added an addi-
tional question (i.e., Q6) in order to understand how
users perceive the performance of the systems in terms
of running times. We think that this is a relevant ques-
tion since besides the (visual) features, it is also impor-
tant to understand if the time a user has to wait to get
an answer is reasonable. The results of the evaluation
for each question are reported in Table 6; the full text
of the questions is reported in Appendix A.
Results. Question Q1 concerns aspects related to the
support given by the tools in getting an overview of
all relevant information. Users, in this respect, recog-
nized that both Explass and RECAP provided a more
comprehensive overview than RelFinder; indeed, Ex-
plass and RECAP, via path patterns, provide a more
concise overview of all paths interlinking the input
pair while RelFinder only shows (the merge of) all
paths. This aspect was found particularly problematic
by users that were asked to evaluate the tools on pairs
like (B. Obama, J. W. Bush) and (J. Kirby, I. Man) linked

8http://www.visualdataweb.org/relfinder/relfinder.php
9http://ws.nju.edu.cn/explass/

by a large number of paths. As for Q2, which is about
the easiness of finding information, participants rated
RelFinder and RECAP better than Explass. In par-
ticular, participants found useful the RECAP func-
tionality that provides a short description of the input
entities (see Fig. 13 (a)). Question Q3 is about func-
tionalities of the tool that synthesize the results. In this
case RECAP and Explass were considered better than
RelFinder. The visualization of unfiltered explanations
(e.g., explanations including all paths) provided by the
latter required some effort. On the other hand, Explass
by default groups together paths belonging to the same
pattern. One of the features appreciated was the abil-
ity of RECAP to control the amount of information
visually shown. In fact, the RECAP functionalities
allowing to show, for instance, the most informative
path or the top-k most informative paths, allowed to
cope with the visual overload of pairs of entities linked
by a large number of paths. Q4-Q5 are about the sup-
port that the tools give to complete the task. In this
case Explass and RECAP offered more support than
RelFinder. The main reason was the fact that this lat-
ter tool only allows to visualize a single type of ex-
planation (all paths) while the other tools offered more
features. RECAP was considered a more comprehen-
sive solution also due to the fact that it allows to dis-
cover additional entities (via the query by relatedness
functionality) that share a given relatedness perspec-
tive. Question Q6 was about running time. In this case,
Explass was considered the least compelling system.
The inter-annotator agreement, computed as the mean
correlation between each pair of raters was of 0.85.
RECAP was judged higher than the other two systems
in all questions via LSD post-hoc tests (p < 0.05).
Combining multiple KGs. Users also were asked to
test the capability of RECAP in combining knowl-
edge from DBpedia and Yago. In particular, start-
ing from entities in DBpedia, the tool can look at
owl:sameAs links to find the corresponding Yago
entities. Then it can merge the explanations obtained
from the two KGs. Users (∼75%) perceived the com-
bination of multiple KGs as very useful toward more
comprehensive explanations. This is especially true
when KGs cover the same domain with different levels
of detail (DBpedia was judged more comprehensive
than Yago). The combination also produces graphs of
bigger size. Indeed, the functionality of RECAP al-
lowing to filter information to be included into an ex-
planation was judged very useful (participants thought
that the merge of paths E∪ was too big already with
k = 2).

http://www.visualdataweb.org/relfinder/relfinder.php
http://ws.nju.edu.cn/explass/

Building Relatedness Explanations from Knowledge Graphs 23

Table 6
Questions/responses: means (standard deviation).

Question RECAP RelFinder Explass
Q1: Information overview 4.55(0.65) 3.05(0.77) 3.82(0.75)
Q2: Easiness in finding information 4.45(0.55) 4.05(0.63) 3.85(0.67)
Q3: Easiness in comparing/synthesizing info 4.62(0.62) 3.10(0.82) 4.06(0.61)
Q4: Comprehensive support 4.81(0.73) 3.42(0.77) 4.15(0.79)
Q5: Sufficient support to the task 4.67(0.81) 3.28(0.86) 4.23(0.83
Q6: Running time 4.82(0.48) 4.12(0.72) 3.18(0.52)

8. Related Work

We review related work along different perspectives.
Our analysis ranges from techniques to build explana-
tions and/or similar notions to implemented tools.
8.1. Relatedness Explanations

The problem of finding structures (e.g., paths, sub-
graphs) connecting entities has been tackled from dif-
ferent perspectives. Faloutsos et al. [36] consider edge
weighted graphs without labels and treat the input
graph as an electrical network in which each edge rep-
resents a resistor with conductance. The sought con-
nectivity subgraph is the one that can deliver as many
units of electrical current as possible. Along the same
line Ramakrishnan et al. [14] consider multi-relational
weighted graphs with weights assigned by looking at
the schema (e.g., class and property specificity). To
discover the subgraph connecting two entities author
resort to the same algorithm as Faloutsos et al. [36].

Our work differs in the fact that we focus on build-
ing different kinds of explanations, by also controlling
the kind and amount of information to be included,
by using two different SPARQL-based algorithms; one
that starts from the data (E4D) and the other that starts
from the schema (E4S). Besides, we provide a visual
tool (RECAP) with a concrete application of related-
ness explanations for query answering.

Heim et al. [37] devised a tool called RelFinder,
which given a pair of entities in DBpedia can produce
a graph interlinking them. Differently, from our ap-
proach that can control the final explanation graph via
path ranking and selection strategies, the graph found
by RelFinder can quickly become too large to provide
useful insights. Moreover, we also provide E4S and de-
scribed a concrete usage of explanations for query an-
swering. REX [18] finds relationship explanations in
the context of the Yahoo! search engine. It leverages
(existing) ad-hoc algorithms for explanation enumera-
tion and pruning as well as different measures of inter-

estingness. There are some substantial differences be-
tween the work presented in this paper and REX. We
make usage of information-theoretic notions to prune
the set of paths that will contribute to the explana-
tion. While producing an explanation we take into ac-
count diversity, which allows to include into an ex-
planation also “rare" edges. We adopt a knowledge-
graph agnostic approach and relies on queries to a (re-
mote) endpoint. Moreover, our E4S algorithm allows
to start from the KG schema to build personalized ex-
planations. Last but not least, we have described a con-
crete usage of our approach for querying KGs. This is
again achieved by via SPARQL queries to a (remote)
endpoint. Voskarides et al. [38] focus on the prob-
lem of explaining relatedness making available short
text descriptions. In particular, the problem is trans-
formed into that of ranking sentences from documents
in a corpus that is related to the knowledge graph. The
approach described in this paper is entirely based on
structured information and does not require the usage
of text corpora. Indeed, our aim is to produce a graph
instead of a textual description.

A recent piece of work [39] tackles the problem
of contextualizing facts. Authors propose a technique
called neural fact contextualization method (NFCM)
that given a target fact it is able to generate a set of re-
lated candidate facts (via a graph traversal algorithm);
then, it uses recurrent neural networks to contextual-
ize the fact based on a score assigned to the candidate
facts. E4S adopts a different departure point; it abstract
the input pair to generate an explanation template that
is used to generate explanation hypothesis at the level
of schema used to assemble an explanation graph ac-
cording to different criteria (e.g., informativeness, di-
versity). On the other hand, NFCM uses an input fact
to contextualize it by traversing the data graph.

24 Building Relatedness Explanations from Knowledge Graphs

8.2. Discovering Semantic Associations

A number of proposal have tackled the problem of
finding semantic associations (paths) interlinking enti-
ties. Cheng et al. [20] describe an approach to find a
flat list (top-K) of clusters and facet values for refocus-
ing and refining the search in KGs. In particular, the
approach can recommend frequent, informative, and
small-overlapping patterns by leveraging ontological
semantics, query context, and information theory. Our
work differs in the fact that we aim at building explana-
tions that are graph based on two different algorithms.
Moreover, our path ranking strategies allows to con-
trol the amount of information that will be part of an
explanation thus helping the user in precisely under-
standing why a pair of entities is related. Last but not
least, we described a concrete application of explana-
tions for query answering. Tiddi et al. [19] tackle the
problem of defining a cost-function that is able to de-
tect the strongest relationship between two given en-
tities in a supervised way. Authors frame the problem
into a genetic programming setting and devise a tech-
nique that can learn such cost function by only look-
ing at the topology of the subgraph (set of paths) con-
necting a pair of entities. The output of the process is
a single path that best (in terms of the cost function)
represents the relation between two entities. We start
from the perspective of building explanations that are
graphs in an unsupervised way. We offer two differ-
ent algorithms with E4S staring from the KG schema
thus giving high flexibility in choosing which kinds of
patterns look interesting to build an explanation. We
also describe a concrete use case of querying KGs by
relatedness along with the RECAP visual tool.

Cheng et al. [40] describe an efficient graph search
algorithm for finding associations among a tuple of en-
tities, which prunes the search space by exploiting dis-
tances between entities computed based on a distance
oracle. After finding a potentially large number of such
associations, the approach performs a summarization
of notable subgroups. Our approach is SPARQL based
and can scale to very large graphs while their work
on main memory. Their approach does not use the
schema to prune/personalize the search for explana-
tions. Nevertheless, combining our schema-based ap-
proach (E4S) with theirs is interesting. Considering a
tuple of entities is also interesting.

Bianchi et al. [41] focus on the problem of finding
the most “interesting" semantic associations by defin-
ing a ranking function, which can take into account
user preferences. The approach starts from a small

sample of semantic associations that are rated by the
user and then use it to iteratively learn a personalized
ranking function. Our approach is based on two dif-
ferent algorithms (E4D and E4S) that can build related-
ness explanations in the form of graphs. Moreover, we
have implemented the RECAP tool as we believe that
having a way to visually present explanations can help
the user in better understanding explanations. Last but
not least, as a concrete application of explanations we
have implemented a relatedness based querying mech-
anism. Nevertheless, it would be interesting to inte-
grate our tool with the rating mechanism described by
the authors to drive the explanation visualization.

Anyanwu et al. [42], Kochut et al. [43] and Fionda et
al. [44] tackle the problem of association discovering
from a query language perspective. This work starts
from a specific input pair while their from a declar-
ative specification (i.e., a query) the results of which
are unknown before evaluation. Fionda et al. [45] fo-
cus on the problem fo finding graphs at the level of
schema starting from the data. Our algorithm E4S does
the reverse and focus on building data-level explana-
tions. Finally, other approaches (e.g., [15, 17, 46, 47])
focus on the problem of relation discovery while we
focus on building explanations that can be configured
to include the desired amount of information.

8.3. Path Ranking

There is also a solid body of work about path rank-
ing. A series of papers (e.g., [48, 49]) focused on
path ranking by leveraging ontological knowledge and
information-theoretic techniques with heuristics. Ag-
garwal et al. [50] focus on ranking all the paths be-
tween any two entities by using measures like co-
hesiveness and specificity. Differently from our ap-
proach, these approaches focus on ranking only and
not on building explanations. Moreover, we devise a
general framework for explanations, two algorithms
and a tool. More recently, Cheng et al. [30] per-
form an empirical comparison of eight techniques to
rank semantic associations. The evaluation is based on
ground-truth rankings created by human experts. What
emerged is that experts generally prefer small semantic
associations consisting of entities having similar types.
Moreover, semantic associations consisting of uniform
relations and those consisting of diverse ones are both
preferred. This study suggests that the capability of
RECAP to control the size of an explanation (by se-
lecting only a subset of paths) is useful as from the
study emerged that users prefer small explanations.

Building Relatedness Explanations from Knowledge Graphs 25

Table 7
Comparison of RECAP with related tools.

System KG O F Q L
REX [18] Yahoo! Graph No No Yes
RelFinder [37] DBpedia Graph No No Yes
Explass [20] DBpedia Paths Yes (only paths) No Yes
RECAP Any Graph/Paths Yes (paths and graphs) Yes No

8.4. Comparison of RECAP with related tools

Table 7 summarizes the comparison of our approach
with related tools. The comparison is carried out along
the following dimensions: KG supported (KG), out-
put (O), filtering capabilities (F), querying capabilities
(Q), requirement of local data (L). RECAP differs
from related systems in the following main respects: as
for KG, RECAP is KG-independent; it only requires
the availability of a (remote) query endpoint. More-
over, RECAP can combine information from multi-
ple KGs (by leveraging owl:sameAs links). As for
O and F, RECAP focuses on building different types
of explanations in the form of graphs or (sets of) paths
by leveraging informativeness (to estimate the relative
importance of edges), diversity (to include rare edges)
and their combinations. Moreover, RECAP is the only
approach that can be used to query KGs (Q). As for
L, neither does RECAP assume local availability of
data nor any data preprocessing.

9. Concluding Remarks and Future Work

We have introduced a framework to generate dif-
ferent types of relatedness explanations. We have
described two different algorithms (E4D and E4S)
along with different path ranking strategies. This gives
high flexibility in controlling and selecting the pre-
ferred amount of information that a (visual) expla-
nation should contain. Explanations are a versatile
tool in many contexts, from information retrieval to
clustering. This work has also been motived by the
SENSE4US FP7 project, where there was the need to
find explanations for groups of topics emerging from
textual documents. As a concrete use case, we showed
how explanations can be used for querying knowledge
graphs in a query-by-example fashion. In the future,
we plan to integrate a user feedback mechanism that
can help in building more personalized explanations.

References

[1] C. Shi, Y. Li, J. Zhang, Y. Sun and S.Y. Philip, A survey of het-
erogeneous information network analysis, IEEE Transactions
on Knowledge and Data Engineering 29(1) (2017), 17–37.

[2] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, 1st edn, Morgan & Claypool, 2011. ISBN
9781608454303. http://linkeddatabook.com/.

[3] Y. Sun and J. Han, Mining heterogeneous information net-
works: principles and methodologies, Synthesis Lectures on
Data Mining and Knowledge Discovery 3(2) (2012), 1–159.

[4] N. Jayaram, A. Khan, C. Li, X. Yan and R. Elmasri, Query-
ing knowledge graphs by example entity tuples, IEEE Trans-
actions on Knowledge and Data Engineering 27(10) (2015),
2797–2811.

[5] H. Saif, T. Dickinson, L. Kastler, M. Fernandez and H. Alani,
A semantic graph-based approach for radicalisation detec-
tion on social media, in: European Semantic Web Conference,
Springer, 2017, pp. 571–587.

[6] Y. Wang, M.J. Carman and Y.-F. Li, Using Knowledge Graphs
to Explain Entity Co-occurrence in Twitter, in: Proceedings of
the 2017 ACM on Conference on Information and Knowledge
Management, ACM, 2017, pp. 2351–2354.

[7] T.D. Noia, V.C. Ostuni, P. Tomeo and E.D. Sciascio, Sprank:
Semantic path-based ranking for top-n recommendations using
linked open data, ACM Transactions on Intelligent Systems and
Technology (TIST) 8(1) (2016), 9.

[8] A. Saeedi, E. Peukert and E. Rahm, Using Link Features for
Entity Clustering in Knowledge Graphs, in: Extended Semantic
Web Conference., 2018.

[9] I. Hulpuş, N. Prangnawarat and C. Hayes, Path-based seman-
tic relatedness on linked data and its use to word and entity
disambiguation, in: International Semantic Web Conference,
Springer, 2015, pp. 442–457.

[10] G. Pirrò, Explaining and suggesting relatedness in knowledge
graphs, in: International Semantic Web Conference, Springer,
2015, pp. 622–639.

[11] A. Sheth, B. Aleman-Meza, I.B. Arpinar, C. Bertram,
Y. Warke, C. Ramakrishanan, C. Halaschek, K. Anyanwu,
D. Avant, F.S. Arpinar et al., Semantic Association Identifica-
tion and Knowledge Discovery for National Security Applica-
tions, Journal of Database Management 16(1) (2005), 33–53.

[12] V. Fionda, C. Gutierrez and G. Pirrò, Knowledge Maps of Web
Graphs, in: KR, 2014.

[13] Y. Tsuruoka, M. Miwa, K. Hamamoto, J. Tsujii and S. Ana-
niadou, Discovering and Visualizing Indirect Associations be-
tween Biomedical Concepts, Bioinformatics 27(13) (2011).

[14] C. Ramakrishnan, W.H. Milnor, M. Perry and A.P. Sheth, Dis-
covering informative connection subgraphs in multi-relational
graphs, SIGKDD Newsletter 7(2) (2005), 56–63.

http://linkeddatabook.com/

26 Building Relatedness Explanations from Knowledge Graphs

[15] P.N. Mendes, P. Kapanipathi, D. Cameron and A.P. Sheth,
Dynamic Associative Relationships on the Linked Open Data
Web, in: Web Science Conference, 2010.

[16] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann and T. Stege-
mann, RelFinder: Revealing Relationships in RDF Knowledge
Bases, in: Semantic Multimedia, Springer, 2009, pp. 182–187.

[17] G. Kasneci, S. Elbassuoni and G. Weikum, Ming: Mining In-
formative Entity Relationship Subgraphs, in: CIKM, ACM,
2009, pp. 1653–1656.

[18] L. Fang, A.D. Sarma, C. Yu and P. Bohannon, REX: Explaining
Relationships between Entity Pairs, VLDB 5(3) (2011), 241–
252.

[19] I. Tiddi, M. d’Aquin and E. Motta, Learning to assess linked
data relationships using genetic programming, in: Interna-
tional Semantic Web Conference, Springer, 2016, pp. 581–
597.

[20] G. Cheng, Y. Zhang and Y. Qu, Explass: Exploring Associ-
ations between Entities via Top-K Ontological Patterns and
Facets, in: ISWC, Springer, 2014, pp. 422–437.

[21] S. Harris and A. Seaborne, SPARQL 1.1 Query Language W3C
Recommendation, 2013.

[22] S. Munoz, J. Pérez and C. Gutierrez, Simple and efficient min-
imal RDFS, Web Semantics: Science, Services and Agents on
the World Wide Web 7(3) (2009), 220–234.

[23] E. Franconi, C. Gutierrez, A. Mosca, G. Pirrò and R. Rosati,
The logic of extensional RDFS, in: International Semantic Web
Conference, Springer, 2013, pp. 101–116.

[24] I. Herman, G. Melançon and M.S. Marshall, Graph Visualiza-
tion and Navigation in Information Visualization: A Survey,
IEEE Trans. on Visualization and Comp. Graph. 6(1) (2000),
24–43.

[25] J. Ugander, B. Karrer, L. Backstrom and C. Marlow, The
Anatomy of the Facebook Social Graph, arXiv preprint
arXiv:1111.4503 (2011).

[26] V. Fionda, G. Pirrò and M.P. Consens, Extended property
paths: Writing more SPARQL queries in a succinct way,
in: Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[27] G. Pirrò, REWOrD: Semantic Relatedness in the Web of Data.,
in: 26th Conference on Artificial Intelligence (AAAI), 2012.

[28] V. Fionda and G. Pirrò, Fact Checking via Evidence Patterns.,
in: IJCAI, 2018, pp. 3755–3761.

[29] J. Pérez, M. Arenas and C. Gutierrez, Semantics and com-
plexity of SPARQL, ACM Transactions on Database Systems
(TODS) 34(3) (2009), 16.

[30] G. Cheng, F. Shao and Y. Qu, An Empirical Evaluation of
Techniques for Ranking Semantic Associations, IEEE Trans-
actions on Knowledge and Data Engineering 29(11) (2017),
2388–2401.

[31] R.A. Baeza-Yates and B.A. Ribeiro-Neto, Modern Information
Retrieval, ACM Press / Addison-Wesley, 1999. ISBN 0-201-
39829-X.

[32] F. Deng, S. Siersdorfer and S. Zerr, Efficient Jaccard-based Di-
versity Analysis of Large Document Collections, in: Proceed-
ings of the 21st ACM International Conference on Information
and Knowledge Management, ACM, 2012, pp. 1402–1411.

[33] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank
Citation Ranking: Bringing Order to the Web. (1999).

[34] K. Anyanwu, A. Maduko and A. Sheth, SemRank: ranking
complex relationship search results on the semantic web, in:
Proceedings of the 14th international conference on World
Wide Web, ACM, 2005, pp. 117–127.

[35] S. Magliacane, A. Bozzon and E. Della Valle, Efficient execu-
tion of top-k SPARQL queries, in: The Semantic Web–ISWC
2012, Springer, 2012, pp. 344–360.

[36] C. Faloutsos, K.S. McCurley and A. Tomkins, Fast Discovery
of Connection Subgraphs, in: SIGKDD, ACM, 2004, pp. 118–
127.

[37] P. Heim, S. Lohmann and T. Stegemann, Interactive Relation-
ship Discovery via the Semantic Web, in: ESWC, Springer,
2010, pp. 303–317.

[38] N. Voskarides, E. Meij, M. Tsagkias, M. De Rijke and
W. Weerkamp, Learning to explain entity relationships in
knowledge graphs, in: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), Vol. 1, 2015, pp. 564–574.

[39] N. Voskarides, E. Meij, R. Reinanda, A. Khaitan, M. Os-
borne, G. Stefanoni, P. Kambadur and M. de Rijke, Weakly-
supervised Contextualization of Knowledge Graph Facts, in:
SIGIR, 2018.

[40] G. Cheng, D. Liu and Y. Qu, Efficient algorithms for associa-
tion finding and frequent association pattern mining, in: Inter-
national Semantic Web Conference, Springer, 2016, pp. 119–
134.

[41] F. Bianchi, M. Palmonari, M. Cremaschi and E. Fersini, Ac-
tively learning to rank semantic associations for personalized
contextual exploration of knowledge graphs, in: European Se-
mantic Web Conference, Springer, 2017, pp. 120–135.

[42] K. Anyanwu and A. Sheth, ρ-Queries: enabling querying for
semantic associations on the semantic web, in: Proceedings of
the 12th international conference on World Wide Web, ACM,
2003, pp. 690–699.

[43] K.J. Kochut and M. Janik, SPARQLeR: Extended SPARQL
for semantic association discovery, in: European Semantic Web
Conference, Springer, 2007, pp. 145–159.

[44] V. Fionda and G. Pirrò, Explaining Graph Navigational
Queries, in: European Semantic Web Conference, Springer,
2017, pp. 19–34.

[45] V. Fionda and G. Pirrò, Meta Structures in Knowledge Graphs,
in: International Semantic Web Conference, Springer, 2017,
pp. 296–312.

[46] N. Nakashole, G. Weikum and F. Suchanek, Discovering and
Exploring Relations on the Web, VLDB 5(12) (2012), 1982–
1985.

[47] I. Traverso-Ribón, G. Palma, A. Flores and M.-E. Vidal, Con-
sidering semantics on the discovery of relations in knowl-
edge graphs, in: European Knowledge Acquisition Workshop,
Springer, 2016, pp. 666–680.

[48] B. Aleman-Meza, C. Halaschek, I.B. Arpinar and A.P. Sheth,
Context-aware semantic association ranking (2003).

[49] B. Aleman-Meza, C. Halaschek-Weiner, I.B. Arpinar, C. Ra-
makrishnan and A.P. Sheth, Ranking Complex Relationships
on the Semantic Web, Internet Computing, IEEE 9(3) (2005),
37–44.

[50] N. Aggarwal, S. Bhatia and V. Misra, Connecting the Dots:
Explaining Relationships Between Unconnected Entities in a
Knowledge Graph, in: International Semantic Web Confer-
ence, Springer, 2016, pp. 35–39.

Building Relatedness Explanations from Knowledge Graphs 27

Appendix A. Questions used in the user evaluation

Fig. 24. Questions used in the evaluation.

Fig. 24 shows the full text of the questions used in
the user study and comparison of RECAP with related
tools (see Section 7.6. of the paper).

Appendix B. Dataset

The following tables show the input pairs.
Table 8

Pairs from 1 to 37

Pair Source Entity (ws) Target Entity (wt)
1 Conchita Martínez Monica Seles
2 Nike Inc. Tiger Woods
3 Jack Kirby Iron Man
4 Apple Inc. Sequoia Capital
5 Albert Einstein Giuseppe Peano
6 Ingrid Bergman Isabella Rossellini
7 John F. Kennedy Jacqueline Kennedy Onassis
8 Barack Obama George W. Bush
9 Walt Disney Roy O. Disney
10 Julia Roberts Emma Roberts
11 Garry Marshall Hector Elizondo
12 Andrew Jackson John Quincy Adams
13 Frank Herbert Brian Herbert
14 Abraham Lincoln George Washington
15 Tom Cruise Katie Holmes
16 Christian Bale Christopher Nolan
17 Hal Roach Stan Laurel
18 Danielle Steel Nora Roberts
19 Richard Gere Carey Lowell
20 Leonardo DiCaprio Kate Winslet
21 Capcom Sega
22 Aldi Lidl
23 Universal Studios Paramount Pictures
24 IBM Hewlett-Packard
25 Last Action Hero Terminator 2: Judgment Day
26 Forbes Bloomberg L.P.
27 Charmed Buffy the Vampire Slayer
28 Nanga Parbat Broad Peak
29 Manhattan Bridge Brooklyn Bridge
30 Ford Motor Company Lincoln MKT
31 Donald Knuth Stanford University
32 Dennis Ritchie C (programming language)
33 Ludwig van Beethoven Symphony No. 5 (Beethoven)
34 Uranium-235 Uranium-238
35 Microsoft Office C++
36 Steven Spielberg Minority Report
37 France Paris

28 Building Relatedness Explanations from Knowledge Graphs

Table 9
Pairs from 38 to 74

Pair Source Entity (ws) Target Entity (wt)
38 Statoil Oslo
39 Justin Leonard Australia
40 York Mark Prescott
41 Japan Southern California Open
42 Spain Kenny Dalglish
43 Northampton Hampshire County Cricket Club
44 Vienna Jackie McNamara
45 Mother Teresa Holy See
46 New York Yankees John Marzano
47 Trans World Airlines Long Island
48 Moscow Kremlin Boris Yeltsin
49 Mexico Grupo Santander
50 Italy Venice
51 Jack Charlton Republic of Ireland
52 NAC Breda FC Groningen
53 Don Wengert Baltimore
54 Switzerland Martina Hingis
55 Alexandra Fusai Japan
56 Italy Ferrari
57 East Fife F.C. Arbroath F.C.
58 Alan Turing Computer scientist
59 David Beckham Manchester United F.C
60 Microsoft Microsoft Excel
61 Steven Spielberg Catch Me If You Can
62 Boeing C-40 Clipper Boeing
63 Arnold Palmer Sportsman of the Year
64 Bjarne Stroustrup C++
65 Nicole Kidman Tom Cruise
66 Manchester United F.C Malcolm Glazer
67 Boeing Boeing 727
68 David Beckham A.C. Milan
69 Beijing 2008 Summer Olympics
70 Microsoft Microsoft Office
71 Metropolis (1927 film) Fritz Lang
72 David Lynch Dune (film)
73 Thea von Harbou Fritz Lang
74 Charles Manson The Beach Boys

	Introduction
	Background and Problem Description
	Problem Description
	Basic Definitions

	Explaining Relatedness from the Data (E4D)
	Finding Paths from the Data

	Explaining Relatedness from the Schema (E4S)
	Predicate Relatedness
	Finding Candidate Explanation Patterns
	Verifying Explanation Patterns
	Building a SPARQL Query for the Verification

	Ranking Paths to build Explanations
	Path Informativeness
	Explanation Pattern Informativeness
	Path Diversity
	Path Ranking Strategies: an example

	Selecting and Merging Paths

	The RECAP tool and its application for Querying Knowledge Graphs by Relatedness
	Implementation
	Querying Knowledge Graphs by Relatedness
	Ranking of Results

	Evaluation
	Datasets and Experimental Setting
	Knowledge Graphs Used

	E4D: Finding Explanations From the Data
	E4D: Running time
	E4D: Explanation Size
	Refining Explanations

	E4S: Explanations from the Schema
	E4S: Running Time
	E4S: Explanation Size

	Comparing E4D and E4S
	Discussion
	Explanation Building Tools

	Related Work
	Relatedness Explanations
	Discovering Semantic Associations
	Path Ranking
	Comparison of RECAP with related tools

	Concluding Remarks and Future Work
	References
	Appendix A. Questions used in the user evaluation
	Appendix B. Dataset

