
Semantic Web 0 (0) 1 1
IOS Press

Survey on complex ontology matching
Elodie Thiéblin *, Ollivier Haemmerlé, Nathalie Hernandez, Cassia Trojahn
Equipe MELODI, Institut de Recherche en Informatique de Toulouse, Toulouse, France
E-mails: elodie.thieblin@irit.fr, ollivier.haemmerle@irit.fr, nathalie.hernandez@irit.fr, cassia.trojahn@irit.fr

Abstract. Simple ontology alignments, largely studied in the literature, link a single entity of a source ontology to a single entity
of a target ontology. One of the limitations of these alignments is, however, their lack of expressiveness which can be overcome
by complex alignments. While diverse state-of-the-art surveys mainly review the matching approaches in general, to the best
of our knowledge, there is no study about the specificities of the complex matching problem. In this paper, an overview of the
different complex matching approaches is provided. It proposes a classification of the complex matching approaches based on
their specificities (i.e., type of correspondences, guiding structure). The evaluation aspects and the limitations of these approaches
are also discussed. Insights for future work in the field are provided.

Keywords: ontology matching, complex alignment, survey, schema matching

1. Introduction

Ontology matching is an essential task for the man-
agement of the semantic heterogeneity in open en-
vironments. This task is often associated with the
schema matching problem [1] as they share the same
goal: interoperability. Broadly speaking, the match-
ing process aims at generating a set of correspon-
dences (i.e., an alignment) between the entities of dif-
ferent knowledge representation models (e.g., ontolo-
gies, schemata). Two types of correspondences can
be distinguished. While approaches generating simple
correspondences are limited to matching single enti-
ties (i.e., linking a single entity from a source ontol-
ogy to a single entity of a target ontology), complex
matching approaches are able to generate correspon-
dences which express more complex relationships be-
tween entities from different ontologies.

With the increasing amount of knowledge sources
made available on the Linked Open Data (LOD) and
their variety of modelling choices, the relationships be-
tween entities of these sources are required to be more
expressive. Simple correspondences (binary links) are
not expressive enough to fully overcome conceptual
heterogeneity. However, currently, few complex align-
ments are available and published on the LOD, even

*Corresponding author. E-mail: elodie.thieblin@irit.fr.

if the need for these alignments becomes more and
more present in various application fields. For exam-
ple, in the cultural heritage domain, data integration
or data translation applications needed complex corre-
spondences [2–5]. To tackle the issue, complex match-
ing system were used [2], or complex correspondences
were manually created [4, 5]. In the agronomic do-
main, complex alignments have been used to cross-
query linked open data repositories [6]. In the biomed-
ical domain, complex alignments have also been used
to build a consensual model from heterogeneous termi-
nologies [7]. Moreover, complex alignments between
medical ontologies have been published [8, 9].

Different complex matching approaches have emerged
in the literature, adopting a diversity of strategies and
dealing with different knowledge representation mod-
els (from database schemata, taxonomies to heavy on-
tologies). Nevertheless, complex matching remains a
challenge. In [10], ontology matching researchers were
surveyed about future challenges in the field and they
agree that “automatically discovering complex rela-
tions, instead of 1:1” is one of them.

Diverse surveys in the literature have focused on the
different aspects of the schema and ontology match-
ing [1, 10–16] without paying attention to the specifici-
ties of complex matching (underlying strategy, struc-
ture of complex correspondences, etc.). The aim of
this survey is to provide an overview of the complex

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:elodie.thieblin@irit.fr
mailto:ollivier.haemmerle@irit.fr
mailto:nathalie.hernandez@irit.fr
mailto:cassia.trojahn@irit.fr
mailto:elodie.thieblin@irit.fr

2 E. Thiéblin et al. / Survey on complex ontology matching

matching approaches dealing with different kinds of
knowledge representation models such as ontologies,
XML schemata, database schemata, etc. A classifica-
tion of the approaches based on the specificities of
complex alignments is proposed. The evaluation as-
pects of these approaches are also over-viewed. Lim-
itations of approaches and evaluations are discussed
and insights for future work in the field are provided,
in particular to foster the generation of complex align-
ments on the LOD.

The rest of this paper is organised as follows. Af-
ter background definitions (§2), complex alignment
languages and visualisation and edition tools are pre-
sented (§3). Then a classification of complex matching
approaches is proposed (§4), followed by a description
of state-of-the-art approaches (§5). Finally, the works
on complex alignment evaluation are surveyed (§6)
and perspectives for the field are discussed (§7).

2. Background

In this section the scope of this study is specified and
the definitions related to alignments are given. First,
the different knowledge models considered in this pa-
per are presented, then the notions of alignment and
correspondence are defined. The ontology fragments
used for the examples of this section are presented in
Figure 1.

2.1. Knowledge representation models

In the literature, different knowledge representation
models are called “ontologies”. As stated in [16], “an
ontology can be viewed as a set of assertions that are
meant to model some particular domain. Usually, they
define a vocabulary used by a particular application.
In various areas of computer science, there are differ-
ent data and conceptual models that can be thought of
as ontologies.”. In this survey, the term “ontology” is
used in a broad sense for the definitions, and a distinc-
tion between database schemata, XML schemata, tax-
onomies, ontologies, etc., is made for the description
of the approaches when possible. Figure 2 presents
the different kinds of knowledge representation mod-
els sorted by expressiveness which are considered in
this survey.

A matching approach can match two models of the
same kind (e.g., XML schema to XML schema) or of
different kinds (e.g., Database schema to an ontology).

xsd:float
Paper

AcceptedPaper
Person

writtenBy

priceInDollars

(a) o1

xsd:float Paper

Person

xsd:boolean

true
false

authorOf

priceInEuros

accepted

(b) o2

Paper
Decision

Acceptance

hasDecision

(c) o3

Fig. 1. Example ontologies. The format used to represent the ontolo-
gies is described in [17]

2.2. Expressions

Before the definition of alignments, the definition of
expressions, which will serve to define the notion of
correspondences, is given.

A simple expression is composed of a single entity
represented by its unique identifier (e.g. an IRI for on-
tologies). For example, the IRI o1:Paper is a simple
expression of o1.

A complex expression is composed of at least one
entity on which a constructor or a transformation func-
tion is applied. For example, ∀x, o2:accepted(x,true) is
a complex expression which represents all the papers
having the value true for the o2:accepted property. The
constructor used here is a value restriction construc-
tor. A constructor is a logic constructor (union, inter-

E. Thiéblin et al. / Survey on complex ontology matching 3

XML DTDs

Informal
hierarchies

Database
schemata

XML
schemata

Entity-
relationship

model

Formal
taxonomies

Frames

Description
Logics

Logics

expressiveness

Fig. 2. Kinds of knowledge representation models sorted by expres-
siveness (adapted from [16]).

section, inverse, etc.) or a restriction constructor (car-
dinality restriction, type restriction, value restriction,
etc.).

A transformation function is a function that mod-
ifies the values of a literal field. It can be an aggrega-
tion function (e.g. string concatenation, sum of inte-
gers, etc.), a conversion function (e.g. metric conver-
sion, etc.), etc.

2.3. Alignment and correspondence

Definition 1. A correspondence ci is composed of a
relation r between two members: eo1 and eo2 . The
members can be simple or complex expressions with
entities from respectively the source ontology o1 and
the target ontology o2:

– if the correspondence is simple, both eo1 and eo2
are simple expressions;

– if the correspondence is complex, at least one of
eo1 or eo2 is a complex expression;

– r is a relation, e.g., equivalence (≡), more general
(>), more specific (6), disjointedness (⊥), impli-
cation (→), etc. holding between eo1 and eo2 .

One can indicate if each member of the correspon-
dence is a simple expression, noted s, or a complex ex-
pression, noted c.

A simple correspondence is always (s:s) whereas a
complex correspondence can be (s:c), (c:s) or (c:c).
The (1:1), (1:n), (m:1), (m:n) notations have been used
for the same purpose in the literature [14, 18] (1 for s
and m or n for c). However they can be misinterpreted
as the alignment arity or multiplicity [19]. In the fol-
lowing, are provided some examples of complex cor-
respondences based on the definitions above and the
motivating example ontologies (Figure 1).

c1 = ∀x, o1:Person(x)≡ o2:Person(x) is a (s:s) sim-
ple correspondence.

c2 = o1:priceInDollars = changeRate× o2:priceInEuros
is a (s:c) complex correspondence with a trans-
formation function.

c3 = ∀x, o3:hasDecision(x,y) ∧ o3:Acceptance(y)
≡ o1:AcceptedPaper(x) is a (c:s) complex corre-
spondence with constructors1.

c4 = ∀x,y, o1:writtenBy(x,y)≡ o2:authorOf(y,x) is a
(s:c) complex correspondence with the inversion
constructor.

c5 = ∀x, o2:accepted(x,true) ≡
∃y, o3:hasDecision(x,y) ∧ o3:Acceptance(y) is a
(c:c) complex correspondence with constructors.

Definition 2. An ontology alignment A is directional
between a source ontology o1 and a target ontology o2,
denoted Ao1→o2 . Ao1→o2 is a set of correspondences
Ao1→o2 = {c1, c2, ..., cn}.

In opposition to a simple alignment, a complex
alignment contains at least one complex correspon-
dence.

Definition 3. As defined in [16], ontology matching
is the process of generating an ontology alignment A
between two ontologies: a source ontology o1 and a
target ontology o2.

This definition of pairwise matching process can
be however extended to cover multiple ontologies. A
holistic matching process considers more than two on-
tologies together without a source or target distinction
[20, 21]. On the other hand, compound matching is
the process of matching one or more source ontologies
and one or more target ontologies. This process is pair-
wise between the union of the source ontologies and
the union of the target ontologies [22].

Complex ontology matching is the process of gen-
erating a complex alignment between ontologies. The
approaches for generating such a kind of alignment are
discussed in the next section.

2.4. Scope definition

This section presents reflections on the scope of the
survey.

1Note that o3:Paper(x) is not specified in the left member
of the correspondence because o3:Paper is the domain of the
o3:hasDecision property (c.f. figure 1c). Therefore, o3:Paper(x) is
implied in the left member.

4 E. Thiéblin et al. / Survey on complex ontology matching

2.4.1. Type of matched objects
Complex alignments can also occur between other

objects such as business process models [23], strings
[24], etc. However, these objects are different in var-
ious ways from the knowledge representation models
studied in this survey. First of all, these objects do
not model knowledge related to a particular domain
nor define a particular vocabulary. Then, the nature
of their elements is different from the representation
models elements (concepts, relations, attributes). For
example, business processes are graph-like models of
a process, they have a beginning and an end node, the
nodes of their graph are either connectors or activities
which take input and output elements. The strings have
no explicit structure. For these reasons, these types of
matching are out of the scope of this survey.

2.4.2. Ontology matching and ontology evolution
Some connections can be made between ontology

matching and ontology evolution. As defined in the
survey presented in [25], ontology evolution is the pro-
cess which consists in maintaining a resource up to
date according to changes occurring in the represented
knowledge domain or to new requirements of the ap-
plication(s) relying on the ontology. Ontology evolu-
tion is divided into different tasks: detecting the need
for evolution, suggesting changes, validating changes,
assessing the impact of the changes and managing
changes. The latter includes the activities of change
recording and ontology versioning. These activities are
defined as “the ability to handle changes in ontologies
by creating and managing different variants of it” [26].
Most approaches dealing with such activities rely on
relations considering both the two variants, also called
versions, of an ontology and the entities within the
two representations. Finding these relations can be in
some ways similar to ontology matching. When taking
a deeper look at what “version relations” express, not
only conceptual or logical relations between entities
must be considered but also (and mainly) change re-
lations, which represent what has actually been trans-
formed between the two versions of the ontology [27].
The first kind of relation (conceptual or logical rela-
tions) specifies correspondences between the entities
of the source and the target ontologies (as defined pre-
viously). On the other hand, the second type of rela-
tions (change relations) specifies transformations, via
a set of change operations, to apply on the source on-
tology in order to obtain the target ontology (for exam-
ple adding a new domain to a property, merging two
classes, etc.). Such relations are either captured at de-

signing time through the tool used to make the ontol-
ogy evolve (such as Protege or KAON [28]) or identi-
fied a posteriori through ontology “diff tools” [29–32].
Most works in the field have focused on proposing ap-
proaches in order to identify the second type of rela-
tions, i.e. “change relations”. Existing ontology match-
ing approaches are generally reused in this task for
finding the initial overlap between the two ontology
versions.

As pointed out in [30] the aim of managing changes
in ontology evolution is to highlight differences, whereas
the ontology matching task concentrates on similari-
ties.

An analogous classification is made between simple
and complex changes according to the entities evolved
in the changes : “simple changes refer to the addition,
modification or deletion of individual schema con-
structs, while complex changes refer to multiple such
constructs and may be equivalent to multiple simple
changes”[33]. The two types of changes are also called
low level / high level operations [31], elementary/com-
posite changes [28] or atomic/complex changes [34].
According to [31], high level operations are “intuitive,
concise, closer to the intentions of the ontology edi-
tors and capture more accurately the semantics of a
change” even if the authors point out that it is impos-
sible to define an exhaustive list of such operations.
Most languages proposed to represent changes make
this distinction [28, 30].

The work in [35] gives another point of view on
the link between both tasks, and studies the impacts
of evolution changes on existing correspondences be-
tween ontologies. Even if the task of change manage-
ment is complementary to the task of ontology match-
ing, it can strongly benefit from advances in the field
of complex matching.

3. Complex alignment representation and
visualisation

This section presents the languages and vocabular-
ies used for complex alignment representation as well
as works on graphical interfaces for complex align-
ment visualisation and edition.

3.1. Complex alignment languages and vocabularies

A survey on ontology alignment formats is pre-
sented in [36]. Here are presented the known lan-
guages and vocabularies to express complex corre-

E. Thiéblin et al. / Survey on complex ontology matching 5

spondences between knowledge representation mod-
els. Many usual alignment languages can only ex-
press simple correspondences (DDL, DFOL). The cor-
respondences can be represented as logic rules follow-
ing a given syntax, described by a dedicated vocabu-
lary or represented as queries. In the area of OBDA
(Ontology-Based Data Access) [37], the R2RML for-
mat, a W3C standard, has been extended in many dif-
ferent ways.

3.1.1. Logic syntaxes
Correspondences can be expressed as logic formu-

lae.

Web-PDDL The Web-PDDL [38] is a strongly typed
first-order language. It allows for the use of variables,
constants, conditions, logical constructors and quan-
tifiers. The predicates and constants take the form of
URIs.

Other logic syntaxes such as DataLog, RIF, etc. us-
ing URIs as predicates can be used to express logic
formulae. Even if they are originally meant to express
these formulae inside one ontology, they can be used
to express correspondences when involving URIs from
more than one ontology.

3.1.2. Vocabularies
Correspondences can be described by a dedicated

vocabulary or ontology. Ontologies such as OWL or
SWRL are originally meant to describe axioms or rules
inside one ontology. They can also model correspon-
dences when used between two ontologies. Other vo-
cabularies such as EDOAL or SBO were created to de-
scribe the correspondences between a source and a tar-
get ontologies.

OWL OWL [39] can represent complex alignments
as axioms involving logic constructors and entities
from the source and target ontologies. These axioms
form a merging ontology. The expressiveness of the
correspondences in OWL (taking into account the ex-
pressiveness of the aligned ontologies) is restricted to
the SROIQ logic for decidability reasons.

SWRL The Semantic Web Rule Language (SWRL)
[40] helps to define rules, in the form of first order
Horn-clauses, between OWL ontologies. These rules
have no expressiveness restriction and provide flexibil-
ity thanks to the use of variables in the definition of
the rules. This language comes with an XML Concrete
Syntax to express the rules as XML documents. SWRL
can be extended by built-ins based on the XQuery and
XPath built-ins. These built-ins express transformation
functions.

EDOAL EDOAL [41] is an extension of the Align-
ment format to represent the complex correspondences
between OWL ontologies. This language is based on
correspondence patterns [36] and can be processed by
the Alignment API.

XeOML XeOML [42] is a language which represents
alignments for ontologies and can be extended to other
kinds of knowledge representation models. It is based
on an XML schema (Abstract Mapping schema) to de-
scribe the structure of an alignment and is completed
by two other schemata (Ontology Element Definition
and Mapping Definition).

SBO MAFRA [43, 44] is a framework for construct-
ing and editing (DAML+OIL) ontology alignments.
The alignment representation part of the framework is
based on the Semantic Bridge Ontology (SBO). This
(not maintained) ontology provides a vocabulary to ex-
press complex correspondences with logical construc-
tors and some transformation functions such as string
concatenation.

SPIMBench The SPIMBench vocabulary was de-
fined in an instance matching benchmark [45]. It al-
lows for the description of data transformation be-
tween ontologies. These transformations include logic
rules (based on OWL axioms) and value transforma-
tion functions.

3.1.3. The R2RML family
In the literature, diverse relational database to ontol-

ogy formats have been defined and extended to other
kinds of schemata. The reader can refer to the survey in
[46] for a comparison of the existing database to ontol-
ogy alignment formats. Here are presented the R2RML
format, a W3C standard and some of its latest exten-
sions.

R2RML DB to Ontology, Logic, Transformation The
R2RML format [47] is used to represent correspon-
dences between relational databases and RDF datasets.
This language is a W3C standard. R2RML correspon-
dences are expressed as RDF datasets. A few string op-
erations can be expressed in the correspondences. The
R2RML correspondences show how the data from the
source schema should be transformed into the target
ontology.

RML The RML language [48] extends the R2RML
format by allowing other kinds of schemata as source:
XML or JSON. The expressions can be specified using
XPath or JSONPath. The FnO ontology [49] can be

6 E. Thiéblin et al. / Survey on complex ontology matching

used in RML to describe tranformation functions in the
correspondences.

xR2RML The xR2RML language [50] extends the
R2RML format by allowing the description of corre-
spondences of mixed formats in the source schema.
For example, if a JSON object is the value of a cell in
a relational database.

D2RML The D2RML language [51] is based on
R2RML and RML. It allows conditional case state-
ments and programming inside the correspondences.

3.1.4. Query lanquages
Alignments can be directly represented through se-

mantically equivalent queries (or views) of their data.
SQL is the language for querying relational databases,
XQuery for XML documents and SPARQL for knowl-
edge bases (ontologies). These query languages can
use filters (or equivalent) to express transformation
functions inside a query.

XSLT, XPath XML to XML, Logic, Transformation
XSLT (eXtensible Stylesheet Language Tansforma-
tions) [52] is a language under the form of XML doc-
uments. This language describes rules to transform a
source tree (XML document) into a target tree (XML
document). This language is based on transformation
patterns and reuse XPath expressions. XPath (XML
Path Language) defines expressions with logical oper-
ators and transformation functions over XML nodes.
The XPath functions are often reused in other align-
ment languages.

3.1.5. Summary table
Table 1 gives a summary of the complex alignment

formats presented in this section with their targeted ap-
plication. The distinction between data integration and
data transformation is that, in a data integration pro-
cess, there is no transformation of the data. A data inte-
gration application can be data querying without load-
ing the data in a central repository [16]. However these
two applications are similar and data integration rules
can be used for data transformation.

For readability reasons, in this survey, the logic
transformations are expressed in FOL, the transforma-
tion functions with equations and the blocks with sets.

3.2. Complex alignment visualisation and edition

Few tools allow for complex correspondence visual-
isation and edition. Some solutions are provided as part
of specific standalone matching systems, while others

are rather generic solutions, as we describe in the fol-
lowing. Table 2 presents a comparison of the tools.

Axiom and rule editors which allow the import of
different ontologies can be used for complex align-
ment edition, as Protégé [53]. It can be used to edit
OWL axioms involving entities from different ontolo-
gies. The complex correspondences (as axioms) can
be visualised using the Manchester syntax. Another
solution is the Axiomé [54] SWRL rule editor. The
rules are represented as tree structures and can be para-
phrased in English.

Tools as part of existing matchers such as Clio [55]
or KARMA [56] provide a user-interface for the com-
plex alignment edition and correction.

Dedicated complex alignment editors use different
strategies for the visualisation of the correspondences.
MAFRA [43] is an edition and visualisation frame-
work which allows for complex alignment representa-
tion as an instanciation of their Semantic Bridge On-
tology (SBO). Klint [57] provides a graph-based vi-
sual interface for integration rules (correspondence)
validation and edition. The correspondences are repre-
sented as labelled graphs involving variables. OntoStu-
dio [58] is a suite of software for ontology engineering.
Its OntoMap plugin [59] allows for manual edition of
complex correspondences (logic and value transforma-
tions). OntoMap uses its own internal alignment lan-
guage which is not public. Many R2RML correspon-
dence editors have emerged in the past years. They use
different strategies for the representation of the corre-
spondences: block metaphor [60, 61], graph-like [62–
65] or tree-like [56]. Wrangler [66] proposes a graph-
ical interface for the edition of value transformation
functions as scripts between tables.

4. Classification of complex matchers

Ontology matching approaches have been classified
in various surveys [1, 10–16]. These classifications
however do not address the specificities of the com-
plex approaches. After giving an overview of the main
ontology matching approaches classifications (§4.1),
axes for complex matching approaches classification
are presented (§4.2).

4.1. Classifications of ontology matching approaches

Euzenat and Shvaiko [1, 16] define three matching
dimensions: input, process and output which will be

E. Thiéblin et al. / Survey on complex ontology matching 7

Table 1
Complex alignment formats

Format Type of knowledge
representation models

Logic Transformation Target application

Web-PDDL Onto to onto
√

Data integration
OWL Onto to onto

√
Ontology merging

SWRL Onto to onto
√ √

Data integration
EDOAL Onto to onto

√ √
Generic

XeOML Onto to onto
√ √

Generic
SBO Onto to onto

√ √
Data transformation

SPIMBench Onto to onto
√ √

Data transformation
R2RML DB to onto

√ √
Data transformation

RML Schema to onto
√ √

Data transformation
xR2RML Schema to onto

√ √
Data transformation

D2RML DB to onto
√ √

Data transformation
XSLT XML to XML

√ √
Data transformation

SQL DB to DB
√ √

Querying
XQuery XML to XML

√ √
Querying

SPARQL Onto to onto
√ √

Querying

Table 2
Complex alignment visualisation and edition tools

Tool Visualisation strategy Align. langage

Protégé [53] Manchester syntax OWL
Axiomé [54] Tree, Simple english SWRL
MAFRA [43] Tree SBO
Klint [57] Graph SPARQL
OntoMap [59] Edges proprietary
Clio [67] Edges SQL
Juma [60, 61] Block metaphor R2RML
KARMA [56] Tree R2RML
Map-On [62] Graph R2RML
RMLEditor [63] Graph RML/R2RML
SquaRE [65] Graph R2RML
Lembo2014 [64] Graph R2RML
Wrangler [66] Scripts proprietary

the guiding thread to present the classifications. Most
of the classifications so far focused on the input and
process dimensions [1, 12, 14–16].

Regarding the input dimension, the instance vs on-
tology classification (called instance vs schema in [14])
divides the matchers into those which deal with in-
formation from the T Box and those which deal with
the ABox. Rahm et al. [14] also consider as input the
type of auxiliary information used by the approaches
(thesaurii, etc.). For the process dimension, Rahm et
al. [14] propose classification axes such as element vs
structure, linguistic vs constraint-based. All of these
classification axes are put together into a taxonomy.

The classification of Rahm et al. [14] has been
developed and extended by Euzenat and Shvaiko in
[1, 16]. For instance, they distinguish whether an in-
put is considered syntactically or semantically by the
approach. The two-ways taxonomy ends in basic ap-
proach strategies (e.g. string-based, model-based, for-
mal resource-based, etc.).

The classification of schema matching techniques
of Doan et al. [15] separates rule-based techniques
from learning-based techniques. Considering both in-
put and process dimensions, rule-based techniques
only exploit schema-level information in specific rules
while learning-based techniques may exploit data in-
stance information with machine-learning or statistical
analysis.

Noy [12] proposes two main categories of ontology
matching approaches: in the first one, the matching
process is guided by a top-level ontology from which
the source and target ontologies derive; in the second
one, the matching process uses heuristics or machine-
learning techniques.

Regarding the output dimension of the matching ap-
proaches, Rahm et al. [14] considers the output align-
ment arity as a characteristic of the approaches which
could be integrated into its taxonomy.

In summary, among the ontology matching classifi-
cations so far, the one from Euzenat and Shvaiko [16]
is the most extensive (all the others can be represented
in this classification). However, even if considered, the
output dimension of the matching approaches is hardly

8 E. Thiéblin et al. / Survey on complex ontology matching

a basis for classification, whereas it becomes of inter-
est when considering complex correspondences.

More generally, the classifications of ontology match-
ing cited above do not address the specificities of the
complex matching problem. The characteristics of the
processes leading to the generation of complex corre-
spondences need to be studied, in particular the kind
of structure guiding the discovery of correspondences.
The next section presents classification axes for com-
plex ontology matching approaches.

4.2. Classification for complex matching approaches

The specificities of the complex matching approaches
rely on their output and their process. These are the
two axes of the proposed classification. In this sec-
tion, the different types of output (types of correspon-
dences) and the structures used in the process to guide
the correspondence detection are presented (guiding
structures).

Type of correspondence. The correspondences (out-
put of the matching approaches) are divided into three
main categories according to their type: logical rela-
tions, transformation functions and blocks. The logical
relations category stands for correspondences whose
complex members are expressed with logical construc-
tors only. In contrast, the transformation functions
category includes the approaches that generate corre-
spondences with transformation functions in its mem-
bers. The blocks correspondences gather entities us-
ing a grouping constructor in their members (clusters
of entities), not specifying a semantic relation between
them. For example, let’s consider the following corre-
spondences:

1. ∀x, o1:AcceptedPaper(x) ≡ o2:accepted(x,true)
2. o1:priceInDollars = changeRate× o2:priceInEuro
3. {o1:Paper,o1:Person}={o2:Paper,o2:Person}

Correspondence 1 is a logical relation correspondence,
correspondence 2 is a transformation function corre-
spondence and correspondence 3 is a block correspon-
dence. No precise relation is specified between the en-
tities involved in the third correspondence. Therefore,
it can not be classified as logical relation or trans-
formation function correspondence. Note that in the-
ory, a correspondence could have members expressed
with transformation functions combined with logical
constructors but no approach able to generate such
kind of correspondences was found. However, some
approaches are able to generated both types indepen-

dent of each other. An example of this correspon-
dence expressed in pseudo-FOL would be: ∀x, ∃y,
o1:Paper(x) ∧ o1:priceInDollars(x,y) → o2:Paper(x)
∧ o2:priceInEuros(x,y ÷changeRate).

Guiding structures. These categories aim at classi-
fying the (complex) matching approaches based on
their process dimension. In particular, it focuses on the
structure on which the process generating the corre-
spondences relies:

– Atomic patterns The approaches in this category
consider the correspondence as an instanciation
of an atomic pattern, such as the ones defined
by Scharffe [36]. An atomic pattern is a template
of a correspondence. A template can represent
logical relation or transformation function corre-
spondences. For example, an approach looking
for correspondences following this exact pattern:
∀x, o1:A(x) ≡ ∃y o2:b(x,y) ∧ o2:C(y) falls into
this category and in the logical relation type of
correspondence. An approach searching for o1:a
+ o1:b = o2:c falls into this category and in the
transformation function type of correspondence.

– Composite patterns The approaches in this cat-
egory aim at finding repetitive compositions of
an atomic pattern. As for the atomic patterns, the
composite patterns can represent both logical re-
lations and transformation functions correspon-
dence patterns. For example, an approach look-
ing for correspondences of the form ∀x, o1:A(x)
≡ o2:B(x) ∨ o2:C(x) ∨ o2:D(x)..., where o1:A,
o2:B, o2:C, o2:D, etc. are classes and the num-
ber of unions in the right member of correspon-
dences is not a-priori defined by the approach,
falls into this category. Correspondences repre-
senting string concatenation of unlimited number
of properties also fall into this category and in the
transformation function type of correspondence.

– Path The approaches in this category detect the
correspondences using path-finding algorithms.
The resulting correspondence is a property path in
o1 put in relation with a path in o2. For example,
an approach looking for a path between two pairs
of aligned instances described by o1 resp. o2 falls
into this category.

– Tree The approaches in this category rely on tree
structures for correspondence detection. The tree
structure can either be a help to the process or the
tree structure of a schema. For example, when a
schema is considered as a tree and the approach

E. Thiéblin et al. / Survey on complex ontology matching 9

Correspondence

Transformation functionsLogical relations Blocks

Output

Guiding structure

Path
(§5.3)

Composite
patterns
(§5.2)

Atomic
patterns
(§5.1)

Tree
(§5.4)

No structure
(§5.5)

Process

Fig. 3. Two axes to characterise the complex matching approaches: output and process. The correlation between the categories are represented
with red arrows.

consists in finding the smallest equivalent tree in
an ontology.

– No structure As opposite to the other approaches,
the approaches of this category do not rely on
a structure to guide the correspondence genera-
tion. Instead, they discover correspondences more
freely.

The structures are used to guide the matching pro-
cess, therefore they impact the structure of the out-
put correspondences. However, a given correspon-
dence, for example ∀x, o1:AcceptedPaper(x) ≡ ∃y,
o2:acceptedBy(x,y), could be obtained by an approach
based on atomic patterns (with the pattern ∀ o1:A(x)
≡ ∃y, o2:b(x,y)), by an approach based on composite
patterns (∀ o1:A(x) ≡ ∃y, o2:b(x,y) ∧ o2:c(x,y) ∧ ...),
or by an approach with no guiding structure.

The members expressions pre-definition specifies if
one of the members of the correspondence is assigned
a fixed structure or not before the process. Three types
of pre-definition are possible: fixed to fixed, fixed to
unfixed and unfixed to unfixed.

– The fixed to fixed category includes the match-
ing approaches that always produce correspon-
dences with fixed members expressions. Atomic
patterns-based approaches generate fixed to fixed
correspondences as both members’ expressions
are defined by the pattern. As shown in 3, this cat-
egory is strongly correlated to the Atomic-pattern
guiding structure category.

– The fixed to unfixed members expression cate-
gory covers the matching approaches for which

one of the members of the correspondence will al-
ways follow the same expression template, while
the expression of the other member may vary. For
example, an approach aiming at finding for each
property of an ontology a corresponding property
path in the other ontology falls into this category:
one of the member will always be one property
while the other will be a path of a-priori undefined
length.

– The unfixed to unfixed members expression cat-
egory includes the approaches that output cor-
respondences whose members have an unde-
fined expression before-hand. For example, an
approach aiming at finding similar paths in two
ontologies falls into this category: both members
have a-priori undefined length.

A matching approach can exploit many different
matching strategies to find complex correspondences.
In the following, the matching strategies are classi-
fied on their guiding structure. Therefore, the same ap-
proach can appear in multiple sections.

Some correlations can be noted as depicted in Fig-
ure 3: a path or tree based approach will only output
logical correspondences. There also is an equivalence
between the fixed to fixed category and the atomic pat-
tern category.

The choice of this guiding structure based classifica-
tion was made because guiding structures are a speci-
ficity of complex matching techniques. Not only do
they guide the matching process, but the correspon-

10 E. Thiéblin et al. / Survey on complex ontology matching

dence structure derives directly from them. Other clas-
sifications were considered before this choice:

– A classification per type of knowledge represen-
tation model but it would not show the similar-
ities between the matching systems even though
they do not deal with the same type of knowledge
representation model;

– A classification per type of correspondence out-
put but this was not structuring enough;

– The classification from [16] but most complex
matching approaches combine many of those ba-
sic matching techniques;

– A classification per type of entities (concepts,
properties, etc.) dealt with by the matchers but
this was not specific to complex alignment.

This choice of the structure-oriented classification was
made because structures are used specific to the com-
plex matching task (whatever may the knowledge rep-
resentation models be). In some way, the structure can
either be seen as a specialisation of the graph-based
techniques of the classification of [16].

5. Complex alignment approaches

The following sections present the approaches ac-
cording to our classification. Although these sections
are organised according to the guiding structure (Fig-
ure 3), a reference to the kind of output and members
expression pre-definition is made in the text. The ap-
proaches are detailed in paragraphs whose title follows
a template : Name [ref] Type of knowledge representa-
tion models, [(s:c), (c:s), (c:c)].

5.1. Atomic patterns

Atomic patterns are used in approaches to detect
logical relations as well as transformation functions
relations. Table 3 presents a few atomic correspon-
dence patterns. Table 4 shows the atomic patterns of
the correspondences which guide the state-of-the-art
approaches of this category.

The atomic pattern based approaches have different
strategies for the definition of their patterns. For in-
stance, some rely on the patterns defined by one of
the ontologies to align [70], others approaches have
their own pattern library [68, 71–75]. Two main de-
tection techniques appear: structuro-linguistic condi-
tions (called matching patterns defined in [76]) [68–
70, 74, 75], and statistical measures [71–73]. These ap-
proaches are detailed in the following.

Ritze et al. [68, 69] Ontology to Ontology, (s:c), In
[68, 69], Ritze et al. propose a set of matching condi-
tions to detect correspondence patterns: Class by At-
tribute Value, Class by Attribute Type, Class by Inverse
Attribute Type, Inverse Properties and Property Chain
defined by Scharffe [36] (c.f. Table 3). The conditions
are based on the labels of the ontology entities, the
structures of these ontologies and the compatibility of
the data-types of data-properties. The matching condi-
tions to detect these patterns are an input to the match-
ing algorithm. The user can add new matching condi-
tions to detect other patterns.

The first approach2 [68] detects the modifier and
head-noun of a label. In the matching conditions, string
similarity (Levenshtein distance) is used to detect a po-
tential relation between two entities (e.g. Acceptance
is similar to Accepted). The second version3 of the
matching conditions [69] refines the syntactic part of
the previous work by introducing linguistic analysis
such as detection of antonymy, active form, etc. Vari-
ous linguistic analysis features are studied and incor-
porated in the matching conditions. In Example 1, the
simplified matching conditions to detect inverse prop-
erty states that if the verb phrase of the label of a prop-
erty p1 is the active voice of the verb phrase of a la-
bel of an other property p2, then ∀x,y, o1:p1(y,x) 6
o2:p2(x,y) is a probable correspondence.

Example 1. Conditions: ∀x,y o1:p1(y,x) 6 o2:p2(x,y)
iff verb(p1) = active-voice (verb(p2))
Correspondence:
∀x,y o1:writePaper(y,x) 6 o2:writtenBy(x,y)
because write is the active-form of written

The structural matching conditions are the same for
both approaches. Example 1 is extended with struc-
tural constraints on the range and domain of p1 and
p2 : the domain of p1 should be subsumed by of the
range of p2 and the range of p1 should be subsumed
by the domain of p2. The subsumption between range
and domains of the two properties can be detected by
inference on the ontologies structure linked by the sim-
ple reference alignment or by an hypernymy relation
between the labels.

Oliveira and Pesquita [22] Ontology to ontology,
(s:c) The approach proposed in [22] looks for com-
pound correspondences which in their target mem-

2http://dominique-ritze.de/complex-mappings/
3https://code.google.com/archive/p/

generatingcomplexalignments/downloads/

http://dominique-ritze.de/complex-mappings/
https://code.google.com/archive/p/generatingcomplexalignments/downloads/
https://code.google.com/archive/p/generatingcomplexalignments/downloads/

E. Thiéblin et al. / Survey on complex ontology matching 11

Table 3
Atomic patterns used in the presented approaches. A, C are classes, a, b, c are properties, V is a value (instance or literal)

Name Form Example

Class by attribute type (CAT) ∀x, A(x) ≡ ∃y, b(x,y) ∧ C(y) ∀x, o1:AcceptedPaper(x) ≡ ∃y, o2:hasDecision(x,y)
∧ o2:Acceptance(y)

Class by attribute inverse type (CIAT) ∀x, A(x) ≡ ∃y, b(x,y) ∧ C(x) ∀x, o1:AcceptedPaper(x) ≡ ∃y,
o2:hasAcceptance(x,y) ∧ o2:Paper(x)

Class by attribute value (CAV) ∀x, A(x) ≡ b(x,V) ∀x, o1:AcceptedPaper(x) ≡ o2:accepted(x,True)

Property chain (PC) ∀x,y, a(x,y) ≡ ∃z, b(x,z) ∧ c(z,y) ∀x,y, o1:reviewedBy(x,y) ≡ ∃z, o2:hasReview(x,z) ∧
o2:reviewWrittenBy(y,z)

Inverse Property (IP) ∀x,y, a(x,y) ≡ b(y,x) ∀x, o1:writtenBy(x,y) ≡ o2:authorOf(y,x)

Class Intersection ∀x, A(x) ≡ B(x) ∧ C(x) ∀x, o1:AuthorAndReviewer(x) ≡ o2:Author(x) ∧
o2:Reviewer(x)

Table 4
Atomic patterns per approach

Work Patterns

Ritze2009 [68]
Class by Attribute Type, Class by Inverse
Attribute Type, Class by Attribute Value,
Property Chain

Ritze2010 [69]
Inverse property, Class by Attribute Type,
Class by Inverse Attribute Type, Class by
Attribute Value

Oliveira2018
[22]

Class Intersection

Rouces2016 [70] Linguistic patterns of FrameBase

Walshe2016
(Bayes-ReCCE)
[71]

Class by Attribute Value

Jiang2016
(KAOM) [72]

Linear Regression

Dhamankar2004
(iMAP) [73]

Conversion functions predefined, basic
arithmetic properties

Jimenez2015
(BootOX) [74]

RDB schema properties to OWL axioms

ber involve entities from more than one ontology. The
sought correspondences follow the pattern ∀x, o1:A(x)
≡ o2:B(x) ∧ o3:C(x) in which o1:A, o2:B and o3:C
are classes from a source ontology o1, and two tar-
get ontologies o2 and o3. The approach is based on
a similarity measure between the labels of the source
and targets classes. In a first step, the source classes
are aligned to the classes of a first target ontology
(e.g., o2). Each of these correspondences is given a
similarity score based on how the labels of the tar-
get classes overlap with the label of the source class.
The correspondences are filtered over this similarity.
The labels of the source class are reduced to the dif-
ference between the source and target classes’ labels
from the previously obtained correspondence. Finally,
the source reduced labels are matched with those of

the second target ontology (e.g., o3) based on how this
new label allows for the covering of the total source
label.

Example 2. A source class o1:AuthorAndReviewer
with the label “author and reviewer” is first aligned
to o2:Author which has the “author” label. The la-
bel of the source class is then reduced to “and re-
viewer” because of the correspondence in the previ-
ous step. Finally, in the last step, o3:Reviewer with the
label “reviewer” is added to the correspondence be-
cause its label provides a good coverage of the reduced
label “and reviewer”. The output correspondence
is: ∀x, o1:AuthorAndReviewer(x) ≡ o2:Author(x) ∧
o3:Reviewer(x)

Rouces et al. [70] Ontology to FrameBase ontology,
(s:c) (c:s) Rouces et al. use FrameBase as a mediator
ontology for complex alignment discovery. FrameBase
is an ontology based on linguistic frames, seen as lin-
guistic patterns in this approach. The approach identi-
fies complex patterns in FrameBase from the linguistic
patterns it describes. For each complex pattern iden-
tified, a corresponding candidate property is created
(see Example 3). The names of the properties of the
source ontology (the one to be aligned to FrameBase)
are pre-processed, for example o1:birthDate becomes
o1:hasBirthDate. The properties of the source ontol-
ogy are then aligned with simple alignments to the can-
didate properties created in FrameBase. The similar-
ity of two properties is calculated based on a bag of
words cosine from the tokenised property names. Once
a source ontology property has been aligned to a cre-
ated property of FrameBase, it is aligned to its corre-
sponding pattern. The originality of this approach, is
that the correspondence patterns on which it relies are
encoded in one of the aligned ontologies (FrameBase).
This approach is used in the Klint tool [57] which pro-
vides a graphical interface for correspondence edition.

12 E. Thiéblin et al. / Survey on complex ontology matching

Example 3. Created property: frame:hasBirthDate(s,o)
Pattern: frame:BirthEvent(e) ∧ frame:hasSubject(e,s)
∧ frame:hasDate(e,o)
Source property preprocessing:

o1:birthDate→ o1:hasBirthDate
Simple correspondence:
∀x,y, o1:hasBirthDate(x,y)≡ frame:hasBirthDate(x,y)

Correspondence:
∀x,y, o1:birthDate(x,y) ≡ ∃z, frame:BirthEvent(z) ∧

frame:hasSubject(z,x) ∧ frame:hasDate(z,y)

Bayes-ReCCE [71] Ontology to ontology, (s:c) This
approach detects Class Attribute Value Restrictions,
Class Attribute Type (and by extension Class Attribute
Existence) correspondences. Bayes-ReCCE uses the
properties of matched instances of two classes o1:A
and o2:B, with ∀x, o1:A(x) 6 o2:B(x) in a reference
alignment. The matching problem is transformed into
the feature-selection problem. The common instances
are represented as binary vectors, each feature of the
vector represents the presence of an attribute-value
pair for a given instance. Feature-selection is the pro-
cess of reducing the search space of features (here
attribute-value pairs) to keep only relevant features for
a model (here a classification). A score is given to
each feature. Two metrics are used in the scoring pro-
cess: information gain (with a closed-world assump-
tion) and beta-binomial class prediction metric based
on Bayesian probabilities (compliant with the open-
world assumption). For each class, the top-k best fea-
tures are returned to the user to choose from.

iMAP, Dhamankar et al. [73] Relational database
schema to relational database schema, (c:s) The iMAP
system [73] uses a set of searchers to discover sim-
ple and complex correspondences between database
schemata. The validity of each correspondence is then
checked by a similarity estimator based on the at-
tributes’ name similarity and a Naive-Bayes classifier
trained on the target data. The correspondences are fi-
nally presented to a user who validates or invalidates
them. Each searcher implements a specific strategy.
Some of the searchers use atomic patterns for corre-
spondence detection. For instance, the numeric, cat-
egory and schema mismatch searchers look for cor-
respondences fitting given atomic patterns. The pat-
terns of the numeric searcher are equation templates
given by the user or from previous matches. The cat-
egory correspondence looks for equivalent attribute-
value pairs for attributes having a small set of possi-
ble values. The schema mismatch searcher looks for
correspondences in which an attribute of the source

schema has a true value if it appears in a list of at-
tributes in the target schema. Examples of category and
schema mismatch correspondences are presented in
Example 4. These searchers base their confidence in a
correspondence on the data value distribution using the
Kullback-Leibler divergence measure. The unit con-
version searcher is based on string recognition rules
in the attributes’ names and data (such as "$", "hour",
"kg", etc.). The searcher finds the best match function
from a predefined set of conversion functions.

Example 4. Category searcher correspondence be-
tween schemata describing papers and their accep-
tance status:
∀x, s1:accepted(x,“true”) ≡ s2:accepted(x,“1”)
Schema mismatch correspondence between schemata
describing a conference participant status:
∀x, s1:actions(x,“early-registration”) ≡ s2:early-
registration(x,“true”)
This correspondence means that the target attribute
s2:early-registration is assigned a “true” value if
“early-registration” appears in the list of the partici-
pant’s actions from the source schema.

KAOM, Jiang et al. [72] Ontology to ontology, (s:c)
(c:s) (c:c) KAOM generates transformation function
correspondences and logical relation correspondences.
As the iMap’s system [73], KAOM implements differ-
ent matching strategies: one for detecting transforma-
tion function correspondences, the other for logical re-
lation correspondences. Here is presented its transfor-
mation function correspondence detection approach,
as it uses an atomic pattern. The logical relation corre-
spondence approach is presented in §5.5. The atomic
pattern used is a positive linear transformation func-
tion between numerical data properties o1:a and o2:b
of respectively o1 and o2. A Kullback-Leibler diver-
gence measure on the data values is used to define the
coefficient coe f f of the linear transformation: o1:a =
coeff × o2:b.

BootOX, Jimenez-Ruiz et al. [74] Database schema
to ontology, (c:s) The BootOX approach [74] produces
correspondences between a relational database schema
and a target ontology via the creation of a “boot-
strapped” ontology. There are two phases to the ap-
proach. In the first phase, an ontology is bootstrapped
(created/extracted) from a relational database schema
based on a set of patterns. For example, a non-binary
relation table in the source schema produces a class
in the bootstrapped ontology. The patterns used in this
approach lead to the creation of axioms involving class

E. Thiéblin et al. / Survey on complex ontology matching 13

restrictions in the bootstrapped ontology. R2RML cor-
respondences between the relational database and its
bootstrapped ontology are the result of this phase.
This bootstrapped ontology is then aligned with the
LogMap [77] matcher to the target ontology. LogMap
relies on linguistic and structural information to per-
form the matching. Put together, the transformation
rules from RDB to ontology and the Logmap ontol-
ogy alignment form a complex alignment between the
RDB and the target ontology.

Other systems can bootstrap ontologies from rela-
tional database schemata [78, 79] but their aim is not
to align the schema to an existing ontology. Therefore,
they are out of the scope of this study. In this survey,
BootOX is considered with its LogMap extension.

5.2. Composite patterns

Composite pattern-based approaches often focus on
one or two types of patterns. Table 5 presents the
different composite pattern types detected by the ap-
proaches.

Some approaches iteratively construct the mem-
ber(s) of the correspondence [73, 80, 82, 83, 87] (text
searcher of iMap). Others first discover atomic pat-
tern correspondences and merge them in a final (non-
iterative) step [81, 88]. Approaches use graph-pattern
matching either as detection conditions [75, 84, 89, 90]
or over the properties of a mediating ontology [73,
85, 86] (iMap’s date searcher). Finally, [91, 92] start
by grouping schema attributes before matching the
groups. Even though the holistic approaches [91, 92]
produce block correspondences (of properties only),
it has been decided that these two approaches are
composite pattern driven as the grouping phase fol-
lows a repetitive pattern. Some approaches search for
composite patterns inside a tree structure [84–86, 90].
These approaches could also be classified into tree-
guiding structure. However, as their matching process
relies on the identification of a composite pattern in
those trees, they were classified in this category.

Šváb-Zamazal and Svátek [75] Ontology to ontol-
ogy, (s:c),(c:s),(c:c) This approach is based on struc-
tural and naming conditions to detect N-ary rela-
tions as defined by the Semantic Web Best Practice
(SWBP)4 in the aligned ontologies. First, reified N-ary
relations are sought in the ontologies by with the help
a lexico-structural pattern. The fragment of ontology

4https://www.w3.org/TR/swbp-n-aryRelations/

Reviewer Review

Paper

Appreciation
giveReview

reviewAppreciation

reviewOfPaper

(a) o1

Reviewer Paper

reviewsPaper

(b) o2

Fig. 4. N-ary relation pattern

represented in Figure 4a shows an N-ary relation be-
tween a reviewer, a paper and its review appreciation.
This pattern consists in an intermediate concept (here
o1:Review) representing the relation between a domain
o1:Reviewer and N ranges o1:Appreciation, o1:Paper.
Once the N-ary relations are detected in the source and
target ontologies, a similarity measure is computed be-
tween the source and target patterns. This similarity
is an aggregation of the N-ary relations concepts la-
bels similarity. If the similarity is above a threshold,
a structure to structure correspondence is created. The
N-ary relations are also matched to object properties
by comparing their labels and domain/range compat-
ibility. Figure 4 shows an example of an N-ary re-
lation (4a) and corresponding object properties (4b).
The N-ary relation to object property correspondence
is heterogeneous: the semantics of this relation are
not clear. A N-ary to object property correspondence
in FOL could be: ∀x,y,z1,z2, o1:giveReview(x,y) ∧
o1:reviewOfPaper(y,z1) ∧ o1:reviewAppreciation(y,z2)
≡ o2:reviewsPaper(x,z1)

Parundekar et al. [80] Ontology to ontology, (s:c)
(c:s) In this approach proposed by Parundekar et
al. [80], the type of correspondences sought is an
attribute-value pair matched with an attribute and a
union of its acceptable values. In a first step, the ap-
proach finds correspondences between attribute-value

14 E. Thiéblin et al. / Survey on complex ontology matching

Table 5
Composite patterns per approach. A, B, C are classes, a, b, c, d are properties, v, v1, v2, v3 are values (instances or literals)

Work Composite pattern Pattern form

Svab2009 [75]
N-ary to N-ary Structure matching, see Fig. 4

N-ary to object property

Parundekar2012 [80] Disjunction of attribute-value pairs ∀x, o1:a(x,v) ≡ o2:b(x,v2) ∨ o2:b(x,v3) ∨ . . .

Parundekar2010 [81] Conjunction of attribute-value pairs
∀x, o1:a(x,v) ∧ o1:b(x,v1) ∧ . . .≡ o2:c(x,v2) ∧

o2:d(x,v3) ∧ . . .

Doan2003 (CGLUE) [82] Class unions ∀x, o1:A(x) ≡ o2:B(x) ∨ o2:C(x) ∨ . . .

Kaabi2012 (ARCMA) [83] Class intersection ∀x, o1:A(x) ≡ o2:B(x) ∧ o2:C(x) . . .

Boukottaya2005 [84]
String concatenation o1:a = concatenation(o2:b, o2:c, . . .)

Subset merging ∀x,y, o1:a(x,y) ≡ o2:b(x,y) ∨ o2:c(x,y), . . .

Dhamankar2004 (iMAP) [73] String concatenation o1:a = concatenation(o2:b, o2:c, . . .)

Xu2003 [85]
String concatenation o1:a = concatenation(o2:b, o2:c, . . .)

Subset merging ∀x,y, o1:a(x,y) ≡ o2:b(x,y) ∨ o2:c(x,y), . . .

Xu2006 [86]
String concatenation o1:a = concatenation(o2:b, o2:c, . . .)

Subset merging ∀x,y, o1:a(x,y) ≡ o2:b(x,y) ∨ o2:c(x,y), . . .

Warren2006 [87] String concatenation of attribute
substrings

o1:a = concatenation(substr(o2:b), substr(o2:c), . . .)

Arnold2013 (COMA++) [88] String concatenation o1:a = concatenation(o2:b, o2:c, . . .)

Wu2004 [89] Annotated sets of properties (is-a
or aggregate)

{o1:a}=is-a{o2:b, o2:c, . . . } ; {o1:a}=aggregate{o2:b,
o2:c, . . . }

Saleem2008 (PORSCHE) [90] Bag of properties/blocks {o1:a}={o2:b, o2:c, . . . }

He2004 (DCM) [91] Bag of properties/blocks {o1:a}={o2:b, o2:c, . . . }

Su2006 (HSM) [92] Bag of properties/blocks {o1:a, o1:b, . . . }={o2:c, o2:d, . . . }

pairs from the linked instances of the two ontolo-
gies (instances linked with owl:sameAs predicate). The
number of instances sharing both attribute-value pairs
defines if the correspondence has a subsumption or
equivalence relation. A resulting correspondence is for
instance: ∀x, o1:a(x,v1) > o2:b(x,v2). The second step
of the approach is, for each subsumption correspon-
dence of the previous step, to merge in a union all the
attribute-pairs with a common attribute. The relation
of the new correspondence is then re-evaluated accord-
ing to the number of instances for each member. The
final correspondence has the form ∀x, o1:a(x,v1) ≡
o2:b(x,v2) ∨ o2:b(x,v3) ∨ . . . with o1:a, o2:b proper-
ties and v1, v2, v3 constant values: instances or literals.
The following example shows the two-step approach.

Example 5. First step output:
∀x, o1:accepted(x,True)> o2:hasStatus(x, “accepted”)
∀x, o1:accepted(x,True) > o2:hasStatus(x, “camera-
ready”)
Second step output:
∀x, o1:accepted(x,True)≡ o2:hasStatus(x, “accepted”)
∨ o2:hasStatus(x, “camera-ready”)

Parundekar et al. [81] Ontology to ontology, (s:c)
(c:s) (c:c) Parundekar et al. [81] look for conjunc-

tions of attribute-value pairs, for instance correspon-
dences of the form ∀x, o1:a(x,v1) ∧ o1:b(x,v2) ∧ ...
≡ o2:c(x,v3) ∧ o2:d(x,v4) ∧ ... with o1:a, o1:b, o2:c,
o2:d properties and the vi∈n constant values: instances
or literals. The approach starts with pre-processing the
two knowledge-bases described by o1 and o2. Only
the common instances are kept. Properties that can-
not contribute to the alignment are manually removed
(i.e., properties from a different domain than the com-
mon scope of the ontologies and inverse functional
properties). A set of first correspondences (the seed
hypotheses) are created between attribute-value pairs.
An example of a seed hypothesis is ∀x, o1:a(x,v1) ≡
o2:b(x,v2). Starting from these seed hypotheses, the
approach implements a heuristic in depth-first explo-
ration of the search space (all the attribute-value pairs
conjunctions). The search space is considered as a tree,
the root being a seed hypothesis. Each node is an ex-
tended version of its parent: an attribute-value pair is
added to one member of the parent. The search-tree
is pruned following rules based on the variation of in-
stances described by each member. For example if the
attribute-value added in a node is too restrictive or if
the support of the ancestor node is the same as the

E. Thiéblin et al. / Survey on complex ontology matching 15

current node, the children of the current node are not
explored. The final set of correspondences is filtered
to avoid redundancy. The number of instances of each
member will determine the correspondence’s relation.

CGLUE, Doan et al. [82] Taxonomy to taxonomy,
(s:c) The GLUE system [82] is specialised in detect-
ing (s:s) correspondences between taxonomies using
machine learning techniques such as joint probability
distribution. CGLUE, also presented in [82], is an ex-
tension of the GLUE system. It can detect (s:c) class
unions in taxonomies such as ∀x, o1:A(x) ≡ o2:B(x) ∨
o2:C(x) ∨ To detect these unions, the authors make
a few assumptions such as: the children of any taxo-
nomic node are mutually exclusive and exhaustive. To
find a match to a class o1:A, each class-union of o2 is
considered a potential candidate. The first candidates
are the set of single classes of o2. An adapted beam
search finds the k best candidates according to a simi-
larity score given by the GLUE system. The k best can-
didates are then expanded as unions with the classes
of o2 until no improvement is done on the similarity
score.

ARCMA, Kaabi et Gargouri [83] Ontology to on-
tology, (s:c) Kaabi et Gargouri [83] propose ARCMA
(Association Rules Complex Matching Approach)
to find correspondences of the form ∀x, o1:A(x) 6
o2:B(x) ∧ o2:C(x) ∧ A set of terms is associated
with each class: the terms are extracted from the anno-
tations, labels, instance values, instance labels of this
class and its subclasses. The detection of the corre-
spondences rely on existing simple correspondences:
each class of the right member (o2:B(x), o2:C(x), ...)
must be equivalent to a parent of o1:A. The correspon-
dences are then filtered based on a value measuring
how the sets of terms of each member overlap. The
following example presents how a correspondence is
detected by this approach.

Example 6. Let o1:AuthorAndReviewer be a sub-
class of o1:Author and o1:Reviewer. Simple correspon-
dences, between o1and o2 are given:

– ∀x, o1:Author(x) ≡ o2:Author(x)
– ∀x, o1:Reviewer(x) ≡ o2:Reviewer(x)

With the overlap of terms associated to
o1:AuthorAndReviewer and the terms of respectively
o2:Author and o2:Reviewer, the following correspon-
dence can be output: ∀x, o1:AuthorAndReviewer(x) ≡
o2:Author(x) ∧ o2:Reviewer(x)

Boukottaya and Vanoirbeek [84] XML schema to
XML schema, (s:c) (c:s) (c:c) Boukottaya et Vanoir-
beek [84] propose an XML schema matching ap-
proach based on the schema tree and linguistic layer
of the schema. This approach finds simple correspon-
dences as well as complex ones. The complex ones
follow a few patterns such as merge/split, union/selec-
tion and join. The first step calculates a similarity be-
tween nodes of the source and target schemata. A lin-
guistic similarity is calculated. A datatype similarity
is then computed for the linguistically similar nodes.
The union/selection and merge/split correspondences
are detected based on graph-mapping. Union/selection
correspondences are detected when nodes have a com-
mon abstract type (based on their WordNet similarity)
which matches a node from the other schema. Merge/s-
plit are computed when a leaf node matches a non-leaf
node. The correspondences are filtered based on their
structural context: ancestors and children nodes. The
access path of each node is written in the final corre-
spondences.

Example 7. If a node o1:address of the source schema
with children leaf nodes (o1:street, o1:city) matches a
leaf node o2:address of the target schema, then a con-
catenation of the children nodes can be matched to the
target node:
concatenation(o1:street,o1:city)=o2:address

If two nodes o1:Journal-Article and o1:Conference-
Article from the source ontology have a common ab-
stract super node (computed from WordNet): Article
and that o2:Article matches this super node, a union
pattern is detected:
∀x, o1:Journal-Article(x)∨o1:Conference-Article(x)≡
o2:Article(x)

COMA++, Arnold [88] Ontology to ontology, (s:c)
As an improvement of the COMA system [93], Arnold
[88] discusses a solution based on a lexical strategy
on the ontologies’ labels: n (s:s) data-property corre-
spondences with the same entity as target (or source),
could be merged into a complex one. The initial ap-
proach generates simple correspondences with expres-
sive relations such as meronymy part-of or holonymy
has-a besides usual relations (>, 6, ≡). The exten-
sion for transforming the simple correspondences into
a complex one can take into account the type of data-
property (e.g. concatenation for string properties or
sum for numeric properties). The following example
shows a complex correspondence inferred from simple
correspondences.

16 E. Thiéblin et al. / Survey on complex ontology matching

Example 8. Part-of correspondences with same target
member:

– o1:firstName part-of o2:fullName
– o1:lastName part-of o2:fullName

Aggregation in a new correspondence:
concatenation(o1:firstName, o1:lastName) = o2:fullName

iMAP, Dhamankar et al. [73] Relational database
schema to relational database schema, (c:s) As seen
in the previous section, the iMAP system [73] uses a
set of searchers to discover simple and complex corre-
spondences between database schemata. Some of the
searchers use composite patterns for correspondence
detection. For instance, the text searcher looks for
correspondences between an attribute from the target
schema and concatenation of string attributes from the
source schema. This searcher starts from ranking all
possible simple correspondences between attributes.
For that, a Naive-Bayes classifier is trained on the tar-
get data values to classify whether a given value can
be from the target attribute. The average score given
by this classifier to a correspondence is used for the
ranking. Once the k best simple correspondences are
picked, the process is reiterated but with combinations
of concatenations of the picked source attribute and
other source attribute as base correspondences. These
new correspondences are scored, picked, and so on.

Another searcher implements a composite pattern
search: the date searcher. It uses a date ontology as
mediating schema containing date concepts (e.g. date,
month, year, etc.) and the relations between them (e.g.
concatenation, subset, etc.). The attributes of each
schema are matched to the date ontologies’ entities and
the relations between them are reported as transfor-
mation functions in the resulting correspondence. The
date ontology contains the composite patterns which
are discovered by simple graph matching.

Xu and Embley [85, 86] Schema to schema, (s:c)
(c:s) Xu and Embley [85] propose a similar approach
to iMap’s date matcher. It uses a user-specified domain
ontology as mediator between the two schemata to
align. The papers do not specify the kind of schemata
(XML or DB) aligned to the ontology. This ontol-
ogy contains relations between concepts such as com-
position, subsumption, etc. It is populated thanks to
regular expressions applied on source and target data.
Simple correspondences (equivalence or subsumption)
are first detected using recognition of expected values
techniques between the source schema (resp. target) at-
tributes and the ontology’s concepts. These simple cor-

respondences are kept for the next phase if the number
of common values between the schema attribute and
the ontology concept are above a threshold.

The relation between the ontology concepts in sim-
ple schema-ontology correspondences will become the
transformation functions between the attributes they
are linked to. For example, s:street s:city are two at-
tributes from the source schema and t:address is an at-
tribute from the target schema. In the first matching
phase, simple correspondences are drawn with con-
cepts from the mediating ontology o:

– o:Address = t:address
– o:Street = s:street
– o:City = s:city

In o, the concept o:Address has a composition relation
with the concepts o:Street, o:City. Therefore, the out-
put complex correspondence will state that t:address is
a string concatenation of s:street and s:city.

The later version of Xu and Embley’s approach [86]
completes this work with two new confidence calcula-
tions for simple attribute matching. The two new cal-
culations do not consider a mediating ontology.

Warren and Tompa [87] Database schema to database
schema, (c:s) Warren and Tompa [87] focus on finding
correspondences between string columns of databases.
They deal with correspondences that translate a con-
catenation of column sub-strings. The approach starts
by ranking the columns according to the q-grams (se-
quence of q characters) of its values found in target
column. Then it looks for matched instances (rows)
according to a tf-idf formula on co-occurring q-grams.
The column that has the smallest editing distance from
the target column is put in an initial translation rule.
This translation rule is then iteratively refined with ad-
dition of sub-strings from other columns.

Example 9. A correspondence which can be output by
this approach would be:
o2:username = concatenation(substr(o1:firstName,1),
substr(o1:lastName,6)), with substr(x,n) a function
giving the first n characters of the string x.

PORSCHE, Saleem et al. [90] XML schema to XML
schema, (s:c) (c:s) PORSCHE (Performance ORiented
SCHEma Matching) [90] matches a set of schema
trees (schemata with a single root) at once. It is a
holistic approach. This approach outputs a mediat-
ing schema (all the schema merged) as well as cor-
respondences from each source schema to the medi-
ating schema. An initial mediating schema is chosen

E. Thiéblin et al. / Survey on complex ontology matching 17

among the source schema trees. It is then extended by
the approach. For each node of each schema, the ap-
proach tries to find a corresponding node in the me-
diating schema. The tokenised labels of the nodes are
compared with the help of an abbreviation table. The
context of a node is also taken into account for the
merging, where the ancestors of the nodes must match.
The pattern used for the detection of the complex cor-
respondences is: if a non-leaf node (e.g.,s1:address) is
similar to a leaf node (e.g.,s2:address), a (c:s) corre-
spondence is created between the leaf node s2:address
and the leaf nodes descending from s1:address (e.g.,
s1:street, s1:city). The produced correspondences are
coherent (leaves with leaves) but approximate. Indeed,
the context of a node is not checked in the case of
a (s:c) leaf-non-leaf correspondence. No transforma-
tion function is specified in the correspondence. They
come as un-annotated sets of properties. For exam-
ple, {s1:street,s1:city}={s2:address} could be an out-
put correspondence.

The two following approaches are also holistic: they
match many schemata at once. They rely on web query
interfaces for their matching.

DCM, He et al. [91] Database schema to database
schema, (s:c) (c:s) (c:c) DCM (Dual Correlation Min-
ing) [91] is a holistic schema matching system. It
aligns database schemata attributes through the web
query interfaces of these databases. It uses data-mining
techniques (positive and negative correlation mining)
on a corpus of web query interfaces to discover com-
plex correspondences. The approach uses attribute co-
occurrence frequency as a feature for the correlation
algorithm. The first step of the algorithm is to mine
frequently co-occurring attributes from the web query
interfaces. These attributes are put together as groups
(e.g. {firstName, lastName}). In the second step, each
set of co-occurring attributes (e.g. {firstName, last-
Name}) is put in correspondence with sets of attributes
which do not often co-occur with them (e.g. {author}).
The correspondences are then filtered based on their
confidence (negative co-occurrence) value, or aggre-
gated if they have a common attribute: if {firstName,
lastName} = {author} and {author} = {writer}, then
{firstName, lastName} = {author} = {writer}. As this
approach is holistic, the correspondences are not lim-
ited to two members.

A holistic approach reduces the bias of one-to-one
schema matching as errors can be overcome by the
number of right correlations mined. However, only the
attributes present on the web query interfaces can be
involved in the correspondences.

HSM, Su et al. [92] Database schema to database
schema, (s:c) (c:s) (c:c) HSM (Holistic Schema Match-
ing) [92] is very similar to DCM [91] as it consid-
ers schema matching as a whole. It finds synonyms
and grouping attributes based on their co-occurrence
frequency and proximity in the web query interfaces.
Two scores are computed between attributes : syn-
onym scores (the confidence that two fields may re-
fer to the same concept or thing) and grouping scores
(confidence that two concepts are complementary to
one-another). The algorithm then goes through the
synonym scores in decreasing order and adds new cor-
respondences to the alignment. If an attribute is a syn-
onym of an attribute that was already involved in a cor-
respondence, it may be grouped with other attributes
according to its grouping score with them.

Wu et al. [89] Database schema to database schema,
(s:c) (c:s) Wu et al. [89] propose a clustering ap-
proach to find synonym alignments between database
schemata based on web query interfaces. It considers
the hierarchical structure of an HTML form. It also
considers the values taken in the database rows as the
domain of an attribute.

The first step consists in finding complex corre-
spondences of the form (s:c) or (c:s) in which the
attribute in the simple member is called the single-
ton attribute and the attributes in the complex mem-
ber, the grouped attributes. Two types of correspon-
dences are sought: aggregate and is-a. An aggre-
gate correspondence shows a value concatenation:
{date}=aggregate{day,month,year}. A is-a correspon-
dence shows a union, sum, or else of these values:
{passengers}=is-a{adults,children,seniors}. The de-
tection conditions of these correspondences are based
on the taxonomy: the label of the parent node of the
grouped attributes must be similar to the one of the
singleton attribute. For is-a, the grouped attributes’ do-
mains must be similar to the singleton’s one, whereas
for aggregate, the domain of each grouped attribute
must be similar to a subset of the singleton attribute’s
domain.

Then a clustering technique computes simple cor-
respondences in a holistic manner between the inter-
faces. Simple correspondences and preliminary com-
plex correspondences are merged. Other complex
correspondences may be inferred from this merging
phase. Even if the simple matching process is holis-
tic, the detection of the complex correspondences is
made one interface to one interface. Thus, the output
correspondences are one schema to one schema.

18 E. Thiéblin et al. / Survey on complex ontology matching

The final step of the approach is user refinement.
The system asks the user questions to refine the align-
ment and tune the parameters of the clustering algo-
rithm and similarity calculation.

5.3. Path

A specificity of the path-based approaches is that
they all rely on simple correspondences (at instance
or schemata/ontology level). Some of them discover
these simple correspondences themselves as a prelim-
inary step [94, 95], others take them as input [55, 67,
96, 97]. Most approaches perform the path search on
the graph-like or tree-like structure of the schemata/on-
tologies directly whereas [97] creates a mapping graph
on which the search will be performed.

An et al. [96] Database schema to ontology, (s:c)
An et al. [96] use web query interfaces (web forms)
to map a deep web database to an ontology. The web
query interface must be transformed into a form tree
(derived from HTML), similar to a schema tree. The
algorithm takes the form tree, the ontology and simple
correspondences between the form tree and the ontol-
ogy as input. The first step of the algorithm is to find
for each edge e between nodes u and v of the form tree,
all sub-graphs Gi (as minimum spanning Steiner trees)
in the ontology. The sub-graphs are property chains in
the target ontology between two nodes (classes) s and
t such that u ≡ s and v ≡ t are two simple corre-
spondences given in the input. The goal of the algo-
rithm is to output the most (or k-most) probable sub-
graphs for the given form tree. To compute the prob-
ability of a sub-graph given a form tree, a model is
trained with machine learning techniques. The train-
ing corpus is composed of web query interfaces anno-
tated with the target ontology. The model is based on a
Naive Bayesian approach and m-estimate probabilities
to approximate the sub-graph probability given a form
tree.

Clio, Miller et al. [67], Yan et al. [55] Relational
database schema to relational database schema, (s:c)
(c:s) (c:c) Based on structural information of relational
databases schemata, the Clio system5 [55, 67] is one
of the first system to consider the creation of complex
correspondences between schemata. The user must in-
put value correspondences: functions linking one or
many attributes (e.g. Parent1.Salary + Parent2.Salary

5http://www.almaden.ibm.com/cs/projects/criollo/

= Student.FamilyIncome, with Parent1 and Parent2 in
the source schema and Student in the target schema).
Used for populating target schemata with source data,
it provides the user with a framework for alignment
creation. Clio discovers formal queries from these
value correspondences. The formal queries are defined
step-by-step with the user by presenting him or her
potential query graphs between attributes: trees from
the data source schema structure. Clio helps the user
find simple, path relations and value transformations
correspondences with data visualisation, data walk and
data chase. The alignments are automatically trans-
formed into SQL queries. The SQL queries transform
the source data into target schema. The user can re-
fine and extend the alignments (queries) with filters
and joins. The Clio system is user-oriented: the user
intervenes at every step of the matching process. What
Clio does automatically is find the path between the at-
tributes and tables to complete the input value corre-
spondences. It also automatically transforms the corre-
spondences into SQL queries.

Ontograte, Qin et al. [94], Dou et al. [95] Ontology
to ontology, (c:c) OntoGrate [94] is a framework that
mines frequent queries and outputs them as conjunc-
tive first-order logic formulas. The system can deal
with ontology matching [94] and was adapted to rela-
tional database schema matching in [95] by transform-
ing the database schema into a database ontology. In
OntoGrate, the first step of the matching algorithm is
to generate simple correspondences at ontology level.
An object reconciliation phase then aligns instances
from source and target knowledge bases. The instance
correspondences from the object reconciliation fuel the
simple correspondences generation. The algorithm it-
erates on both steps (simple correspondences genera-
tion and object reconciliation) until no new instance
correspondence or simple correspondence is discov-
ered. Once the simple correspondences are found, a
group generator process generates groups of entities
closely related to a source property. The group genera-
tion is done by exploring the ontology graph and find-
ing a path between entities (e.g. classes) linked by a
simple property/property correspondence (the proper-
ty/property correspondence can be data-property/data-
property or object-property/object-property). The path
finding algorithm is an exploration algorithm of the
two ontology graphs where classes are the nodes and
properties (object properties, data properties, subclass
relations and super-class relations) are the edges. The
ontology graphs are explored until two nodes, one in

http://www.almaden.ibm.com/cs/projects/criollo/

E. Thiéblin et al. / Survey on complex ontology matching 19

the source path and one in the target path, are found
and were matched in the first steps of the matching pro-
cess. The final steps of the matching process is Multi-
Relational Data Mining (MRDM) to retrieve frequent
queries among the matched instances for the given en-
tity groups. If the support of a query is above a thresh-
old, the query is considered frequent and kept. The fre-
quent queries are then refined and formalised into first-
order logic formulae.

Example 10. The simple matching phase computed:
– ∀x, o1:Person(x) ≡ o2:Person(x)
– ∀x,y, o1:email(x,y) ≡ o2:contactEmail(x,y)

However, the last correspondence is wrong as it is and
considered incomplete because

– o1:Person is the domain o1:email
– o2:Paper is the domain o2:contactEmail

The group entity algorithm starts with the following
entity groups:

– source: {o1:Person,o1:email}
– target: {o2:Paper, o2:contactEmail}

The process searches both ontologies so that two
equivalent classes can be found in the groups: the
o2:writes property and its domain o2:Paper are added
to the target group:

– source: {o1:Person,o1:email}
– target: {o2:Person,o2:writes,o2:Paper, o2:contactEmail}

If the matched instances give the entity groups enough
support, the following correspondence is output:
∀x,y, o1:Person(x) ∧ o2:email(x,y) ≡ ∃z, o2:Person(x)
∧ o2:writes(x,z) ∧ o2:Paper(z) ∧ o2:contactEmail(z,y)

An and Song [97] Ontology to ontology, (c:c) An
and Song [97] introduce the concept of mapping graph
between two conceptual models (defined as graph-
like structures involving concepts, relations and at-
tributes, e.g., entity-relationship diagrams, UML class
diagrams, OWL ontologies). This process relies on a
simple alignment between the concepts of the concep-
tual models. The first step of the approach is to gen-
erate the mapping graph between the conceptual mod-
els. The nodes of a mapping graph represent pairs of
concepts from the two conceptual models. For exam-
ple (o1:A, o2:B) and (o1:C,o2:D) are two nodes of
the mapping graph, o1:A and o1:C being classes (con-
cepts) of a source ontology and o2:B and o2:D two
classes of a target ontology. The weighted edges of
the mapping graph are defined according to the pres-
ence and nature of the relations between the concerned
concepts in the conceptual models. Once the mapping
graph is generated, a Dijkstra algorithm is used to find

the smallest path (with maximum weights) between
nodes that appear in an input simple alignment. If the
simple alignment states that ∀x, o1:A(x)≡ o2:B(x) and
∀x, o1:C(x) ≡ o2:D(x), then the approach will look for
a path between (o1:A, o2:B) and (o1:C,o2:D).

Example 11. If ∀x, o1:Reviewer(x) ≡ o2:Reviewer(x)
and ∀x, o1:Paper(x)≡ o2:Paper(x) are two correspon-
dences in an input alignment, a path between the nodes
(o1:Reviewer,o2:Reviewer) and (o1:Paper,o2:Paper) of
the mapping graph will be sought. The mapping graph
edges are products of the source and target relations,
as well as identity, subclass-of, part-of properties. A
path in the mapping graph could be as follows, where
the nodes are marked between parenthesis () and the
edges between brackets - -[]- ->.

(o1:Reviewer,o2:Reviewer)
--[o1:reviewerOf,o2:writesReview]-->

(o1:Paper,o2:Review)
--[Identity,o2:reviewOf]-->

(o1:Paper,o2:Paper)

The correspondence translating this path is ∀x,y,
o1:Reviewer(x) ∧ o1:reviewerOf(x,y) ∧ o1:Paper(y)
≡ ∃z, o2:Reviewer(x) ∧ o2:writesReview(x,z) ∧
o2:Review(z) ∧ o2:reviewOf(x,y) ∧ o2:Paper(y)

5.4. Tree

While some approaches [56, 98, 99] rely on a se-
mantic tree derived from the schema The approaches
focusing on structural transformations between two
trees (addition of a node, deletion of an attribute, etc.)
such as [100, 101] often rely on tree-structure. How-
ever, they are out of the scope of this study as they are
part of the ontology evolution field. Other approaches
such as [102, 103] use tree-based algorithms such as
genetic programming. However they do not consider
the schemas or ontologies as trees and are therefore not
classified in this category.

MapOnto, An et al. [98, 99] Relational database
schema to ontology [98], XML schema to ontology
[99], (c:c) MapOnto6 [98, 99], a work of An et al. is
inspired from Clio in terms of path finding and tree
construction. The approaches focuses on aligning a
source schema to a target ontology. Two approaches
were proposed: a relational database schema to ontol-
ogy [98] and an XML schema to ontology [99]. Both

6http://www.cs.torOnto.edu/semanticweb/mapOnto/

http://www.cs.torOnto.edu/semanticweb/mapOnto/

20 E. Thiéblin et al. / Survey on complex ontology matching

approaches take simple correspondences between the
schema attributes and the ontology data-properties as
input. These matching techniques construct a conjunc-
tive first-order formula composed of target ontology
entities to match a table (relational database) or ele-
ment trees (XML) from the source schema. The pro-
duction of the logical formula (presented as a seman-
tic tree in [98]) differs between the two approaches be-
cause of the different nature of the schemata. However,
both approaches look for the smallest tree represent-
ing the attribute of the schema. A set of the most “rea-
sonable” alignments are output for the user to choose
among. These techniques output (c:c) correspondences
as a whole table (or element tree) is transformed in
each correspondence.

Example 12. Let PAPERS(id,title,accepted) be a ta-
ble from a relational database schema. The following
correspondence with an ontology o can be obtained
by this approach, note that the correspondence is ex-
pressed in the format used by the authors:
PAPERS(id,title,author) :- o:Paper(x)∧ o:paperId(x,id)
∧ o:title(x,title) ∧ o:Author(y) ∧ o:authorOf(x,y) ∧
o:name(y,author)

KARMA, Knoblock et al. [56, 104] Relational database
schema to ontology, (s:c),(c:s),(c:c) KARMA7 [56,
104] is a semi-automatic database to ontology match-
ing system. Other types of structured data such as
JSON or XML files can be processed by KARMA:
they are transformed into relational database in a first
step following a few rules. KARMA has two parts: a
database to ontology matching part presented in [56]
and a programming-by-example algorithm [104] to
create data transformation functions which falls in the
No structure category. The database to ontology ap-
proach is similar to those of An et al. [98, 99] as it
is based on a Steiner-tree algorithm and outputs FOL-
like formula as alignments (as in example 12). It can
be categorised as Tree based and will output (c:c) cor-
respondences. The matching process is articulated in
4 steps during which the user can intervene to correct
or refine the correspondences. The first step consists in
finding correspondences between the columns of one
of the source database tables and the target ontology.
The ontology member of the correspondence can be a
class or a pair of property-domain or subclass of do-
main. These correspondences are found using a con-
ditional random field trained with labelled data (col-

7https://github.com/usc-isi-i2/Web-Karma

umn names, values and associated ontology entity).
The training labelled data can be obtained from previ-
ous user assignments or generated using feature vec-
tors based on the names and values of the columns. The
second step consists in constructing a graph linking
the ontology entities from the previous step together
by using object properties and hierarchical relations of
the ontology. The reachable classes from the ontology
are added as nodes of the graph. The user can edit the
graph by changing the correspondences with the ontol-
ogy, edges of the graphs, generate multiple instances
of a class. In the third step, a Steiner-tree algorithm
looks for the minimum-weight tree in the graph that
spans all nodes. Finally, the computed Steiner-tree is
transformed into a FOL-like formula as target mem-
ber of the correspondence. Example 13 shows a corre-
spondence output by KARMA.

Example 13. Let PAPERS(id,title,accepted) be a table
from a relational database schema. The pseudo-FOL
correspondence with an ontology o can be obtained
by KARMA, the uri function builds URIs for class in-
stances from an id or foreign key id, the correspon-
dence is written using the authors’ format:
PAPERS(id,title,authorId)→ o:Paper(uri(id)) ∧

o:Author(uri(authorId)) ∧
o:authorOf(uri(id),uri(authorId)) ∧
o:title(uri(id),title)

5.5. No structure

The approaches described in this section do not fol-
low any of the above structures. While [105] is based
on Inductive Logic Programming and builds its cor-
respondences in a ad. hoc manner, [72] uses Markov
Logic Networks for combinatorial exploration, [106]
uses classifying techniques to generate block cor-
respondences, [73] overlaps numeric searcher using
context-free grammar for equation discovery, and fi-
nally [102, 103] use genetic programming to combine
data value transformation functions.

Hu et al. [105] Ontology to ontology, (s:c) The ap-
proach proposed by Hu et al. [105] uses Inductive
Logic Programming (ILP) techniques to discover com-
plex alignments. This technique is inspired by Stuck-
enschmidt et al. [107]. The approach is based on the
common instances of a source and a target ontology. It
outputs Horn-rules of the form A ∧ B ∧ C ∧ ... → D
with A, B,C... source entities represented as first-order
predicates and D a target entity as a first-order predi-
cate. The Horn-rule contains two parts: the body on the

https://github.com/usc-isi-i2/Web-Karma

E. Thiéblin et al. / Survey on complex ontology matching 21

left side of the implication and the head on the right
side. Three phases compose the approach. In the first
one, the instances of the two ontologies are matched.
In the second one called data-tailoring, instances and
attributes from their context (relations, data-properties,
other linked instances, etc.) are chosen for each tar-
get entity. The purpose of this phase is to eliminate
irrelevant data. The last phase is the mapping learn-
ing phase. For each target entity, a new Horn-rule is
created with this target entity as head predicate. Then
iteratively, the predicate having the highest informa-
tion gain score is added to the body of the Horn-rule.
During this process, the variables of the Horn-rule are
bound according to the instances and their context.
The information gain metric involved in the process
is based on the number of facts (instances or instance
pairs) which support the correspondence or not.

Example 14. At the first iteration of the process, only
the target predicate is given. Let us consider the case
of an object property as target predicate:
∀x,y,→ o2:reviewerOf(x,y)

All possible pairs of common instances are classified
as positive binding or negative binding with regards
to whether they instanciate o2:reviewerOf or not. The
predicate with the biggest information gain (calculated
from the positive and negative bindings) over the in-
stance pairs is added to the correspondence:
∀x,y, ∃z, o1:writesReview(x,z)→ o2:reviewerOf(x,y)

The process is iterated until no more positive binding
is left to find or the number of predicates in the corre-
spondence has reached a threshold.

Thiéblin et al. [108] Ontology to ontology, (s:c)
(c:s) (c:c) In [108], only class expression correspon-
dences are sought. The approach takes as input a set of
SPARQL queries over the source ontology defined as
Competency Questions for Alignment (CQAs). These
CQAs guide the matching process: the answers to each
CQA are matched to instances of the target ontology.
Then, the surroundings of these target instances are
lexically compared to the CQA. The surroundings in-
clude the triples in which the target instance appears
and the type of the objects or subjects of these triples
which are not the target instance. The labels of the
CQA used for comparison in the matching process are
those of the entities which appear in the CQA. To find a
correspondence, the two ontologies must have at least
a common instance per CQA. The instance matching
process uses existing links or the sharing of a label.
The SPARQL query (CQA) is turned into a DL for-
mula to become the source member of the correspon-

dence. The most similar surroundings of the target in-
stances (triple with or without object/subject type) are
turned into DL formula to become the target mem-
ber of the correspondence. The form of the correspon-
dence depends on the structure of the CQA and the
most similar surroundings of the target instances.

Example 15. Let a CQA over the source ontology
o1 be “Which are the accepted papers ?” which in
SPARQL gives:
SELECT ?x WHERE{?x a o1:AcceptedPaper}.
The CQA labels are those of o1:AcceptedPaper: “ac-
cepted paper”.

An answer to the CQA is o1:paper1. o1:paper1
has an existing owl:sameAs link to a target instance
o2:paper2. The approach considers the surroundings
of o2:paper2:

– o2:hasAuthor(o2:paper2,o2:aut7)∧o2:Author(o2:aut7)
– o2:decision(o2:paper2, “accepted”)
If the label of the object/subject is more similar to

the CQA than its type, only its value is kept.
The triple o2:decision(o2:paper2,“accepted”) has

the highest similarity to the CQA labels. The following
correspondence is created:
∀x, o1:AcceptedPaper(x)≡ o2:decision(x,“accepted”)

KAOM, Jiang et al. [72] Ontology to ontology,
(s:c) (c:s) (c:c) KAOM (Knowledge Aware Ontology
Matching) is a system proposed by Jiang et al. [72]. It
uses Markov Logic Network as a probabilistic frame-
work for ontology matching. The Markov Logic for-
mulae presented in this approach use the entities of the
two ontologies (source and target) as constants, the re-
lations between entities and the input knowledge rules
as evidence. The knowledge rules can be axioms of an
ontology or they can be specified by the user. They
do not have to be semantically exact. To handle nu-
merical data-properties, KAOM proposes two methods
to find positive linear transformations between rules.
These methods are based on the values that the data-
properties take in a given knowledge base (the distri-
bution of the values or a way to discretise them). The
correspondence patterns and conditions presented by
Ritze et al. [68, 69] can be translated into knowledge
rules and therefore used into Markov Logic formulae.
The knowledge rules can be obtained in various ways
as was shown in the experiments where decision trees,
association rules obtained from an a priori algorithm
or manually written rules were translated as knowledge
rules for three different test cases.

Example 16. A knowledge rule could be“Many re-
viewers are also authors of paper”, which would be in

22 E. Thiéblin et al. / Survey on complex ontology matching

pseudo-FOL (seen as a “is often true” relation): ∀x,
o1:Reviewer(x) ∃y, o2:authorOf(x,y)∧ o2:Paper(y).

iMAP, Dhamankar et al. [73] Relational database
schema to relational database schema, (c:s) As seen
previously, the iMAP system [73] uses a set of searchers
to discover simple and complex correspondences be-
tween database schemata. The overlap numeric searcher
uses the Lagramge algorithm for equation discov-
ery based on overlapping data. This algorithm uses
a contex-free grammar to define the search space of
the arithmetic equations and executes a beam-search
to find a suitable correspondence. The output of this
search space is then stored as a pattern for the numeric
searcher.

Nunes et al. [102] Ontology to ontology, (c:s) Ge-
netic programming is a way of finding complex cor-
respondences between data properties. It can combine
and transform the data-properties of an ontology to
match a property of an other ontology. Nunes et al.
[102] propose a genetic programming approach for nu-
merical and literal data properties matching. The cor-
respondences generated are (c:s) as n data-properties
from the source ontology are combined to match a tar-
get data-property. The source data-properties are cho-
sen from a calculated estimated mutual information
(EMI) matrix. Each individual of the genetic algorithm
is a tree representing the combination operations over
data properties. The elementary operations used for
combination are concatenation or split for literal data-
properties and basic arithmetic operations for numeri-
cal data-properties (sum, multiplication, etc.). The fit-
ness of a solution is evaluated on the values given
by this solution and the values expected (based on
matched instances) using a Levenshtein distance.

de Carvalho et al. [103] Schema to schema (rela-
tional database or XML), (s:c) (c:s) (c:c) De Carvalho
et al. [103] apply the genetic algorithm to alignments
as its "individuals". Each "individual" is a set of cor-
respondences. Each correspondence is a pair of tree
functions made of elementary operations (as for Nunes
et al. [102]) and having source (resp. target) attributes
as leaves. Constraints over the correspondences have
been defined: a schema attribute cannot appear more
than once in a correspondence, crossover and muta-
tion can only be applied to attributes of the same data
type, the number of correspondences in an alignment
is fixed a priori. Mutation and cross-over operations
occur at the correspondence’s tree-level when parts of
two tree functions are swapped, or changed. The fit-

ness evaluation function of the schema alignments (in-
dividuals) is the sum of the fitness score of its cor-
respondences. The fitness score of a correspondence
can be calculated in two ways: entity-oriented with
the average similarity of matched instances’ attributes
transformation (matched instances of overlapping data
are needed) or value-oriented with the similarity of all
transformed source instances and target instances. The
similarity for each correspondence is chosen by an ex-
pert. Compared to the approach of Nunes et al. [102]
it can detect (c:c) correspondences thanks to its mod-
elling. However the process may require more itera-
tions than [102].

KARMA, Knoblock et al. [56, 104] Relational database
schema to ontology, (s:c),(c:s),(c:c) KARMA [56,
104] is a semi-automatic database to ontology match-
ing system. Other types of structured data such as
JSON or XML files can be processed by KARMA:
they are transformed into relational database in a first
step following a few rules. KARMA has two parts: a
database to ontology matching part presented in [56]
(this approach is described in the Tree category) and
a programming-by-example algorithm [104] to create
data transformation functions which falls in the No
structure category. The latter part considers the trans-
formation functions as programs divided into subpro-
grams which are to be applied to the data to trans-
form it. At the beginning of the process, an example
of source data (a table cell or row value) is given to
the user and he or she gives what he or she expects
as a results. This first pair of values constitutes an ex-
ample and a program (transformation function) is then
synthesized and applied to the other instances of the
data. The user iteratively corrects the wrong translated
data, giving new examples from which the process re-
fines its program by detecting and changing incorrect
subprograms. The basic operations (or segments) of
a program or subprogram are string operations (sub-
tring, concatenation, recognizing a number, etc.). As
the input and the output of the process can cover one
or many columns of the source and target tables, this
part of KARMA can output (s:c), (c:s) or (c:c) corre-
spondences.

Example 17. A first example "PaperABC written
by AuthorTT strong accept 2016" from the source
database is given to the user. The user gives the ex-
pected value "PaperABC (2016)". This first pair of val-
ues constitutes an example and a program (transfor-
mation function) is synthesized. For example, out of all

E. Thiéblin et al. / Survey on complex ontology matching 23

the possible programs (called hypothesis) one could
be:

transform(val):
pos1=val.indexOf(START,WORD,1)
pos2=val.indexOf(WORD,BNK,1)
pos3=val.indexOf(BNK,NUM,1)
pos4=val.indexOf(NUM,END,1)
output= val.substr(pos1,pos2)+‘ (’+val.subtr(

pos3,pos4)+‘)’
return output

where indexOf(LEFT, RIGHT, N) takes the left and
right context of the occurence and N precises the n-th
occurence. START is the beginning of the value, END
its end. WORD represents a ([A-Za-z]+) string, NUM
a number, BNK a whitespace. This program is then ap-
plied to the other instances of the data. The user iter-
atively corrects the wrong translated data, giving new
examples from which the process refines its program
(the hypothesis space will be reduced).

BMO, Hu et al. [106] Ontology to ontology, (s:c)
(c:s) (c:c) BMO (Block Matching for Ontologies) fo-
cuses on matching sets of entities (classes, relations or
instances) called blocks. This approach is articulated
into four steps. The first step is the construction of vir-
tual documents for each entity of both ontologies: the
annotations and all triples in which an entity occurs are
gathered into a document. The second one computes
a relatedness matrix by calculating the similarity be-
tween each vectorized virtual document. In the third
step, the relatedness matrix is used to apply a partition-
ning algorithm: this algorithm is recursively applied to
the set of ontology entities. At the end of this algo-
rithm, the similar entities are together in a same block
while dissimilar entities are in distinct blocks. The fi-
nal step consists in finding the optimal alignment given
a number of blocks. Ontology entities which are in the
same block can be separated into o1 and o2 to get a
correspondence. As the blocks can contain any type of
entity, it is not considered as a composite pattern.

5.6. Summary

The proposed classification is based on two main
axes, the output (type of correspondence) and process
(guiding structure) dimensions of the approaches. The
following tables are organised as the types of corre-
spondences: logic relations, transformation functions
and blocks. The order of the approach for each type of
correspondence follows the one in the survey (atomic
pattern, composite pattern, path, tree, no structure).

Table 6 summarises the type of knowledge repre-
sentation models to be aligned, the needed input and
the kind of generated correspondences. Most of the ap-
proaches generate (s:c) or (c:s) correspondences and
require input (simple alignments, matched instances,
etc.). This table shows the variety of knowledge rep-
resentation models for which complex matching ap-
proaches have been proposed. This points out that
complex matching is not dedicated only to the Seman-
tic Web.

Table 7 presents the process of the approaches ac-
cording to our classification. Most approaches are
pattern-based (atomic or composite). Only a few ap-
proaches have no guiding structure. There is no direct
correlation between the members expression (fixed to
fixed, unfixed to unfixed, etc.) and the (s:c), (c:s) kinds
of correspondence.

In the Ontology Matching book [16], the basic
matching techniques are classified as follow:

– Formal resource-based: relying on formal evi-
dence: upper-level ontology, domain-specific on-
tology, linked data, linguistic frames, alignment

– Informal resource-based: relying on informal ev-
idence: directory, annotated resources, web forms

– String-based: use of string similarity: name simi-
larity, description similarity, global namespace

– Language-based: use of linguistic techniques: to-
kenisation, lemmatisation, thesauri, lexicon, mor-
phology

– Constraint-based: use of internal ontology con-
straints: types, key properties

– Taxonomy-based: consider the specialisation re-
lation of the ontologies: taxonomy, structure

– Graph-based: consider the ontologies as graphs:
graph homomorphism, path, children, leaves, cor-
respondence patterns

– Instance-based: comparison of sets of individu-
als: data analysis, statistics

– Model-based: based on the semantic interpreta-
tion: SAT solvers, DL reasoners

The complex matching approaches are described ac-
cording to this classification in Table 8. The majority
of them combine different matching techniques.

Few approaches are model-based (no semantic in-
terpretation of the alignment). However, it is important
to note that identifying the strategies based on Euzenat
and Shvaiko’s classification was not always straight-
forward.

Another way of classifying the approaches is with
respect to the kind of evidence they exploit (ontology-

24 E. Thiéblin et al. / Survey on complex ontology matching

Table 6
Input (type of aligned knowledge representation model and type of additional input information) and output (correspondences members form,
format) of the approaches. KRM stands for Knowledge Representation Model.

Work Type of KRM Additional Input Kind of
correspondence

Output format

L
og

ic
al

re
la

tio
ns

Ritze2009 [68] Onto to Onto simple alignment (s:c) (DL)

Ritze2010 [69] Onto to Onto simple alignment (opt.) (s:c) EDOAL

Oliveira2018 [22] Onto to Onto (s:c) Not specified

Rouces2016 [70] Onto to Onto (s:c), (c:s)
SPARQL
construct

Walshe2016 (Bayes-ReCCE) [71] Onto to Onto matched instances (s:c), (c:s) EDOAL

Jimenez2015 (BootOX) [74] DB to Onto (c:s) R2RML

Svab2009 [75] Onto to Onto simple alignment (opt.) (s:c),(c:s),(c:c) Not specified

Parundekar2012 [80] Onto to Onto matched instances (s:c), (c:s) pseudo-DL

Doan2003 (CGLUE) [82] Taxo to Taxo (s:c) Not specified

Parundekar2010 [81] Onto to Onto matched instances (s:c), (c:s), (c:c) pseudo-DL

Kaabi2012 (ARCMA) [83] Onto to Onto (s:c) DL

Yan2001 (Clio) [55, 67] DB to DB matched instances (s:c), (c:s),(c:c) SQL views

Qin2007 (OntoGrate) [94, 95] Onto to Onto matched instances (c:c)
DataLog, SWRL,
Web-PDDL

An2008 [97] Onto to Onto (c:c) FOL or SPARQL

An2012 [96] DB to Onto
web query interfaces,
simple correspondences
web form-onto

(s:c) Not specified

An2005 (MapOnto) [98] DB to Onto
attribute-data properties
correspondences

(c:c) FOL

An2005b (MapOnto) [99] XML to Onto
attribute-data properties
correspondences

(c:c) FOL

Hu2011 [105] Onto to Onto (c:s) FOL

Thieblin2018 [108] Onto to Onto
competency questions for
alignment as SPARQL
queries

(s:c),(c:s),(c:c) EDOAL

L
og

ic
/T

ra
ns

fo

Jiang2016 (KAOM) [72] Onto to Onto knowledge rules (s:c), (c:s), (c:c)
Not specified
(DL)

Boukottaya2005 [84] XML to XML (s:c), (c:s), (c:c) XSLT

Xu2003 [85]
Schema to
Schema

domain ontology (c:s), (s:c) Not specified

Xu2006 [86]
Schema to
Schema

domain ontology (c:s), (s:c), (c:c) Not specified

Knoblock2012 (KARMA)
[56, 104]

DB to Onto
examples for data
transformation functions

(s:c),(c:s),(c:c) FOL

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMAP) [73] DB to DB

domain constraints and
value distribution

(c:s) equations

Arnold2013 (COMA++) [88] Onto to Onto (s:c) Not specified

Warren2006 [87] DB to DB (c:s) SQL queries

Nunes2011 [102] Onto to Onto (c:s) equations

deCarvalho2013 [103]
Schema to
Schema

(c:s), (s:c), (c:c) equations

B
lo

ck
s

Saleem2008 (PORSCHE) [90] XML to XML abbreviation table (c:s), (s:c) Not specified

He2004 (DCM) [91] DB to DB web query interfaces (s:c), (c:s), (c:c) sets

Su2006 (HSM) [92] DB to DB web query interfaces (s:c), (c:s), (c:c) sets

Wu2004 [89] DB to DB web query interfaces (s:c), (c:s) sets

Hu2006 (BMO) [106] Onto to Onto (s:c), (c:s), (c:c) sets

E. Thiéblin et al. / Survey on complex ontology matching 25

Table 7
Process characteristics of the approaches based on the proposed classification

Article Guiding structure fixe
d to

fixe
d

fixe
d to

un
fixe

d

un
fixe

d to
un

fixe
d

Onto
log

y-l
ev

el
ev

ide
nc

e

Ins
tan

ce
-le

ve
l e

vid
en

ce

Other

L
og

ic
al

re
la

tio
ns

Ritze2009 [68] Atomic patterns • •
Ritze2010 [69] Atomic patterns • •
Oliveira2018 [22] Atomic patterns • • Compound

Rouces2016 [70] Atomic patterns • •
Walshe2016 (Bayes-ReCCE) [71] Atomic patterns • •
Jimenez2015 (BootOX) [74] Atomic patterns • •
Svab2009 [75] Composite patterns • • •
Parundekar2012 [80] Composite patterns • •
Parundekar2010 [81] Composite patterns • •
Doan2003 (CGLUE) [82] Composite patterns • •
Kaabi2012 (ARCMA) [83] Composite patterns • • •
Yan2001 (Clio) [55, 67] Path to Path • • •
Qin2007 (OntoGrate) [94, 95] Path to Path • • •
An2008 [97] Path to Path • •
An2012 [96] Path to Path • •
An2005 (MapOnto) [98] Tree to tree • •
An2005b (MapOnto) [99] Tree to tree • •
Hu2011 [105] No structure • • •
Thieblin2018 [108] No structure • • •

L
og

ic
/T

ra
ns

fo

Jiang2016 (KAOM) [72] Atomic patterns, No
structure

• • • •

Boukottaya2005 [84] Composite patterns • •
Xu2003 [85] Composite patterns • • • •

Xu2006 [86] Composite patterns, Path
to path

• • • • •

Knoblock2012 (KARMA) [56, 104] Tree to tree, No structure • • • •

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMAP) [73]

Atomic patterns,
Composite patterns, No
structure

• • •

Arnold2013 (COMA++) [88] Composite patterns • •
Warren2006 [87] Composite patterns • •
Nunes2011 [102] No structure • •
deCarvalho2013 [103] No structure • •

B
lo

ck
s

Saleem2008 (PORSCHE) [90] Composite patterns • • Holistic

He2004 (DCM) [91] Composite patterns • • Holistic

Su2006 (HSM) [92] Composite patterns • • Holistic

Wu2004 [89] Composite patterns • •
Hu2006 (BMO) [106] No structure • •

26 E. Thiéblin et al. / Survey on complex ontology matching

Table 8
Classification of the complex matchers on [16]’s basic techniques

Approach Form
al

res
ou

rce
-ba

sed

Inf
orm

al
res

ou
rce

-ba
sed

Stri
ng

-ba
sed

Lan
gu

ag
e-b

ase
d

Con
str

ain
t-b

ase
d

Tax
on

om
y-b

ase
d

Grap
h-b

ase
d

Ins
tan

ce
-ba

sed

M
od

el-
ba

sed

L
og

ic
al

re
la

tio
ns

Ritze2009 [68] • • • • •
Ritze2010 [69] • • • • •
Oliveira2018 [22] •
Rouces2016 [70] • • • •
Walshe2016 (Bayes-ReCCE) [71] • • •
Jimenez2015 (BootOX) [74] • • •
Svab2009 [75] • •
Parundekar2012 [80] • • •
Parundekar2010 [81] • • •
Doan2003 (CGLUE) [82] • • •
Kaabi2012 (ARCMA) [83] • • •
Yan2001 (Clio) [55, 67] • • •
Qin (OntoGrate) [94, 95] • •
An2008 [97] • • •
An2012 [96] • •
An2005 (MapOnto) [98] • •
An2005b (MapOnto) [99] • •
Hu2011 [105] •
Thieblin2018 [108] • • • •

L
og

ic
/T

ra
ns

fo

Jiang2016 (KAOM) [72] • • • • •
Boukottaya2005 [84] • • • •
Xu2003 [85] • • • •
Xu2006 [86] • • • • •
Knoblock2012 (KARMA)
[56, 104]

• • • •

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMap) [73] • • • • •

Arnold2013 (COMA++) [88] • •
Warren2006 [87] •
Nunes2011 [102] •
deCarvalho [103] •

B
lo

ck
s

Saleem2008 (PORSCHE) [90] • •
He2004 (DCM) [91] •
Su2006 (HSM) [92] •
Wu2004 [89] • • • • • •
Hu2006 (BMO) [106] • •

E. Thiéblin et al. / Survey on complex ontology matching 27

level or instance-level), as done in different sur-
veys in the field. This classification was applied in
the last 2 columns of Table 7. Most approaches
use the ontology-level information as evidence. The
approaches which output transformation functions
mostly rely on instance-level information.

6. Evaluation of complex matchers

This section discusses the evaluation of complex
alignments regarding the datasets and metrics. Most of
the approaches were manually evaluated. The only au-
tomatic evaluations of complex alignments were often
done on approach-tailored datasets (e.g., one kind of
correspondence only).

6.1. Complex alignment datasets

The diverse approaches discussed in this paper ex-
ploit a variety of knowledge representation models
(e.g., XML schemata, ontologies) and resources (e.g.,
linked instances, web forms, etc.). They also gener-
ate different types of correspondences. This makes
their evaluation difficult and heterogeneous. The ap-
proaches were mostly evaluated on pairs of knowl-
edge representation models over a wide range of do-
mains (geography, biomedicine, conference organisa-
tion, sports, companies, libraries, etc.). Few systems
were evaluated by comparison to a reference align-
ment, and even fewer of these reference alignments
were made available online. In this section are pre-
sented the datasets available online with reference
complex alignments and the benchmarks which deal
with complex alignments. They are summarized in Ta-
ble 9.

In the domain of schema matching (database or
XML schema), dedicated complex alignment datasets
have been constructed for evaluating the approaches
dealing with these schemata. In general, these datasets
contain mostly transformation functions. For instance,
the Illinois semantic integration archive [109] is a
dataset of complex correspondences on value trans-
formations (e.g. string concatenation) in the inven-
tory and real estate domain. This dataset only contains
correspondences between schemata with transforma-
tion functions. The UIUC Web integration Repository
[110] has also been reused by various schema match-
ing approaches for their evaluation. It is a repository of
schemata and query forms. Other repositories such as
the UCI Machine Learning Repository [111] have been

adapted in some matcher evaluation for the purpose
of evaluating schema matching approaches. However,
the resulting adaptation was not published. XBench-
Match [112] is a benchmark for XML schema match-
ing. The reference alignments of the person dataset
contains correspondences with string concatenation.

For the purpose of evaluating matching hybrid struc-
tures, the RODI Benchmark [113] proposes an evalua-
tion over given scenarii, R2RML correspondences be-
tween a database schema and an ontology. The bench-
mark relies on ontologies from the OAEI Conference
dataset, Geodata ontology, Oil and gas ontology. The
schemata are either derived from the ontologies them-
selves or curated on the Web. The RODI deals with
R2RML alignment and uses reference SPARQL and
SQL queries to assess the quality of the alignment.

SPIMBench [45] is an instance matching bench-
mark based but it could be used for complex ontol-
ogy alignment evaluation. A set of transformations
were applied to the BBC core and other domain on-
tologies in order to get derived ontologies with the
same instances. The transformation rules can be con-
sidered as correspondences. Some transformation rules
are even complex correspondences (either logic rela-
tions or value transformation functions). Each set of
transformation rules between two ontologies was doc-
umented in the SPIMBench vocabulary and constitutes
a reference complex alignment. However, the refer-
ence alignment is not considered in the evaluation pro-
cess of the benchmark, which only focuses on instance
matching.

This year, the first complex track of the Ontology
Alignment Evaluation Initiative was conducted. It in-
cluded four datasets [114] among which the GeoLink
dataset [18] and a consensus version of [115], having
a reference alignment were used.

Of all the datasets presented in Table 9, only
SPIMBench contains common or matched instances.
However, the derived datasets are synthetic. Because
they needed common instances, some matchers have
been evaluated on LOD repositories (DBpedia, Yago,
Agrovoc, Geospecies, etc.) [71, 80, 81, 105, 108] or
custom-made knowledge bases [72, 73, 102, 103].

6.2. Evaluation metrics

Complex matching evaluation can be performed
under various dimensions such as time execution or
the quality of the output alignment. In this section,
the complex alignment quality metrics are presented.
These metrics do not include approach-specific met-

28 E. Thiéblin et al. / Survey on complex ontology matching

Table 9
Datasets for complex alignment evaluation. KRM stands for Knowledge Representation Model.

Dataset type of KRM Log
ic

Tran
sf.

Alignment
format

URL

Conference Ontologies
√ √

EDOAL http://doi.org/10.6084/m9.figshare.4986368
GeoLink Ontologies

√
EDOAL http://doi.org/10.6084/m9.figshare.5907172

Hydrography Ontologies
√

EDOAL http://oaei.ontologymatching.org/2018/complex/#hydrography
SPIMBench Ontologies

√ √
SPIMBench https://github.com/jsaveta/SPIMBench

Real estate I XML
√

XML schema http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate1.html
Real estate II XML

√
own syntax http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate2.html

Inventory XML
√

own syntax http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/inventory.html
XBenchMatch XML

√
own syntax https://perso.liris.cnrs.fr/fabien.duchateau/research/tools/xbenchmatch/

RODI DB to onto
√ √

SQL/SPARQL https://github.com/chrpin/rodi

rics as defined in [91, 92, 106] but the ones that can be
generalised to all complex alignments.

The most usual metrics, adapted from information
retrieval, used for evaluating the quality of alignments
with respect to a reference one are precision and re-
call, combined into F-measure. The calculation of the
recall and F-measure requires a reference alignment
whereas the precision alone can be assessed by classi-
fying correspondences are true positives or false pos-
itives. The usual precision and recall are the metrics
which were the most used in the evaluation of the ap-
proaches. However, as reference alignments are not al-
ways available, the precision was often the only met-
ric computed. The evaluation was also often manually
performed which makes it time-consuming task requir-
ing experts about the aligned ontologies. The precision
and recall metrics were adapted into weighted preci-
sion and recall, relaxed precision and recall, and se-
mantic precision and recall. The weighted precision
and recall take the confidence value of a correspon-
dence into account. The relaxed precision and recall
[116] take the subsumption relations into account: a
correspondence is not discarded if it states an equiva-
lence instead of a subsumption, its “score value” will
be 0.5 instead of 1 for example. The semantic preci-
sion and recall [117] considers the alignments as sets
of axioms and is measured by comparing their deduc-
tive closure, i.e., the set of axioms which can be de-
rived from the alignment together with the ontologies.

The metrics of accuracy or top−x accuracy have
been used in various evaluations [73, 74, 82, 91, 92,
96, 103, 108] when the number of correspondences is
predefined, e.g., one correspondence for each entity of
the target schema/ontology. The accuracy is then the
percentage of predefined questions having a correct an-
swer. A “question” in this context could be a source

entity to be matched and the “answers” the correspon-
dences having this entity as source member. Some ap-
proaches output various answers for each question,
e.g., a ranked list of correspondences for each source
entity. In this case the top-x accuracy is the percentage
of questions whose correct answer is in the top-x an-
swers to the question. For example, top-3 accuracy is
the fraction of source entities for which the correct cor-
respondence is in the three best correspondences out-
put by the system.

During this year’s OAEI complex track, the evalu-
ation was mostly manual. The usual precision and re-
call metrics were reused for the Conference dataset.
For the Hydrography and GeoLink dataset, three tasks
were defined, but the matchers could be evaluated on
the first one only using precision and recall:

– Finding the entities which belong together in a
correspondence, regardless to the correspondence
structure;

– Finding the correct correspondence structure given
the set of entities to match;

– Finding the correspondences from scratch.

Semantic precision and recall were regarded as per-
spectives. Finally, the Taxon dataset was manually
evaluated with a usual precision metric and within a
query rewriting scenario. The accuracy, as the percent-
age of queries well rewritten, was also computed.

All the metrics presented before need either a ref-
erence alignment or a manual evaluation. Even with a
reference alignment, the evaluation is not straightfor-
ward due to the difficulty of comparing two complex
correspondences.

http://doi.org/10.6084/m9.figshare.4986368
http://doi.org/10.6084/m9.figshare.5907172
http://oaei.ontologymatching.org/2018/complex/#hydrography
https://github.com/jsaveta/SPIMBench
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate1.html
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate2.html
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/inventory.html
https://perso.liris.cnrs.fr/fabien.duchateau/research/tools/xbenchmatch/
https://github.com/chrpin/rodi

E. Thiéblin et al. / Survey on complex ontology matching 29

6.3. Summary

The different approaches discussed in this survey
have been evaluated on a variety of datasets.

Until recently, there was very little effort on com-
plex alignment evaluation. The latest works propose
datasets. Only RODI [113] is an automated bench-
mark. Most of the OAEI complex track evaluation is
still manually performed. This comes from the dif-
ficulty of comparing two complex correspondences.
For example, ∀ o1:Author(x) ≡ ∃y, o2:authorOf(x,y)
is the same as ∀ o1:Author(x) ≡ ∃y, o2:writtenBy(y,x).
Given this example, semantic precision and recall
could integrate the fact that the two example expres-
sions mean the same thing given that o2:authorOf
is the inverse property of o2:writtenBy. However,
pattern-based ontology formats such as EDOAL (or
OWL) may lead to other problems. For example,
the correspondence ∀x, o1:AcceptedPaper(x) ≡ ∃
o2:acceptedBy(x,y) can be expressed using an occur-
rence restriction on the o2:acceptedBy property (a pa-
per that was accepted at least once) or by using a type
restriction to the owl:Thing class (a paper that was ac-
cepted by some Thing). This would prevent the calcu-
lation of semantic precision and recall as the axioms
alone would not be comparable (owl:minCardinality
versus owl:someValuesFrom). An alternative would be
to assess and compare the interpretation of the corre-
spondences (at instance level) but this would require
consistently populated ontologies which might not be
the case on the LOD (e.g., DBpedia contains inconsis-
tencies) nor on the usual OAEI datasets (e.g., confer-
ence, anatomy are not populated).

The relation of the correspondences (≡,>,6) is
also not taken into account in the evaluation process
as most matchers only consider equivalence. The con-
fidence given to a correspondence is taken into ac-
count when dealing with top-x accuracy. The weighted
or relaxed precision and recall metrics [116] could be
adapted to deal with it.

Finally, one could also consider to measure the suit-
ability of the output alignment for a given application
as it was done for the OA4QA track of the OAEI [118],
for a library application [119] or the Taxon track of the
complex OAEI track [114]. The metrics would then
take into account the suitability of the output alignment
to the given task.

7. Discussion

Recently, the community has gained interest over
complex alignments. This comes probably from the
fact that applications needing interoperability find sim-
ple alignment not sufficient.

The XML and database fields are older than on-
tology matching and ODBA, therefore, they have sta-
ble standards such as XSLT, XQuery and SQL. In the
ODBA community, R2RML has become the norm,
many extensions to R2RML are proposed and there
is a proliferation of edition and visualisation tools, as
well as matching approaches. In the ontology match-
ing community, this proliferation is not so marked.
Event if various alignment formats have been proposed
(c.f. §3.1), the EDOAL vocabulary implemented in the
Alignment API can be seen as an up-coming stan-
dard. It has indeed been used for the first OAEI track.
However, EDOAL has already been faced with expres-
siveness limitations, as discussed in [18]. Moreover,
there is no edition or visualisation tool for this format,
which makes it usable or browse-able by experts only.
SPARQL could be an alternative to EDOAL as it does
not suffer from such limitations and can be directly ex-
ecuted.

The study of the approaches in this survey shows
that, unlike what intuition may suggest, matching more
expressive knowledge representation models does not
imply applying more sophisticated techniques. Most
approaches consider the knowledge representation
models as graphs, trees or pools of annotated data
regardless their expressiveness. These common rep-
resentations leads to similar techniques over diverse
knowledge representation models. While the use of in-
stance data evidence is valuable for the matching pro-
cess, statistical approaches are directly impacted by
the quality of this data. They can be faced with the
sparseness problem or with a specific corpus distribu-
tion that leads to incorrect correspondences. For ex-
ample, if o1 is populated with most students of age
23, ∀ x, o1:Student(x) ≡ o2:age(x, 23) can be a valid
correspondence for the instance-based matching algo-
rithms. The notion of contextual alignment [120] could
help specify to which extent the alignment is valid.

Another point is related to the user involvement
in the complex matching process, which is under-
exploited in complex matching. However, this aspect,
related to the matching process [121, 122], related to
the visualisation and edition of complex correspon-
dences, is an important issue to be addressed in the fu-
ture.

30 E. Thiéblin et al. / Survey on complex ontology matching

Regarding the evaluation of complex alignments,
correspondence comparison remains a problem. The
perspective of a benchmark with a reference align-
ment, real-life ontologies populated with controlled in-
stances and metrics based on these instances, would
be a useful resource in the field. As the interpreta-
tion of an ontology can vary from user to user, hav-
ing a consensual benchmark with correspondence con-
fidences reflecting the agreement between annotators,
as in [123], could be also an interesting resource. An-
other direction would be to evaluate the complex align-
ments over a real-life application. The first OAEI com-
plex track could –hopefully– stimulate new works on
complex ontology matching, evaluation, visualisation,
etc.

References

[1] P. Shvaiko and J. Euzenat, A Survey of Schema-Based
Matching Approaches, in: Journal on Data Semantics IV,
S. Spaccapietra, ed., Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2005, pp. 146–171, DOI:
10.1007/116034125. ISBN 978-3-540-31001-3 978-3-540-
31447-9.

[2] P. Szekely, C.A. Knoblock, F. Yang, X. Zhu, E.E. Fink,
R. Allen and G. Goodlander, Connecting the Smithsonian
American Art Museum to the Linked Data Cloud, in: The Se-
mantic Web: Semantics and Big Data, Vol. 7882, D. Hutchi-
son, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern,
J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi,
G. Weikum, P. Cimiano, O. Corcho, V. Presutti, L. Hollink
and S. Rudolph, eds, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013, pp. 593–607. ISBN 978-3-642-38287-1 978-
3-642-38288-8. doi:10.1007/978-3-642-38288-8_40. http://
link.springer.com/10.1007/978-3-642-38288-8_40.

[3] V. Boer, J. Wielemaker, J. Gent, M. Hildebrand, A. Isaac,
J. Van Ossenbruggen and G. Schreiber, Supporting Linked
Data Production for Cultural Heritage Institutes: The Ams-
terdam Museum Case Study, in: ACM Journal of Experimen-
tal Algorithms - JEA, 2012. doi:10.1007/978-3-642-30284-
8_56.

[4] C. Kakali, I. Lourdi, T. Stasinopoulou, L. Bountouri, C. Pa-
patheodorou, M. Doerr and M. Gergatsoulis, Integrating
Dublin Core Metadata for Cultural Heritage Collections Us-
ing Ontologies, International Conference on Dublin Core and
Metadata Applications 0(0) (2007), 128–139, ISSN 1939-
1366. http://dcpapers.dublincore.org/pubs/article/view/871.

[5] T. Nurmikko-Fuller, K.R. Page, P. Willcox, J. Jett, C. Maden,
T. Cole, C. Fallaw, M. Senseney and J.S. Downie, Build-
ing complex research collections in digital libraries: A sur-
vey of ontology implications, in: Proceedings of the 15th
ACM/IEEE-CS Joint Conference on Digital Libraries, ACM,
2015, pp. 169–172.

[6] E. Thiéblin, F. Amarger, N. Hernandez, C. Roussey and
C.T. Dos Santos, Cross-querying LOD datasets using com-
plex alignments: an application to agronomic taxa, in: Re-
search Conference on Metadata and Semantics Research,
Springer, 2017, pp. 25–37.

[7] V. Jouhet, F. Mougin, B. Bréchat and F. Thiessard, Build-
ing a model for disease classification integration in oncology,
an approach based on the national cancer institute thesaurus,
Journal of biomedical semantics 8(1) (2017), 6.

[8] K.W. Fung and J. Xu, Synergism between the Mapping
Projects from SNOMED CT to ICD-10 and ICD-10-CM, in:
AMIA Annual Symposium Proceedings, Vol. 2012, American
Medical Informatics Association, 2012, p. 218.

[9] K. Giannangelo and J. Millar, Mapping SNOMED CT to
ICD-10., 2012.

[10] L. Otero-Cerdeira, F.J. Rodríguez-Martínez and A. Gómez-
Rodríguez, Ontology matching: A literature review, Expert
Systems with Applications 42(2) (2015), 949–971, ISSN
09574174. doi:10.1016/j.eswa.2014.08.032.

[11] Y. Kalfoglou and M. Schorlemmer, Ontology mapping:
the state of the art, The Knowledge Engineering Re-
view 18(1) (2003), 1–31, ISSN 02698889, 14698005.
doi:10.1017/S0269888903000651.

[12] N.F. Noy, Semantic integration: a survey of ontology-based
approaches, ACM Sigmod Record 33(4) (2004), 65–70.

[13] J. De Bruijn, M. Ehrig, C. Feier, F. Martín-Recuerda,
F. Scharffe and M. Weiten, Ontology mediation, merging and
aligning, Semantic web technologies (2006), 95–113.

[14] E. Rahm and P.A. Bernstein, A survey of approaches to au-
tomatic schema matching, The VLDB Journal 10(4) (2001),
334–350, ISSN 10668888. doi:10.1007/s007780100057.

[15] A. Doan and A.Y. Halevy, Semantic integration research in
the database community: A brief survey, AI Magazine 26
(2005), 83–94.

[16] J. Euzenat and P. Shvaiko, Ontology Matching, Second edi-
tion, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
DOI: 10.1007/978-3-642-38721-0. ISBN 978-3-642-38720-3
978-3-642-38721-0.

[17] G. Stapleton, J. Howse, A. Bonnington and J. Burton, A vi-
sion for diagrammatic ontology engineering, in: International
Workshop on Visualizations and User Interfaces for Knowl-
edge Engineering and Linked Data Analytics, 2014.

[18] L. Zhou, M. Cheatham, A. Krisnadhi and P. Hitzler, A com-
plex alignment benchmark: Geolink dataset, in: International
Semantic Web Conference, Springer, 2018, pp. 273–288.

[19] J. Euzenat, Towards composing and benchmarking ontology
alignments, in: Proc. ISWC-2003 workshop on semantic in-
formation integration, Sanibel Island (FL US), Citeseer, 2003,
pp. 165–166.

[20] T. Gruetze, C. Böhm and F. Naumann, Holistic and Scalable
Ontology Alignment for Linked Open Data, in: Proceedings
of the 5th Linked Data on the Web Workshop at the 21th
WWW, 2012.

[21] I. Megdiche, O. Teste and C. Trojahn, An Extensible Linear
Approach for Holistic Ontology Matching, in: Proceedings
of the 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, 2016, pp. 393–410.

[22] D. Oliveira and C. Pesquita, Improving the interoperabil-
ity of biomedical ontologies with compound alignments,
Journal of Biomedical Semantics 9(1) (2018), ISSN 2041-

http://link.springer.com/10.1007/978-3-642-38288-8_40
http://link.springer.com/10.1007/978-3-642-38288-8_40
http://dcpapers.dublincore.org/pubs/article/view/871

E. Thiéblin et al. / Survey on complex ontology matching 31

1480. doi:10.1186/s13326-017-0171-8. https://jbiomedsem.
biomedcentral.com/articles/10.1186/s13326-017-0171-8.

[23] A. Gater, D. Grigori and M. Bouzeghoub, Complex mapping
discovery for semantic process model alignment, in: Pro-
ceedings of the 12th International Conference on Information
Integration and Web-based Applications & Services, ACM,
2010, pp. 317–324.

[24] G. Navarro, A guided tour to approximate string matching,
ACM computing surveys (CSUR) 33(1) (2001), 31–88.

[25] F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris, H. Kondy-
lakis, E. Motta, D. Plexousakis and M. Sabou, Ontology evo-
lution: a process-centric survey, The knowledge engineering
review 30(1) (2015), 45–75.

[26] M.C.A. Klein and D. Fensel, Ontology versioning on the Se-
mantic Web, in: Proceedings of SWWS’01, The first Seman-
tic Web Working Symposium, Stanford University, Califor-
nia, USA, July 30 - August 1, 2001, 2001, pp. 75–91. http:
//www.semanticweb.org/SWWS/program/full/paper56.pdf.

[27] M. Klein, D. Fensel, A. Kiryakov and D. Ognyanov, Ontol-
ogy versioning and change detection on the web, in: Inter-
national Conference on Knowledge Engineering and Knowl-
edge Management, Springer, 2002, pp. 197–212.

[28] L. Stojanovic, A. Maedche, B. Motik and N. Stojanovic,
User-driven ontology evolution management, in: Interna-
tional Conference on Knowledge Engineering and Knowl-
edge Management, Springer, 2002, pp. 285–300.

[29] M. Volkel, W. Winkler, Y. Sure, S.R. Kruk and M. Synak,
Semversion: A versioning system for rdf and ontologies, in:
Proc. of ESWC, 2005.

[30] N.F. Noy, M.A. Musen et al., Promptdiff: A fixed-point al-
gorithm for comparing ontology versions, AAAI/IAAI 2002
(2002), 744–750.

[31] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos and
V. Christophides, On detecting high-level changes in RDF/S
KBs, in: International Semantic Web Conference, Springer,
2009, pp. 473–488.

[32] D. Zeginis, Y. Tzitzikas and V. Christophides, On the founda-
tions of computing deltas between RDF models, in: The Se-
mantic Web, Springer, 2007, pp. 637–651.

[33] M. Hartung, J. Terwilliger and E. Rahm, Recent advances
in schema and ontology evolution, in: Schema matching and
mapping, Springer, 2011, pp. 149–190.

[34] H. Stuckenschmidt and M. Klein, Integrity and change in
modular ontologies, in: IJCAI, 2003, pp. 900–908.

[35] J.C. Dos Reis, C. Pruski, M. Da Silveira and C. Reynaud-
Delaître, Understanding semantic mapping evolution by ob-
serving changes in biomedical ontologies, Journal of biomed-
ical informatics 47 (2014), 71–82.

[36] F. Scharffe, Correspondence Patterns Representation, PhD
thesis, Faculty of Mathematics, Computer Science and Uni-
versity of Innsbruck, 2009.

[37] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo,
A. Poggi, R. Rosati and M. Zakharyaschev, Ontology-
Based Data Access: A Survey, in: Proceedings of the
Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI-18, International Joint Conferences
on Artificial Intelligence Organization, 2018, pp. 5511–
5519. doi:10.24963/ijcai.2018/777. https://doi.org/10.24963/
ijcai.2018/777.

[38] D. Dou, The Formal Syntax and Semantics of Web-PDDL,
Technical Report, Technical report, University of Oregon,
2008.

[39] D.L. McGuinness, F. Van Harmelen et al., OWL web ontol-
ogy language overview, W3C recommendation 10(10) (2004),
2004.

[40] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, M. Dean et al., SWRL: A semantic web rule lan-
guage combining OWL and RuleML, W3C Member submis-
sion 21 (2004), 79.

[41] J. Euzenat, F. Scharffe and A. Zimmermann, Expressive
alignment language and implementation (2007). https://hal.
inria.fr/hal-00822892/.

[42] M.T. Pazienza, A. Stellato, M. Vindigni and F.M. Zanzotto,
XeOML: An XML-based extensible ontology mapping lan-
guage, in: WORKSHOP ON MEANING COORDINATION
AND NEGOTIATION, IN 3RD INTERNATIONAL SEMAN-
TIC WEB CONFERENCE (ISWC-2004, Citeseer, 2004.

[43] A. Maedche, B. Motik, N. Silva and R. Volz, MAFRA—A
MApping FRAmework for Distributed Ontologies, in: Inter-
national Conference on Knowledge Engineering and Knowl-
edge Management, Springer, 2002, pp. 235–250.

[44] N. Silva and J. Rocha, Semantic Web complex ontol-
ogy mapping, IEEE Comput. Soc, 2003, pp. 82–88. ISBN
978-0-7695-1932-6. doi:10.1109/WI.2003.1241177. http://
ieeexplore.ieee.org/document/1241177/.

[45] T. Saveta, E. Daskalaki, G. Flouris, I. Fundulaki, M. Her-
schel and A.-C. Ngonga Ngomo, Pushing the Limits of In-
stance Matching Systems: A Semantics-Aware Benchmark
for Linked Data, in: Proceedings of the 24th International
Conference on World Wide Web, WWW ’15 Companion,
ACM, New York, NY, USA, 2015, pp. 105–106. ISBN 978-1-
4503-3473-0. doi:10.1145/2740908.2742729. http://doi.acm.
org/10.1145/2740908.2742729.

[46] M. Hert, G. Reif and H.C. Gall, A comparison of RDB-to-
RDF mapping languages, in: Proceedings of the 7th Inter-
national Conference on Semantic Systems - I-Semantics ’11,
ACM Press, Graz, Austria, 2011, pp. 25–32. ISBN 978-1-
4503-0621-8. doi:10.1145/2063518.2063522. http://dl.acm.
org/citation.cfm?doid=2063518.2063522.

[47] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to RDF
Mapping Language, 2012. https://www.w3.org/TR/r2rml/.

[48] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh,
E. Mannens and R. Van de Walle, RML: A Generic Lan-
guage for Integrated RDF Mappings of Heterogeneous Data.,
in: LDOW, 2014.

[49] B. De Meester, A. Dimou, R. Verborgh and E. Man-
nens, An Ontology to Semantically Declare and De-
scribe Functions, in: The Semantic Web, Vol. 9989,
H. Sack, G. Rizzo, N. Steinmetz, D. Mladenić, S. Auer
and C. Lange, eds, Springer International Publishing,
Cham, 2016, pp. 46–49. ISBN 978-3-319-47601-8 978-
3-319-47602-5. doi:10.1007/978-3-319-47602-5_10. http://
link.springer.com/10.1007/978-3-319-47602-5_10.

[50] F. Michel, L. Djimenou, C. Faron-Zucker and J. Montagnat,
xR2RML: Non-relational databases to RDF mapping, Tech-
nical Report, Citeseer, 2015.

[51] A. Chortaras and G. Stamou, Mapping Diverse Data to
RDF in Practice, in: The Semantic Web – ISWC 2018,
Vol. 11136, D. Vrandečić, K. Bontcheva, M.C. Suárez-
Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaf-

https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0171-8
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0171-8
http://www.semanticweb.org/SWWS/program/full/paper56.pdf
http://www.semanticweb.org/SWWS/program/full/paper56.pdf
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://hal.inria.fr/hal-00822892/
https://hal.inria.fr/hal-00822892/
http://ieeexplore.ieee.org/document/1241177/
http://ieeexplore.ieee.org/document/1241177/
http://doi.acm.org/10.1145/2740908.2742729
http://doi.acm.org/10.1145/2740908.2742729
http://dl.acm.org/citation.cfm?doid=2063518.2063522
http://dl.acm.org/citation.cfm?doid=2063518.2063522
https://www.w3.org/TR/r2rml/
http://link.springer.com/10.1007/978-3-319-47602-5_10
http://link.springer.com/10.1007/978-3-319-47602-5_10

32 E. Thiéblin et al. / Survey on complex ontology matching

fee and E. Simperl, eds, Springer International Publishing,
Cham, 2018, pp. 441–457. ISBN 978-3-030-00670-9 978-
3-030-00671-6. doi:10.1007/978-3-030-00671-6_26. http://
link.springer.com/10.1007/978-3-030-00671-6_26.

[52] J. Clark et al., Xsl transformations (xslt), World Wide Web
Consortium (W3C). URL http://www. w3. org/TR/xslt (1999),
103.

[53] M.A. Musen, The protégé project: a look back and a look
forward, AI matters 1(4) (2015), 4–12.

[54] S. Hassanpour, M.J. O’Connor and A.K. Das, A Soft-
ware Tool for Visualizing, Managing and Eliciting SWRL
Rules, in: The Semantic Web: Research and Applications,
Vol. 6089, D. Hutchison, T. Kanade, J. Kittler, J.M. Klein-
berg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M.Y. Vardi, G. Weikum, L. Aroyo, G. Antoniou,
E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and
T. Tudorache, eds, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010, pp. 381–385. ISBN 978-3-642-13488-3 978-
3-642-13489-0. doi:10.1007/978-3-642-13489-0_28. http://
link.springer.com/10.1007/978-3-642-13489-0_28.

[55] L.-L. Yan, R.J. Miller, L.M. Haas and R. Fagin, Data-
Driven Understanding and Refinement of Schema Map-
pings., in: ResearchGate, Vol. 30, 2001, pp. 485–496.
doi:10.1145/375663.375729.

[56] C.A. Knoblock, P. Szekely, J.L. Ambite, A. Goel, S. Gupta,
K. Lerman, M. Muslea, M. Taheriyan and P. Mallick,
Semi-automatically Mapping Structured Sources into the
Semantic Web, in: The Semantic Web: Research and Ap-
plications, Vol. 7295, D. Hutchison, T. Kanade, J. Kit-
tler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, E. Sim-
perl, P. Cimiano, A. Polleres, O. Corcho and V. Presutti,
eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 375–390. ISBN 978-3-642-30283-1 978-3-642-30284-
8. doi:10.1007/978-3-642-30284-8_32. http://link.springer.
com/10.1007/978-3-642-30284-8_32.

[57] J. Rouces, G. de Melo and K. Hose, Addressing structural
and linguistic heterogeneity in the Web1, AI Communi-
cations 31(1) (2018), 3–18, ISSN 18758452, 09217126.
doi:10.3233/AIC-170745. http://www.medra.org/servlet/
aliasResolver?alias=iospress&doi=10.3233/AIC-170745.

[58] M. Weiten, OntoSTUDIO R© as a Ontology Engi-
neering Environment, in: Semantic Knowledge Man-
agement, J. Davies, M. Grobelnik and D. Mladenić,
eds, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009, pp. 51–60. ISBN 978-3-540-88844-4 978-
3-540-88845-1. doi:10.1007/978-3-540-88845-1_5.
http://link.springer.com/10.1007/978-3-540-88845-1_5.

[59] M. Weiten, D. Wenke and M. Meier-Collin, D4. 5.3. Proto-
type of the Ontology Mediation Software V1, Technical Re-
port, Project IST-2003-506826 SEKT Project Report, 2005.

[60] A.C. Junior, C. Debruyne and D. O’Sullivan, Using a Block
Metaphor for Representing R2RML Mappings, in: ESWC
Poster, 2018.

[61] A.C. Junior, C. Debruyne and D. O’Sullivan, Juma: An editor
that uses a block metaphor to facilitate the creation and edit-
ing of R2RML mappings, in: European Semantic Web Con-
ference, Springer, 2017, pp. 87–92.

[62] Á. Sicilia, G. Nemirovski and A. Nolle, Map-On: A web-
based editor for visual ontology mapping, Semantic Web 8(6)
(2017), 969–980.

[63] P. Heyvaert, A. Dimou, A.-L. Herregodts, R. Verborgh,
D. Schuurman, E. Mannens and R. Van de Walle, RMLEdi-
tor: a graph-based mapping editor for linked data mappings,
in: International Semantic Web Conference, Springer, 2016,
pp. 709–723.

[64] D. Lembo, R. Rosati, M. Ruzzi, D.F. Savo and E. Tocci, Vi-
sualization and Management of Mappings in Ontology-based
Data Access (Progress Report)., in: Description Logics, 2014,
pp. 595–607.

[65] M. Blinkiewicz and J. Bąk, SQuaRE: A Visual Approach for
Ontology-Based Data Access, in: Semantic Technology, Y.-
F. Li, W. Hu, J.S. Dong, G. Antoniou, Z. Wang, J. Sun and
Y. Liu, eds, Springer International Publishing, Cham, 2016,
pp. 47–55. ISBN 978-3-319-50112-3.

[66] S. Kandel, A. Paepcke, J. Hellerstein and J. Heer, Wran-
gler: Interactive Visual Specification of Data Transforma-
tion Scripts, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, ACM,
New York, NY, USA, 2011, pp. 3363–3372. ISBN 978-1-
4503-0228-9. doi:10.1145/1978942.1979444. http://doi.acm.
org/10.1145/1978942.1979444.

[67] R.J. Miller, L.M. Haas and M.A. Hernández, Schema Map-
ping as Query Discovery., 2000, pp. 77–88.

[68] D. Ritze, C. Meilicke, O. Šváb-Zamazal and H. Stucken-
schmidt, A pattern-based ontology matching approach for de-
tecting complex correspondences, in: Proceedings of the 4th
International Conference on Ontology Matching-Volume 551,
CEUR-WS. org, 2009, pp. 25–36.

[69] D. Ritze, J. Völker, C. Meilicke and O. Šváb-Zamazal, Lin-
guistic analysis for complex ontology matching, in: Pro-
ceedings of the 5th International Conference on Ontology
Matching-Volume 689, CEUR-WS. org, 2010, pp. 1–12.

[70] J. Rouces, G. de Melo and K. Hose, Complex Schema Map-
ping and Linking Data: Beyond Binary Predicates, in: Pro-
ceedings of the WWW 2016 Workshop on Linked Data on the
Web (LDOW 2016), 2016.

[71] B. Walshe, R. Brennan and D. O’Sullivan, Bayes-ReCCE: A
Bayesian Model for Detecting Restriction Class Correspon-
dences in Linked Open Data Knowledge Bases, Int. J. Se-
mant. Web Inf. Syst. 12(2) (2016), 25–52, ISSN 1552-6283.
doi:10.4018/IJSWIS.2016040102.

[72] S. Jiang, D. Lowd, S. Kafle and D. Dou, Ontology matching
with knowledge rules, in: Transactions on Large-Scale Data-
and Knowledge-Centered Systems XXVIII, Springer, 2016,
pp. 75–95.

[73] R. Dhamankar, Y. Lee, A. Doan, A. Halevy and P. Domin-
gos, iMAP: discovering complex semantic matches between
database schemas, in: Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data,
ACM, 2004, pp. 383–394.

[74] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Hor-
rocks, C. Pinkel, M.G. Skjæveland, E. Thorstensen and
J. Mora, BootOX: Practical mapping of RDBs to OWL 2,
in: International Semantic Web Conference, Springer, 2015,
pp. 113–132.

[75] O. Šváb-Zamazal and V. Svátek, Towards ontology match-
ing via pattern-based detection of semantic structures in OWL

http://link.springer.com/10.1007/978-3-030-00671-6_26
http://link.springer.com/10.1007/978-3-030-00671-6_26
http://link.springer.com/10.1007/978-3-642-13489-0_28
http://link.springer.com/10.1007/978-3-642-13489-0_28
http://link.springer.com/10.1007/978-3-642-30284-8_32
http://link.springer.com/10.1007/978-3-642-30284-8_32
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AIC-170745
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AIC-170745
http://link.springer.com/10.1007/978-3-540-88845-1_5
http://doi.acm.org/10.1145/1978942.1979444
http://doi.acm.org/10.1145/1978942.1979444

E. Thiéblin et al. / Survey on complex ontology matching 33

ontologies, in: Proceedings of the Znalosti Czecho-Slovak
Knowledge Technology conference, 2009.

[76] O. Šváb-Zamazal, Pattern-based ontology matching and on-
tology alignment evaluation, PhD thesis, University of Eco-
nomics, Prague, 2010.

[77] E. Jiménez-Ruiz and B.C. Grau, Logmap: Logic-based and
scalable ontology matching, in: International Semantic Web
Conference, Springer, 2011, pp. 273–288.

[78] L.F. de Medeiros, F. Priyatna and O. Corcho, MIRROR: Auto-
matic R2RML mapping generation from relational databases,
in: International Conference on Web Engineering, Springer,
2015, pp. 326–343.

[79] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, On-
top: Answering SPARQL queries over relational databases,
Semantic Web 8(3) (2017), 471–487.

[80] R. Parundekar, C.A. Knoblock and J.L. Ambite, Discover-
ing concept coverings in ontologies of linked data sources,
in: International Semantic Web Conference, Springer, 2012,
pp. 427–443.

[81] R. Parundekar, C.A. Knoblock and J.L. Ambite, Linking and
building ontologies of linked data, in: International Semantic
Web Conference, Springer, 2010, pp. 598–614.

[82] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos and
A. Halevy, Learning to match ontologies on the semantic
web, The VLDB Journal—The International Journal on Very
Large Data Bases 12(4) (2003), 303–319.

[83] F. Kaabi and F. Gargouri, A new approach to discover the
complex mappings between ontologies, International Journal
of Web Science 3 1(3) (2012), 242–256.

[84] A. Boukottaya and C. Vanoirbeek, Schema matching for
transforming structured documents, in: Proceedings of the
2005 ACM symposium on Document engineering, ACM,
2005, pp. 101–110.

[85] L. Xu and D.W. Embley, Using domain ontologies to discover
direct and indirect matches for schema elements, in: Semantic
Integration Workshop (SI-2003), 2003, p. 97.

[86] L. Xu and D.W. Embley, A composite approach to au-
tomating direct and indirect schema mappings, Informa-
tion Systems 31(8) (2006), 697–732, ISSN 0306-4379.
doi:10.1016/j.is.2005.01.003.

[87] R.H. Warren and F.W. Tompa, Multi-column substring match-
ing for database schema translation, in: Proceedings of the
32nd international conference on Very large data bases,
VLDB Endowment, 2006, pp. 331–342.

[88] P. Arnold, Semantic Enrichment of Ontology Mappings:
Detecting Relation Types and Complex Correspondences.,
Grundlagen von Datenbanken 1020 (2013), 34–39.

[89] W. Wu, C. Yu, A. Doan and W. Meng, An interactive
clustering-based approach to integrating source query inter-
faces on the deep web, in: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data,
ACM, 2004, pp. 95–106.

[90] K. Saleem, Z. Bellahsene and E. Hunt, Porsche: Perfor-
mance oriented schema mediation, Information Systems 33(7)
(2008), 637–657.

[91] B. He, K.C.-C. Chang and J. Han, Discovering com-
plex matchings across web query interfaces: a correla-
tion mining approach, in: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discov-

ery and data mining, ACM Press, 2004, pp. 148–157.
doi:10.1145/1014052.1014071.

[92] W. Su, J. Wang and F. Lochovsky, Holistic schema match-
ing for web query interfaces, in: International Conference on
Extending Database Technology, Springer, 2006, pp. 77–94.

[93] S. Massmann, S. Raunich, D. Aumüller, P. Arnold and
E. Rahm, Evolution of the COMA match system, in: Pro-
ceedings of the 6th International Conference on Ontology
Matching-Volume 814, CEUR-WS. org, 2011, pp. 49–60.

[94] H. Qin, D. Dou and P. LePendu, Discovering executable se-
mantic mappings between ontologies, in: OTM Confederated
International Conferences" On the Move to Meaningful Inter-
net Systems", Springer, 2007, pp. 832–849.

[95] D. Dou, H. Qin and P. Lependu, Ontograte: towards
Automatic Integration for Relational Databases and
the Semantic Web through an Ontology-Based Frame-
work, International Journal of Semantic Computing
04(01) (2010), 123–151, ISSN 1793-351X, 1793-7108.
doi:10.1142/S1793351X10000961.

[96] Y. An, X. Hu and I.-Y. Song, Learning to discover complex
mappings from web forms to ontologies, in: Proceedings of
the 21st ACM international conference on Information and
knowledge management, ACM, 2012, pp. 1253–1262.

[97] Y. An and I.-Y. Song, Discovering semantically similar asso-
ciations (SeSA) for complex mappings between conceptual
models, in: International Conference on Conceptual Model-
ing, Springer, 2008, pp. 369–382.

[98] Y. An, A. Borgida and J. Mylopoulos, Inferring complex se-
mantic mappings between relational tables and ontologies
from simple correspondences, in: OTM Confederated Inter-
national Conferences" On the Move to Meaningful Internet
Systems", Springer, 2005, pp. 1152–1169.

[99] Y. An, A. Borgida and J. Mylopoulos, Constructing complex
semantic mappings between XML data and ontologies, in: In-
ternational Semantic Web Conference, Springer, 2005, pp. 6–
20.

[100] G.H. Fletcher and C.M. Wyss, Towards a general framework
for effective solutions to the data mapping problem, in: Jour-
nal on Data Semantics XIV, Springer, 2009, pp. 37–73.

[101] M. Hartung, A. Groß and E. Rahm, COnto–Diff: generation
of complex evolution mappings for life science ontologies,
Journal of Biomedical Informatics 46(1) (2013), 15–32, ISSN
15320464. doi:10.1016/j.jbi.2012.04.009.

[102] B.P. Nunes, A. Mera, M.A. Casanova, K.K. Breitman and
L.A.P. Leme, Complex Matching of RDF Datatype Prop-
erties, in: Proceedings of the 6th International Conference
on Ontology Matching-Volume 814, CEUR-WS. org, 2011,
pp. 254–255.

[103] M.G. de Carvalho, A.H.F. Laender, M.A. Gonçalves and
A.S. da Silva, An evolutionary approach to complex schema
matching, Information Systems 38(3) (2013), 302–316, ISSN
0306-4379. doi:10.1016/j.is.2012.10.002.

[104] B. Wu and C.A. Knoblock, An Iterative Approach to Syn-
thesize Data Transformation Programs, in: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015, pp. 1726–1732.

[105] W. Hu, J. Chen, H. Zhang and Y. Qu, Learning complex map-
pings between ontologies, in: Joint International Semantic
Technology Conference, Springer, 2011, pp. 350–357.

34 E. Thiéblin et al. / Survey on complex ontology matching

[106] W. Hu and Y. Qu, Block matching for ontologies, in: Inter-
national Semantic Web Conference, Springer, 2006, pp. 300–
313.

[107] H. Stuckenschmidt, L. Predoiu and C. Meilicke, Learning
Complex Ontology Alignments A Challenge for ILP Re-
search, in: Proceedings of the 18th International Conference
on Inductive Logic Programming, 2008.

[108] E. Thiéblin, O. Haemmerlé and C. Trojahn, Complex match-
ing based on competency questions for alignment: a first
sketch, in: OM 2018 - 13th ISWC workshop on ontology
matching, 2018.

[109] A. Doan, The Illinois Semantic Integration Archive, 2005.
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/.

[110] K.C.-C. Chang, B. He, C. Li and Z. Zhang, The UIUC Web
Integration Repository, 2003. http://metaquerier.cs.uiuc.edu/
repository.

[111] M. Lichman, UCI Machine Learning Repository, 2013. http:
//archive.ics.uci.edu/ml.

[112] F. Duchateau, Z. Bellahsene and E. Hunt, XBenchMatch: a
benchmark for XML schema matching tools, in: Proceedings
of the 33rd international conference on Very large data bases,
VLDB Endowment, 2007, pp. 1318–1321.

[113] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov,
W. May, A. Nikolov, A. Sasa Bastinos, M.G. Skjæve-
land, A. Solimando, M. Taheriyan, C. Heupel and I. Hor-
rocks, RODI: Benchmarking relational-to-ontology map-
ping generation quality, Semantic Web 9(1) (2017), 25–
52, ISSN 22104968, 15700844. doi:10.3233/SW-170268.
http://www.medra.org/servlet/aliasResolver?alias=iospress&
doi=10.3233/SW-170268.

[114] E. Thiéblin, M. Cheatham, C. Trojahn, O. Zamazal and
L. Zhou, The First Version of the OAEI Complex Alignment
Benchmark, in: ISWC Posters and Demos, Springer, 2018.

[115] E. Thiéblin, O. Haemmerlé, N. Hernandez and C. Trojahn,
Task-Oriented Complex Ontology Alignment: Two Align-
ment Evaluation Sets, in: The Semantic Web, A. Gangemi,
R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink,

A. Tordai and M. Alam, eds, Lecture Notes in Computer Sci-
ence, Springer International Publishing, 2018, pp. 655–670.
ISBN 978-3-319-93417-4.

[116] M. Ehrig and J. Euzenat, Relaxed precision and recall for on-
tology matching, in: Proc. K-Cap 2005 workshop on Integrat-
ing ontology, No commercial editor., 2005, pp. 25–32.

[117] J. Euzenat, Semantic Precision and Recall for Ontology
Alignment Evaluation., in: IJCAI, 2007, pp. 348–353.

[118] A. Solimando, E. Jiménez-Ruiz and C. Pinkel, Evaluating on-
tology alignment systems in query answering tasks, in: Pro-
ceedings of the 2014 International Conference on Posters &
Demonstrations Track-Volume 1272, CEUR-WS. org, 2014,
pp. 301–304.

[119] A. Isaac, H. Matthezing, L. van der Meij, S. Schlobach,
S. Wang and C. Zinn, Putting Ontology Alignment in Con-
text: Usage Scenarios, Deployment and Evaluation in a Li-
brary Case, in: 5th European Semantic Web Conference,
2008, pp. 402–417.

[120] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini
and H. Stuckenschmidt, C-OWL: Contextualizing Ontolo-
gies, in: The Semantic Web - ISWC 2003, Vol. 2870, G. Goos,
J. Hartmanis, J. van Leeuwen, D. Fensel, K. Sycara and
J. Mylopoulos, eds, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2003, pp. 164–179. ISBN 978-3-540-20362-9 978-
3-540-39718-2. doi:10.1007/978-3-540-39718-2_11. http://
link.springer.com/10.1007/978-3-540-39718-2_11.

[121] N.F. Noy and M.A. Musen, The PROMPT suite: interactive
tools for ontology merging and mapping, International Jour-
nal of Human-Computer Studies 59(6) (2003).

[122] Z. Dragisic, V. Ivanova, P. Lambrix, D. Faria, E. Jiménez-
Ruiz and C. Pesquita, User validation in ontology alignment,
in: International Semantic Web Conference, Springer, 2016,
pp. 200–217.

[123] M. Cheatham and P. Hitzler, Conference v2. 0: An uncertain
version of the oaei conference benchmark, in: International
Semantic Web Conference, Springer, 2014, pp. 33–48.

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
http://metaquerier.cs.uiuc.edu/repository
http://metaquerier.cs.uiuc.edu/repository
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-170268
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-170268
http://link.springer.com/10.1007/978-3-540-39718-2_11
http://link.springer.com/10.1007/978-3-540-39718-2_11

	Introduction
	Background
	Knowledge representation models
	Expressions
	Alignment and correspondence
	Scope definition
	Type of matched objects
	Ontology matching and ontology evolution

	Complex alignment representation and visualisation
	Complex alignment languages and vocabularies
	Logic syntaxes
	Vocabularies
	The R2RML family
	Query lanquages
	Summary table

	Complex alignment visualisation and edition

	Classification of complex matchers
	Classifications of ontology matching approaches
	Classification for complex matching approaches

	Complex alignment approaches
	Atomic patterns
	Composite patterns
	Path
	Tree
	No structure
	Summary

	Evaluation of complex matchers
	Complex alignment datasets
	Evaluation metrics
	Summary

	Discussion
	References

