
Semantic Web 0 (0) 1 1
IOS Press

Extracting Entity-specific Substructures for
RDF Graph Embeddings
Muhammad Rizwan Saeed a,*, Charalampos Chelmis b and Viktor K. Prasanna a

a Ming Hseih Department of Electrical Engineering, University of Southern California, CA, USA
E-mails: saeedm@usc.edu, prasanna@usc.edu
b Department of Computer Science, University at Albany - SUNY, NY, USA
E-mail: cchelmis@albany.edu

Abstract. Knowledge Graphs (KGs) have become useful sources of structured data for information retrieval and
data analytics tasks. Enabling complex analytics, however, requires entities in KGs to be represented in a way
that is suitable for Machine Learning tasks. Several approaches have been recently proposed for obtaining vector
representations of KGs based on identifying and extracting relevant graph substructures using both uniform and
biased random walks. However, such approaches lead to representations comprising mostly popular, instead of
relevant, entities in the KG. In KGs, in which different types of entities often exist (such as in Linked Open Data),
a given target entity may have its own distinct set of most relevant nodes and edges. We propose specificity as an
accurate measure of identifying most relevant, entity-specific, nodes and edges. We develop a scalable method based
on bidirectional random walks to compute specificity. Our experimental evaluation results show that specificity-
based biased random walks extract more meaningful (in terms of size and relevance) substructures compared to the
state-of-the-art and the graph embedding learned from the extracted substructures perform well against existing
methods in common data mining tasks.

Keywords: Relevance Metrics, Graph Embedding, Linked Open Data, Data Mining, Recommender Systems, RDF,
SPARQL, Semantic Web, DBpedia

1. Introduction

Knowledge Graphs (KGs), i.e., graph-structured
knowledge bases, store information as entities and
the relationships between them, often following
some schema or ontology [1]. With the emergence
of Linked Open Data [2], DBpedia [3], and Google
Knowledge Graph1, large-scale KGs have drawn
much attention and have become important data
sources for many data mining and other knowledge
discovery tasks [4–10] As such algorithms work
with the propositional representation of data (i.e.,
feature vectors) [11], several adaptations of lan-
guage modeling approaches such as word2vec [12]

*Corresponding author. E-mail: saeedm@usc.edu.
1https://www.blog.google/products/search/

introducing-knowledge-graph-things-not/

and GloVe [13] have been proposed for generating
graph embedding for entities in a KG. As a first
step for such approaches, a representative subgraph
for each target entity in the KG must be acquired.
Each entity (represented by a node) in a hetero-
geneous KG is surrounded by other entities (or
nodes) connected by directed labeled edges. For a
node representing a film, there can be a labeled
edge director connecting it to a node representing
the director of the film. Another labeled edge re-
leaseYear may exist that connects the film to an
integer literal, also represented by a node in the
KG. If we want to extract a subgraph represent-
ing the film, ideally such relevant information (la-
beled edges and nodes) must be a part of the ex-
tracted subgraph. On the other hand, relationships
linked to, say, the Director such as birthYear or
deathYear, which are at two hops from a film, e.g.

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:saeedm@usc.edu
mailto:prasanna@usc.edu
mailto:cchelmis@albany.edu
mailto:saeedm@usc.edu
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

2 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

Batman_1989 director−−−−−→ Tim_Burton birthY ear−−−−−−→
1958, may not be useful or relevant for repre-
senting a film. Therefore, in order to extract a
useful representation (as a subgraph) of a given
entity, we first need to automatically determine
the most relevant edges and nodes in its neigh-
borhood. An extracted representation of any tar-
get entity2 in a KG can only be considered rep-
resentative if it includes only the most relevant
nodes and edge w.r.t the target entity. To accom-
plish this task approaches based on biased ran-
dom walks [14, 15] have been proposed. Such ap-
proaches use weighting schemes to make a par-
ticular set of edges and nodes more likely to be
included in the extracted subgraphs than others.
However, weighting schemes based on metrics such
as frequency or PageRank [14, 16] tend to fa-
vor popular (or densely connected) nodes in the
representative subgraphs of target entities at the
expense of semantically more relevant nodes and
edges.
In this paper, we focus on RDF3 KGs which are

encoded using the Resource Description Frame-
work (RDF) syntax and constitute Linked Open
Data [17, 18]. We assert that the representative
subgraphs of different types of entities (e.g., book,
film, drug, athlete) in RDF KGs may comprise dis-
tinct sets of relationships. Our objective is to auto-
matically identify such relationships and use them
to extract entity-specific representations. This is
in contrast to the scenario where extracted repre-
sentations are KG-specific because of the inclusion
of popular nodes and edges, irrespective of their
semantic relevance to the target entities.
The main contributions of this paper are as fol-

lows:

– We propose Specificity as an accurate mea-
sure for assigning weights to those semantic
relationships which constitute the most intu-
itively relevant representations for a given set
or type of entities.

– We provide a scalable method of computing
specificity for semantic relationships of any
depth in large-scale KGs.

– We show that specificity-based biased random
walks enable more compact extraction of rel-

2Since entities are represented as nodes in a KG; we use
entity and node interchangeably throughout the text.

3https://www.w3.org/TR/rdf-concepts/

evant subgraphs for target entities in a KG as
compared to the state-of-the-art.

To demonstrate the usefulness of our specificity-
based approach for real-world applications, we
train neural language model (Skip-Gram [19]) for
generating graph embedding from the extracted
subgraphs and use the generated embeddings for
the tasks of entity recommendation, regression,
and classification for select entities in DBpedia.
This paper considerably extends [20], in which we
introduced the metric of specificity for the first
time. We provide additional experiments to show
that the vector embeddings can not only be used
for entity recommendation but also regression and
classification tasks. We also propose a variation
of specificity called SpecificityH which takes into
account the hierarchy of classes in the schema on-
tology associated with a KG, discussed in Section
4.2.

The rest of this paper is structured as follows.
In Section 2, we provide a brief overview of related
work. In Section 3, we provide the necessary back-
ground. In Section 4 we motivate and introduce
the concept of specificity. In Section 5, we present a
scalable method for computing specificity. In Sec-
tion 6, we present results highlighting beneficial
characteristics of specificity on DBpedia. In Sec-
tion 7 we conclude with a summary and an outlook
on future work.

Fig. 1. Linked Open Data [Source: http://lod-cloud.net/]

https://www.w3.org/TR/rdf-concepts/
http://lod-cloud.net/

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 3

2. Related Work

Linked Open Data (LOD) [21] is a massive KG
shown in Figure 1 where each node itself is a
Knowledge Graph. Each of these individual KGs
comes from semantically annotating and integrat-
ing unstructured data and publishing as struc-
tured data on the web using the principles of
Linked Data or Semantic Web [22–25]. LOD cloud
currently comprise 1205 KGs4. Few of the KGs
part of LOD are Wikidata5, Freebase6, and DBpe-
dia7 [26, 27].
Due to its open availability, heterogeneity, and

cross-domain nature, LOD is increasingly becom-
ing a valuable source of information in many data
mining tasks. However, most data mining algo-
rithms work with a propositional feature vector
representation of the data [11]. Recently, graph
embedding techniques have become a popular area
of interest in the research community. An embed-
ding maps entire graph or individual nodes into
low dimensional vector space, preserving as much
information as possible related to its neighborhood
[28–30].
Numerous techniques have been proposed for

generating appropriate representations of KGs for
knowledge discovery tasks. Graph kernel-based ap-
proaches simultaneously transverse the neighbor-
hoods of a pair of entities in the graph to com-
pute kernel functions based on metrics such as the
number of common substructures (e.g., paths or
trees) [31, 32] or graphlets [33, 34]. Neural lan-
guage models such as word2vec [12] and GloVe
[13], proposed initially for generating word em-
bedding, have been adapted for KGs [11, 15, 35].
Deep Graph Kernel [34] identifies graph substruc-
tures (graphlets) and uses neural language mod-
els to compute a similarity matrix between iden-
tified substructures. For large scale KGs, embed-
ding techniques based on random walks have been
proposed in the literature. DeepWalk [36] learns
graph embedding for nodes in the graph using neu-
ral language models while generating truncated
uniform random walks. node2vec [15] is a more
generic approach than DeepWalk and uses 2nd or-
der biased random walks for generating graph em-

4Source: http://lod-cloud.net/
5https://www.wikidata.org/wiki/Wikidata:Main_Page
6https://developers.google.com/freebase/
7https://wiki.dbpedia.org/

bedding, preserving roles and community mem-
berships of nodes. RDF2Vec [11], an extension
of DeepWalk and Deep Graph Kernel, uses BFS-
based random walks for extracting subgraphs from
RDF graphs, which are converted into feature
vectors using word2vec [12]. Random walk-based
approaches such as RDF2Vec have been shown
to outperform graph kernel-based approaches in
terms of scalability and their suitability for ML
tasks for large-scale KGs [11, 28]. The main limi-
tation of approaches using uniform (or unbiased)
random walks is the lack of control over the ex-
plored neighborhood which can lead to inclusion of
less relevant nodes in identified subgraphs of tar-
get entities. To address this challenge biased ran-
dom walks based approaches have been recently
proposed [3, 14, 20]. Such approaches use differ-
ent weighting schemes for nodes and edges. The
weights create the bias by making specific nodes
or edges more likely to be visited during random
walks. The work closest to ours is biased RDF2Vec
approach [14] which uses frequency-, degree-, and
PageRank-based metrics for weighting schemes.
Our proposed approach also uses biased random
walks to extract entity representations. However,
unlike [14], we use our proposed metric of speci-
ficity as an edge- and path-weighting scheme for
biased random walks for identifying most relevant
subgraphs for extracting entity representations in
the KGs.

Semantic similarity and relatedness between two
entities have been relatively well explored [23, 37–
39]. Searching for similar or related entities given
a search query is a common task in the field of
Information Retrieval [17, 40, 41]. To facilitate
the search for similar entities the notion of simi-
larity and the set of attributes used for its com-
putation must first be defined. Semantic similar-
ity and relatedness are often used interchangeably
in literature [23, 24, 37, 42], where the similar-
ity between two entities is sometimes computed
based on common paths between them. This def-
inition allows computation of similarity between
any two given entities, including entities of differ-
ent types. For example, Kobe Bryant and Kareem
Abdul-Jabbar (athletes) are each related to LA
Lakers (team) based on path-based similarity. The
other kind of similarity is between Kobe Bryant
and Kareem Abdul-Jabbar who are entities of the
same type, i.e., athletes. Both are athletes, basket-
ball players, and have played for the same team.

http://lod-cloud.net/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://developers.google.com/freebase/
https://wiki.dbpedia.org/

4 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

These attributes in KG, e.g. DBpedia, are repre-
sented through semantic relationships rdf:type and
dct:subject. For this paper, our objective is to auto-
matically identify such semantic relationships that
constitute the representative neighborhoods of en-
tities of the same given type. Therefore, we limit
the computation of similarity to be between two
entities of the same type.

3. Preliminaries

An RDF graph is represented by a knowledge
base of triples [43]. A triple consists of three parts:
<subject (s), predicate (p), object (o)>.

Definition 1. RDF Graphs: Assuming that there is
a set U of Uniform Resource Identifiers (URIs),
a set B of blank nodes, a set L of literals, a set
O of object properties, and a set D of datatype
properties, an RDF graph G can be represented as
a set of triples such that:

G ={< s, p, o > | s ∈ (U ∪B), p ∈ (D ∪O), (o ∈

(U ∪B), if p ∈ O) ∧ (o ∈ L, if p ∈ D),

((D ∪O) ⊆ U)} (1)

We can also represent an RDF graph G as
G = {V,E} such that V ∈ (U ∪ B ∪ L) and
E ∈ (O ∪ D), where E is a set of directed la-
beled edges. In an RDF graph, URIs are used as
location-independent addresses of entities (both
nodes and properties), whereas blank nodes are
assigned internal IDs. Literals can have any values
conforming to the XML schema definitions. Thus,
(1) signifies that any entity with a URI can be sub-
ject, predicate or object. In practice, only entities
with URIs defined as Object or Datatype prop-
erties are used predicates. However, these proper-
ties can also be subjects or objects in other triples,
which is an interesting feature of an RDF graph
that an edge can be between two edges which
makes it different from the traditional definition of
a graph. Blanks nodes can either be subject or ob-
ject whereas literals can only be objects. An RDF
graph is a set of all such RDF triples [43, 44]. On-
tologies are a key concept in the domain of Seman-
tic Web. An ontology is a formal conceptualiza-
tion of a particular domain containing a hierarchy
of concepts (or classes), their relationships (object
properties) and attributes (data properties). Such

semantic relationships are the fundamental aspect
of knowledge representation in Semantic Web as
they provide information about how entities are
linked together. Thus, the ontologies are used to
enforce a schema over RDF instance data [45].

Definition 2. Semantic Relationship: A semantic
relationship in an RDF graph can be defined as <
s, pd, o > where pd represents a path comprising d
successive predicates and d− 1 intermediate nodes
between s and o. When d = 1, < s, p1, o > becomes
equivalent to a single triple < s, p, o >, where p1

or p represents a single predicate or edge between
two nodes s and o.

For this paper, we define semantic relationship
pd of depth or length d, as a template for a path
(or a walk) in G, that comprises of d successive
predicates p1, p2, . . . , pd. Thus, < s, pd, o > repre-
sents all paths (or walks) between any two enti-
ties s and o that traverse through d−1 intermedi-
ate nodes, using the same d successive predicates
that constitute pd. To understand the difference
between a triple, a path, and a template, assume
that an RDF KG consists of only the following
four triples: < s1, a, x >, < x, b, o1 >, < s2, a, y >,
and < y, b, o2 >. < s1, a, x > and < x, b, o1 >
constitute a complex relationship between s1 and
o1. These two triples together are an example of
a semantic relationship of form p2 which consists
of two successive predicates a and b and one inter-
mediate node x. If we treat a, b as a template of
a path, then in this KG there are two instances of
this template: the semantic relationship between
s1 and o1 (first and second triples) and the se-
mantic relationship between s2 and o2 (third and
fourth triples). This also means that for an arbi-
trary s and o, | < s, p2, o > | = 2, where p2 = a, b.
We will formulate the expression for specificity us-
ing this notation in Section 4.

Definition 3. Graph Walk: Given a graph G =
{V,E}, a single graph walk of depth d starting
from a node v0 ∈ V comprises a sequence of d
edges (predicates) and d + 1 nodes: v0

e1−→ v1
e2−→

v2
e3−→ . . .

ed−→ vd.

Random graph walks provide a scalable method
of extracting entity representations from large
scale KGs [15]. Starting from a node v0 ∈ V , in
the first iteration, a set of randomly selected out-
going edges E1 is explored to get a set of nodes
V1 at depth 1. In the second iteration, from every

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 5

v ∈ V1, outgoing edges are randomly selected for
exploring next set of nodes at depth 2. This is re-
peated until a set of nodes at depth d is explored.
The generated random walks are the union of ex-
plored triples during each of the d iterations. This
simple scheme of random walks resembles a ran-
domized breadth-first search. In literature, both
breadth-first and depth-first search strategies and
interpolation between the two have been proposed
for extracting entity representations from large-
scale KGs [11, 15, 36].

Definition 4. Representative Subgraph: The rep-
resentative subgraph (neighborhood) of an entity or
a node v is the set of other nodes S in the graph
that represent the most relevant information re-
lated to v. The edges or paths that link v to every
s ∈ S are also part of the representative subgraph.

Using our running example from Section 1,
the representative subgraph of a film may con-
tain depth-1 edges such as director, producer that
link it to nodes representing its director(s) and
producer(s). Some examples of depth-2 relation-
ships are Film basedOn−−−−−→ Book

writtenBy−−−−−−−→ Author

and Film
director−−−−−→ Director

knownF or−−−−−−−→ Style.
On the other hand, our intuition suggests that
semantic relationships such as Film

director−−−−−→
Director

birthY ear−−−−−−→ Y ear is not as relevant to rep-
resent a film and hence must not be part of the
representative subgraph.

4. Specificity: An Intuitive Relevance Metric

In this section, we introduce and motivate the
use of specificity as a novel metric for quantifying
relevance.

4.1. Specificity

Consider the example shown in Figure 2. Start-
ing from the entity Batman (1989) in DBpedia, a
random walk explores the three shown semantic
relationships (descriptive names used for brevity
instead of actual DBpedia URIs). Our intuition
suggests that the style of a director (represented
by Gothic Films) is more relevant to a film than
his year and place of birth. Frequency-, degree-
, or PageRank-based metrics of assigning rele-
vance may assign higher scores to nodes represent-

Batman (1989) dir.−−→ Tim Burton knownFor−−−−−−−→ Gothic Films
Batman (1989) dir.−−→ Tim Burton subject−−−−−→ 1958 births

Batman (1989) dir.−−→ Tim Burton birthPlace−−−−−−−→ Burbank, CA

Fig. 2. Random walks from node Batman (1989)

ing broader categories or locations. For example,
PageRank scores (non-normalized) computed for
DBpedia entities Gothic Films, 1958-births, and
Burbank, CA are 0.586402, 161.258, and 57.1176
respectively (calculated based on [16]). PageRank-
based biased random walks may include these pop-
ular nodes and exclude intuitively more relevant
information related to the target entity. Our ob-
jective is to develop a metric that assigns a higher
score to more relevant nodes and edges in such
a way that the node Gothic Films becomes more
likely to be captured for Batman (1989) than 1958
births and Burbank, CA. This way, the proposed
metric captures our intuition behind identifying
more relevant information in terms of its speci-
ficity to the target entity.

To quantify this relevance we determine if
Gothic Films represents information that is spe-
cific to Batman (1989). We trace all paths of depth
d reaching Gothic Films and compute the ratio
of the number of those paths that originate from
Batman (1989) to the number of all traced paths.
This gives specificity of Gothic Films to Batman
(1989) as a score between 0.0-1.0. A specificity
score of 1.0 means that all paths of depth d reach-
ing Gothic Films have originated from Batman
(1989). For G = {V,E}, this node-to-node speci-
ficity of a node n1 to n2, such that n1 ∈ V , n2 ∈ V
and pd being any arbitrary path, can be defined
as:

Specificity(n1, n2) = | < n2, p
d, n1 >∈ G|

| < v, pd, n1 >∈ G : v ∈ V |
(2)

Computing specificity between every pair of nodes
in a large scale KG is impractical. Instead of defin-
ing specificity as a metric of relevance between
each pair of entities (or nodes) we make two sim-
plifying assumptions. First, we assert that each
class or type of entities (e.g., films, books, ath-
letes, politicians) has a distinct set of characteris-
tic semantic relationships. This enables us to com-
pute specificity as a metric of relevance of a node

6 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Specificity(pd, S) = 50% when equal
number of paths terminate on VS,pd

from set S and its complement S′

(b) Specificity(pd, S) = 100.0% when
pd is relevant to multiple different

subsets of V but the information VS,pd

it links to S is exclusively connected to
S

Fig. 3. Illustration of specificity

(Gothic Films) to a class or type of entities (Film),
instead of every instance of that class (Batman
(1989)). Second, we measure the specificity of a se-
mantic relationship (director,knownFor), instead
of an entity (Gothic Films), to the class of target
entities. Here, we are assuming that if the major-
ity of the entities (nodes) reachable via a given
semantic relationship represents entity-specific in-
formation, we consider that semantic relationship
to be highly specific to the given class of target
entities. From our example, this means that in-
stead of measuring specificity of Gothic Films to
Batman (1989), we measure specificity of seman-
tic relationship director,knownFor to the class or
entity type Film. Based on these assumptions we
redefine specificity as

Definition 5. Specificity: Given an RDF graph
G = {V,E}, a semantic relationship pd of depth
d, and a set S ⊆ V of all entities s of type t, let
VS,pd ⊆ V be the set of all nodes reachable from S

via pd. We define the specificity of pd to S as

Specificity(pd, S)

= 1
|VS,pd |

∑
k∈V

S,pd

| < s, qd, k >∈ G : s ∈ S|
| < v, qd, k >∈ G : v ∈ V | (3)

where qd represents any arbitrary semantic rela-
tionship of length d. Figure 3 provides visual rep-
resentation of Equation 3. S is a set of all nodes
with a given type t and S′ = V − S. S and VS,pd

are shown as disjoint sets only for illustrative pur-
poses. S ∩ VS,pd 6= ∅ when pd creates a loop or
when for d = 1 is a self-property.

4.2. SpecificityH : Incorporating Hierarchy of
Classes into Specificity computations

We also present an extension of specificity which
takes into account the class hierarchy of the
schema ontology of the KG for its computation.
In Equation 3, the numerator only counts those
semantic relationships that originate from s ∈ S.
This definition is rigid because a given semantic
relationship can be specific to multiple classes of
entities.

In other words, certain semantic relationships
can apply to a broader class and by extension to

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 7

Fig. 4. A subset of DBpedia class hierarchy

multiple of its subclasses. When computing speci-
ficity of a given semantic relationship to instances
of one of these subclasses, e.g., Film, the speci-
ficity score may get penalized due to the rele-
vance of the semantic relationships to the other
subclasses such as TelevisionShow. To rectify this
and make the specificity computations more flexi-
ble, we leverage the hierarchical relationships rep-
resented by the schema ontology. One of the most
common relationships in an ontology is hyponymy,
also called is-a relationship [46, 47]. Hyponymy
represents the relationship between hypernym (the
broader category) and hyponyms (more specific
categories). Figure 4 shows a subset of the hier-
archical structure of DBpedia ontology. Film, Mu-
sicalWork, WrittenWork are hyponyms to the hy-
pernym Work and co-hyponyms of each other. As-
sume that the class hierarchy in the schema ontol-
ogy of the KG is structured as an n-ary tree, i.e.,
a class can have more than one subclasses but not
more than one superclass. Moreover, there is only
one class that has no superclass which is the root
of the entire class hierarchy.
Let the given entity type t be at height (or

depth) h from the root such that t and root can be
labeled as C0 and Ch respectively, which results in
a hierarchy of classes C0 ⊆ C1 ⊆ . . . ⊆ Ch. Sub-
classes of C1 are co-hyponyms of C0. Our objective
is to include the instances of hypernyms of entity
type t (C0) in the computation of specificity. In
Equation 3, we only consider s ∈ S, all of which

are of type t (or instances of class t). We add a
term to the numerator to include instances of hy-
pernyms of t in the computation of specificity as
follows:

Specificity(pd, S)

=
1

|VS,pd |

∑
k∈V

S,pd

1
| < v, qd, k >∈ G : ∀v ∈ V |

.

(h∑
j=0

βj | < vj , q
d, k >∈ G : ∀vj ∈ V ∧ type(vj) = Cj |

)
(4)

Additional constraints for Equation 4 are: v0 ∈ S
and v1 ∩ v2 ∩ . . . ∩ vh ∩ S = ∅. This is to ensure
that each instance of type t or any of its super-
classes is only considered once in the computa-
tion. The factor β ensures diminishing influence of
broader concepts on the computation of specificity
for more specific concepts. For example, from Fig-
ure 4, when computing specificity of a given se-
mantic relationship for class Film other instances
of class Work that are not films have a higher in-
fluence than the more broader class Thing.

5. Bidirectional Random Walks for Computing
Specificity

Computing Equation 4 requires accessing large
parts of the knowledge graph. In this section,
we present an approach that uses bidirectional
random walks to compute specificity. To under-
stand, consider an entity type t and a semantic
relationship pd, for which we want to compute
Specificity(pd, t). We start with a set S contain-
ing a small number of randomly selected nodes of
type t. From nodes in S, forward random walks via
pd are performed to collect a set of nodes VS,pd (ig-
noring intermediate nodes, for d > 1). From nodes
in set VS,pd , reverse random walks in G (or for-
ward random walks in Gr = reverse(G)) are per-
formed using arbitrary paths of length d to deter-
mine the probability of reaching any node of type
t. Specificity is computed as the number of times a
reverse walk lands on a node of type t divided by
the total number of walks. This idea is the basis
for the algorithm presented next which builds a
list of most relevant semantic relationships up to
depth d sorted by their specificity to a given entity
type t.

8 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

Algorithm 1 rankBySpecificity(G, d, t)
Input: RDF graph G = {V,E}, d is the maximum

depth of semantic relationships to be considered,
originating from entities of type t.

Output: Returns ranked list Qspec[] of semantic rela-
tionships for depths 6 d, with a score of 0.0− 1.0

1: initialize Qpaths, Qspec[] to null/empty
2: initialize Npaths, Nwalks, β
3: S ← Generate random nodes of type t
4: for i← 1, d do
5: Qpaths ← selectPaths(G,S, i,Npaths)
6: Qspec[i]← computeSpecificity(G,Qpaths, S,

t, i, Nwalks, β)
7: end for
8: return Qspec[]

Specifically, Qpaths and Qspec[] hold the set of
semantic relationships, unsorted and sorted by
specificity respectively. Qspec[] is initialized as an
array of size d to hold sorted semantic relation-
ships for every depth up to d. Npaths specify the
size of Qpaths. Nwalks is the number of bidirec-
tional walks performed for computing specificity
for each semantic relationship in Qpaths. A set S
of randomly selected nodes of type t is generated
in line 3. For each ith iteration (i 6 d), a set of
semantic relationships Qpaths is selected in line 5.
The function computeSpecificity, in line 6, com-
putes specificity for each semantic relationship in
Qpaths and returns results in Qspec[i]. Each ele-
ment of Qspec is an array of dictionaries. Each dic-
tionary contains key−value pairs sorted by value,
where key is the semantic relationship and value
is its specificity. For each ith iteration of for in Al-
gorithm 1, Qpaths can be populated from scratch
with semantic relationships of depth i by random
sampling of outgoing paths from S. Alternatively,
for iterations i > 2,Qpaths can be populated by ex-
panding from most specific semantic relationships
in Qspec[i− 1].

Algorithm 2 shows the function computeSpeci-
ficity which computes specificity for a given set
of semantic relationships in Q (Qpaths from Al-
gorithm 1). In lines 7 and 8, for each seman-
tic relationship q ∈ Q, a node s ∈ S is ran-
domly selected to get a node v reachable from s
via semantic relationship q in G (forward walk).
In line 9, by using v and selecting an arbitrary
path via any semantic relationship q′ of depth d,
a node v′ is reached (reverse walk, reverse walk in
G or forward walk in Gr). If implementing speci-

Algorithm 2 computeSpecificity(G,Q, S, t, d,N, β)
Input: RDF graph G = {V,E}, S is a set of random

entities with a common type t, Q is a set of seman-
tic relationships of length d to be processed, N is
number of bidirectional walks to be performed for
each semantic relationship in Q

Output: Returns list L of semantic relationships
sorted by specificity (0.0− 1.0)

1: Gr = reverseEdges(G)
2: H = hierarchy(t)
3: initialize dictionary L
4: for all q ∈ Q do
5: count← 0.0
6: repeat
7: s← randomly pick a node from S
8: v ← randomly explore node from s using

any path using q in G
9: v′ ← randomly explore node from v using

any path using q′ in Gr

10: for i← 1, size(H) do
11: if ∃ < v′, rdf : type,H[i] >∈ G then
12: count← count+ βi−1

13: break
14: end if
15: end for
16: until N times
17: insert (q, count

N
) in L

18: end for
19: return L

ficity based on Equation 3, the algorithm needs
to check if t is one of the types associated with
v′ and simply increment an integer variable count
[20, 48]. To implement specificity based on Equa-
tion 4, we first need to acquire the class hierar-
chy of entity type t in H in line 2. The first index
of H holds t and every subsequent entry H[i] for
i > 1 holds the hypernym or superclass of entry
H[i − 1]. For example, for entity type Film (Fig-
ure 4), H = [“Film′′, “Work′′, “Thing′′]. Start-
ing from the first element in H at index i = 1,
the existence of triple < v′, rdf : type,H[i] > is
checked in G. If such a triple exists, count is incre-
mented by a factor of βi−1. This process of bidi-
rectional walks is repeated N times for each q. At
line 17, specificity is computed as count

N . Lines 4-18
are repeated until specificity for each q ∈ Q has
been computed. The return variable L contains se-
mantic relationships and their specificity scores as
key − value pairs.

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 9

6. Evaluation

We evaluate our approach in multiple ways.
We analyze the behavior of specificity computed
for most relevant semantic relationships up to
depth 3. We evaluate the compactness of the ex-
tracted subgraphs by specificity-based biased ran-
dom walk scheme against other metrics used as
baselines. We generate embeddings from the ex-
tracted subgraphs to perform tasks of entity rec-
ommendation, regression, and classification. We
analyze the ability of generated embeddings in pre-
serving the semantics associated with the entities
extracted from the KG. We study the sensitivity
of specificity to the parameter Nwalks (number of
bidirectional walks) and |S| (seed set size). We pro-
vide an empirical analysis of the running time of
Algorithm 2.

6.1. Datasets

We use DBpedia for evaluation which is one
of the largest RDF repositories publicly available
[49]. We have used the English version of DBpedia
dataset from 2016-04 (http://wiki.dbpedia.org/
dbpedia-version-2016-04). We create graph em-
beddings for 5000 entities each of types: Film,
Book, and Album. We also generate embeddings for
500 and 3000 entities of types Country and City
respectively.
We use three different datasets for the tasks of

classification and regression which provide classi-
fication and regression targets for DBpedia cities,
films, and music albums:

– The Mercer Cities8 dataset contains a list of
cities and their quality of living as numeric
scores and discrete labels (“high”, “medium”,
“low”).

– The Metacritic Movies9 and Metacritic Mu-
sic Albums10 datasets contain the Metacritic
score (0-100) which were used as regression
targets. The classification targets are pro-
vided as either “good” (score > 50) and
bad (score < 50) [11]. These datasets are

8https://mobilityexchange.mercer.com/Insights/quality-
of-living-rankings

9http://www.metacritic.com/browse/movies/score/
metascore/all

10http://www.metacritic.com/browse/albums/score/
metascore/all

are accessible at http://data.dws.informatik.
uni-mannheim.de/rmlod/LOD_ML_Datasets/
data/datasets/.

6.2. Experimental Setup and Methodology

For our experiments, we hosted the DBpedia
dataset using OpenLink Virtuoso11 on a server.
All data transactions between the implemented
modules and the repository occurred as SPARQL
queries.

Implementation of Baselines and Proposed Ap-
proach: In the first step, we computed Specificity
and SpecificityH to find the set of most rele-
vant semantic relationships for entities of selected
types. Unless otherwise specified we used follow-
ing values for the parameters of the Algorithms
1 and 2: Nwalks = 5000, |S| = 500, β = 0.25.
Starting from a random seed set S for each type of
entities, we randomly sampled semantic relation-
ships originating from entities in S and selected
top-25d semantic relationships based on the fre-
quency of occurrence for each depth d. This be-
came the frequency-based baseline, where the rele-
vance of semantic relationships were based on how
frequently they occurred in the KG. After com-
puting specificity for each of the most frequent se-
mantic relationship, we only considered those as
relevant that had specificity scores > 50%. For cre-
ating the PageRank-based baseline, we used the
PageRank DBpedia dataset provided by Thalham-
mer et al. [16] (available at http://people.aifb.kit.
edu/ath/#DBpedia_PageRank).

Biased Random Walks for Subgraph Extrac-
tion: Using the lists of most relevant semantic re-
lationships based on frequency-, PageRank-, and
specificity-based metrics, we performed subgraph
extraction using biased random walks. We used
weighted randomized DFS for subgraph extrac-
tion for each target entity. The DFS algorithm tra-
versed the paths starting from each target node us-
ing the list of most relevant semantic relationships.
The nodes linked by more relevant semantic rela-
tionships had a greater likelihood to become part
of the extracted subgraphs. The subgraphs are ex-
tracted as a set of unique graph walks (Definition
3) and can be represented as a sequence of edge
and node labels, in the order in which they were

11https://virtuoso.openlinksw.com/

http://wiki.dbpedia.org/dbpedia-version-2016-04
http://wiki.dbpedia.org/dbpedia-version-2016-04
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/
http://people.aifb.kit.edu/ath/#DBpedia_PageRank
http://people.aifb.kit.edu/ath/#DBpedia_PageRank
https://virtuoso.openlinksw.com/

10 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Books (b) Music Albums (c) Films

Fig. 5. Comparison of frequency- and specificity-based metrics for top-15 semantic relationships

Fig. 6. Extracted subgraphs are represented as sequence of edge and node labels resulting in a document-like representation

visited [11, 14]. An example of document-based
representation of extracted subgraph is shown in
Figure 6. For our experiments, we include up to a
maximum of 1000 distinct paths in the extracted
subgraphs for each entity for proposed and base-
line approaches.
Embedding Generation using word2vec: With

the document-based representation, we used the
Python library gensim12 which provides the im-
plementation of word2vec [12] to estimate repre-
sentation of each label in the generated document
into vector space creating embedding for the RDF
entities [11].

12https://radimrehurek.com/gensim/index.html

6.3. Specificity as a Metric for Measuring
Relevance

Figure 5 shows the top 15 semantic relation-
ships for entities of three types sorted by their
Specificity up to depth 3. The frequency repre-
sents the percentage of number of times a path
representing a particular semantic relationship is
traversed when the neighborhoods of randomly se-
lected nodes are explored. For depth 1, the top-
most plot of each subplot in Figure 5 shows that
there are only a few relatively high-frequency se-
mantic relationships (represented by the peaks)
whereas the rest show a uniform trend of fre-
quency. As depth d increases, frequency exhibits
a flattened trend due to a rapid increase in the
number of possible semantic relationships at each
depth. This trend makes it difficult to define a
frequency-based cut-off value for choosing a cer-
tain set of semantic relationships as most relevant.

https://radimrehurek.com/gensim/index.html

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 11

This may require manual examination of the set of
semantic relationships for choosing an appropriate
frequency threshold. Alternatively, we can choose
a value k such that top-k high-frequency seman-
tic relationships are selected as the most relevant.
For example, in Table 1, assuming that we wish to
include the intuitively relevant semantic relation-
ship dbo:director in the selected semantic relation-
ships, we can either choose a frequency threshold
of < 1.08 or choose k > 7. However, this ad-hoc
method of selecting thresholds is impractical since
it has to be done for every different class of enti-
ties, every depth, and every different RDF KG.

Table 1
Top semantic relationships based on frequency with corre-
sponding specificity scores for dbo:Film

Semantic Relationship Freq.
(%)

Spec.
(%)

Spec.H

(%)
rdf:type 38.46 74.69 79.15
dct:subject 16.94 87.9 89.09
owl:sameAs 11.88 98.4 98.4
dbo:starring 5.82 79.06 84.43
dbo:writer 1.68 76.48 81.86
dbo:producer 1.34 83.9 88.22
dbo:director 1.08 81.76 87.42
dbo:musicComposer 0.92 70.77 80.28
dbo:distributor 0.84 74.08 83.22
dbo:language 0.72 38.65 53.42
dbo:editing 0.66 91.65 92.82
dbo:cinematography 0.64 92.99 94.49

The threshold of Specificity is drawn at 50% in
all plots in Figure 5. The specificity of a seman-
tic relationship is the probability of reaching any
node of a given type from a set of nodes (VS,pd

in Definition 5) by reverse walks in G (or forward
walks in Gr) using any arbitrary path of length d.
We can define a universal cut-off for specificity at
50%. Specificity score above this threshold means
that the selected semantic relationship links the
instances of given class (or entity type) t to the set
VS,pd such that more than half the incoming edges
to this set originate from instances of class t. This
means that the information represented by nodes
in VS,pd on average is more specific to t.
In literature, other approaches such as [23] have

employed a decaying factor αd (where α ∈ [0.0 −
1.0]) as a function of depth d that is used to equally

penalize the relevance score of all nodes at depth d
from target nodes. This is done to implement the
idea that the relevance of nodes decreases as we
move farther away from the target nodes. Speci-
ficity, on the other hand, has a more fine-grained
mechanism of assigning relevance score across dif-
ferent d′s. Figure 5 shows that there are multiple
instances of semantic relationships at depth d that
have higher specificity than semantic relationships
at depth < d. This way specificity exhibits a more
fine-grained behavior of relevance across depths,
meaning that all semantic relationships at depth
d do not simultaneously become less relevant as
compared to those on depth d− 1, as d increases.
There are variations in the specificity-based rele-
vance scores of semantic relationships at the same
depth as well as across depths. This allows both
shallow (breadth-first) and deep (depth-first) ex-
ploration of the relevant neighborhoods around
target entities by specificity-based biased random
walks.

Table 2
Comparison of relevance metrics for example in Figure 2

Semantic Relationships Spec. PR Freq.
director,knownFor 59.14 6.2 345
director,subject 1.05 823.53 73752
director,birthPlace 0.03 200.33 7087

Table 2 shows computed relevance of the three
semantic relationships from example in Figure 2
(Section 4.1) based on their specificity, PageRank,
and frequency. The given PageRank values in col-
umn 3 are the average of non-normalized PageR-
ank scores [16] of top-25 nodes linked to DBpe-
dia entities of type Film by corresponding seman-
tic relationship. The values of frequency in the
last column represent the number of occurrences
of the corresponding semantic relationship in DB-
pedia dataset. We argued that the semantic rela-
tionship director,knownFor is more relevant to a
film as compared to the other two. Table 2 shows
that the proposed specificity based relevance met-
ric is closer to our intuition as compared to other
metrics.

6.3.1. SpecificityH

As discussed in Section 4.1 that Specificity
only includes those nodes in its computation that
are dominantly exclusive or specific to nodes of a
given type. However, many types of entities require

12 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Books (b) Music Albums (c) Films

Fig. 7. Average number of walks per entity for subgraph extraction

Table 3
Comparison of Specificity and SpecificityH scores (β =
0.25)

Semantic
Relationships

Entity Type Spec.
(%)

SpecH

(%)
dbo:language dbo:Film 38.65 53.42
dbo:genre dbo:Album 43.29 50.8
dbo:recordLabel dbo:Album 43.41 56.34
dbp:genre dbo:Book 46.85 52.29
dbo:previousWork dbo:Book 40.0 55.0
dbo:litrerayGenre dbo:Book 46.22 51.52

both specific as well as generic nodes and relation-
ships for complete characterization. For example,
assume that a node representing language is as-
sociated with all instances of the class Work and
its subclasses (Figure 4). Since nodes representing
languages can be linked to multiple different en-
tity types, therefore the specificity of the seman-
tic relationship that links language-related nodes
will be low. In other words, if the algorithm per-
forms reverse walks from dbo:English, it can po-
tentially land on multiple different types of nodes
(e.g., films, books, songs, plays, games).
Table 3 shows a few examples of intuitively

relevant semantic relationships with specificity
scores below the threshold of 50%, resulting
in the exclusion from the representative sub-
graphs of instances of corresponding entity types.
SpecificityH computed using Algorithm 2 takes
into account the applicability of such relationships
to co-hyponyms and hypernyms of the given en-
tity types, resulting in an increase in the speci-
ficity score. This is evident in all plots in Figure
5 where the curve of SpecificityH lie on or above
the corresponding curve of Specificity.

6.4. Comparison of Sizes of Representative
Subgraphs

Figure 7 shows that specificity-based random
walk schemes enable the extraction of relevant
subgraphs with fewer number of walks. Specificity-
based schemes use extraction template based
on semantic relationships with >50% specificity
which enables collection of comparatively fewer
but more relevant nodes and edges than the
baselines for all three of the chosen entity-types.
SpecificityH , as seen in Figure 5 assigns higher
specificity scores, resulting in a few more seman-
tic relationships meeting the 50% threshold. This
results in an increase in the collected number of
walks which, nevertheless, is still below the base-
line approaches.

Figure 7a shows that the average size of the
subgraph of each entity of type dbo:Book for
SpecificityH is smaller by a factor of 48, 16,
and 5 w.r.t uniform, PageRank, and Frequency-
based approaches respectively. Similarly, Figure 7b
shows that the average size of the subgraph of
each entity of type dbo:Book for SpecificityH is
smaller by a factor of 62, 30, and 2 w.r.t uni-
form, PageRank, and Frequency-based approaches
respectively. We will revisit this discussion in the
context of its impact on the recommendation task
in Section 6.5.1.1.

Figure 7a shows that the average subgraph size
is larger for depth-3 than depth-2. One of the rea-
sons is that the most specific depth-2 property for
dbo:Book entities add on average one walk to each
of the extracted subgraphs, whereas the most spe-
cific depth-3 property add 15 walks on average. On
the other hand, Figure 7c shows the opposite effect
where depth-2 subgraph size is larger than depth-3
for Specificity (β = 0.0). The top specific seman-
tic relationships at depth-2 and depth-3 add 100.8

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 13

(a) Books (b) Music Albums (c) Films

(d) Books (e) Music Albums (f) Films

Fig. 8. Comparison of precision and recall for entity recommendation tasks (β = 0.25 for SpecificityH)

and 9.4 walks on the average to each extracted
subgraph. The main underlying reason is that hav-
ing a higher number of specific semantic relation-
ships does not necessarily indicate a larger ex-
tracted subgraph or vice versa. The size of the sub-
graph depends on the number of nodes a partic-
ular semantic relationship connects to the target
entities to include in the extracted subgraph. For
example, for film nodes, on average dbo:director
and dbo:cinematographer add 1.06 and 1.07 walks
to the extracted subgraphs whereas rdf:type and
dct:subject add 28 and 8 walks respectively.

6.5. Embeddings as an Application of
Specificity-based Extracted Subgraphs

We have shown that the specificity-based bi-
ased random walks extract more compact sub-
graphs representing entities as compared to other
schemes. However, to show that the compactness
of the extracted subgraphs is not a disadvantage,
we use the graph embeddings as an application
to evaluate their effectiveness. Using the extracted
subgraphs extracted as documents (Section 6.2),
we trained Skip-gram models using the follow-
ing parameters: dimensions of generated vectors =
500, window size = 10, negative samples = 25, iter-
ations = 5 for each scheme and depth. All models

for depth d > 1 are trained using sequences gener-
ated for both depths 1 and d. The parameters for
this experiment are based on RDF2Vec [11].

6.5.1. Suitability for Entity Recommendation task
To show that the compactness of the extracted

subgraphs is not a disadvantage, we use the gen-
erated graph embeddings for the task of entity
recommendation. Given a vectorized entity as the
search key, we list its top-k most similar results.
We use the metrics of precision@k to quantify
the performance of the recommendation tasks.
Evaluating retrieved results requires ground truth.
For music albums and books, the ground truth
straightforwardly consists of other works by the
same artists and authors respectively. For films,
we selected franchises or series as ground truth.
Films in a franchise or a series usually share com-
mon attributes (e.g., director, actors, genre, char-
acters) and are more likely to be similar to each
other. For example, for any of the three The Lord
of the Rings (LOTR) films the other two films
in the trilogy are its more likely top-2 similar re-
sults because of the same director, cast members,
genre, and characters. In our experiments, King
Kong (2005) also frequently appeared among the
results similar to LOTR since it also has the same
director. Other films may also occur among top-k

14 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Books (b) Music Albums (c) Films

Fig. 9. Effect of β on recommendation task

results based on any number of other factors, e.g.,
cinematography, editing, distributor, all of which
have high specificity to dbo:Film (from Table 1).
Creating exhaustive lists of films for the ground
truth to encompass all such scenarios is laborious.
That is why we included only those films in the
ground truth that are either in a franchise (e.g., all
Batman films) or are part of a series (e.g., prequels
or sequels). Similarity among such films is rela-
tively stronger and easier to interpret. Assuming
that there are n entities in the ground truth for a
given franchise, series, author, or artist (e.g., n = 3
for LOTR or n = 71 for Agatha Christie in our
DBpedia dataset), we chose one entity at a time to
retrieve top-k similar entities (for k = 1 to n− 1),
resulting in a total of n(n − 1) recommendation
tasks per franchise, author, or music artist. We
performed 59616, 221280, and 124032 recommen-
dation tasks for films, books, and music albums
for each random walk scheme respectively.

6.5.1.1. Results Figure 8 shows the results of
recommendation tasks for each scheme. Here, we
have chosen β = 0.25 for computing SpecificityH .
The baselines are shown as colored bars whereas
SpecificityH is drawn as a line to make the com-
parison clearer. SpecificityH is generally slightly
better than other baseline schemes except in Fig-
ure 8c where PageRank-based extracted subgraphs
have a better performance.
Here, it is important to note that the compact-

ness of the extracted subgraphs is the main con-
tribution of our approach. We use recommenda-
tion as an application to show that despite extract-
ing less information from the KG, there is not a
significant deterioration in performance when us-
ing the specificity-based approach with such appli-
cations. The results of the recommendation task
must be interpreted in conjunction with our pri-

mary metric of the size of the extracted sub-
graph. Figure 9 shows the For dbo:Book, Figure
9a shows that the average size of the subgraph
for each entity is 48, 16, and 5 times smaller
for SpecificityH w.r.t uniform, PageRank, and
Frequency-based approaches respectively, whereas
the precision values for SpecificityH(β = 0.25)
and the three baselines lie in 75.1 ± 0.78%. Simi-
larly, for music albums (Figure 9b), the subgraph
size for SpecificityH (β = 0.25) is reduced by
factors of 62, 30, and 2 respectively with pre-
cision lying 68.7 ± 1.6%. Figure 9c shows that
the average size of the subgraph for PageRank-
based approach for each entity is 4.2 times larger
than SpecificityH with β = 0.25 with an advan-
tage of 5% in precision. The size of the subgraph
for each entity for unbiased (uniform) approach
is ten times larger than SpecificityH -based ap-
proach for films. The range of precision values for
SpecificityH (β = 0.25) and the baselines lie in
the range 71.1 ± 3%. This shows that a substan-
tial reduction in extracted information still allows
us to have comparable performance in entity rec-
ommendation task with the specificity-based ap-
proach.

6.5.1.2. Effects of β on Specificity Increasing the
value of β means that the SpecificityH score (for
beta > 0.0) for any semantic relationship will be
equal or higher than its Specificity score. This
is also evident from Figure 5 where SpecificityH

(β = 0.25) > Specificity (β = 0.0). This will re-
sult in more semantic relationships having higher
specificity than the cut-off set at 50%. With a
higher number of relevant semantic relationships
used for subgraph extraction, the size of extracted
subgraphs can increase.

Figure 9 also shows the effect of changing β on
the size of the extracted subgraphs and the rec-

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 15

(a) Uniform (b) PageRank

(c) Frequency (d) Specificity (β = 0.0)

(e) SpecificityH (β = 0.25) (f) SpecificityH (β = 0.5)

Fig. 10. Projection of countries and capitals in 2D space using embeddings generated from RDF subgraphs of depth 2

ommendation task. Here first we refer back to dis-
cussion around Algorithm 1 in Section 5. In Line
5 Qpaths holds the set of selected semantic rela-
tionships which are then re-ordered and filtered in
Line 6 using the metric of specificity. In our imple-
mentation, the semantic relationships for populat-

ing Qpaths are selected based on their frequency of
occurrence. For β = 1.0, every semantic relation-
ship in Qpaths gets a high specificity score in Line
6, i.e., the count variable in Line 12 gets incre-
mented by 1 irrespective of the type of v′ in Line
9. This means that all frequent semantic relation-

16 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

Table 4
Results of Regression and Classification Tasks - SpecificityH(β = 0.25)

Model Depth
Classification Regression

Cities Films Albums Cities Films Albums
Uniform 1 0.935 1.0585 0.983 0.9011 1.0079 1.0002
Uniform 2 0.9359 1.0273 1.0374 0.9131 0.9976 1.0056
PageRank 1 1.0985 1.029 0.9663 0.9546 0.9955 1.0033
PageRank 2 1.0135 0.9849 1.0484 0.9347 0.9935 1.0019
Frequency 1 1.0709 1.0118 0.9421 0.9506 0.998 0.9926
Frequency 2 0.9558 1.0294 0.9886 1.0328 1.0002 0.9996
SpecificityS 1 1.1098 1.0341 0.9894 1.0601 0.9967 1.0017
SpecificityS 2 0.9161 1.023 1.0401 0.8882 0.9985 1.0027

Fig. 11. Average number of walks per entity of types
dbo:City and dbo:Country for subgraph extraction for dif-
ferent values of β

ships are also deemed specific for β = 1.0. Figure
9 shows the average sizes of extracted subgraphs
for Frequency and SpecificityH (β = 1.0) are the
same in each subplot.

6.5.2. Semantics of Specificity-based Vector
Representations

To analyze the semantics of the vector represen-
tations, we employ Principal Component Analysis
(PCA) to project the generated embeddings into a
two-dimensional feature space. We selected seven
countries (similar to evaluation done for RDF2Vec
[11]) and their capital cities and visualized the vec-
tors as shown in Figure 10. Figures 10d and 10e
show that specificity-based embeddings are capa-
ble of organizing entities of different types and pre-
serving some semantic context among them. For
instance, there is a separation between two dif-
ferent types of entities: dbo:Country and dbo:City,
preserving the rdf:type relationship. Compared to
Specificity, SpecificityH has comparatively bet-
ter, although not perfect, organization of capi-
tals in correspondence to their respective coun-

tries. Third, in Figure 10e, cities are grouped to-
gether based on the continents. The information
regarding continents is represented via the se-
mantic relationship dct:subject which links each
city to different DBpedia categories including one
that represents information about continents, e.g.
dbc:Capitals_in_Asia.

Figures 10b and 10c show that rdf:type relation-
ship is not preserved by frequency and PageRank-
based projections respectively. There exists some,
but inconsistent, organization of countries and
capitals with respect to each other and a grouping
based on continents. There is also no clear segrega-
tion based on entity types. Figure 10a shows that
semantic associations are also preserved using uni-
form random walks. However, it can be seen in Fig-
ure 11 that the average size of extracted subgraphs
is order of magnitude more than the Specificity-
based approach.

6.5.3. Suitability for Regression and
Classification Tasks

We performed the tasks of classification and re-
gression on the Mercer Cities, Metacritic Movies,
and Metacritic Music Albums datasets using the
embeddings generated for DBpedia entities. We
used SVM for classification and Logistic Regres-
sion for regression tasks. We measured accuracy
for classification tasks and root mean squared er-
ror (RMSE) for regression tasks. The numeric val-
ues shown in Table 4 can be interpreted as fac-
tor of improvement (lift) when SpecificityH(β =
0.25)-based embeddings are used compared to the
baselines and Specificity. The results show that
the results of all schemes are comparable with
no scheme consistently outperforming the others.
However, these results are achieved using embed-
dings generated from smaller extracted subgraphs,

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 17

(a) Specificity variations - dbo:Film (b) Specificity vs. computation time variations -
dbo:Film

(c) Specificity variations - dbo:Book (d) Specificity vs. computation time variations -
dbo:Book

(e) Specificity variations - dbo:Album (f) Specificity vs. computation time variations -
dbo:Album

(g) Total computation time of top-10
semantic relationships

Fig. 12. Effect of Nwalks on computation of specificity

proving that specificity-based embeddings can be
suitable for data mining tasks.

6.6. Parameter Sensitivity

The algorithms for computing specificity use
bidirectional random walks, governed by two pa-
rameters: number of bidirectional walks (Nwalks)
and size of seed set S. In this section, we evalu-

ate the sensitivity of specificity to both of these
parameters.

6.6.1. Sensitivity of Specificity to Nwalks

The algorithm for computing specificity uses the
parameter Nwalks for the number of bidirectional
walks. To understand the effect of this param-
eter on specificity, we first computed specificity
for Nwalks ∈ [2500, 20000]. Figures 12a, 12c, and

18 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Specificity variations - dbo:Film (b) Specificity vs. computation time variations -
dbo:Film

(c) Specificity variations - dbo:Book (d) Specificity vs. computation time variations -
dbo:Book

(e) Specificity variations - dbo:Album (f) Specificity vs. computation time variations -
dbo:Album

(g) Total computation time of top-10 semantic
relationships

Fig. 13. Effect of |S| on computation of specificity

12e show the comparison between specificity scores
computed for different values of Nwalks for top-
10 semantic relationships for entity type dbo:Film,
dbo:Book, and dbo:Album. The semantic relation-
ships are sorted on the x-axis (from left to right) in
order of decreasing specificity computed based on
Nwalks = 2500 for comparison. Figure 12g shows
the total time taken to compute specificity for

the top-10 semantic relationships for each value
of Nwalks. The computation time increases with
increasing number of bidirectional walks. Figures
12b, 12d, and 12f show the average specificity and
corresponding computation time for each semantic
relationship for all values of Nwalks for the three
chosen entity types. We use standard deviation to
show the variations in the specificity scores and

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 19

computation times observed for different values of
Nwalks. It can be observed that generally large
variations in computation time do not lead to sig-
nificant changes in the specificity scores. Choos-
ing a larger value of Nwalks will simply increase
the total computation time without having signif-
icant effect on the computed specificity scores. If
we select Nwalks = 5000 as a suitable value for
computing specificity, it can be seen from Figure
12g that the time for computing specificity scores
w.r.t either entity-type is 6 150s. Moreover, this
computation is only needed to be performed once
for each type of target entities in a KG.

6.6.2. Sensitivity of Specificity to |S|
Similar to previous discussion for Nwalks, Fig-

ures 13b, 13d, and 13f also shows that the large
variations in computation time do not lead to ma-
jor change in the specificity. Choosing a larger
value of |S| increases the total computation time
without having a significant effect on the com-
puted specificity scores. If we choose |S| ∈ [500 −
1000] as a suitable value for computing specificity,
it will result in computation time of ≈ 150s for
computing specificity of top-10 most specific se-
mantic relationships.

6.7. Analysis of Running Time of Specificity
Computations

The specificity computations are performed by
Algorithm 2. Algorithm 1 is used for setting up
parameters and inputs for Algorithm 2. Since, the
algorithm for computing specificity is based on
random sampling governed by specific parameters,
so instead of purely theoretical formulation here
we provide a limited complexity analysis supple-
mented by empirical analysis of the running time
of the algorithm.
Algorithm 2 computes specificity for a list of se-

mantic relationships provided as input parameter
Q. The complexity of Algorithm 2 as presented is
the complexity of computing specificity of a sin-
gle semantic relationship multiplied by the size of
Q. Therefore, we analyze the complexity of com-
puting specificity of a single semantic relationship
which is accomplished in Lines 5-17. Lines 6-16
repeat N (or Nwalks) times, which is the num-
ber of bidirectional walks. In each iteration, the
Algorithm 2 performs a forward walk in G and
Gr (reverse(G)) or a forward and then a reverse

walk in G (Lines 8 and 9). After completing the
bidirectional walk, a node v′ is identified in Line 9.
Lines 10-15 determine if v′ has the type t or some
other type in the class hierarchy, and the count is
updated accordingly.

There are two distinct tasks being performed in
each iteration of the loop (Lines 6-16): (i) a bidi-
rectional walk starts from a random node s of type
t and lands at a node v′ and (ii) determining the
position of the type of v′ in the class hierarchy. As-
suming a tree-like class hierarchy where the height
of the tree is H, the running time of the Lines 6-
16 can be represented as O(Nn1 +NHn2) where
n1 and n2 correspond to the two tasks described
above. Tasks n1 and n2 require information that
is gathered by issuing SPARQL queries in our im-
plementation. Therefore, the complexity of these
tasks depends on how the query engine of Virtuoso
optimizes the query execution. Instead of further
expanding the relation for complexity mathemat-
ically, we treat the query engine as a black box
and measure the query execution times of the is-
sued SPARQL queries. In our implementation, we
compute specificity using three sets of SPARQL
queries, each of which performs one of the tasks
below:

1. Starting from the seed set S, get a set V of
N number of nodes using the semantic rela-
tionship of depth d, i.e., N iterations of Lines
7-8 of Algorithm 2.

2. Starting from the acquired set V , perform
N number of reverse walks to get a set V ′
using any arbitrary path of depth d, i.e., N
iterations of Line 9 of Algorithm 2.

3. Determine type of each v′ ∈ V ′ and update
count in Line 12 accordingly.

Table 5 shows the distribution of classes at dif-
ferent heights in the class hierarchy of DBpedia.
Level 0 corresponds to dbo:Thing, the root of the
class hierarchy. The maximum height of the tree
H is 8. We replace H with a constant term and
rewrite the running time relation for our DBpedia-
based experiments as O(N [n1 + kn2]). Since the
time complexity of tasks n1 and n2 depends on the
query optimizations performed by the SPARQL
query engine, therefore, we empirically measure
the behavior of the term in the parentheses.

In the Figure 14a, each marker represents a
single computation of specificity. We computed
specificity for five classes (dbo:Film, dbo:Book,

20 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

(a) Computation time for specificity for different
values of Nwalks

(b) Distribution of computational time

Fig. 14. Empirical analysis of computation time of specificity

Table 5
Distribution of classes at different heights in DBpedia
hierarchy

Height in the
Class Hierarchy

Number of Classes

0 1
1 49
2 126
3 209
4 271
5 72
6 23
7 4

dbo:Album, dbo:City, and dbo:Country, depths
d 6 3, different seed set S sizes (100-1000), and
Nwalks = [5000, 50000], resulting in 23908 data
points. The red curve shows the average of compu-
tation time averaged against each value of Nwalks.
Figure 14b shows the distribution of computa-
tion times which shows 75% of all the data points
shown in Figure 14a represent a computation time
of less than 20s for DBpedia KG. Moreover, this
computation is only needed to be performed once
for each type of target entities in a KG.

7. Conclusion

Graph embedding is an effective method of
preparing KGs for AI and ML techniques. How-
ever, to generate appropriate representations, it
is imperative to identify the most relevant nodes
and edges in the neighborhood of each target en-
tities. In this paper, we presented specificity as a

useful metric for finding the most relevant seman-
tic relationships for target entities of a given type.
Our bi-directional random walks-based approach
for computing specificity is suitable for large-scale
KGs of any structure and size. We have shown
through experimental evaluation that the metric
of specificity incorporates a fine-grained decaying
behavior for semantic relationships. It has the in-
herent ability to interpolate between the extreme
exploration strategies: BFS and DFS. We used
specificity-based biased random walks to extract
compact representations of target entities for gen-
erating graph embedding. These generated repre-
sentations have similar performance as compared
to baseline approaches when used for our selected
tasks of entity recommendation, regression, and
classification. For future work, we intend to study
other tasks for which specificity-based graph em-
bedding can be used such as KG completion.

Acknowledgment

This work is supported by Chevron Corp. un-
der the joint project, Center for Interactive Smart
Oilfield Technologies (CiSoft), at the University of
Southern California.

References

[1] T. Berners-Lee, J. Hendler and O. Lassila, The seman-
tic web, Scientific american 284(5) (2001), 34–43.

[2] C. Bizer, T. Heath and T. Berners-Lee, Linked data-
the story so far, International journal on semantic web
and information systems 5(3) (2009), 1–22.

M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings 21

[3] M. Atzori and A. Dessi, Ranking DBpedia Properties,
in: 2014 IEEE 23rd International WETICE Confer-
ence, WETICE 2014, 2014, pp. 441–446.

[4] D. Diefenbach and A. Thalhammer, Pagerank and
generic entity summarization for RDF knowledge
bases, in: European Semantic Web Conference,
Springer, 2018, pp. 145–160.

[5] Y. Huang, V. Tresp, M. Nickel, A. Rettinger and H.-
P. Kriegel, A scalable approach for statistical learning
in semantic graphs, Semantic Web 5(1) (2014), 5–22.

[6] M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich, A
Review of Relational Machine Learning for Knowledge
Graphs, Proceedings of the IEEE 104(1) (2016), 11–33,
ISSN 0018-9219. doi:10.1109/JPROC.2015.2483592.

[7] G. Piao and J.G. Breslin, Transfer Learning for Item
Recommendations and Knowledge Graph Comple-
tion in Item Related Domains via a Co-Factorization
Model, in: The Semantic Web, A. Gangemi, R. Nav-
igli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink,
A. Tordai and M. Alam, eds, Springer International
Publishing, 2018, pp. 496–511.

[8] A. Rettinger, U. Lösch, V. Tresp, C. d’Amato and
N. Fanizzi, Mining the Semantic Web, Data Mining
and Knowledge Discovery 24(3) (2012), 613–662.

[9] P. Shiralkar, A. Flammini, F. Menczer and
G.L. Ciampaglia, Finding streams in knowledge
graphs to support fact checking, in: IEEE Interna-
tional Conference on Data Mining (ICDM), IEEE,
2017, pp. 859–864.

[10] L. Zhu, M. Ghasemi-Gol, P. Szekely, A. Galstyan
and C.A. Knoblock, Unsupervised entity resolution
on multi-type graphs, in: International Semantic Web
Conference, Springer, 2016, pp. 649–667.

[11] P. Ristoski and H. Paulheim, RDF2Vec: RDF Graph
Embeddings for Data Mining, in: The Semantic Web -
ISWC 2016 - 15th International Semantic Web Con-
ference, Kobe, Japan, October 17-21, 2016, Proceed-
ings, Part I, 2016, pp. 498–514.

[12] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado and
J. Dean, Distributed Representations of Words and
Phrases and their Compositionality, in: 27th Annual
Conference on Neural Information Processing Sys-
tems - NIPS 2013, 2013, pp. 3111–3119.

[13] J. Pennington, R. Socher and C.D. Manning, Glove:
Global Vectors for Word Representation, in: Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, 2014,
pp. 1532–1543.

[14] M. Cochez, P. Ristoski, S.P. Ponzetto and H. Paul-
heim, Biased graph walks for RDF graph embeddings,
in: Proceedings of the 7th International Conference on
Web Intelligence, Mining and Semantics, WIMS 2017,
2017, pp. 21–12112.

[15] A. Grover and J. Leskovec, node2vec: Scalable Fea-
ture Learning for Networks, in: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining 2016, 2016, pp. 855–
864.

[16] A. Thalhammer and A. Rettinger, PageRank on
Wikipedia: Towards General Importance Scores for
Entities, in: The Semantic Web: ESWC 2016 Satel-

lite Events, 2016, Springer International Publishing,
Cham, 2016, pp. 227–240. ISBN 978-3-319-47602-5.

[17] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito and
M. Zanker, Linked open data to support content-based
recommender systems, in: Proceedings of the 8th In-
ternational Conference on Semantic Systems, ACM,
2012, pp. 1–8.

[18] A. Lausch, A. Schmidt and L. Tischendorf, Data min-
ing and linked open data–New perspectives for data
analysis in environmental research, Ecological Mod-
elling 295 (2015), 5–17.

[19] T. Mikolov, K. Chen, G. Corrado and J. Dean, Effi-
cient Estimation of Word Representations in Vector
Space, CoRR abs/1301.3781 (2013).

[20] M.R. Saeed and V.K. Prasanna, Extracting Entity-
specific Substructures for RDF Graph Embedding, in:
9th IEEE International Conference on Information
Reuse and Integration (IRI), Salt Lake City, Utah,
USA, IEEE, 2018.

[21] L. Yu, Linked Open Data, in: A Developer’s Guide to
the Semantic Web, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 409–466. ISBN 978-3-642-15970-
1.

[22] P. Hitzler and F. Van Harmelen, A reasonable semantic
web, Semantic Web 1(1, 2) (2010), 39–44.

[23] C. Paul, A. Rettinger, A. Mogadala, C.A. Knoblock
and P.A. Szekely, Efficient Graph-Based Document
Similarity, in: The Semantic Web. Latest Advances
and New Domains - 13th International Conference,
ESWC 2016.

[24] M.R. Saeed, C. Chelmis and V.K. Prasanna, Smart
Oilfield SafetyNet - An Intelligent System for Inte-
grated Asset Integrity Management, in: SPE Annual
Technical Conference and Exhibition (ATCE), 2018.

[25] M. Saeed, C. Chelmis, V.K. Prasanna, R. House,
J. Blouin and B. Thigpen, Semantic Web Technolo-
gies for External Corrosion Detection in Smart Oil
Fields, in: SPE Western Regional Meeting, April
27-30, 2015, Garden Grove, California, USA, 2015.
doi:10.2118/174042-MS.

[26] M. Färber, F. Bartscherer, C. Menne and A. Ret-
tinger, Linked data quality of dbpedia, freebase, open-
cyc, wikidata, and yago, Semantic Web, 1–53.

[27] A. Ismayilov, D. Kontokostas, S. Auer, J. Lehmann
and S. Hellmann, Wikidata through the eyes of DBpe-
dia, Semantic Web 9(4) (2018), 493–503.

[28] P. Goyal and E. Ferrara, Graph embedding techniques,
applications, and performance: A survey, Knowledge-
Based Systems 151 (2018), 78–94, ISSN 0950-7051.
doi:https://doi.org/10.1016/j.knosys.2018.03.022.
http://www.sciencedirect.com/science/article/pii/
S0950705118301540.

[29] P. Ristoski, S. Faralli, S.P. Ponzetto and H. Paulheim,
Large-scale taxonomy induction using entity and word
embeddings, in: Proceedings of the International Con-
ference on Web Intelligence, ACM, 2017, pp. 81–87.

[30] B. Shi and T. Weninger, ProjE: Embedding Projection
for Knowledge Graph Completion, in: Proceedings of
the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, Califor-

http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540

22 M. Saeed et al. / Extracting Entity-specific Substructures for RDF Graph Embeddings

nia, USA., 2017, pp. 1236–1242. http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14279.

[31] G.K.D. de Vries and S. de Rooij, Substructure count-
ing graph kernels for machine learning from RDF data,
J. Web Sem. 35 (2015), 71–84.

[32] U. Lösch, S. Bloehdorn and A. Rettinger, Graph Ker-
nels for RDF Data, in: The Semantic Web: Research
and Applications - 9th Extended Semantic Web Con-
ference, ESWC 2012, 2012, pp. 134–148.

[33] N. Shervashidze, S.V.N. Vishwanathan, T. Petri,
K. Mehlhorn and K.M. Borgwardt, Efficient graphlet
kernels for large graph comparison, in: Proceedings
of the Twelfth International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2009, 2009,
pp. 488–495.

[34] P. Yanardag and S.V.N. Vishwanathan, Deep Graph
Kernels, in: Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, August 10-13, 2015, 2015, pp. 1365–
1374.

[35] M. Cochez, P. Ristoski, S.P. Ponzetto and H. Paul-
heim, Global rdf vector space embeddings, in: Inter-
national Semantic Web Conference, Springer, 2017,
pp. 190–207.

[36] B. Perozzi, R. Al-Rfou and S. Skiena, DeepWalk: on-
line learning of social representations, in: The 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2014, 2014,
pp. 701–710.

[37] N. Aggarwal, K. Asooja, H. Ziad and P. Buitelaar,
Who are the American Vegans related to Brad Pitt?:
Exploring Related Entities, in: Proceedings of the 24th
International Conference on World Wide Web Com-
panion, WWW 2015, 2015, pp. 151–154.

[38] E. Gabrilovich and S. Markovitch, Computing Seman-
tic Relatedness Using Wikipedia-based Explicit Se-
mantic Analysis, in: IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial In-
telligence, 2007, 2007, pp. 1606–1611.

[39] J.P. Leal, V. Rodrigues and R. Queirós, Computing Se-
mantic Relatedness using DBPedia, in: 1st Symposium
on Languages, Applications and Technologies, SLATE
2012, 2012, pp. 133–147.

[40] B. Heitmann and C. Hayes, Using Linked Data to
Build Open, Collaborative Recommender Systems., in:

AAAI spring symposium: linked data meets artificial
intelligence, Vol. 2010, 2010.

[41] P. Lops, M. De Gemmis and G. Semeraro, Content-
based recommender systems: State of the art and
trends, in: Recommender systems handbook, Springer,
2011, pp. 73–105.

[42] Y. Sun, J. Han, X. Yan, P.S. Yu and T. Wu, PathSim:
Meta Path-Based Top-K Similarity Search in Hetero-
geneous Information Networks, PVLDB 4(11) (2011),
992–1003.

[43] Y. Tzitzikas, C. Lantzaki and D. Zeginis, Blank Node
Matching and RDF/S Comparison Functions, in: The
Semantic Web - ISWC 2012 - 11th International Se-
mantic Web Conference, Boston, MA, USA, Novem-
ber 11-15, 2012, Proceedings, Part I, 2012, pp. 591–
607.

[44] X. Ning, H. Jin, W. Jia and P. Yuan, Practical and
effective IR-style keyword search over semantic web,
Inf. Process. Manage. 45(2) (2009), 263–271.

[45] M.R. Saeed, C. Chelmis and V.K. Prasanna, Auto-
matic Integration and Querying of Semantic Rich Het-
erogeneous Data: Laying the Foundations for Seman-
tic Web of Things, in: Managing the Web of Things:
Linking the Real World to the Web, 2017, pp. 251–273.

[46] S. Cederberg and D. Widdows, Using LSA and noun
coordination information to improve the precision and
recall of automatic hyponymy extraction, in: Proceed-
ings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, Association
for Computational Linguistics, 2003, pp. 111–118.

[47] M.A. Rodríguez and M.J. Egenhofer, Determining se-
mantic similarity among entity classes from different
ontologies, IEEE transactions on knowledge and data
engineering 15(2) (2003), 442–456.

[48] M.R. Saeed, C. Chelmis and V.K. Prasanna, Not all
Embeddings are created Equal: Extracting Entity-
specific Substructures for RDF Graph Embedding,
CoRR abs/1804.05184 (2018). http://arxiv.org/abs/
1804.05184.

[49] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer and C. Bizer, DBpedia - A large-
scale, multilingual knowledge base extracted from
Wikipedia, Semantic Web 6(2) (2015), 167–195.

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14279
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14279
http://arxiv.org/abs/1804.05184
http://arxiv.org/abs/1804.05184

	Introduction
	Related Work
	Preliminaries
	Specificity: An Intuitive Relevance Metric
	Specificity
	SpecificityH: Incorporating Hierarchy of Classes into Specificity computations

	Bidirectional Random Walks for Computing Specificity
	Evaluation
	Datasets
	Experimental Setup and Methodology
	Specificity as a Metric for Measuring Relevance
	Specificity-H

	Comparison of Sizes of Representative Subgraphs
	Embeddings as an Application of Specificity-based Extracted Subgraphs
	Suitability for Entity Recommendation task
	Semantics of Specificity-based Vector Representations
	Suitability for Regression and Classification Tasks

	Parameter Sensitivity
	Sensitivity of Specificity to Nwalks
	Sensitivity of Specificity to S

	Analysis of Running Time of Specificity Computations

	Conclusion
	Acknowledgment
	References

