
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A PROV-Compliant Approach for the
Script-to-Workflow Process
Lucas A. M. C. Carvalho a,*,
Khalid Belhajjame b

and Claudia Bauzer Medeiros a

a Institute of Computing, University of Campinas, Campinas, Brazil
E-mails: lucas.carvalho@ic.unicamp.br, cmbm@ic.unicamp.br
b LAMSADE, Paris-Dauphine University, Paris, France
E-mail: khalid.belhajjame@dauphine.fr

Abstract. Scientific discovery and analysis are increasingly computational and data-driven. Scripting languages, such as Shell,
Python and R, are the means of choice of the majority of scientists to encode and run their simulations and data analyses. Al-
though widely used, scripts are hard to understand, adapt, reuse, and reproduce. To tackle the problems faced by scripts, sev-
eral approaches have been proposed such as YesWorkflow and noWorkflow. However, they neither allow to fully document the
experiment nor do they help when third parties want to reuse just part of the code. Scientific Workflow Management Systems
(SWfMSs) are being increasingly recognized to mitigate these problems. They help to document and reuse experiments by sup-
porting scientists in the design and execution of their experiments, which are specified and run as interconnected (reusable) work-
flow components (a.k.a. building blocks). Taking this into account, we designed W2Share, a novel approach for the management,
reuse, and reproducibility of script-based experiments. W2Share transforms a script into an executable workflow that is accom-
panied by annotations, example datasets and provenance traces of their execution, all of which encapsulated into a workflow
research object. This allows third party users to understand the data analysis encoded by the original script, run the associated
workflow using the same or different datasets, or even repurpose it for a different analysis. W2Share also enables traceability of
the script-to-workflow process, thereby establishing trust in this process. All processes in W2Share follow a methodology that is
based on requirements that we elicited for this purpose. The methodology exploits tools and standards that have been developed
by the scientific community, in particular, YesWorkflow, Research Objects and the W3C PROV. This paper highlights the main
components of W2Share, which is showcased through a real world use case from Molecular Dynamics. We furthermore validate
our approach by testing the ability to answer competency questions that address the script-to-workflow process.

Keywords: Scientific Workflows, Script-to-Reproducible Research, Workflow Research Objects, Provenance

1. Introduction

Scripts and Scientific Workflow Management Sys-
tems (SWfMSs) [1, 2] are common approaches that
have been used to automate the execution flow of
processes and data analysis in scientific (computa-
tional) experiments1. Scripts are widely adopted in
many disciplines to create pipelines for experiment ex-

*Lucas A. M. C. Carvalho. E-mail: lucas.carvalho@ic.unicamp.br
1In this paper, the term experiment refers to scientific experiments

that are executed in silico – e.g., simulations.

ecution, e.g., to clean and analyze a large amount of
data. However, they are hard to understand, adapt, and
reuse, often containing hundreds of lines of domain-
specific code. This, in turn, forces scientists to re-
peatedly (re)code scripts that perform the same func-
tions, since the effort to reuse is not worthwhile, and
reproducibility is restricted to repeating the execu-
tion of exactly the same script. For this reason, sev-
eral solutions have been proposed to aid experiment
reproducibility for script-based environments such as
Jupyter Notebooks [3], ReproZip [4], YesWorkflow
[5], and noWorkflow [6].

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:lucas.carvalho@ic.unicamp.br
mailto:cmbm@ic.unicamp.br
mailto:khalid.belhajjame@dauphine.fr
mailto:lucas.carvalho@ic.unicamp.br

2 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Though those solutions help scientists capture ex-
perimental details, they neither allow to fully docu-
ment the experiment, nor do they help when third par-
ties want to reuse just part of the code. For exam-
ple, the workflow-like graph obtained using YesWork-
flow is abstract (in the sense that it cannot be executed
by the scientists). On the other hand, the provenance
traces captured using noWorkflow are fine-grained,
and therefore cumbersome for the user who would
like to understand the lineage of the script results [7].
SWfMSs [8], on the other hand, help documentation
and reuse by supporting scientists in the design and ex-
ecution of their experiments, which are specified and
run as interconnected (reusable) workflow components
(a.k.a. building blocks).

While workflows are better than scripts for under-
standability and reuse, they still require additional doc-
umentation to support reproducibility. To this end, we
designed and implemented W2Share, a computational
framework that supports a (script-to-reproducible re-
search) methodology. The methodology, implemented
in W2Share via a suite of tools, guides scientists
in a principled manner to transform scripts into re-
producible and reusable workflow research objects
(WRO) [9]; it drives the development of research ob-
jects that contain the scripts that the scientist authored
together with executable workflows that embody and
refine the computational analyses carried out by these
scripts and all associated data and documentations.
Our methodology thus leverages the concept of Work-
flow Research Objects as a means to ensure repro-
ducibility.

W2Share’s WRO encompasses information such as
the workflow itself, and datasets and provenance traces
related to its execution. The WRO model [9] allows the
aggregation of resources, explicitly specifying the re-
lationship between these resources and a workflow, us-
ing a suite of ontologies. W2Share’s WROs allow sci-
entists to understand the relationships between an ini-
tial script and the resulting workflow, and to document
workflows runs – e.g., annotations to describe the oper-
ations performed by the workflow, or links to other re-
sources, such as the provenance of the results obtained
by executing the workflow. Using W2Share, scientists
can share and reuse scripts through the corresponding
WROs.

Our approach differs in several ways from similar
work to convert scripts into workflows such as [10–
12]. In particular, our steps to convert scripts into ex-
ecutable workflows are more generic, in the sense that
they are independent from the script language and

the workflow system, while these other solutions are
mainly designed for specific environments. Moreover,
we are not only concerned about the workflow specifi-
cation derived from the script code, but also to preserve
the script in the WRO, allowing scientists to check ex-
periment provenance and reproducibility.

For that, we support two forms of provenance [13]:
(1) prospective and (2) retrospective. Prospective
provenance captures the specification of steps and
their data dependencies for a given computational task
(whether it is a script or a workflow). Retrospective
provenance captures the steps executed and the order
of execution, along with the data consumed and pro-
duced by each step as well as different kind of meta-
data that help understanding and reproducing the exe-
cution.

The main contributions of this paper therefore in-
clude:

1. A methodology to guide scientists in a principled
manner to transform scripts into reproducible
and reusable workflow research objects2;

2. A data model that identifies the main elements of
the methodology and their relationships, which
helps automate the steps of the methodology, and
their documentation;

3. A computational framework that provides sci-
entists with the tooling necessary for (semi)-
automatically performing some of the steps of
the methodology. Here, we emphasize that we
make use of semantic web technologies, web
standards and tools developed by the scientific
community;

4. A case study to showcase our solution; and
5. An evaluation of the proposed model and conver-

sion mechanism via the identification and execu-
tion of competency questions.

This paper extends previous work [14] of ours,
where we defined and presented the methodology, and
showcased its use via a case study (through man-
ual implementation of the conversion). This paper de-
scribes how we now enable (semi) automatic script-
to-workflow conversion, and its validation using com-
petency queries that address requirements used to de-
sign our methodology. The automation of the conver-
sion process is based on our data model that iden-
tifies the resources that are used and generated by
our methodology as well as the agents responsible

2This methodology was described in [14], and is included here for
completeness.

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

for performing the methodology steps. Last but not
least, besides providing traceability for experiment ex-
ecution (via workflow mechanisms), we innovate by
providing traceability for the script-to-workflow pro-
cess itself. We describe the design and implementation
of this extended conversion process, which takes ad-
vantage of ontologies adopted by the scientific com-
munity, namely W3C PROV-O [15], Web Annotation
Data Model3, and Research Object ontology. These
ontologies support the semantics of the traceability of
the script-to-workflow process.

This paper is structured as follows. Section 2 in-
troduces our methodology specification. Section 3
presents the model that describes its main elements.
Section 4 describes the case study and the implemen-
tation of the methodology steps. Our conversion steps
are described in Sections 5 and 6. Section 5 describes
the first step, showing how we map scripts to abstract
workflows using ontologies. Section 6 shows how an
executable workflow is generated from abstract work-
flows. Section 7 presents the evaluation of our pro-
posed approach. Section 8 discusses related work. Sec-
tion 9 summarizes our results and identifies future
work.

2. Methodology for Script Conversion into WRO

Parts of sections 2.1 and 4 appeared in our paper
[14] in which we defined our methodology and exem-
plified its application. This has been included in this
paper for clarity sake, and to make it self-contained.

2.1. Overview

Our methodology guides scientists throughout the
conversion of script-based experiments into executable
workflows, and then packaging all the resources and
annotations into a Workflow Research Object (WRO)
[16]. WROs are the means through which experiments
can be reused, audited and documented. As mentioned
in Section 1, our WRO encapsulates the scripts and
the corresponding executable workflows together with
other resources, such as datasets and provenance traces
of their execution.

The methodology was designed to meet five ma-
jor requirements that were derived during our long-
time collaboration with scientists that run scripts for
their computational experiments (e.g., in bioinformat-

3https://w3.org/TR/annotation-model

ics, chemistry and agriculture). These requirements are
the following:

Requirement 1 Let S be a script that embodies a
computational experiment. The scientist needs a view
of S that identifies the main processing units and de-
pendencies between such processing units.

This helps the scientist understand S , and the main
processing units that are relevant from the point of
view of the in silico analysis implemented by the
script, as well as the dependencies between such units.

We call this view an abstract workflow. In more de-
tail, an abstract workflow, for the purposes of this pa-
per, is a process, in which the steps designate script
blocks, and the dependencies designate data dependen-
cies between these blocks. The workflow is abstract in
that it is not executable per se, but rather provides a
process view of a script at a higher level of granularity
(logical steps as opposed to script instructions).

Requirement 2 The scientist should be able to exe-
cute the workflow that embodies the script S .

Though seemingly obvious, this is far from being a
trivial requirement. It is not enough to "be able to ex-
ecute". This execution should reflect what is done in
script S . In other words, not only should the workflow
generated be executable; the scientist must be given
the means to compare its results to those of script exe-
cution, and validating the workflow as a valid embodi-
ment of the script.

Requirement 3 The scientist should be able to modify
the workflow that embodies script S , to use different
computational and data resources.

Not only may a scientist be able to replicate the
computational experiment encoded by S ; s/he may
want to repeat the analysis implemented in the script
using third party resources.

The new (modified) workflow(s) correspond to vari-
ants of the initial workflow. They will help the user,
for example, to inspect if the results obtained by script
S can be reproduced using different resources (algo-
rithms and datasets). Scientists will also be able to
compare the execution of S with that of the variants
(e.g., if web services are invoked instead of a local
code implementation).

Requirement 4 Provenance information should be
recorded.

Provenance information is key to traceability and
quality assessment. This involves not only the prove-
nance obtained by workflow execution. This require-
ment also implies recording the transformations car-

https://w3.org/TR/annotation-model

4 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Script

Generate	
 Abstract	

Workflow	

Create	
 an	
 executable	

workflow	

Refine	
 workflow	

Bundle	
 Resources	
 into	
 a	

Research	
 Object	

Annotate	
 and	
 check	

quality	

Abstract
workflow

Concrete
workflow

1

2

3

4

5

Fig. 1. Methodology for converting scripts into reproducible Workflow Research Objects, extracted from [14].

ried out to transform the script into a workflow that
embodies the script. Moreover, the workflow variants
also need to be recorded. As stressed by [17], prove-
nance that is provided by the execution of a workflow
corresponds to a workflow trace, and can be used for
several purposes, such as to support dynamic steering
of workflows [18, 19].

Requirement 5 All elements necessary to reproduce
the experiment need to be captured together to promote
reproducibility.

We follow the definition of [17]: "reproducibility de-
notes the ability for a third party who has access to the
description of the original experiment and its results to
reproduce those results using a possibly different set-
ting, with the goal of confirming or disputing the origi-
nal experimenter‘s claims." Missier et al. [17] also dif-
ferentiate reproducibility from repeatability, for which
results must be the same, and no changes are made
anywhere.

Full reproducibility and reusability require ensuring
that all elements of an experiment are recorded. S , the
initial workflow, and all of its variants should be made
available together with auxiliary resources that will al-
low understanding how these workflows came to be,
and where they should be used.

Given the five requirements, we proposed our method-
ology composed by five inter-related steps (see fig-
ure 1). Step 1, Generate abstract workflow, is used to
produce an abstract workflow Wa based on a script S
provided by a user. This stage elicits the main process-
ing units that constitute the analysis implemented by
the script, and their data dependencies. This requires

user intervention, to identify these units and depen-
dencies within the script. Workflow Wa obtained from
Step 1 is abstract in the sense that it cannot be executed
– it is only a workflow-like high level specification of
the script. Already at this stage, even though unable
to execute the workflow, this is already a step towards
promoting understandability – the abstract workflow
is a high-level specification of the script, and can be
visualized as a graph linking computational units. The
objective of this phase is to address Requirement 1.

Figure 2 illustrates this step. The left side shows an
excerpt of the script (from hundreds of lines of script
code) and the right side the corresponding abstract
workflow. This example will be discussed at length in
subsequent sections; the figure is introduced here to
give a high level view of this first step of the conversion
process.

Step 2, Create an executable workflow, converts
the abstract workflow Wa into an executable one We.
The objective of this phase is to address Require-
ment 2. This is achieved by actually replacing each
processing unit in the abstract workflow by its imple-
mentation (e.g., encapsulating the corresponding script
code), and adding code to allow the required I/O oper-
ations across these units.

Scientists frequently try different variants of a com-
putational experiment, e.g., to improve results, or to
check alternatives. Script-based experiments are not
easily modified, and it is hard to keep track of these
variants. Tools such as version control systems allow
to track the versions/changes of scripts and programs
in general. Our methodology contemplates this activ-
ity. Step 3, Refine workflow, addresses Requirement 3

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) (b)

Fig. 2. The first step of our methodology concerns the generation of an abstract workflow from the script, illustrated here by (a) excerpt of the
script and (b) the corresponding abstract workflow. This enhances understandability, and thus collaborative work.

and supports full reusability. It allows the creation of
variants of the executable workflow, e.g., by adding
new processing units, or changing data sources.

At the end of Step 3, the scientist will have one or
more workflow variants We1 . . .Wen. The idea, here,
is that there is a difference between the concepts of re-
peatability and reproducibility. The first consists in ex-
act reproduction of the experiment – running the same
code, with the same data sets. Reproducibility, on the
other hand, means that the results of an experiment
should be reproducible, but not necessarily by invok-
ing the same processes – e.g., code optimization can
improve execution time.

Moreover, versioning allows scientists to try out
variants of an experiment [20, 21], comparing and test-
ing alternative outcomes. Overall, there are several
kinds of refinements that can be performed at this step,
all of which facilitated by the use of workflows and
their components as reusable units.

During steps 2 and 3, provenance data both from the
workflow executions and the process of conversion are
collected to be used in Steps 4 and 5, and address re-
quirement 4.

Step 4, Annotate and check quality, is in charge of
evaluating whether the workflow reproduces the script
results within some scientist-defined tolerance thresh-
olds. It takes advantage of workflow execution mecha-
nisms, that keep track of execution traces. Step 4 uses
the workflow information generated in the previous
steps, including provenance traces.

Finally, in Step 5, Bundle Resources into a Re-
search Object, the workflow and the auxiliary re-
sources, i.e., annotations, provenance traces, datasets,
among others, are packaged into a WRO. WROs are
then stored and made available to third parties for ex-
periment validation, reproducibility checks, and reuse
of workflow components. The objective of this phase
is to address Requirement 5.

3. W2Share’s Data Model: Supporting the
Methodology

The full implementation of the methodology re-
quires an appropriate data model, described here. It
helps dynamic documentation of the conversion pro-

6 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Model describing main elements and relationships used in our methodology.

cess, thereby ensuring traceability of that process. We
point out this adds a new dimension to traceability,
which is usually restricted to the execution of experi-
ments, but not to their evolution.

Figure 3 shows the UML class diagram of W2Share’s
data model, which reproduces the main entities and re-
lationships involved in our methodology. The model
describes the Resources that compose a WRO and
the Agents that are responsible for creating these Re-
sources.

Resources include, for instance, Script, Abstract
Workflow, Annotation, Provenance Data,
among others. These resources are not independent of
one another – the model accounts for the relationships
created in the transformation process – from Script to
Abstract Workflow to Executable workflow, which can
then give origin to several Refined workflows (vari-
ants).

Agents perform the activities in the methodology.
As example of an Agent, a SWfMS (Scientific work-
flow Management System), which is invoked by a
Curator (another Agent), is responsible for executing

workflows and collecting Provenance Data. The model
differentiates between generic Scientists and Curators,
scientists who are knowledgeable about documenta-
tion and resource management.

As mentioned before, we support two kinds of trace-
ability – of experiment execution (based on SWfMS
"logs") and of the conversion process itself. Trace-
ability of the conversion process is enabled via rela-
tionships that are based on PROV. Examples include
annotatedBy, generatedBy, createdBy,
derivedFrom, and collectedBy. The adoption
of PROV allows to navigate the derivation between the
Executable Workflow and its variants in Refined Work-
flow. Executable workflows We are not derived from
a Wa but directly from S . On the other hand, Refined
Workflows We1, We2 ... Wen are derived from We.

Figure 4 shows a UML class diagram that refines
part of figure 3, and is used to record the provenance
of resources generated under our methodology. Here,
we can see that Scripts are composed of Code Blocks;
workflows (Abstract Workflow, Executable
Workflow and Refined Workflow classes) are

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Relationships between main entities regarding the tracking of the script-to-workflow conversion in our model.

composed of Activities, and the latter may be de-
rived from script Code Blocks. Abstract Workflows
describe Scripts and Workflows, thus allowing sci-
entists to pose queries to explore prospective prove-
nance. Eventual one-to-one relationship cardinalities
were omitted from both figures, for readability.

Next, we show how to take advantage of the method-
ology to convert a script into a WRO in our case study
from Molecular Dynamics.

4. Case Study – Molecular Dynamics

4.1. Overview

Molecular dynamics (MD) simulations consist of a
series of algorithms developed to iteratively solve the
set of coupled differential equations that determine the
trajectories of individual atoms that constitute the par-
ticular physical system. This involves a long sequence
of scripts and codes.

MD simulations are used in many branches of mate-
rial sciences, computational engineering, physics and
chemistry. A typical MD simulation experiment re-
ceives as input the structure, topology and force fields
of the molecular system and produces molecular tra-
jectories as output. Simulations are subject to a suite
of parameters, including thermodynamic variables.

Many groups have implemented their specific MD
simulations using special purpose scripts. In our case
study, a suite of scripts was designed by physio-

chemists [22]; its inputs are the protein structure (ob-
tained from the RCSB PDB protein data bank4), the
simulation parameters and force field files.

There are many kinds of input files and variables,
and their configuration varies with simulation pro-
cesses. For instance, the input multimolecular structure
contains the initial set of Cartesian coordinates for ev-
ery atom/particle in the system, which will evolve in
time in the MD simulation. This initial structure varies
according to the system to be simulated and research
area. Our case study requires immersing proteins in a
solvent. Protein Cartesian atomic coordinates are made
available in specialized data repositories, most notably
the Protein Data Bank (PDB). Typical systems contain
from several thousands to millions of covalently bound
atoms.

Parts of the text in this section are based on [14].

4.2. Implementation of Methodology Steps

W2Share was conceived to take advantage of tools
and standards that have been developed by the scien-
tific community to support reproducibility and reuse,
in particular YesWorkflow [5] and Research Objects.
Its implementation includes elements of the PROV
ontology, thereby facilitating provenance annotation.
This is presented in Section 5 of this paper, and is one
of the paper’s contributions.

4http://www.rcsb.org/pdb/

http://www.rcsb.org/pdb/

8 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Visualization of the abstract workflow of our MD case study, extracted from [14].

Consider the script that sets up an MD simulation.
First, a scientist identifies the main processing units,
and their dependencies. To do so, W2Share adopts
the YesWorkflow tool. It enables scientists to anno-
tate existing scripts with special comments that reveal
the computational modules and data flows implicit in
these scripts. YesWorkflow extracts and analyzes these
comments, represents the scripts in terms of entities
based on the typical scientific workflow model, and
provides graphical renderings of this workflow. It does
so by processing scientist-provided tags of the form
@tag value, where @tag is a keyword that is recog-
nized by YesWorkflow, and value is a value assigned
to the tag. Tag recognition is script-language indepen-
dent, therefore allowing a wide range of script-based
experiments to be converted into a workflow repre-
sentation and consequently a wider adoption of our
methodology. W2Share creates the corresponding ab-
stract workflow Wa (see figure 5 for the corresponding
visualization) from the annotated script S , available in
Listing A.1 in Appendix A.

This abstract workflow is a first approximation of
what is needed for full reproducibility. Section 5 will
detail how W2Share supports the creation of PROV-
compliant machine-readable abstract workflows. The
rest of this section will ignore these details, since they
are not necessary to describe the full implementation
of the methodology steps.

Given the abstract workflow Wa generated previ-
ously, the scientist needs to create an executable work-
flow We that embodies the data analysis and processes
as depicted by Wa – and thus embodies the original
script. For this, the scientist needs to specify, for each
activity in the abstract workflow, the corresponding
concrete activity that implements it. A simple, yet ef-
fective approach to do so consists in exploiting a read-
ily available resource, namely the script code itself.
Given an activity in Wa, the corresponding code in We
can be generated by reusing the chunk (block) of the
script that is associated with that abstract workflow ac-
tivity. This approach for conversion comes with two
advantages: (i) ease of conversion, since we are us-
ing a readily available resource, i.e. the script code,

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. Executable workflow of our MD case study, extracted
from [14].

and (ii) the ability to check and debug the execution
of We against the script execution, to correct even-
tual mistakes in script-to-workflow conversion. Once
the scientist specifies the implementation of each ac-
tivity in Wa, a concrete workflow specification We that
is conform to a given scientific workflow system can
be created. This manual conversion, detailed at length
in [14], is now supported by W2Share – the semi-
automatic implementation of Step 2 is detailed in Sec-
tion 6.

Without loss of generality, we used the Taverna sys-
tem [23], although our solution can be adapted to other
scientific workflow systems. We chose Taverna as our
implementation platform due to its widespread adop-
tion in several eScience domains and because it sup-
ports the execution of shell scripts, the script language
adopted in our case study. Figure 6 shows the exe-
cutable workflow We, which is derived from S and de-
scribed by Wa.

W2Share also helps scientists in creating workflow
variants. For instance, in our case study, scripts use lo-
cal data files containing protein coordinates which sci-
entists download from authoritative web sources. This
forces them to download such files from the web, and
to update them locally whenever they are modified,
moreover making them keep track of many file direc-
tories, sometimes with redundant information. An ex-
ample of refinement would be to use web services to
retrieve these files. We exemplify an even more help-
ful refinement – rather than reuse code, to reuse work-
flows that perform this task: we retrieved from the my-

Fig. 7. Refined workflow of our MD case study, extracted from [14].

Experiment repository5 a small workflow that fetches
a protein structure on Protein Data Bank (PDB) from
the RCSB PDB archive6. The reused myExperiment
workflow was inserted in the beginning of our original
workflow (see figure 7 for the workflow variant We1).

Here, the initial_structure input parameter of fig-
ure 6 (the local PDB file) was replaced by the sub-
workflow within the light blue box, copied from
the myExperiment workflow repositories. This new
(sub)workflow downloads the protein file from the web
using a web service (whereas the original code used a
local protein file). Similarly, in the life sciences, scien-
tists can invoke web services or reuse data sets listed
on portals such as Biocatalogue7, which provides a cu-
rated catalogue of Web services, and Biotools8, which
is a tools and data services registry.

During the conversion process, additional activities
must be performed. First, it is critical to have a quality

5http://www.myexperiment.org
6http://www.rcsb.org/pdb/
7https://www.biocatalogue.org/
8https://bio.tools

http://www.myexperiment.org
http://www.rcsb.org/pdb/
https://www.biocatalogue.org/
https://bio.tools

10 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

check where the scientist explicitly assesses the work-
flow activities and data flow, comparing them to what
was executed by the script. Hence, throughout the pro-
cess of workflow creation and modification, the scien-
tist should provide annotations describing it (i.e. activ-
ities and ports), and potentially the resources it utilizes.
Part of these annotations can be migrated to the ex-
ecutable workflow taking advantage of the YesWork-
flow tags - e.g., @desc used in the script to describe its
program blocks and ports. Most SWfMSs, moreover,
provide an annotation interface, which can be taken ad-
vantage of. Our work [24] partially describes some of
those annotation tasks.

Second, provenance information is used by W2Share
for several purposes. Besides experiment reproducibil-
ity, it is recorded to capture the steps performed
in the transformation from script to workflow. This
uses a provenance model, which allows identifying
the correspondence between workflow activiti(es) and
script code, and reusable components/web services
and script excerpts. The lineage of variants of the
workflow should be stored, as well. It is important to
inform to future users that the workflow was curated,
and how this curation process occurred. Provenance
capture is presented in section 5 of this paper.

Finally, W2Share assists the scientist to create a
Workflow Research Object (WRO) that bundles the
original script as well as other auxiliary resources
obtained in the other steps of the methodology. The
Workflow Research Object model [9, 16] allows scien-
tists to aggregate resources and explicitly specify the
relationship between these resources and the workflow
in a machine-readable format using a suite of ontolo-
gies.

The resulting WRO bundles a number of resources
that promote the understanding, reproducibility and ul-
timately the reuse of the workflows obtained through
refinement. By including these resources, it is possi-
ble for scientists not only to understand how the ex-
periment was conducted, but also its context. More-
over, curators can also bundle additional documents
that may help scientists understand the WRO, e.g.,
technical reports and published papers.

We use the RO Manager tool9 to create the WRO
bundle file. The bundle for this case study is available
in [25].

However, it is not enough to create such research
objects; they must be made available to the scientific

9https://github.com/wf4ever/ro-manager

community in a user-friendly manner, so that not only
machines, but also scientists can select the most ap-
propriate ones. A possible solution is to make them
available by depositing them in a Research Object Por-
tal such as W2Share10, myExperiment and RO Hub11

which have an interface to search and navigate be-
tween resources aggregated in a RO.

5. Revisiting the Implementation of Step 1:
Mapping Scripts into PROV-Compliant
Machine-Readable Abstract Workflows

The first step of our methodology is the conversion
of scripts into abstract workflows. One of our innova-
tions is the creation of a new kind of abstract workflow
for scripts – one that is ontology-based and, moreover,
machine-readable. We call this a "machine-readable
abstract workflow" (as opposed to the abstract work-
flows described in the literature, which are usually
structures devoid of any semantics).

This section explains how W2Share enables the
transformation of a script S into the machine-readable
abstract workflow Wa. The latter, in turn, is used
to create and describe the corresponding executable
workflow We, and its subsequent variants We1, We2,
etc.

Section 4.2 shows how a scientist can easily trans-
form a script into an abstract workflow with help of
the YesWorkflow suite of tools [5, 26]. However, these
abstract workflows are not machine-readable. Indeed,
YesWorkflow has two outputs – an image of a work-
flow, and Datalog code that encodes the correspond-
ing structure. This limits its interoperability with ap-
proaches that use semantic technologies. Moreover,
YesWorkflow’s workflow representation, if considered
apart from the originating script, does not allow ob-
taining provenance information on how it was derived
from the script.

Our solution is to transform script S into machine-
readable abstract workflows Wa in a three-stage pro-
cess. First, we use YesWorkflow to extract the work-
flow topology from S . Next, we transform this struc-
ture into an ontology-based structure using a workflow
specification ontology. Finally, we add provenance in-
formation to link Wa back to S (thereby also support-
ing traceability of the conversion process).

10https://w3id.org/w2share
11http://www.rohub.org/

https://github.com/wf4ever/ro-manager
https://w3id.org/w2share
http://www.rohub.org/

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Mapping of YesWorkflow tags to workflow ontologies

Tag Class Property

@begin wfdesc:Workflow wfdesc:hasSubProcess
wfdesc:Process rdfs:label
wf4ever:Script

@desc – dct:description

@in wfdesc:Input wfdesc:hasIntput; rdfs:label
@param

@out wfdesc:Output wfdesc:hasOutput; rdfs:label
wfdesc:DataLink wfdesc:hasDataLink

wfdesc:hasSource
wfdesc:hasSink

@as – rdfs:label

In more detail, the first stage creates the YesWork-
flow abstract representation. In the second stage, we
use ontologies to transform this representation into a
semantic one. This is achieved by mapping YesWork-
flow tags to workflow entities that are semantically de-
fined via wfdesc [9], a workflow specification ontol-
ogy from the Research Object suite of ontologies [16],
and other additional ontologies, e.g., Wf4ever 12, RDF
Schema and Dublin Core 13. Finally, in the third stage,
we process tags to insert provenance information, i.e.,
we create an additional layer of provenance over the
abstract semantic workflow.

Table 1 summarizes the second stage, showing how
YesWorkflow tags are mapped to classes and proper-
ties of ontologies. Here, we use the following name
spaces: ro for Research Object, wfdesc for the
wfdesc Ontology, wf4ever for the Wf4ever Schema,
dct for the Dublin Core terms, rdfs for RDF schema
and prov for the PROV ontology.

Figure 8 shows an excerpt of the second stage.
On the left side of this figure we have a script us-
ing YesWorkflow tags. The right side shows the
RDF triples that correspond to these tags. Num-
bers 0 , 1 , 2 , and 3 connect both sides of

the figure. For instance, on the left side, 1 has
annotation @begin md setup, which is mapped
to the class wfdesc:Workflow and the property
rdfs:label with value md setup. While @desc
setup of a MD simulation is mapped to prop-
erty dc:description with value setup of a
MD simulation.

12https://w3id.org/ro/wf4ever
13http://dublincore.org/

On the left side, 2 originates the input and out-
put RDF triples on the right side. The input and output
ports of the workflow use classes wfdesc:Input
and wfdesc:Output, and properties rdfs:label
and dc: description. Nested @begin tag (3
– left side) are mapped to the wfdesc:hasSub
Process property and the wfdesc:Process class,
specifying an activity of the workflow. The map-
ping also uses the wfdesc:DataLink class, as
well as the properties wfdesc:hasSource and
wfdesc:hasSink, identifying a link between two
ports in the workflow.

At the third stage of the transformation of S to
Wa, provenance information is added to the triples
code. Provenance semantics are provided by using the
PROV ontology [15]. Each abstract workflow element
is defined as a prov:Entity. Again, in Figure 8,
in 0 , the script filename is mapped to triples defin-
ing the script resource <resources/script.sh>
as a wf4ever:Script. This specific mapping is
independent of the use of any YesWorkflow tag.
The property prov:wasDerivedFrom is created
with value <resources/script.sh>, identify-
ing from which script that workflow was derived, since
an experiment may have more than one script file.
The script code committed within a block in 4 (left
side), originates the identification of the text posi-
tion in the script code using properties and classes
such as prov:wasDerivedFrom from PROV and
oa:TextPositionSelector, oa:start, and
oa:end from the Web Annotation Ontology, to de-
limit this code. Another useful provenance information
added at this stage is by whom and when the transfor-
mation was performed.

Summing up, this section described W2Share’s pro-
cess to generate a machine-readable (semantic) ab-
stract representation of a workflow in which work-
flow blocks are linked back to the original script block,
and script resources are duly semantically annotated.
Annotations also indicate the agents responsible for
the script-to-workflow conversion. This helps repro-
ducibility by documenting the conversion process.
This also helps reuse of workflow specifications.

Listing A.2 in A shows an excerpt of Wa and Listing
A.3 in A shows the provenance information generated
by the transformation. These listings use the RDF Tur-
tle format14 and are results of the three transformation
stages from S to Wa using our MD case study.

14http://www.w3.org/TR/turtle/

https://w3id.org/ro/wf4ever
http://dublincore.org/
http://www.w3.org/TR/turtle/

12 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

<files/Setup_MD/script.sh> a wf4ever:Script, ro:Resource.

<abs-workflow/Setup_MD/> a wfdesc:Workflow, prov:Entity;
 dc:description “setup of a MD simulation”;
 rdfs:label “md_setup”;
 wfdesc:hasInput <in/initial_structure>;
 wfdesc:hasOutput <out/fixed_1_pdb>;
 wfdesc:hasSubProcess <processor/split/>.

<processor/split/> a wfdesc:Process;
 dc:description “split input pdb into segments”;
 rdfs:label “split”.

<in/initial_structure> a wfdesc:Input, wfdesc:Output;
 rdfs:label "initial_structure";
 dc:description "crystal structure of the protein".

<out/fixed_1_pdb> a wfdesc:Output, wfdesc:Input;
 rdfs:label "fixed_1";
 dc:description "coordinates for the whole system".

<datalink?from=in/initial_structure&to=
processor/split/in/initial_structure> a wfdesc:DataLink;
 wfdesc:hasSource <in/initial_structure>;
 wfdesc:hasSink <processor/split/in/initial_structure> .

File: files/Setup_MD/script.sh

@begin md_setup @desc setup of a MD simulation

@in initial_structure @desc crystal structure of t
@out fixed_1_pdb @desc coordinates for the who

 @begin split @desc split input pdb into segme

 @in initial_structure @desc crystal structure of

 @out fixed_1_pdb @desc coordinates for the w

…. some code here ...

 @end split

@end md_setup

1

2

0

3

3

4

2

3

2

3

1

0

Fig. 8. Mapping between YesWorkflow tags (left side) and classes and properties of ontologies (right side).

6. Revisiting Step 2: (Semi-)Automatically
Transforming Abstract Workflows into
Executable Workflows

After creating Wa, a machine-readable abstract
workflow, the next step is to create an executable work-
flow We, which corresponds to Step 2 of our method-
ology. We here show how this can be done automat-
ically, in the best case and semi-automatically in the
other cases, mapping Wa elements to elements that can
be executed in a SWfMS, e.g., Taverna. This step was
outlined in a previous work [24]; here we provide a
detailed description.

As presented in Section 5, our machine-readable ab-
stract workflow Wa describes the activities encoded by
the script code. In our provenance layer, entities point
back to the corresponding script code block. The Wa to
We conversion process will now take advantage of this
provenance information. At the end, We and S share
the same abstract workflow Wa to describe their activ-
ities in a higher level.

During the creation of We, the original script S code
may be manually changed (e.g., to allow appropriate
workflow execution in the chosen SWfMS). So, the
scientist must be aware of potential issues caused by
these modifications. Some changes in the code can be
performed automatically, e.g., library imports. Others

might need manual intervention, such as changing a
reference to an absolute path to a file to obtain the
file from a workflow port. By identifying these manual
changes in the workflow implementation, experts can
describe the reason behind the changes, which helps
documenting the conversion process.

W2Share’s machine-readable abstract workflows al-
low linking We to S , thus enabling questions related
to the sequence of transformation steps that led to the
production of an executable workflow. Examples in-
clude "which script block originated a specific activ-
ity in this workflow?", or "which workflow activities
do not have exactly the same code as the script code
that originated it?". The latter question would use the
current implementation of the workflow activity and a
simple comparison with the original script block code.
In addition, scientists can use annotations regarding
the reason behind the changes to foster the understand-
ing of the process.

Listing A.3 in A shows an excerpt of PROV state-
ments in RDF Turtle format to allow tracing back ele-
ments of the executable workflow We to the elements
of script S through Wa.

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

7. Evaluation

7.1. Overview

To validate our proposal, we adopt the notion of
competency queries, e.g., as defined by [27] "A com-
petency query is a query that is useful for the commu-
nity at hand, e.g. for a human member (e.g. a scientist),
or for building applications for that domain. Therefore,
a list of such queries can sketch the desired scope and
the desired structuring of the information."

Our competency queries show W2Share’s ability to
answer questions about a workflow’s lineage thanks to
prospective provenance generated during the script-to-
workflow process. Questions about workflow execu-
tions are answered thanks to retrospective provenance
obtained from the SWfMS during workflow execution.
All these resources are bundled in WROs.

The queries proposed in this section should help sci-
entists to understand and explore the conversion pro-
cess and consequently assess the quality and establish
trust in this process. To achieve this goal, the queries
return prospective and retrospective provenance infor-
mation. Examples of the prospective view include, e.g,
how the workflow was created from the script, and who
created the workflow. Retrospective views include as-
sociating workflow results to the script which origi-
nated the workflow.

Given as input S , Wa, We, We1, ... Wen, we con-
sider the following kinds of queries for prospective
provenance:

1. tracking elements: activities, data, data flows in
We back to S ;

2. metadata: information describing elements of
script, workflows, and agents;

3. provenance of a given data source (before execu-
tion).

We consider the following kinds of queries for ret-
rospective provenance:

1. establishing trust: comparison of workflow and
script results, and comparison of workflow vari-
ant results;

2. tracking elements: link elements derived from S
to traces.

Here, we consider that these queries are important
to help the scientists to establish trust and assess the
quality of the conversion by comparing the workflow
results to the script results.

7.2. Executing Queries

Here, we specify competency questions associated
to the requirements of Section 2. To each question, we
provide a specific SPARQL query, which we evaluate
against the contents of the WRO generated by our case
study.

We point out that these queries do not inspect the
scripts or executable workflows. Rather, queries are
processed against machine-readable abstract work-
flows. All these prospective provenance representa-
tions use wfdesc, PROV and Web Annotation ontolo-
gies. The retrospective provenance representation uses
wfprov ontology which is part of the Research Object
suite of ontologies [16]. The competency questions,
the SPARQL queries and results, and the RDF state-
ments representing our case study can be found online
in [28].

We are interested in the following competency
queries to address the requirements:

1. Retrieving information about the abstract work-
flow Wa derived from S (i.e., processing units
and their dependencies) – addressing require-
ment R1.

2. Retrieving information about workflow We de-
rived from S – addressing requirement R2.

3. Retrieving information about workflow variants
derived from We (i.e., We1, We2, ... Wen) – ad-
dressing requirement R3.

4. Retrieving lineage information associating We
and script elements (i.e., input, outputs, activities
and data links) – addressing requirement R4.

5. Retrieving metadata about the conversion pro-
cess (e.g, the person who created a given exe-
cutable workflow) – addressing requirement R4.

6. Retrieving information tracking workflow execu-
tion traces to script blocks – addressing require-
ment R4.

7. Retrieving the resources available in the WRO
associated to an experiment – addressing require-
ment R5.

We now present a description of each query, why it
is relevant, the kind of situations for which it would
be needed, their translation into SPARQL15, and the
results obtained by evaluating them.

These queries are run against the RDF statements in
Listings A.2, A.3, A.4, and A.5 in Appendix A.

15https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/

14 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Query 1 Retrieving information about abstract
workflow Wa derived from S . This query is respon-
sible for identifying, given S , the processing units and
their dependencies which compose Wa. It is useful, for
example, for scientists to understand the data analysis
carried out by the experiment.

Listing 1 shows the SPARQL query that can be
used for answering this query. We use the WRO URI
as base for the queries: https://w3id.org/w2share/wro/
md-setup/.

Listing 1: Query 1 translated into a SPARQL

1 select ?abs ?winput ?woutput ?process ?pinput
?poutput↪→

2 where {
3 ?abs prov:wasDerivedFrom

<files/Setup_MD/script.sh> ;↪→
4 wfdesc:hasInput ?winput;
5 wfdesc:hasOutput ?woutput ;
6 wfdesc:hasSubProcess ?process .
7 ?process wfdesc:hasInput ?pinput;
8 wfdesc:hasOutput ?poutput .
9 }

Table 2 shows the results obtained by evaluating the
query. The results point out that Wa <abs-workflow/
Setup_MD/> is the abstract workflow derived from
<files/Setup_MD/script.sh>. Wa has input
<abs-workflow/Setup_MD/in/structure_
pdb> and output <abs-workflow/Setup_MD/
out/fixed_1_pdb>. Also, it has <abs-workflow
/Setup_MD/processor/split> as one of its
activities, which has input <abs-workflow/Setup_
MD/ processor/split/in/structure_pdb>
and output <abs-workflow/Setup_MD/processor
/split/out/fixed_1_pdb>.

Table 2
Result of evaluating query 1

Variable Value

abs <abs-workflow/Setup_MD>
winput <abs-workflow/Setup_MD/in/structure_pdb>
woutput <abs-workflow/Setup_MD/out/fixed_1_pdb>
processor <abs-workflow/Setup_MD/processor/split>

pinput
<abs-workflow/Setup_MD/processor/split/in/

initial_structure>

poutput
<abs-workflow/Setup_MD/processor/split/out/

cbh1_pdb>

Query 2: Retrieving information about the exe-
cutable Workflow derived from S . This query is re-

sponsible for identifying which executable workflow is
derived from S . This is useful for scientists interested
in executing or reusing pieces of this workflow.

Listing 2: Query 2 translated into a SPARQL

1 select ?workflow
2 where {
3 ?workflow a wfdesc:Workflow;
4 prov:wasDerivedFrom

<files/Setup_MD/script.sh> .↪→
5 }

Listings 2 shows the SPARQL code for this query.
Table 3 shows the results obtained by evaluating
the query. The results point out that <workflow/
Setup_MD> is derived from <files/Setup_MD/
script.sh>.

Table 3
Result of evaluating query 2

Variable Value

Workflow <workflow/Setup_MD>

To have a deep understanding of the differences be-
tween the implementation of the workflow We and the
script S , it would be necessary to compare the spec-
ification of both implementations, or to have annota-
tions describing the rationale of these changes. How-
ever, this is outside the scope of this paper.

Query 3: Retrieving information about workflow
variants derived from We. This query is responsi-
ble for identifying, given an executable workflow We,
which workflows are derived from it. It is useful, for
example, for scientists to find workflow variants to run,
reuse or compare their results. This query is also useful
when a scientist updates an executable workflow, and
needs to propagate this update to the workflow vari-
ants.

Listing 3 shows the SPARQL code that can be used
for answering this query.

Listing 3: Query 3 translated into a SPARQL

1 select ?variant
2 where {
3 ?variant prov:wasDerivedFrom

<workflow/Setup_MD/> .↪→
4 }

https://w3id.org/w2share/wro/md-setup/
https://w3id.org/w2share/wro/md-setup/

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4 shows the results obtained by evaluating the
query. The results point out <workflow/Setup_MD>
originated the variant <workflow/Setup_MD/v
ariant>.

Table 4
Result of evaluating query 3

Variable Value

variant <workflow/Setup_MD/variant/>

Again, to have a deep understanding of the differ-
ences between the implementations of the workflow
We and its variants We1, We2, ... Wen, it would be nec-
essary to compare the specification of both implemen-
tations, or to have annotations describing the rationale
of these changes. Again, this is outside the scope of
this paper.

Query 4: Retrieving lineage information associat-
ing We and script elements.

This query is responsible for identifying, given an
executable workflow We, which script blocks origi-
nated each workflow activity. It is useful, for example,
for scientists to compare the executable workflow and
script implementations.

We use the Web Annotation Ontology element
oa:TextPositionSelector and its properties oa:start and
oa:end to delimit the textual position of blocks in the
script code. Listing 4 shows the SPARQL code that
can be used for answering this query.

Listing 4: Query 4 translated into a SPARQL

1 select ?abs ?process ?start ?end
2 where {
3 ?abs prov:wasDerivedFrom

<files/Setup_MD/script.sh> ;↪→
4 wfdesc:hasSubProcess ?process .
5 ?process prov:wasDerivedFrom ?code .
6 ?code oa:start ?start ;
7 oa:end ?end .
8 }

Table 5 shows the results obtained by evaluating the
query. The results point out that <workflow/Setup_
MD/split> was derived from <abs-workflow/
Setup_MD/split>, which is defined in the text po-
sition from 1644 to 1786 in S .

Query 5: Retrieving metadata about the conver-
sion process. This query is responsible for retrieving
metadata regarding each step of the script-to-workflow
conversion process (e.g., who was the person in charge

Table 5
Result of evaluating query 4

Variable Value

workflow_process <workflow/Setup_MD/processor/split>
script_process <abs-workflow/Setup_MD/processor/split>
block_start 1644
block_end 1786

of annotating a script S to create the abstract work-
flow).

This query is useful helping to establish trust in the
conversion process. Listings 5 shows the correspond-
ing SPARQL code. Table 6 shows the result of the
query, which points out Lucas Carvalho is the cu-
rator associated with the creation of <abs-workflow
/Setup_MD/> for S .

Listing 5: Query 5 translated into a SPARQL

1 select distinct ?curator
2 where {
3 <abs-workflow/Setup_MD/>

prov:wasAttributedTo ?agent .↪→
4 ?agent foaf:name ?curator .
5 }

Table 6
Result of evaluating query 5

Variable Value

curator Lucas Carvalho

Query 6: Retrieving information tracking work-
flow execution traces of We to script blocks. This
query is responsible for identifying, given a workflow
execution trace, the original script blocks associated
with it. This query is useful when a scientist wants to
retrieve workflow executions and compare them with
script executions.

Listing 6 shows the SPARQL code for this query.
Table 7 shows the result of the query, which points
out that <workflow/processor/split/> was
derived from the script block <abs-workflow/
processor/split>, used as input <> and pro-
duced as output <data/4e0a1f-fc0f/output/
bglc.pdb>.

Listing 6: Query 6 translated into a SPARQL

1 SELECT DISTINCT ?workflow ?workflowRun
?process ?output ?input↪→

2 WHERE {

16 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3 ?workflow prov:wasDerivedFrom
<files/Setup_MD/script.sh> .↪→

4 ?workflow wfdesc:hasSubProcess ?process .
5 ?processRun wfprov:describedByProcess

?process ;↪→
6 prov:used ?input ;
7 wfprov:wasPartOfWorkflowRun

?workflowRun .↪→
8 ?output prov:wasGeneratedBy ?processRun .
9 }

Table 7
Result of evaluating query 6

Variable Value

workflow <workflow/Setup_MD/>
workflowRun <run/4e0a1f-fc0f/>
process <workflow/Setup_MD/processor/split/>
input <data/4e0a1f-fc0f/input/structure.pdb>
output <data/4e0a1f-fc0f/output/blgc.pdb>

Query 7: Retrieving the resources available in a
WRO. This query is responsible for identifying, given
a WRO, which resources are aggregated by it. This
query is useful to identify which resources to reuse, for
example.

Table 7 shows the result of the query, which points
out that the WRO aggregates the resources script.sh,
executable-workflow.t2flow, refined-
workflow.t2flow, and their inputs and output
files (resources) aggregated in the WRO.

Listing 7: Query 7 translated into a SPARQL

1 select distinct ?resource ?type
2 where {
3 <> ore:aggregates ?resource .
4 ?resource a ?type .
5 FILTER(ro:Resource != ?type)
6 }

Table 8
Result of evaluating query 7

resource type

<workflow/executable-workflow.t2flow> wf4ever:Workflow
<workflow/refined-workflow.t2flow> wf4ever:Workflow
<files/script.sh> wf4ever:Script
<workflowrun.prov.ttl> wfdesc:WorkflowRun
<data/4e0a1f-fc0f/input/structure.pdb> wf4ever:Dataset
<data/4e0a1f-fc0f/output/blgc.pdb> wf4ever:Dataset

8. Related Work

Here, we provide a comparison of our work with re-
search on script-to-workflow conversion and traceabil-
ity. Additional related work was already commented
on throughout the text.

Scripts are usually difficult to understand, reuse, or
reproduce by people other than the original imple-
menters. In previous work [14], we described a pre-
liminary manual transformation from script to exe-
cutable and verifiable workflow. We adopted YesWork-
flow to generate the abstract workflow visualizations
before creating the executable workflow. YesWorkflow
was developed by McPhilips et al. [5, 26]; it is a
script language-independent environment for extract-
ing a workflow-like view that depicts the main compo-
nents that compose a script and their data dependen-
cies based on comments that annotate the script.

At the time of writing this paper, the YesWorkflow
group is working towards supporting the exportation,
in RDF, of an abstract workflow representation that is
PROV-compliant, using the ProvONE model [29]. We,
instead, use wfdesc and wfprov ontologies as PROV
extensions because we are targeting Research Objects,
and also the Taverna SWfMS. Moreover, our prove-
nance information is used to link the abstract workflow
back to the script.

There are a few other approaches to construct exe-
cutable workflows from scripts. For instance, [10] uses
the abstract syntax tree (AST) created from source
code to map the script elements into workflow struc-
tures. Our approach differs from this in that we reuse
parts of the script code to create the workflow activi-
ties.

The work of [11] migrates script-based experiments
from a local High Performance Computer (HPC) clus-
ter to workflows on a cloud computing infrastructure.
Their requirements include traceability of the work-
flow results to meet reproducibility, one of their rea-
sons to migrate to a SWfMS. One of the differences to
our approach is that our methodology is more generic,
in the sense that we do not focus on HPC scripts nor
on cloud computing environments, which require spe-
cific kinds of scripts. Also, we do not consider any
specific approach to meet the challenge of converting
scripts with control-flow constructs into data-flow pat-
terns, which is addressed in both [11] and [10].

In [12], the authors present an approach to convert
electronic notebooks into workflows. Their approach
goes directly from notebook code to executable work-
flow. It is based on a set of guidelines that recom-

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

mend changes to the notebook structure to facilitate
the capture of the dataflow encoded in the notebook
and enable its conversion into an executable workflow.
We, instead, go from script-to-abstract and abstract-
to-executable steps, thereby clearly separating abstract
specification from code. This helps documentation, un-
derstandability and reuse. At the end, their conversion
is performed by NiW, a tool that semi-automatically
creates the workflow structure based on the notebook’s
code. Similar to our approach, after running their tool,
a scientist may need to improve the corresponding
workflow implementation due to differences in the en-
vironments. Our annotation and abstract workflows
guide the scientists to identify the main processing
units and dataflow in the script.

In [24], we presented the first implementation of a
web prototype for W2Share that integrates the tools
used to convert scripts into WRO. In that paper, we
also address quality checking of the conversion pro-
cess. However, we do not address tracking issues dur-
ing the conversion process. This is a recent result that
is being reported here.

The work of [30] presents an approach to track
changes in workflows to capture the evolution of work-
flows and allow the comparison of results and struc-
ture between different versions. We, instead, focus
on issues related to the traceability of the script-to-
workflow conversion process, which enables relating
workflow elements back to the original script blocks,
comparing differences between script and workflow
implementation, and comparing differences between
script and workflow results.

Another difference between ours and other script-to-
workflow approaches is that ours use of WROs. These
objects bundle the executable workflow, but also the
workflow specification and auxiliary resources, as well
as workflow runs and data used in these runs. Thus,
one single object (the WRO) is needed to support ex-
periment reproducibility, reuse, and checking of exper-
iments in a transparent way.

9. Conclusions and Ongoing Work

This paper is a step towards fully reproducible re-
search. It presented W2Share, a computation frame-
work that supports a (script-to-reproducible research)
methodology. The methodology, implemented in W2-
Share via a suite of tools, guides scientists in a prin-
cipled manner to transform scripts into reproducible
and reusable research objects. W2Share addresses an

important issue in the area of provenance of scientific
experiments modeled as scripts – that of providing an
executable and understandable provenance representa-
tion of domain script runs. We point out that prove-
nance is not just metadata for others: "provenance-
for-self" queries can be used by researchers to better
understand experiments, and to speed up the conver-
sion process. Thus, there is a need for support to hy-
brid provenance queries for scripts (i.e., involving both
prospective and retrospective queries).

Our ontology-based approach to generate machine-
readable abstract workflows is also useful for querying
purposes (e.g., traceability). It also allows associating
the executable workflow, represented using the wfdesc
ontology, and provenance information, represented us-
ing the wfprov ontology, in ontology-based queries.

W2Share was elaborated based on requirements
that we elicited given our experience and collabora-
tions with scientists who use scripts in their simula-
tions. Moreover, it enables traceability of the script-
to-workflow process, thereby establishing trust in this
process. The approach was showcased via a real
world use case from Molecular Dynamics. We showed
through competency questions that W2Share success-
fully meets those requirements. The competency ques-
tions and the case studies are additional contribu-
tions of our work. An initial implementation of our
methodology is described in [24] and available at
https://w3id.org/w2share.

Our ongoing and future work include promoting the
use of the conversion process in an e-Science infras-
tructure, investigating further real use cases with the
objective of extending it to fit (new) user requirements
and other script environments. Also, we plan to eval-
uate the cost effectiveness of our proposal, in partic-
ular since in some cases it may require extensive in-
volvement of scientists. Last but not least, we do not
consider versioning. Thus, yet another future direction
would be to provide support to such version control
when refining executable workflows, for instance, by
considering an Ontology of Research Object Evolu-
tion.

Acknowledgments

Work partially financed by Sao Paulo Science Foun-
dation (FAPESP) under grants #2014/23861-4, #2017/
03570-3, FAPESP/CEPID CCES under grant #2013/
08293-7, and individual grants from CNPq. We thank
Prof. Munir Skaf and his group from the Institute of

https://w3id.org/w2share

18 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Chemistry at Unicamp for making their scripts and
data available and for their valuable feedback in the
molecular dynamics case study.

References

[1] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. van
Dam, K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer
and J. Vetter, The future of scientific workflows, The Interna-
tional Journal of High Performance Computing Applications
(IJHPCA) 32(1) (2018), 159–175.

[2] S. Cohen-Boulakia, K. Belhajjame, O. Collin, J. Chopard,
C. Froidevaux, A. Gaignard, K. Hinsen, P. Larmande,
Y. Le Bras, F. Lemoine et al., Scientific workflows for compu-
tational reproducibility in the life sciences: Status, challenges
and opportunities, Future Generation Computer Systems 75
(2017), 284–298.

[3] T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Cor-
lay et al., Jupyter Notebooks-a publishing format for repro-
ducible computational workflows., in: ELPUB, 2016, pp. 87–
90.

[4] F. Chirigati, R. Rampin, D.E. Shasha and J. Freire, ReproZip:
Computational Reproducibility With Ease., in: SIGMOD Con-
ference, ACM, 2016, pp. 2085–2088. ISBN 978-1-4503-3531-
7.

[5] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belha-
jjame, R.K. Bocinsky, Y. Cao, J. Cheney, F. Chirigati, S. Dey
et al., YesWorkflow: A User-Oriented, Language-Independent
Tool for Recovering Workflow Information from Scripts, Inter-
national Journal of Digital Curation 10(1) (2015), 298–313.

[6] L. Murta, V. Braganholo, F. Chirigati, D. Koop and J. Freire,
noworkflow: Capturing and analyzing provenance of scripts,
in: Provenance and Annotation of Data and Processes,
Springer, 2014, pp. 71–83.

[7] S. Dey, K. Belhajjame, D. Koop, M. Raul and B. Ludäscher,
Linking prospective and retrospective provenance in scripts, in:
7th USENIX Workshop on the Theory and Practice of Prove-
nance (TaPP 15), 2015.

[8] J. Liu, E. Pacitti, P. Valduriez and M. Mattoso, A Survey of
Data-Intensive Scientific Workflow Management, Journal of
Grid Computing 13(4) (2015), 457–493, ISSN 1572-9184.

[9] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier,
D. Newman, R. Palma, S. Bechhofer, E. García Cuesta,
J.M. Gómez-Pérez et al., Workflow-Centric Research Objects:
First Class Citizens in Scholarly Discourse, in: Proceedings
of Workshop on the Semantic Publishing, (SePublica 2012),
2012.

[10] M. Baranowski, A. Belloum, M. Bubak and M. Malawski,
Constructing workflows from script applications, Scientific
Programming 20(4) (2012), 359–377.

[11] J. Cala, Y. Xu, E.A. Wijaya and P. Missier, From scripted HPC-
based NGS pipelines to workflows on the cloud, in: Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, IEEE, 2014, pp. 694–700.

[12] L.A.M.C. Carvalho, R. Wang, D. Garijo and Y. Gil, NiW: Con-
verting Notebooks into Workflows to Capture Dataflow and
Provenance, in: 2017 Workshop on Capturing Scientific Knowl-
edge (SciKnow), held in conjunction with the ACM Interna-

tional Conference on Knowledge Capture (K-CAP), December
4-6, Austin, TX, USA, 2017, pp. 1–8.

[13] J. Freire, D. Koop, E. Santos and C.T. Silva, Provenance for
computational tasks: A survey, Computing in Science & Engi-
neering 10(3) (2008), 11–21.

[14] L.A.M.C. Carvalho, K. Belhajjame and C.B. Medeiros, Con-
verting Scripts into Reproducible Workflow Research Objects,
in: Proc. of the IEEE 12th Int. Conf. on eScience, October 23-
26, IEEE, Baltimore, MD, USA, 2016, pp. 71–80.

[15] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Ch-
eney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik and
J. Zhao, PROV-O: the PROV ontology. W3C Recommenda-
tion, World Wide Web Consortium (2013). https://www.w3.org/
TR/prov-o/.

[16] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Het-
tne, R. Palma, E. Mina, O. Corcho, J.M. Gómez-Pérez,
S. Bechhofer et al., Using a suite of ontologies for preserving
workflow-centric research objects, Web Semantics: Science,
Services and Agents on the World Wide Web 32 (2015), 16–42.

[17] P. Missier, S. Woodman, H. Hiden and P. Watson, Provenance
and data differencing for workflow reproducibility analysis,
Concurrency and Computation: Practice and Experience 28(4)
(2016), 995–1015, ISSN 1532-0634.

[18] R. Souza, V. Silva, A.L. Coutinho, P. Valduriez and M. Mat-
toso, Data reduction in scientific workflows using provenance
monitoring and user steering, Future Generation Computer
Systems (2017). doi:10.1016/j.future.2017.11.028.

[19] M. Mattoso, J. Dias, K.A. Ocaña, E. Ogasawara, F. Costa,
F. Horta, V. Silva and D. de Oliveira, Dynamic steering of HPC
scientific workflows: A survey, Future Generation Computer
Systems 46 (2015), 100–113.

[20] L.A.M.C. Carvalho, B.T. Essawy, D. Garijo, C.B. Medeiros
and Y. Gil, Requirements for Supporting the Iterative Explo-
ration of Scientific Workflow Variants, in: 2017 Workshop on
Capturing Scientific Knowledge (SciKnow), held in conjunc-
tion with the ACM International Conference on Knowledge
Capture (K-CAP), 2017, pp. 1–8.

[21] L.A.M.C. Carvalho, D. Garijo, C.B. Medeiros and Y. Gil, Se-
mantic Software Metadata for Workflow Exploration and Evo-
lution, in: Proc. of the IEEE 14th Int. Conf. on eScience, Oct
29-Nov 1, IEEE, Amsterdam, Netherlands, 2018.

[22] R.L. Silveira and M.S. Skaf, Molecular dynamics simulations
of family 7 cellobiohydrolase mutants aimed at reducing prod-
uct inhibition, The Journal of Physical Chemistry B 119(29)
(2014), 9295–9303.

[23] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. With-
ers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic,
P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty,
A. Nieva de la Hidalga, M.P. Balcazar Vargas, S. Sufi and
C. Goble, The Taverna workflow suite: designing and execut-
ing workflows of Web Services on the desktop, web or in the
cloud, Nucleic Acids Research 41(W1) (2013), 557–561.

[24] L.A.M.C. Carvalho, J.E.G. Malaverri and C.B. Medeiros, Im-
plementing W2Share: Supporting Reproducibility and Qual-
ity Assessment in eScience, in: Proc. of the 11th Brazilian e-
Science Workshop (BreSci), July 5-6, 2017, Brazilian Com-
puter Society, Sao Paulo, Brazil, 2017.

[25] L.A.M.C. Carvalho and C.B. Medeiros, W2Share
Case Study: Workflow Research Object (WRO), 2018.
doi:10.5281/zenodo.1465897.

https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/prov-o/

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[26] T. McPhillips, S. Bowers, K. Belhajjame and B. Ludäscher,
Retrospective provenance without a runtime provenance
recorder, in: 7th USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP 15), 2015.

[27] Y. Tzitzikas, N. Minadakis, Y. Marketakis, P. Fafalios, C. Al-
locca, M. Mountantonakis and I. Zidianaki, MatWare: Con-
structing and Exploiting Domain Specific Warehouses by Ag-
gregating Semantic Data, in: The Semantic Web: Trends and
Challenges: 11th International Conference, ESWC 2014, Anis-
saras, Crete, Greece, May 25-29, 2014. Proceedings, V. Pre-
sutti, C. d’Amato, F. Gandon, M. d’Aquin, S. Staab and A. Tor-
dai, eds, Springer International Publishing, 2014, pp. 721–736.

[28] L.A.M.C. Carvalho and C.B. Medeiros, W2Share Evalution:
Competency Questions, 2018. doi:10.5281/zenodo.1465893.

[29] V. Cuevas-Vicenttín, B. Ludäscher, P. Missier, K. Belhajjame,
F. Chirigati, Y. Wei and B. Leinfelder, Provone: A prov ex-
tension data model for scientific workflow provenance, 2015.
http://purl.org/provone.

[30] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, C.E. Scheideg-
ger and H.T. Vo, Managing Rapidly-Evolving Scientific Work-
flows, in: Provenance and Annotation of Data, L. Moreau and
I. Foster, eds, Springer Berlin Heidelberg, Berlin, Heidelberg,
2006, pp. 10–18. ISBN 978-3-540-46303-0.

Appendix A. Molecular Dynamics Case Study

Resources of the case study from Molecular Dy-
namics.

Listing A.1: Excerpt of an annotated MD script using
YesWorkflow tags.

1 #!/bin/bash
2

3 # @BEGIN setup @DESC setup of a MD simulation
4 # @PARAM directory_path @AS directory
5 # @IN initial_structure @DESC PDB: 8CEL
6 # @URI file:{directory}/structure.pdb
7 # @IN topology_prot
8 # @URI file:top_all22_prot.rtf
9 # @IN topology_carb

10 # @URI file:top_all22_prot.rtf
11 # @OUT gh5_psf @AS final_structure_psf
12 # @URI file:{directory}/gh5.psf
13 # @OUT gh5_pdb @AS final_structure_pdb
14 # @URI file:{directory}/gh5.pdb
15

16 # @BEGIN split
17 # @IN initial_structure
18 # @URI file:structure.pdb
19 # @IN directory_path @AS directory
20 # @OUT protein_pdb
21 # @URI file:{directory}/protein.pdb
22 # @OUT bglc_pdb
23 # @URI file:{directory}/bglc.pdb
24 # @OUT water_pdb
25 # @URI file:{directory}/water.pdb

26 structure = $directory_path"/structure.pdb"
27 protein = $directory_path"/protein.pdb"
28 water = $directory_path"/water.pdb"
29 bglc = $directory_path"/bglc.pdb"
30 egrep -v '(TIP3|BGLC)' $structure > $protein
31 grep TIP3 $structure > $water
32 grep BGLC $structure > $bglc
33 # @END split
34

35 # @BEGIN psfgen @DESC generate the PSF file
36 # @PARAM topology_prot
37 # @URI file:top_all22_prot.rtf
38 # @PARAM topology_carb
39 # @URI file:top_all36_carb.rtf
40 # @IN protein_pdb
41 # @URI file:protein.pdb
42 # @IN bglc_pdb
43 # @URI file:bglc.pdb
44 # @IN water_pdb
45 # @URI file:water.pdb
46 # @OUT hyd_pdb
47 # @URI file:hyd.pdb
48 # @OUT hyd_psf
49 # @URI file:hyd.psf
50

51 ... commands ...
52

53 # @END psfgen
54

55 # @BEGIN solvate
56 # @IN hyd_pdb
57 # @URI file:hyd.pdb
58 # @IN hyd_psf
59 # @URI file:hyd.psf
60 # @OUT wbox_pdb
61 # @URI file:wbox.pdb
62 # @OUT wbox_psf
63 # @URI file:wbox.psf
64 echo "
65 package require solvate
66 solvate hyd.psf hyd.pdb -rotate -t 16 -o wbox
67 exit
68 " > solv.tcl
69

70 vmd -dispdev text -e solv.tcl
71 rm solv.tcl
72 # @END solvate
73

74 # @BEGIN ionize
75 # @IN wbox_pdb
76 # @URI file:wbox.pdb
77 # @IN wbox_psf
78 # @URI file:wbox.psf
79 # @OUT gh5_pdb @AS final_structure_pdb
80 # @URI file:gh5.pdb
81 # @OUT gh5_psf @AS final_structure_psf
82 # @URI file:gh5.psf
83

84 ... commands ...
85

86 # @END ionize

http://purl.org/provone

20 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

87

88 # @END setup

Listing A.2: Excerpt of specification of Wa, the result
of transforming script S into an equivalent machine-
readable abstract workflow.

1 @base <https://w3id.org/w2share/wro/md-setup/
abs-workflow/Setup_MD/>.↪→

2 @prefix dcterms: <http://purl.org/dc/terms/>.
3 @prefix wf4ever:

<http://purl.org/wf4ever/wf4ever#>.↪→
4 @prefix oa: <http://www.w3.org/ns/oa#>.
5 @prefix wfdesc:

<http://purl.org/w4ever/wfdesc#>.↪→
6 @prefix prov:

<http://www.w3.org/ns/prov-o#>.↪→
7 @prefix xsd:

<http://www.w3.org/2001/XMLSchema#>.↪→
8 @prefix rdfs:

<http://www.w3.org/2000/01/rdf-schema#>.↪→
9

10 <>
11 a wfdesc:Workflow, prov:Entity;
12 rdfs:label "setup"^^xsd:string;
13 wfdesc:hasSubProcess

<processor/split/>;↪→
14 wfdesc:hasInput <in/structure_pdb>;
15 wfdesc:hasOutput <out/fixed_1_pdb> .
16

17 <in/initial_structure>
18 a wfdesc:Input, wfdesc:Output;
19 rdfs:label "structure_pdb"^^xsd:string;
20 dcterms:title "crystal structure of the

protein"^^xsd:string .↪→
21

22 <out/fixed_1_pdb>
23 a wfdesc:Output, wfdesc:Input;
24 rdfs:label "fixed_1"^^xsd:string;
25 dcterms:title "coordinates for the whole

system (cbh1.pdb), indicating which
atoms should be kept fixed along the
simulation"^^xsd:string .

↪→
↪→
↪→

26

27 <datalink?from=in/initial_structure&to=
processor/split/in/initial_structure>↪→

28 a wfdesc:DataLink;
29 wfdesc:hasSource <in/initial_structure>;
30 wfdesc:hasSink

<processor/split/in/initial_structure> .↪→
31

32 <processor/split/>
33 a wfdesc:Process;
34 rdfs:label "split"^^xsd:string;
35 wfdesc:hasInput

<processor/split/in/initial_structure>;↪→
36 wfdesc:hasOutput

<processor/split/out/cbh1_pdb> .↪→

37

38 <processor/split/in/initial_structure>
39 a wfdesc:Input;
40 rdfs:label

"structure_pdb"^^xsd:string;↪→
41 dcterms:description "crystal structure of

the protein"^^xsd:string .↪→
42

43 <processor/split/out/cbh1_pdb>
44 a wfdesc:Output;
45 rdfs:label "cbh1_pdb"^^xsd:string;
46 dcterms:description "coordinates of the

protein atoms"^^xsd:string .↪→

Listing A.3: Excerpt of PROV-statements describing
the derivation of S to Wa to We to We1.

1 @base
<https://w3id.org/w2share/wro/md-setup/>.↪→

2 @prefix dcterms: <http://purl.org/dc/terms/>.
3 @prefix wf4ever:

<http://purl.org/wf4ever/wf4ever#>.↪→
4 @prefix oa: <http://www.w3.org/ns/oa#>.
5 @prefix wfdesc:

<http://purl.org/w4ever/wfdesc#>.↪→
6 @prefix prov: <http://www.w3.org/ns/prov-o#>.
7 @prefix xsd:

<http://www.w3.org/2001/XMLSchema#>.↪→
8 @prefix rdfs:

<http://www.w3.org/2000/01/rdf-schema#>.↪→
9 @prefix foaf: <http://xmlns.com/foaf/0.1/>.

10

11

12 <files/Setup_MD/script.sh> a wf4ever:Script.
13

14 <abs-workflow/Setup_MD/>
15 prov:wasDerivedFrom

<files/Setup_MD/script.sh> ;↪→
16 prov:wasAttributedTo [
17 a prov:Agent ;
18 foaf:name "Lucas Carvalho"] .
19

20 <abs-workflow/Setup_MD/processor/split/>
21 prov:wasDerivedFrom [
22 a prov:Entity, oa:TextPositionSelector;
23 oa:start "1644"^^xsd:Integer;
24 oa:end "1786"^^xsd:Integer;
25] .
26

27 <workflow/Setup_MD/> a wfdesc:Workflow,
prov:Entity ;↪→

28 prov:wasDerivedFrom
<files/Setup_MD/script.sh> ;↪→

29 prov:wasDerivedFrom
<abs-workflow/Setup_MD/> ;↪→

30 wfdesc:hasSubProcess
<workflow/Setup_MD/processor/split> .↪→

31

Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

32 <workflow/Setup_MD/processor/split/>
33 prov:wasDerivedFrom

<abs-workflow/Setup_MD/processor/split/>
.

↪→
↪→

34

35 <workflow/Setup_MD/variant> a
wfdesc:Workflow, prov:Entity ;↪→

36 prov:wasDerivedFrom <workflow/Setup_MD/>
.↪→

Listing A.4: Excerpt of workflow execution traces of
We.

1 @base
<https://w3id.org/w2share/wro/md-setup/>
.

↪→
↪→

2 @prefix prov: <http://www.w3.org/ns/prov#> .
3 @prefix wfprov:

<http://purl.org/wf4ever/wfprov#> .↪→
4 @prefix rdfs:

<http://www.w3.org/2000/01/rdf-schema#>
.

↪→
↪→

5 @prefix wfdesc:
<http://purl.org/wf4ever/wfdesc#> .↪→

6 @prefix tavernaprov:
<http://ns.taverna.org.uk/2012/
tavernaprov/> .

↪→
↪→

7 @prefix owl:
<http://www.w3.org/2002/07/owl#> .↪→

8 @prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .↪→

9 @prefix rdf:
<http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .

↪→
↪→

10 @prefix dct: <http://purl.org/dc/terms/> .
11

12 <run/e0fa2f25-0755/>
13 rdf:type wfprov:WorkflowRun ;
14 dct:hasPart

<run/e0fa2f25-0755/process/f0a0bd65-78d3/>
;

↪→
↪→

15 wfprov:describedByWorkflow
<workflow/Setup_MD/> ;↪→

16 prov:used
<data/5c65c151-0333/ref/61f8795e-e650> ;↪→

17 dct:hasPart
<run/e0fa2f25-0755/process/c06ff05e-eceb/>
;

↪→
↪→

18 prov:endedAtTime
"2016-06-16T11:25:24.549-03:00"
^^xsd:dateTime ;

↪→
↪→

19 prov:startedAtTime
"2016-06-16T11:25:12.838-03:00"
^^xsd:dateTime ;

↪→
↪→

20 wfprov:usedInput
<data/5c65c151-0333/ref/61f8795e-e650>;↪→

21

22 <data/5c65c151-0333/ref/61f8795e-e650>

23 tavernaprov:content
<data/4e0baa1f-fc0f/input/
structure.pdb> ;

↪→
↪→

24 wfprov:describedByParameter
<workflow/Setup_MD/processor/split/in/
initial_structure> ;

↪→
↪→

25 wfprov:describedByParameter
<workflow/Setup_MD/processor/in/
initial_structure> ;

↪→
↪→

26 prov:wasGeneratedBy
<run/4e0baa1f-fc0f/process/c3a0e8c0-dcb0/>
;

↪→
↪→

27 rdf:type wfprov:Artifact ;
28 rdf:type prov:Entity .
29

30 <data/e0fa2f25-0755/ref/55269975-380f>
31 tavernaprov:content

<data/4e0baa1f-fc0f/output/bglc.pdb> ;↪→
32 wfprov:describedByParameter

<workflow/Setup_MD/processor/psgen/in/
bglc_pdb> ;

↪→
↪→

33 wfprov:describedByParameter
<workflow/Setup_MD/processor/split/out/
bglc_pdb> ;

↪→
↪→

34 wfprov:wasOutputFrom
<run/4e0baa1f-fc0f/process/c3a0e8c0-dcb0/>
;

↪→
↪→

35 prov:wasGeneratedBy
<run/4e0baa1f-fc0f/process/c3a0e8c0-dcb0/>
;

↪→
↪→

36 rdf:type wfprov:Artifact ;
37 rdf:type prov:Entity .
38

39 <run/4e0baa1f-fc0f/process/c3a0e8c0-dcb0/>
40 wfprov:describedByProcess

<workflow/Setup_MD/processor/split/> ;↪→
41 wfprov:usedInput

<data/5c65c151-0333/ref/61f8795e-e650> ;↪→
42 prov:wasAssociatedWith <#taverna-engine>

;↪→
43 rdf:type wfprov:ProcessRun ;
44 prov:endedAtTime

"2017-03-10T08:19:32.405-03:00"
^^xsd:dateTime ;

↪→
↪→

45 prov:startedAtTime
"2017-03-10T08:19:31.075-03:00"
^^xsd:dateTime ;

↪→
↪→

46 prov:used
<data/5c65c151-0333/ref/61f8795e-e650> ;↪→

47 wfprov:wasPartOfWorkflowRun
<run/e0fa2f25-0755/> .↪→

Listing A.5: Excerpt of the WRO manifest.

1 @base
<https://w3id.org/w2share/wro/md-setup/>.↪→

2 @prefix ro: <http://purl.org/wf4ever/ro#> .

22 Carvalho et al. / A PROV-Compliant Approach for the Script-to-Workflow Process

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3 @prefix ore:
<http://www.openarchives.org/ore/terms/>
.

↪→
↪→

4 @prefix wf4ever:
<http://purl.org/wf4ever/wf4ever#> .↪→

5

6 <files/Setup_MD/script.sh> a ro:Resource,
wf4ever:Script .↪→

7 <workflow/executable-workflow.t2flow> a
ro:Resource, wf4ever:Workflow .↪→

8 <workflow/refined-workflow.t2flow> a
ro:Resource, wf4ever:Workflow .↪→

9 <data/4e0a1f-fc0f/input/structure.pdb> a
ro:Resource, wf4ever:Dataset .↪→

10 <data/4e0a1f-fc0f/output/bglc.pdb> a
ro:Resource, wf4ever:Dataset .↪→

11

12 <> a ro:ResearchObject ;
13 ore:aggregates
14 <files/Setup_MD/script.sh>,
15 <workflow/executable-workflow.t2flow>,
16 <workflow/refined-workflow.t2flow>,
17 <data/4e0a1f-fc0f/input/structure.pdb>,
18 <data/4e0a1f-fc0f/output/bglc.pdb> .

	Introduction
	Methodology for Script Conversion into WRO
	Overview

	W2Share's Data Model: Supporting the Methodology
	Case Study – Molecular Dynamics
	Overview
	Implementation of Methodology Steps

	Revisiting the Implementation of Step 1: Mapping Scripts into PROV-Compliant Machine-Readable Abstract Workflows
	Revisiting Step 2: (Semi-)Automatically Transforming Abstract Workflows into Executable Workflows
	Evaluation
	Overview
	Executing Queries

	Related Work
	Conclusions and Ongoing Work
	Acknowledgments
	References
	Appendix A. Molecular Dynamics Case Study

