
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Characterizing Web of Things Interactions
with Existential Reasoning
Victor Charpenay a,b,*, Sebastian Käbisch a and Harald Kosch b

a Corporate Technology, Siemens AG, Germany
E-mails: victor.charpenay@siemens.com, sebastian.kaebisch@siemens.com
b Faculty of Computer Science and Mathematics, University of Passau, Germany
E-mails: victor.charpenay@siemens.com, harald.kosch@uni-passau.de

Abstract. The Web of Things (WoT) is a collection of interlinked Web resources exposed by autonomous sensors and actuators
that interact to perform complex automation tasks. This paper presents a method to characterize interactions on the Web of Things
in terms of relations between these devices and the physical world entities that compose their environment. In particular, based
on the recent standardization by the W3C of the Thing Description (TD) model and its alignment with other Web ontologies,
devices expose logical assertions on themselves that form a knowledge graph from which a ‘graph of interactions’ can be derived.

The reasoning task of interest in WoT is query answering over ontologies that feature existential restrictions on the ‘things’
WoT devices observe or act upon. Because no complete algorithm exists for this task, we present a tractable skolemization
algorithm for the ELP fragment of Description Logics (DLs), at the intersection of EL++ and Datalog. We tested our approach
on two use cases in different industry domains: Building Automation (BA) and Industrial Control Systems (ICS).

Keywords: Existential Reasoning, Description Logic, ELP, Web of Things, Thing Description, Semantic Discovery

1. Introduction

One of the promises of the Web of Things (WoT)
is to bring more autonomy in automation systems
by the automatic mash-up of Web agents [1]. These
agents, mostly embedded devices, are capable of sens-
ing and/or acting on specific aspects of the physical
world and provide a Web interface to them. Applica-
tion mash-ups in WoT can essentially be viewed as
multi-agent systems (MAS), as are other ubiquitous
and pervasive systems [2]. As such, a WoT system is
first described by the interactions that take place be-
tween WoT agents, acting either as clients, servers or
both (‘servient’ is the generic term to designate WoT
agents [3]). It is expected that typical WoT systems in-
volve a large and heterogeneous fleet of servients. For
instance, Building Automation (BA) systems, which
are one of the identified application areas of WoT, typ-
ically involve thousands of control devices per build-

*Corresponding author. E-mail: victor.charpenay@siemens.com.

ing. This necessarily leads to complex interaction pat-
terns between WoT servients.

One approach to address this complexity is to char-
acterize interactions in terms of knowledge. First, one
can define a ’graph of interactions’ for a given WoT
system such that its vertices are servients and there
is an edge between vertices whenever the associated
servients interact in the system. Then, one can for-
mulate the hypothesis that there is a similarity be-
tween this graph of interactions and some knowledge
graph describing the system and its environment. Early
on, knowledge graphs and, more precisely, Semantic
Web technologies had been identified as relevant in the
broader field of the Internet of Things (IoT) [4]. In
WoT, this view resulted in the standardization by the
W3C of the Thing Description (TD) model, a simple
RDF model to semantically describe ’things’ and their
interaction affordances via servients [5, 6].

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:victor.charpenay@siemens.com
mailto:sebastian.kaebisch@siemens.com
mailto:victor.charpenay@siemens.com
mailto:harald.kosch@uni-passau.de
mailto:victor.charpenay@siemens.com

2 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1.1. Identification on the Web of Things

The main challenge of a knowledge-base approach
to characterizing WoT interactions is the construction
of the knowledge graph to compare with. More pre-
cisely, it is not obvious to identify the relevant phys-
ical world entities, like walls, pieces of furniture and
other objects that might influence BA systems. Most
approaches from the IoT to this problem consist in pro-
viding methods for digitally “tagging” physical world
objects with electronic chips. The relevant technolo-
gies in that respect are e.g. Near-Field Communica-
tion (NFC), Zigbee or Bluetooth Low-Energy (BLE).
These technologies provide short-range communica-
tion protocols to expose information in a machine-
readable format. One can also think of the use of bar
codes to reference consumer goods as the ancestor of
the IoT for it is also a means to digitally identify these
goods.

What these approaches have in common is that they
specify a unidirectional transformation from the physi-
cal world to the digital space. If the target of this trans-
formation is a set of IRIs, then physical world objects
immediately get a Web presence. The term Physical
Web is sometimes used to refer to the result of this
transformation1. For physical world entities that are
not directly exposed on the Web, URI schemes like
tag: [7], urn: [8] or ni: [9] can be used. Interest-
ingly, a URI scheme for bar codes is currently being
specificied in the perspective of being integrated into
WoT [10].

However, the general approach of tagging comes
with high deployment efforts and maintainance costs.
Moreover, a collection of IRIs is arguably not enough
to make a “web” of Things. Tagging cannot provide
links between IRIs, expressing e.g. a containment rela-
tion between a radiator and a room or adjacencies be-
tween rooms. In contrast, well maintained Web ontolo-
gies like ifcOWL [11], Brick [12] or BOT [13] pro-
vide general knowledge about buildings and other ap-
plication domains for WoT, which can be used to infer
statements about ‘things’ from TD documents giving
e.g. the location of a sensor in a building.

In this paper, we develop a framework based on ex-
istential reasoning to characterize WoT interactions.
That is, these Web ontologies include axioms that only
refer to the existence of physical world entities with-
out strictly identifying them. For instance, the axiom

1https://google.github.io/physical-web/

Table 1
Web ontologies mentioned in the present paper

Name Prefix Ref.

Sensor, Observation, Sample & Actuator sosa [14]
Semantic Sensor Network ssn [14]
Units of Measure om [15]
Building Topology bot [13]
eCl@ss (Products and Services) ec [16]
schema.org schema [17]

‘every room in a building has walls’ is an existential
restrictions on all rooms. There exist numerous works
on this kind of automated reasoning, as our review of
the state-or-the-art shows, especially around Web on-
tologies (Sec. 2). We use and extend some of the tech-
niques found in the literature to infer the existence
of physical world objects from knowledge graphs de-
scribing WoT systems. In particular, we present mean-
ingful relations one can infer to find possible interac-
tions between WoT agents (Sec. 3). We tested this ap-
proach on two different use cases, in the BA domain
with a dataset provided by Intel labs (Sec. 4.1) and in
the domain of industry automation, on a water treat-
ment plant model (Sec. 4.2).

Throughout this paper, we will reference various
Web ontologies, listed in Table 1. All terms appearing
in examples are defined by one of these models, if not
specified otherwise. For the sake of conciseness, we
omit most prefixes.

2. Related Work: Identification by Reasoning

Broadly speaking, reasoning is the process of draw-
ing conclusions from certain knowledge [18]. Reason-
ing is not a particular problem-solving or decision-
making task but rather a tool to complete such tasks.
In WoT, reasoning can help agents build a consistent
model of the physical world, either by validating sen-
sor observations or by inferring high-level statements
from the discrete observations they make of their en-
vironment. In both cases, it is necessary that observa-
tions are correctly interpreted in order for actuators to
be controlled properly.

In computational logic, every reasoning task can be
reduced to the problem of satisfiability of a proposi-
tion (a formula) f by a set of propositions (a knowl-
edge base) K, denoted K |= f . A WoT knowledge
base would typically include axioms provided by some
TD document for specific ’things’, as well as generic
knowledge about the physical world. We can reason-

https://google.github.io/physical-web/

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ably assume that available TDs in a WoT system only
cover a limited extent of all the possible physical world
entities that can be perceived. Therefore, the reasoning
task of interest in WoT is that of existential reasoning:
assuming the existence of some entity not described by
a TD, does K |= f still hold?

In the following, we briefly review RDF graph
canonicalization as an existential reasoning technique
and then consider more in detail the case of existential
reasoning with Web ontologies in terms of satisfiabil-
ity, query answering and query abduction.

2.1. RDF Graph Canonicalization

The RDF data model includes the notion of blank
node. According to the RDF 1.1 Semantics specifica-
tion document [19]:

Blank nodes are treated as simply indicating the existence
of a thing, without using an IRI to identify any particular
thing.

In other words, it is possible to provide axioms
about unknown physical-world entities using blank
nodes. The RDF simple semantics provides a means to
compute equivalences between blank nodes and other
entities, which is a form of existential reasoning. These
equivalences are established by computing a canonical
form GC for an RDF graph G, such that GC |= G and
all blank nodes in G are replaced by “fresh” IRIs (not
present in G) called Skolem constants.

An algorithm based on node coloring has recently
been developed for canonicalization [20, 21]. We
briefly explain its principle with an example.

Example 1. Consider the following description of two
radiators in room 31.638 of the Siemens Legoland
campus, expressed in terms of BOT classes and prop-
erties (Turtle syntax):

<tag:legoland> a bot:Site ;
bot:hasSpace <tag:31.638> .

<tag:31.638> a bot:Space ;
bot:containsElement _:r1, _:r2 .

_:r1 a ex:Radiator .
_:r2 a ex:Radiator .

This example includes the blank nodes _:r1,
_:r2. Node coloring consists first in assigning an ar-
bitrary label (a color) to every blank node in the graph
and then blending these colors according to the neigh-
borhood of each node in terms of classes and proper-
ties. Since both nodes describing a radiator have the

same neighborhood, they will eventually be merged
into a single node during canonicalization. Indeed, the
existence of two radiators necessary implies the exis-
tence of one radiator; blank nodes do not carry any
notion of cardinality.

To be able to distinguish between the two radiators,
we could .e.g. precise on which wall they are mounted.

Example 2. Let us update Ex. 1 with South and East
walls.

<tag:legoland> a bot:Site ;
bot:hasSpace <tag:31.638> .

<tag:31.638> a bot:Space ;
bot:containsElement _:southWall,

_:eastWall .
_:southWall a ex:Wall ;
ex:hasOrientation <tag:south> ;
bot:hasSubElement _:r1 .

_:eastWall a ex:Wall ;
ex:hasOrientation <tag:east> ;
bot:hasSubElement _:r1 .

_:r1 a ex:Radiator .
_:r2 a ex:Radiator .

Given the information that the two radiators are
mounted on walls with different orientations (south,
east), node coloring will output different colors,
from which one can conclude that they are indeed dis-
tinct entities.

In practice, RDF graph canonicalization is a frag-
ile reasoning framework. Any additional property on
a blank node will have effects on all connected blank
nodes in graph G. Moreover, node coloring does not
include any kind of background knowledge. For in-
stance, if we have

<tag:31.638>
bot:containsElement _:southWall .

_:southWall
bot:hasSubElement _:r1 .

then, transitively, it is also true that

<tag:31.638>
bot:containsElement _:r1 .

according to a rule formalized in BOT. If such implicit
statements from G are made explicit in G′, then we
have the undesired property that G′C 6= GC . Next, we
consider existential reasoning in the presence of logi-
cal rules, as provided by Web ontologies.

4 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2. Reasoning with Web ontologies

2.2.1. Description Logics
The theoretical foundations the Web Ontology Lan-

guage (OWL) are Description Logics (DLs), a family
of logic formalisms developed in parallel to classical
First-Order Logic (FOL). In the following, we provide
formal definitions for DL knowledge bases and review
the interplay of DLs with FOL and logic programming.
Although the DL literature has developed its own ter-
minology, slightly different from that of OWL2, we
keep using OWL terms throughout this paper.

In all our definitions, we define NC , NP and NI as
respectively the set of class names, property names
and individual names (all elements of these sets being
IRIs). We also define a set of variables, denoted V . We
can now formally define a DL knowledge base.

Definition 1. [22] Let t, t′ ∈ V ∪ NI , let p ∈ NP and
C ∈ NC ∪ {>,⊥}. A DL expression is a formula f of
the form

C(t) | ∃p.C(t) | p(t, t′) | f ′ ∧ f ′′

where f ′, f ′′ are themselves DL expressions. A DL
knowledge base is a set of rules B → H where H (the
rule head) is either of the form C(t), ∃p.C(t) or p(t, t′)
and B (the rule body) is a DL expression, such that

– B is tree-shaped if seen as an undirected graph
and

– if H is of the form p(t, t′), then there is no path
from t′ to t in B.

The top class > (resp. bottom class ⊥) is a spe-
cial class defined as the super-class (resp. sub-class)
of every class in NC . Formally, we have the rules
C(x) → >(x) and C(x) → ⊥(x) for all C ∈ NC and
for all knowledge base. Moreover, the body of a rule
can be empty to express facts that always hold, i.e. as-
sertions. For a given knowledge base, the set of rules
of this form is called an ABox while other rules belong
to what we call a CBox.

Example 3. Here is a simple example of knowledge
base Kex, stating that every space in a building is a
body of water and every physical body, including air,
has some temperature property.

Space(x)→ Air(x).

2In particular, classes and properties are called concepts and roles
in the DL literature

Air(x)→ PhysicalBody(x).

PhysicalBody(x)

→ ∃hasProperty.Temperature(x).

The existential quantifier (∃) expresses an existential
restriction on the class PhysicalBody. It is com-
parable to the role played by blank nodes, at the class
level. Existential restrictions are the core of the DLs
EL (which stands for “existential logic”) and its suc-
cessor EL++ [23, 24]. Definition 1 subsumes both log-
ics in terms of expressiveness. There exist more ex-
pressive DLs featuring e.g. class complements (¬C)
and inverse properties (p−) but the DL fragment we
consider here has desirable computational properties,
as we will see later.

The most expressive DL is denoted SROIQ. Like
any DL, it is known to be decidable: it is possible to
resolve the satisfiability problem for any axiom α and
any knowledge base K in a finite amount of time [25].
In contrast, the much more expressive FOL is undecid-
able, which is one of the reasons why DLs were chosen
as the basis for OWL.

However, to keep decidability in SROIQ, some
further conditions apply to properties for a rule to be a
valid DL rule. One of these conditions, called regular-
ity, is the existence of a partial order between all prop-
erties in a knowledge base. We do not provide a for-
mal definition of these restrictions here, the reader can
safely assume they apply to all examples shown in this
paper. This rule-based notation is inspired from earlier
observations that all DL axioms can be expressed as
rules of a certain form [26, 27]. We refer to Krötsch’s
Description Logic Rules book for an exhaustive defini-
tion of DL rules [26].

2.2.2. Semantics of Description Logics
In order to decide whetherK |= α for someK, α, we

must define the semantics of DL expressions. We do
so in model-theoretical terms. Model theory relies on
the notion of interpretation. Intuitively, every intelli-
gent (WoT) agent builds an internal model of the phys-
ical world by mapping what it perceives from it to ar-
bitrary symbols, i.e. by interpreting it. Formally. an in-
terpretation I is composed of some (arbitrary) domain
of interpretation, denoted ∆I , and some interpretation
function denoted ·I that maps class, property and in-
dividual names to ∆I [25]. More precisely, for a class
name C ∈ NC , we have CI ⊆ ∆I , for a property name
p ∈ NP, we have pI ⊆ ∆I ×∆I and for an individual
name a ∈ NI , we have aI ∈ ∆I .

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Definition 2. [22] Let f be a DL expression as per
Def. 1. Let I be an interpretation defining a domain
of interpretation ∆I and an interpretation function ·I .
Let σ be a function σ : V ∪ NI 7→ ∆I , such that
σ(a) = aI for all a ∈ NI and σ satisfies the following
constraints for f :

– σ(t) ∈ CI

– there exists δi ∈ ∆I , such that 〈σ(t), δi〉 ∈ pIi
and δi ∈ CIi for all i ∈ [1, k]

– 〈σ(t), σ(t′j)〉 ∈ pIj for all j ∈ [k + 1, n]

We say that I satisfies f and write I |= f if such a
function σ exists for I. Moreover, I satisfies a rule
B→ H if I satisfies H or I fails to satisfy B. A knowl-
edge base K is satisfiable if there exists an interpreta-
tion that satisfies every rule in K. We say that I is a
model of K and write I |= K.

Example 4. In our previous example, one can observe
that adding the following rule to Kex, the knowledge
base is still satisfiable:

Space(x)

→ ∃hasProperty.Temperature(x).

Indeed, for a model I of Kex, if there is σ, such that
σ(x) ∈ SpaceI ⊆ AirI ⊆ PhysicalBodyI , then
there must exist δ, such that 〈σ(x), δ〉 ∈ hasPro-
pertyI and δ ∈ TemperatureI .

2.2.3. Relation to Other Logic Formalisms
It is well-known that SROIQ is a syntactic variant

of a strict subset of FOL. There exist other such sub-
sets, especially in the field of database research where
the most notable formalism is Datalog [28]. The in-
terplay between DLs, FOL and Datalog has been ex-
plored in depth in the literature.

For instance, the intersection of SROIQ with Dat-
alog is called DL Programs (DLP) [29]. This DL frag-
ment presents the advantages of being supported by
mature Datalog systems while also being tractable.
That is, the satisfiability problem can be solved in
polynomial time. DLP does not allow existential re-
strictions, though. This limitation motivated the defi-
nition of ELP, which combines DLP with EL++ ax-
ioms, as well as some other Datalog constructs [22].
It is similar, yet more expressive than another logic al-
lowing for existential reasoning over Datalog, called
Datalog± [30].

Figure 1 shows the mutual inclusion of all these for-
malisms in terms of epxressivity (taken to the most

part from the foundation paper on Datalog± by Calí
et al. [30]). The figure also includes tractability re-
sults for the problem of satisfiability under different
logics. It has been proven that EL++ and ELP are
tractable. Datalog± was also specifically designed to
retain tractability. In Sec. 3.1, we will discuss what for-
malism is suitable for existential reasoning in WoT use
cases.

First-Order Logic

SROIQ (Description Logic)

EL++

EL Programs

EL

Datalog±

Datalog

Description Logic Programs

Logic Programs

Fig. 1. Partial order in terms of expressivity between logic for-
malisms related to DLs with existential restrictions (tractable frag-
ments in bold font, decidable fragments in italic for the problem of
satisfiability)

So far, we have only considered the problem of sat-
isfiability, the simplest reasoning task. As we already
mentioned, reasoning is necessary but not sufficient to
solve specific problems. Computational (WoT) agents
likely need to query a database (e.g. to look at past ob-
servations) or extend a knowledge base with new ob-
servations. Next, we review two more advanced rea-
soning tasks: query answering and abduction.

2.3. Query Answering and Abduction

2.3.1. Conjunctive Query Answering
Query answering on knowledge bases with existen-

tial restrictions can be defined as follows:

Definition 3. [31] A DL conjunctive query (CQ)Q is a
DL expression without existential restrictions, that is, a
conjunction of expressions of the form C(x) and p(x, y)
with x, y ∈ V, C ∈ NC and p ∈ NP. A knowledge base
K entails Q if for all model I of K, I also satisfies all
expressions in Q. The same notation is used for satis-
fiability and entailment, we write K |= Q.

6 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 5. For example, the following conjunctive
query is indeed entailed by Kex:

Space(x) ∧ Temperature(y) ∧

hasProperty(x, y).

However, such a result is of little interest if the
knowledge base does not include any ABox assertion.
If we add the assertion f = Space(31.638) to Kex,
then Kex ∪ { f} entails the following CQ:

hasProperty(31.638, y) ∧ Temperature(y).

Example 5 introduces the notion of substitution for
a CQ, which can also be formally defined. In the fol-
lowing definition and in the remainder of the paper, we
denote NI

K the set of individual names in K. We also
denote var(Q) the set of variables in Q.

Definition 4. Let K be a knowledge base and Q be
a CQ such that K |= Q. The CQ Q′, obtained by re-
placing some x ∈ V in Q with an individual name
a ∈ NI

K, is a substitution for Q if we also have
K |= Q′. Moreover, Q′ is a minimal substitution for
Q if there is no other substitution Q′′ of Q such that
var(Q′′) ⊆ var(Q′).

It is easy to see that substitutions closely relate to the
function σ defined in Def. 2. Indeed, given an model
I of K, a substitution exists for some a ∈ NI

K if and
only if σ(x) = aI . We can further observe that if a
substitution exists for some model I, it is also valid for
any other model I ′ ofK. Query answering is the prob-
lem of finding all minimal substitutions for a given
CQ, which is a more general problem than query en-
tailment.

A conjunctive query with no variable is called a
boolean conjunctive query (BCQ). In practice, it is
common to answer a CQ by testing the entailment
of a set of BCQs obtained by substituting variables
to named individuals. However, this conceptual short-
cut excludes answers containing anonymous individu-
als, although they may also be semantically valid. The
latter answers are precisely those of interest in WoT:
even if the temperature property of room 31.638 is also
asserted in Kex, we argued in introduction that most
physical world objects have no explicit TD. A fortiori,
their properties will also not be asserted. For instance,
in the CQ of Ex. 5, y is anonymous. There is no named
entity that can be substituted to y so that the expression
is still entailed by Kex.

One can note that query answering subsumes the
problem of satisfiability: expressions to be satisfied
can be considered as simple CQ, without conjunctions.
In contrast, CQs are considered complex when they in-
clude at least one conjunction with shared variables be-
tween formulas [32]. It is comparable to queries with
joins in relational databases. In fact, DL query answer-
ing shares many aspects with relation algebra. The DL
subset that gained most attention with respect to query
answering is called DL-Lite [33]. It has the property
that queries can be rewritten into a single FOL expres-
sion that can be processed by relational databases (a
property called FOL-rewritability). DL-Lite does not
feature (qualified) existential restrictions, though.

In the general case, computational complexity for
query answering depends on the size of both the query
and the database. It is common to provide complexity
results when either of them is bounded by a maximum
size (see e.g. results for RDF stores by Guttierez et
al. [34]). For fixed queries, it is called data complexity
while for fixed databases, it is called query complexity.
The former is more interesting in practice, since most
queries are of much smaller size than databases. For a
DL fragment that excludes class disjunctions and com-
plements, as well as transitive and functional proper-
ties [32], DL query answering is tractable for the data
complexity. This fragment, which has much in com-
mon with Datalog±, is subsumed by Def. 1. However,
even for this DL fragment, there is no practical algo-
rithm in the literature, as soon as knowledge bases in-
clude existential restrictions. It is also known that con-
junctive query answering on EL++ (which features
transitive properties) is also tractable [31]. Later in
this paper, we further extend this result and present
a tractable query answering algorithm for knowledge
bases as defined in Def. 1 (Sec. 3.3).

To conclude this section on DL query answering, we
define the closely related notion of explanation, which
is relevant in peer-to-peer (WoT) systems to guarantee
that agents can entail similar results, given their own
knowledge and some explanation provided by other
agents.

Definition 5. [25] An explanation for an CQ Q is a
knowledge base E ⊆ K such that E |= Q but for every
subset E ′ ⊂ E , E ′ 6|= Q.

The term ’explanation’ is also sometimes used in the
literature to refer to abductive reasoning procedures: if
the definition above provides explanations for queries
that are entailed by some knowledge base, abduction
helps understand why some queries are not entailed.

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We review abduction methods for DLs in the follow-
ing.

2.3.2. Abductive Reasoning
Abduction can be described in general terms as the

procedure of finding missing assertions (or rules) for
a query to be entailed by a knowledge base K.In that
sense, every query answering problem is conceptually
equivalent to an abduction problem, such that all “ab-
duced” assertion is asserted in K [35]. However, there
are infinitely many such assertions and concrete for-
malizations usually involve external information not
directly provided by K. For instance, solutions may
only contain a subset of the properties, classes and in-
dividuals in K, defined on a per application basis [36].
Early formalisms based on logic programming also in-
volve integrity constraints allowing or not certain as-
sertions [35]. In that respect, abductive reasoning sig-
nificantly differs from satisfiability and query answer-
ing, both referred to as deductive reasoning tasks.

For DL queries, abduction is formally defined as fol-
lows:

Definition 6. [36] Abduction consists in finding a
knowledge base K′, such that for a knowledge base K
and a BCQ Q, it holds that:

– K ∪ K′ |= Q
– K ∪ K′ 6|= ⊥
– KB′ 6|= Q

Conditions 2 and 3 exclude trivial solutions. Abduc-
tion on general CQs can be answered by instantiating
the CQ in every possible way using terms from NI

K and
a finite set of “fresh” IRIs (in order to obtain BCQs)
and then applying Def. 6.

There exist various works addressing abduction on
different DL fragments, with focus on tractability [36–
38]. All of these works reduce the solution space to
rules with an empty head (ABox axioms), which are
the most relevant in practice. Complexity results are
similar to those for query answering: abduction proce-
dures exist for FOL-rewritable DLs and EL++. To the
best of our knowledge, there is no algorithm covering
Def. 1.

As we saw in our review for query answering, there
is no known implementation to correctly process ex-
istential restrictions. One possible strategy consists in
formulating query answering as an abduction prob-
lem, such that only property and class names involved
in existential restrictions are abducible. It is equiva-
lent to dynamically generating Skolem constants dur-
ing query processing. This is e.g. the idea behind a re-

cent experiment on Datalog± knowledge bases where
query answering is implemented with an Abductive
Logic Programming (ALP) engine [39]. This exper-
iment suggests that this approach performs well on
large ABoxes.

In an earlier publication, we made an attempt to for-
malize and implement reasoning with TDs using ALP
[40]. The underlying DL was EL++. However, as we
will show in Sec. 3.1, EL++ proved impractical in the
use cases we consider here as in the absence of equal-
ity relations between anonymous individuals, we have
an explosion of the solution space as the ABox of the
knowledge base grows. Regardless of any optimization
known for ALP, computing all answers is then highly
expensive. Yet, there is no state-of-the-art algorithm
for DLs more expressive than EL++. In summary, it
appears that existential reasoning procedures relevant
for WoT are at the limit of what is known in DL re-
search. New contributions are to be made to the state-
of-the-art.

In the following, we present the problem of WoT se-
mantic discovery, formulated as an existential reason-
ing problem. We chose to formulate our problem only
in terms of query answering; possible abduction-based
optimizations are left as future work.

3. A Framework for Semantic Discovery on the
Web of Things

We define the problem of semantic discovery as the
discovery of possible interactions in a WoT system
given a knowledge base that includes descriptions of
physical world objects and their properties (possibly
implicit). Semantic discovery accepts as input a set of
TDs and domain-specific knowledge provided by Web
ontologies. We have already mentioned several ontolo-
gies without considering, however, their completeness
in terms of axiomatization to solve problems like se-
mantic discovery. We first review axioms potentially
missing in these ontologies, before moving on to a for-
malization of semantic discovery and then to imple-
mentation considerations.

3.1. Expressiveness of a Web of Things Knowledge
Base

3.1.1. Expressing Existence and Equality Between
Individuals

As mentioned in introduction, the focus of this pa-
per is identification by reasoning as opposed to iden-

8 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tification by physical tagging. Our basic assumption is
that Web ontologies provide generic axioms that can
be exploited to identify anonymous entities from asser-
tions found in TDs. The axioms of interest in our con-
text are those expressing the existence of some anony-
mous individuals and equality between them. These
OWL axioms translate into rules in our present formal-
ism. Formally, an axiom contributes to expressing ex-
istence or equality if all model I of some knowledge
base K has some characteristic only in the present of
the corresponding rule(s). In the case of existence, it
means that for all model I ofK, there is some δ ∈ ∆I ,
such that (1) σ(x) = δ for some x ∈ V and (2) there
is no named individual a ∈ NI , such that aIK = δ,
i.e. δ is anonymous. In the case of equality, it means
that there is 〈δ1, δ2〉 ∈ pI1 , 〈δ3, δ4〉 ∈ pI2 for some
p1, p2 ∈ NP such that there is the equality relation
δ1 = δ3 or δ2 = δ4 between anonymous individu-
als. First, we briefly review various OWL features as
to whether they express existence, equality or none of
these aspects in order to decide on what DL fragment is
most relevant in WoT. Then, we give examples of such
axioms with classes from the WoT ontology cloud.

In Table 2, we give a list of the DL features that
have a direct correspondance to OWL. All features can
be simply expressed with DL rules if we add class
complements (¬C) to Def. 1. First, it is easy to see
that universal restrictions do not contribute to existen-
tial reasoning, either for existence or equality. Indeed,
for some class C, an interpretation I can satisfy re-
strictions on CI regardless of whether CI is empty
or not. The observation also holds for class comple-
ments and maximum cardinality constraints. On the
other hand, minimum cardinality constraints are rel-
evant since they subsume existential restrictions, the
only dedicated construct to express existence. Finally,
one can note that class complements may indirectly
express equality, by negation.

With respect to properties, DL features only con-
tribute to equality. However, these features are key in
WoT since they allow for the construction of relations
between individuals that correspond to systems via
anonymous individuals that represent physical world
entities. This pattern is then exploited to infer possible
interactions between these systems.

Functional properties, by definition, are used to
identify entities, like primary keys in a database. Prop-
erty chains are the main construct to infer more knowl-
edge about anonymous individuals, beside their mere
existence. Therefore, they are important for equality.
Transitivity is a special case of property chain. Reflex-

Table 2
DL features for properties (top) and classes (bottom) expressing the
existence (∃) and equality (=) between anonymous individuals; the
number of occurrences for each feature in the ontologies from Table
1 is also given

DL feature ∃ = Occurrences

Existential restriction yes no 14
Universal restriction no no 215
Min. cardinality constraint yes no 0
Max. cardinality constraint no no 0
Class complement no yes 0

Transitive property no yes 1
Functional property no yes 14
Inverse property no no 35
Symmetric property no no 2
Reflexive property no no 0
Property chain no yes 6

ive and inverse properties do not directly contribute
to expressing existence or equality but they do sim-
plify the axiomatization of Web ontologies. We will
discuss their usefulness later in this section. The same
holds for symmetric properties, a special case of in-
verse properties.

3.1.2. Examples for Physical Bodies and their
Properties

Table 2 also shows occurrences of the different fea-
tures in the ontologies of Table 1. It appears that most
logical axioms are not relevant for existential reason-
ing. Still, it is possible to express rather simple rules
with the vocabulary it exposes (i.e. its class, property
and individual names). We present examples of rules in
the following, on two kinds of physical world entities:
properties of features of interest (like a temperature)
and objects related to the features of interest asserted
in TDs (like walls in a room).

Regarding properties (of features of interest), it is
rather straightforward to create a knowledge base that
gives the properties of physical world objects depend-
ing on their type. On Fig. 2, we give an example of
classification for physical bodies that extends OM, the
ontology of units of measure. Physical bodies are dis-
tinguished according to their phase (liquid, solid or
gas). Every physical body has a om:Volume and a
om:Temperature but only fluids (liquid, gas) have
a om:Volumetric_flow_rate. All examples of
rules in Sec. 2 come from these axioms.

Physical quantities are further categorized accord-
ing to the domain of physics that defines them. For

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

hasProperty

hasProperty

hasProperty

Volumetric_fl...

Volume

MechanicalPr...

Fluid

PhysicalBody

Gas

Liquid

Air

FeatureOfInterest

Thermodyna...

GeometricPro...

Property
Temperature

Solid

Fig. 2. Knowledge base for physical bodies and their properties (VOWL syntax [41])

instance, volume is relevant in geometry, property in
thermodynamic and flow rate in mechanics. These
categories help expressing equality relations between
properties of distinct objects in an indirect manner.

Example 6. The following rule states for instance that
two intersecting fluids share the same thermodynamic
properties:

Fluid(x1) ∧ Fluid(x2) ∧

intersects(x1, x2) ∧ hasProperty(x2, y)

→ hasProperty(x1, y).

Finally, certain properties like the deformability of
fluids can be expressed in terms of sensing and actua-
tion on them. Deformability means that any mechani-
cal action on a fluid implies changes of its geometry.

Example 7. The following rule indirectly defines the
deformability of fluids:

Actuator(x) ∧ Fluid(y) ∧

actsOnProperty(x, z1) ∧

hasProperty(y, z1) ∧ hasProperty(y, z2) ∧

MechanicalProperty(z1) ∧

GeometricProperty(z2)

→ actsOnProperty(x1, y).

Regarding physical world objects, the most interest-
ing axioms to formalize are the geometric relations be-
tween physical bodies.

Example 8. An example can be found in BOT, where
bot:containsZone property is declared as tran-
sitive:

containsZone(x, y) ∧ containsZone(y, z)

→ containsZone(y, z).

It is possible to have even more generic relations
considering only the phase of physical bodies.

Example 9. For instance, the following rule states that
a solid and a fluid that are both within some physical
body necessarily intersect:

Solid(x) ∧ PhysicalBody(y) ∧ Fluid(z) ∧

within(x, y) ∧ contains(y, z)

→ intersects(x, z).

Geo-spatial relations in Ex. 9 are provided by
schema.org (schema:geospatiallyWithin and
schema:geospatiallyContains).

From Table 2, the feature we used to express these
DL rules are property chains and (indirectly) in-

10 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

verse and reflexive properties 3. However, explicit in-
verse properties come with undesired effects: despite
the obvious symmetry between schema:geospa-
tiallyWithin and schema:geospatially-
Contains, introducing an explicit symmetry relation
between them would significantly increase the time
complexity of query answering. Since inverse prop-
erties do not directly contribute to existential reason-
ing, we explicitly left them out in our formalization of
DL knowledge bases (recall Def. 1). We also discarded
functional properties and class complements, although
these features may impact equalities among anony-
mous properties. Experimentally, we have never been
confronted with the case where they were unavoidable
(contrary to property chains, which proved crucial). It
is unclear, however, if it holds in the general case.

Next, we formalize a WoT-specific problem based
on existential reasoning on the rules we have just pre-
sented. This formalization holds regardless of the DL
features we allow or not in a knowledge base. The
choice we have made in that respect is only relevant
when considering practical implementation (Sec. 3.3).

3.2. Problem Statement

Like all multi-agent systems, WoT systems are pri-
marily defined by the interactions that take place be-
tween servients. The general assumption of this paper
is that the graph of interactions G = 〈V, E〉, such that
V is a set of servients and E a set of unordered pairs
{x, y} whenever servient x interacts with servient y,
is directly related to the knowledge base K describ-
ing the system and its environment. More precisely,
we assume that every servient interaction relates to a
specific CQ Q involving both servients as instances of
ssn:System, such that K |= Q. In other words, ev-
ery edge in G is labeled with some CQ.

Example 10. Consider a HVAC system with two
servients s1, s2 respectively controlling a radiator
and a temperature sensor, both located in room 31.638.
The two devices are synchronized to keep the temper-
ature constant. We then have G = 〈{s1,s2}, {e =
{s1,s2}}〉 and e is labeled with the following query:

observes(s1, x) ∧ actsOnProperty(s2, x).

3we refer to Ch. 8 of Description Logic Rules for an explana-
tion on how to transform DL rules to so-called “qualified” property
chains.

In this paper, unlike traditional MAS studies, we do
not consider the (possibly contradictory) goals of WoT
servients, nor do we consider the events to which they
react. Instead, we only aim at preserving the logical
consistency of the system by guaranteeing that every
interaction can be explained in terms of conjunctive
querying. As a consequence, edges of our graph of in-
teractions are undirected: we do not consider whether
the client initiates the request or if it receives an asyn-
chronous notification from the server. In fact, the inter-
action might even be mediated by some other device
but it is of little interest from a semantic point of view
to distinguish the case where interactions are mediated
and when they are direct (in which case they are called
peer-to-peer interactions).

Given our formalisms for graphs of interactions,
several problems can be defined. For instance, given a
graph of interactions G and a knowledge graph K, one
problem is that of labeling G with minimal CQs. An-
other problem of interest is to find the biggest graph G
for a given knowledge base K and a queryQ. We refer
to the latter as semantic discovery and formalize it in
the following.

Our basic assumption is that every WoT servient si

exposes in the form of a TD an ABoxAi (a set of asser-
tions) with respect to a shared CBox C (a set of rules).
We denote A the ABox

⋃
iAi and K the knowledge

base defined as A ∪ C.

Definition 7. WoT semantic discovery on a knowl-
edge base K =

⋃
iAi ∪ C and for a CQ Q is the

task of finding every minimal substitutionQ′ ofQ that
includes a ∈ NI

Ai
and b ∈ NI

A j
distinct such that

K |= System(a) ∧ System(b).
The biggest graph of interactions for K then has an

edge {a, b} labeled with Q′.

Interactions of particular interest are those between
two servients observing or acting on the same property
of some feature of interest.

Example 11. Let us define some minimal TD for a ra-
diator (A1):

Radiator(s1).

within(s1,31.638).

Space(31.638).

as well as a TD for a temperature sensor (A2):

TemperatureSensor(s2).

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

within(s2,31.638).

Space(31.638).

and a CBox similar to what we presented in Sec. 3.1
(C):

Radiator(x)

→ ∃actsOnProperty.Temperature(x).

TemperatureSensor(x)

→ ∃observes.Temperature(x).

Space(x)

→ ∃hasProperty.Temperature(x).

within(x, y) ∧ hasProperty(x, z) ∧

Temperature(z) ∧

∃actsOnProperty.Temperature(y)

→ actsOnProperty(x, z).

within(x, y) ∧ hasProperty(x, z) ∧

Temperature(z) ∧

∃observes.Temperature(y)

→ observes(x, z).

Let K be the knowledge base A1 ∪ A2 ∪ C and Q
the following CQ:

observes(x, z) ∧ actsOnProperty(y, z).

The output of semantic discovery on K for Q is the
graph of interactions given in Ex. 10.

In practice, for a broader graph of interactions tak-
ing into account sensor/sensor and actuator/actuator
interactions, we can introduce the property relates-
ToProperty, as follows:

observes(x, y)

→ relatesToProperty(x, y).

actsOnProperty(x, y)

→ relatesToProperty(x, y).

and then run semantic discovery on the following
query:

relatesToProperty(x, z) ∧

relatesToProperty(y, z).

This is the query we used in our experiments, pre-
sented later (Sec. 4).

When an interaction indeed takes place in a system,
it can be stated by a ssn:hasSubSystem relation
between a composite system and its sub-systems, ei-
ther interacting in a mediated or peer-to-peer fashion
(where the composite system is virtual). In the latter
case, we assume that TDs are managed by the servients
themselves, as opposed to being stored in a central
RDF store. As a consequence, these TDs must be up-
dated with the results of semantic discovery, in order
for all servients involved in a new system to have suf-
ficient knowledge about it. That is, each servient in-
volved in a potential interaction should be able to en-
tail the associated CQ from its own ABox. This relates
to the notion of query explanation we defined earlier
(Def. 5).

Definition 8. Let E be an explanation for a CQ Q on
K. The update ABox for Q in a peer-to-peer system
is the ABox A′ =

⋃
iA′i , such that for all Ai where

NI
Ai
∩ NI
E 6= ∅, A′i = E \ (Ai ∪ C).

Given Def. 8, it then holds that (Ai ∪A′i) ∪ C |= Q.
One can further note that update ABoxes can be com-
puted incrementally. That is, if A′i is the update ABox
resulting from a first discovery on servient with ABox
Ai, when discovery is performed a second time, the
new update ABoxA′′i can be computed againstAi∪A′i ,
such thatA′i ∩A′′i = ∅. Incremental update of ABoxes
has practical benefits since it is likely that servients en-
ter a WoT system at different times over the lifecycle
of that system.

Example 12. The update ABox for Ex. 11 is the union
of the following ABox for the radiator (A′1):

Radiator(s1).

within(s1,31.638).

and the following ABox for the temperature sensor
(A′2):

TemperatureSensor(s2).

within(s2,31.638).

In this particular case, A′1 = A2 and A′2 = A1

but in the general case, the update ABox for a given
servient is inversely proportional to its prior level of
knowledge.

12 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.3. A Tractable Approach

In Ex. 11, discovery is only successful if existen-
tial restrictions in C are correctly processed. Indeed,
no temperature property of room 31.638 is explicitely
named, although it is known that every room has some
temperature (as has every body of air). As underlined
in our review of the state-of-the-art in DL reasoning
(Sec. 2), there is no dedicated algorithm for conjunc-
tive query answering with existential restrictions. Most
known implementations of DL reasoners that provide
query answering are not complete. A straightforward
remedy is to emulate the original knowledge base by
creating Skolem constants wherever the existence of
some entity is stated and run classical query answering
algorithms over the emulated knowledge base. We de-
fine the SKOLEMIZE procedure in the following (Alg.
1) and prove the equivalence in terms of query answer-
ing between a knowledge base and its skolemization
(Th. 1).

Algorithm 1 Skolemization algorithm for a knowl-
edge base K with existential retrictions. S is a subset
of the individual names inK and n an arbitrary integer.

1: function SKOLEMIZE(K, S ⊆ NI
K, n)

2: Let K′ := K, S′ := ∅
3: for all a ∈ S, p ∈ NP

K,C ∈ NC
K do

4: if K |= ∃p.C(a) then
5: Let b be a fresh individual
6: K′ := K′ ∪ {p(a, b),C(b)}
7: S′ := S′ ∪ {b}
8: end if
9: end for

10: if n = 1 then
11: for all f in K of the form ∃p.C(t) do
12: Let x be a fresh variable
13: f ′ := p(t, x) ∧C(x)
14: Replace all occ. of f in K′ with f ′

15: end for
16: return K′
17: else
18: return SKOLEMIZE(K′, S′, n− 1)
19: end if
20: end function

Theorem 1. Let K be a DL knowledge base, i.e. a set
of rules of the form B → H. Let n be the maximum
number of variables in B over K and Q be a conjunc-
tive query using the vocabulary of K. The knowledge
base Kn, obtained by the application of SKOLEMIZE

(Alg. 1) on K, NI
K and n, emulates K and K |= Q if

and only if Kn |= Q.

Proof. We start by observing that for all model I of
K, all path 〈aI , δ1〉, . . . 〈δk−1, δk〉 is at most of length
n, for some a ∈ NI

K and δ1, . . . , δk anonymous.
Proof: for all rule B → H in K, s.t. I satisfies both
H and B, all property chains in B are of the form
p1(t1, t2), . . . , pn−1(tn, tn) (as per Def. 1). The result-
ing path in ∆I is of maximum length when tIi 6= tIj
for all distinct i, j ∈ [1, n], that is, of length n.

We can now proceed to a proof for emulation,
which is defined by two criteria [25]: (1) Hypothesis:
I |= Kn. The goal is to prove that I is also a model
of K. If, for all formula in Kn, there is σ satisfying
Def. 2 for I, then it also satisfies all formulas of K
with no existential restriction. If a formula includes a
restriction ∃p.C(ti) in K, then there is an equivalent
formula p(ti, x) ∧ C(x) in Kn, s.t. 〈σ(ti), σ(x)〉 ∈ pI

and σ(x) ∈ CI . Then δi = σ(x). If I fails at sat-
isfying some formula in a rule body, then no σ ex-
ists and more precisely, if it fails for some existen-
tial restriction, there is no domain element σ(x) and
therefore no δi either. In both cases, I |= K. (2) Hy-
pothesis: I |= K. The goal is now to construct I ′,
s.t. I ′ |= Kn, ∆I

′
= ∆I and ·I′ = ·I for every

name in NC
K ∪ NP

K ∪ NI
K. We define I ′, s.t. the lat-

ter constraint is met. Let σ be the function satisfy-
ing all constraints on K for I, s.t. there is no map
µ : ∆I 7→ ∆I , s.t. σ ◦ µ also satisfies all con-
straints on K. σ always exists and is unique (up to
a renaming of individuals) [34]. If σ(x) is anony-
mous for some variable x in K, then there is a path
〈aI , δ1〉, . . . , 〈δk−1, δk〉 with k 6 n (as per our pre-
liminary observation), aI some named individual and
δk = σ(t). Furthermore, let this path be the shortest
path, s.t. for some p1, . . . , pk, we have 〈aI , δ1〉 ∈ pI1 ,
. . . , 〈δIk−1, δk〉 ∈ pIk and for some C1, . . . ,Ck, we have
δ1 ∈ CI1 , . . . , δk ∈ CIk , in order for this path to be
unique (otherwise, it would be possible to define µ).
It follows that ∃p1.C1(a) and therefore, there must
also be some Skolem constant b1, s.t. p1(a, b1) and
C1(b1) are in Kn. We then define bI

′

1 = δ1, from
which follows that 〈aI′ , bI′1 〉 ∈ pI

′
and bI

′

1 ∈ CI
′
,

given that pI
′

= pI and CI
′

= CI . Therefore,
I ′ |= p1(a, b1)∧C1(b1). Similarly, we define bI

′

i = δi

for all i ∈ [2, k], s.t. I ′ |= pi−1(bi−1, bi) ∧ Ci(bi),
generated in the i-th recursive call of SKOLEMIZE

(i 6 k 6 n). Finally, we have I ′ |= Kn with σ satisfy-
ing all constraints on Kn.

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We the proceed to a proof for reciprocity w.r.t query
answering: (if) Hypothesis: Kn |= Q. Because Kn em-
ulatesK, all model I ofK has the same image as some
model I ′ of Kn (and Q) using some function σ′. Our
goal is to prove that σ′ also satisfies constraints on Q
for I. By virtue of emulation, we have CI

′
= CI for

all C ∈ NC
K, from which directly follows that for all

C(t) in Q, σ′(t) ∈ CI . Similarly, pI
′

= pI for all
p ∈ NP

K and 〈σ′(t1), σ′(t2)〉 ∈ pI for all p(t1, t2) in
Q. Therefore, σ′ indeed satisfies all constraints for I.
(only if) Hypothesis: K |= Q. Do we have I ′ |= Q
for all model of Kn? We proceed by contradiction and
assume I ′ 6|= Q for some model I ′ of Kn. It still holds
that I ′ |= Kn, therefore I ′ |= K (by virtue of em-
ulation) and I ′ |= Q (Def. 3), which contradicts our
hypothesis.

Alg. 1 requires reasoning only to satisfy simple ex-
istential restrictions on individuals, that is, expressions
of the form ∃p.C(a) (see line 4). The latter is not
a complex query and, in fact, it is not even a BCQ
(Def. 3 excludes existential restrictions). Proving that
K |= ∃p.C(a), what is called instance checking, is a
much simpler task than query answering. The DL liter-
ature provides an instance checking algorithm for any
DL fragment. In particular, a tractable algorithm based
on some transformation to Datalog exists for ELP, the
“combination” of EL++ and DL programs. Intuitively,
the SKOLEMIZE procedure reduces general query an-
swering to a finite number of applications of instance
checking. The increase in size during skolemization is
bounded by (NI

K.N
R
K.N

C
K)n in the worst case (max. n

variables per rule). For arbitrary knowledge bases, this
leads to an exponential blow-up. In practice, however,
it is reasonable to assume that n is bounded. For in-
stance, in all our experiments, rules inK have at most 5
variables. This allows us to retain tractability, as stated
in the following theorem.

Theorem 2. Let K be a knowledge base as per Def.
1, such that for all rule B → H in K, B has at most n
variables. Query answering for K can be computed in
polynomial time with respect to the size of K.

Proof. By definition, any DL knowledge base as de-
fined in Def. 1 is in the DL fragment of ELP, for
which satisfiability and classification are polynomial
[22]. During the application of SKOLEMIZE, classifi-
cation is called a finite amount of time on a knowl-
edge base whose size (w.r.t. class, property and indi-
vidual names) increases linearly w.r.t. the input K (for

a fixed n). SKOLEMIZE therefore returns in a polyno-
mial amount of time w.r.t. the size of K.

Query answering on the output knowledge base K′
is in turn polynomial w.r.t. the size ofK′, which imme-
diately follows from the observation that it can be re-
duced to instance checking (in ELP), given that every
individual for some model I ′ of K′ is named.

As we have already mentioned, all the logics we are
considering in this paper are standardized by OWL,
the reference language for Web ontologies. There ex-
ist numerous commercial solutions for RDF storage
that include standard OWL reasoning, among oth-
ers GraphDB4 and Stardog5. The implementation of
SKOLEMIZE against such RDF stores is rather straight-
forward. Query answering without existential restric-
tions, as output by SKOLEMIZE, can then be dele-
gated to the SPARQL engine these solutions imple-
ment. SPARQL is the standard RDF query language
[42].

OWL reasoners are designed for expressive DL
axioms, most of which being out of the scope of
this paper to retain tractability. It is therefore not
clear whether RDF stores will have satisfactory per-
formances for WoT use case. An alternative consists
in transforming DL rules into equivalent Datalog pro-
grams with specific constructs and load them into de-
ductive database systems like RDFox [43] or XSB6

[44]. In contrast to RDF store, however, most deduc-
tive database systems are prototypical or dedicated to
research. In the following section, we discuss concrete
implementation details and experiments.

4. Experiments

The semantic discovery framework we have defined
in theoretical terms (Def. 7) relies on a discovery agent
that first collects available TDs in a system and then
resolves the given query answering problem. These
two steps must be performed regardless of the type
of system (mediated or peer-to-peer). Optionally, for
peer-to-peer systems, the individual components of the
system—the servients—can be notified of the discov-
ered relations with other servients. We call this discov-
ery agent a Thing Directory (TDir).

4http://graphdb.ontotext.com/
5https://www.stardog.com/
6if used in its Datalog flavor, with tabling.

http://graphdb.ontotext.com/
https://www.stardog.com/

14 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Our TDir implementation offers a registration Web
interface designed after the IETF Resource Directory
specification7 and backed by an RDF store (GraphDB).
TDs can be registered in plain JSON, one of the RDF
serialization formats (Turtle, RDF/XML or JSON-LD)
or the IETF CoRE Link format and its derivatives8.
The latter targets constrained environments by provid-
ing concise serializations. To a lesser extent, our TDir
implementation is inspired from the early Hypercat
specification, a Web resource catalogue with RDF-like
annotations9, with the difference that our implemen-
tation also provides a SPARQL interface with off-the-
shelf OWL reasoning. The source code of our TDir can
be found online10.

We designed two experiments with TDir-based se-
mantic discovery in different domains of application of
WoT: BA and more precisely the Heating, Ventilation
and Air Conditioning (HVAC) domain, where our use
case is a sensor network setup provided by Intel Labs,
and Industrial Control Systems (ICS) where our use
case is centered on a water management plant model
used in diverse scenarii at Siemens. We present both
use cases next.

4.1. Use Case: Intel Labs Sensor Network

The Intel Labs sensor network is an experimental
setup originally designed to study the routing of sensor
measurements in a constrained node network11. It con-
sists in 54 wireless devices called motes with as little
as 8kB RAM, deployed homogeneously over an entire
floor of the Intel Labs building (Fig. 3). All devices
have identical capabilities. They can measure tempera-
ture, humidity and illuminance in various zones of the
office: meeting rooms, closed offices, open space, en-
trance hall and kitchen.

This setup was not originally intended for WoT use
cases but it may corresponding to what a future WoT
system will look like: a dense network of low-power
connected devices that are capable of self-organzing in
order to collectively achieve certain goals. In particu-
lar, we identified the following system for this sensor
network:

HVAC Anomaly Detection Devices measuring tem-
perature and humidity on the same body of air ex-

7https://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/
8https://tools.ietf.org/html/rfc6690
9http://hypercat.io/
10https://github.com/thingweb/thingweb-directory/
11http://db.csail.mit.edu/labdata/labdata.html

Fig. 3. Map of the Intel Labs sensor network (Source: Intel Labs)

change measurements with their neighbors to de-
tect anomalies in HVAC (high localized gradient
values).

If the system included actuators and sensors of dif-
ferent kinds, the range of possible interactions would
be significantly wider. Yet, this particular use case of-
fers us a simple setup to test the feasibility of seman-
tic discovery in practice. The only criterion to decide
whether two wireless devices should interact is their
location, that is, the zone they observe (in the sense of
bot:Zone, a bounded space relevant for HVAC and
lighting systems). Here, we assume that a map of the
Intel Labs office giving its different zones is available
in RDF and, a fortiori, as DL assertions to include to
the knowledge base used for semantic discovery. It is
safe to assume that for every BA use case, such infor-
mation is available. For instance, the IFC information
model, which is the basis for ifcOWL, is used by ar-
chitects and civil engineers throughout the design of a
building. It is part of what is commonly called a Build-
ing Information Model (BIM).

Example 13. Below is an excerpt of the BIM we used
for this experiment. We first defined a small class hier-
archy for the Intel Labs office.

Wall(x)→ Solid(x).

Space(x)→ Air(x).

Space(x)→ Zone(x).

Hall(x)→ Space(x).

ConferenceRoom(x)→ Space(x).

We then asserted the adjacency relations between
spaces and separating walls (if any).

Hall(hall).

https://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/
https://tools.ietf.org/html/rfc6690
http://hypercat.io/
https://github.com/thingweb/thingweb-directory/
http://db.csail.mit.edu/labdata/labdata.html

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ConferenceRoom(room).

Wall(leftWall).

Wall(rightWall).

adjacentElement(hall,leftWall).

adjacentElement(room,leftWall).

adjacentElement(room,rightWall).

The rest of our knowledge base for this use case
is similar to what we gave in Ex. 11 (with instances
of TemperatureSensor only). The complete RDF
documents can be found online12. We ran semantic dis-
covery for the CQ we provided earlier (after introduc-
ing the generic property relatesToProperty),
for which we obtain the graph of interactions shown on
Fig. 4. What is immediately identifiable on this figure
are the three complete subgraphs that dominate the dis-
tribution of edges. Each represent devices observing a
portion of the open space (left side, hall and right side):
all devices located in the same zone actually observe
the same temperature value. They can therefore all in-
teract with any other device in that zone in order to de-
tect anomalies on the measured temperature/humidity.
Other subgraphs of size 1, 2 and 3 represent isolated
devices located in meeting rooms or closed offices.

What this graph reveals is the high imbalance in
terms of coverage of the physical space: if one of the
isolated devices fails, an important part of the office
is not covered anymore, while the failure of a device
in the open space would not affect the “physical” cov-
erage of the sensor network. The Intel Labs dataset
comes with temporal data indicating the connectivity
status of devices between February 28th and April 5th,
2004. We plotted this data on Fig. 5. Over the course
of the experiment, more and more devices go offline,
most likely because of an empty battery, until the per-
centage of online devices reaches 0% on April 3rd (red
area). As a comparison, we computed a graph of inter-
actions at every point in time and computed the per-
centage of remaining connected subgraphs compared
to the original graph. That is, we computed the per-
centage of anomaly detection systems one could still
implement with the remaining devices Surprisingly,
we observe that the first devices to go offline are those
placed in open spaces and thus redundant: until March
22nd all subgraphs were still present although 20% of
devices went offline. Then, until April 1st, although

12https://github.com/vcharpenay/urdf-store-exp

14

37

52

53

54

11

12

13

38

39

40

41

42

43

44

45

46

47

48

49

50

51

1

2

3

4

5

6

7

8

9

10

31

32

33

34

35

36

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Fig. 4. Graph of interactions for the Intel Labs sensor network

only 10% of devices were still online, we still had 50%
of physical coverage.

 0

 20

 40

 60

 80

 100

02/26 03/04 03/11 03/18 03/25 04/01 04/08

co
ve

ra
ge

 (
%

)

time

physical coverage
mote coverage

Fig. 5. Mote coverage vs. physical (system) coverage of the Intel
Labs office

4.2. Use Case: Water Management Plant

The Intel Labs setup was highly homogeneous and
exploratory insofar that we assumes future WoT sys-
tems will have similar features. In contrast, the other
setup we have experimented with is heterogeneous and
the WoT servients it embeds are fully operational. It
consists in an industrial workstation that includes wa-
ter tanks and circulation pipes, equipped with various

https://github.com/vcharpenay/urdf-store-exp

16 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

automation devices like valves, water level sensors, a
flow meter, a temperature sensor, a pump, and a heater.
This workstation is meant to simulate a water treat-
ment plant in which water flows from one tank to the
other. It has been equipped with six micro-controllers
(MCUs) acting as WoT servients with IP connectivity.
An overview of the workstation is provided on Fig. 6.

Fig. 6. Water management workstation with NodeMCU micro-con-
trollers (Source: FESTO)

These micro-controllers are ESP8266 (64kB RAM,
80 MHz), they all embed a TD using the µRDF store,
a lightweight RDF store designed for constrained de-
vices [45]. We recently showed that a combination of
a JSON-LD compacted representation of RDF triples
and binary JSON encoding performs better than the
state-of-the-art for small datasets like TDs. RDF triples
are first processed using JSON-LD compaction with a
context document designed for conciseness and then
encoded in the EXI4JSON format, a format based
on the Efficient XML Interchange (EXI) format [46].
These TDs are defined in terms of SOSA, SSN and
eCl@ss. We slightly extended eCl@ssOWL for the
needs of our experiment. Essentially, we provided an
alignment with SSN and gave the physical quantities
sensors and actuators relate to.

Example 14. We distinguished between automation
devices (sensors/actuators) and other kind of equip-
ment. We define the former as ssn:Systems and the
latter as sosa:Platforms, as follows:

WaterTank(x)→ Platform(x).

PlasticPipe(x)→ Platform(x).

Pump(x)→ Actuator(x).

Pump(x)

→ ∃actsOnProperty.FlowRate(x).

PneumaticValve(x)→ Actuator(x).

PneumaticValve(x)

→ ∃actsOnProperty.FlowRate(x).

FloatSwitch(x)→ Sensor(x).

FloatSwitch(x)

→ ∃observes.Height(x).

UltrasonicSensor(x)→ Sensor(x).

UltrasonicSensor(x)

→ ∃observes.Height(x).

FloatSwitches and UltrasonicSensors both
measure the level of water in a tank, either as a binary
value or as a decimal.

Given rules like Ex. 7 about the deformability of flu-
ids, we can discover potential interactions between e.g.
a float switch and a valve, since opening a valve me-
chanically lowers the level of water in some tank. Like
in the previous BA experiment, we assume that some
factory plant or circuit description is available as DL
assertions, after transformation from another machine-
readable format. In total, we identified five systems
that can be formed by combining servient capabilities
(and thus, by making them interact). These systems are
the following:

Valve Control An open/close or proportional valve is
coupled to a water level sensor to avoid overflow.
When water level in a tank goes above a certain
threshold, the valve opens.

Pump Control A water pump is coupled to a water
level sensor to refill a tank when necessary. When
water level in a tank goes below a certain thresh-
old, the pump starts.

Heater Control A temperature sensor is coupled to a
heater to maintain water at a stable temperature
by turning on and off heating (thermostat).

Circuit Anomaly Detection A flow meter and a valve
are synchronously monitored to detect potential
anomaly in a circuit, e.g. when the measured flow
is not null but the valve is closed.

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Water Circulation A pump and a valve are syn-
chronously activated to keep water flowing in a
closed loop, e.g. for cleaning purposes.

We ran semantic discovery for the same CQ in the
Intel Labs setup (with relatesToProperty). We
obtained 8 edges in the graph of interactions (compu-
tation time below 1s). All 5 compound systems can be
instantiated and ‘Water Circulation’ has two solutions,
while ‘Valve Control’ has three solutions. The whole
graph of interaction is showed in Fig. 7. In practice,
this graph can be used for various purposes, such as the
identification of critical points in the network (nodes
with a high degree), in a similar fashion to what we de-
scribed in the previous section. Here, one of the nodes
has a degree of 7, for a maximum degree of 16. If the
servient is decommissioned and removed from the net-
work, half of the discovered systems would stop func-
tioning.

192.168.2.74

192.168.2.127

Heater Control

192.168.2.134

192.168.2.198

Valve Control

192.168.2.199

Valve Control

192.168.2.136

Pump Control

Valve Control

Water Circulation

Circuit Anomaly Detection
Water Circulation

Fig. 7. Interaction graph resulting from semantic discovery on a wa-
ter management workstation (servients are identified by their IP ad-
dress)

In addition, we looked at the exchange that takes
place between the TDir and servients. In a mediated
scenario, the only exchange required for discovery is
the registration of each TD on the directory. Registra-
tion can either happen by requests sent by individual
servients to the TDir or by a single request broadcast
by the TDir to all µRDF store instances on the network.
In the former case, TDs are put in the request payload
while in the latter case, they are in the response pay-
load. In Fig. 8a, we show the size of the payload each
servient sends.

In a peer-to-peer scenario, in addition to gathering
servients’ TDs, the TDir must update them, as per Def.
8. Updates are sent by the TDir to each µRDF store,
with statements to add in the request payload. Payload
sizes for updates are shown in Fig. 8b. One can note
that in most cases, the update size is comparable to
the size of the original TD. Both TDs and updates, ex-
cept one, fit in a single CoAP block (of maximum size
1024 bytes), which represents no technical challenge
for MCUs like the ESP8266.

All RDF files and results shown in this paper are
available online13.

5. Conclusion

The last aspect of our experiment on the ICS setup
shows that knowledge-base intelligent systems can be
designed using WoT concepts and current technolo-
gies like CoAP and EXI4JSON. Moreover, both ex-
periments in the HVAC and ICS domains show how
WoT systems can be adaptable, an important character-
istic of intelligence [47]: from the graphs of interaction
we computed for both systems (Figs. 4 & 7), one can
see that some tasks could be implemented in different
ways by looking at the degree of vertices (servients).

Another kind of adaptibility, inherent to knowledge-
based systems, is the ability of the system to change
context by re-running semantic discovery with the
same TDs but a different CBox. For instance, some
conference rooms are reconfigurable to suit the needs
of different kinds of events. In this context, sim-
ply changing the BIM of the building yields another
graph of interactions, without having to reconfigure
the servients. Intuitively, one can observe that the ca-
pabilities of a WoT system are directly related to its
level of knowledge with respect to itself (via a collec-
tion of TDs) and its environment (via other ontological
axioms).

Beyond semantic discovery, there are other reason-
ing tasks of interest given the abstraction for WoT in-
teractions we introduce in this paper (that is, the char-
acterization of interactions with CQs with existentially
quantified variables). For instance, given a set of inter-
actions taking place in a running system, one can com-
pute the associated knowledge base explaining these
interactions to e.g. detect incomplete axioms or detect
inconsistencies in the system. These tasks are a poten-
tial line of research for future work.

13https://github.com/vcharpenay/urdf-store-exp

https://github.com/vcharpenay/urdf-store-exp

18 V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Thing Description (b) Update ABox

Fig. 8. Size of knowledge bases exchanged between servients and Thing Directory, encoded in EXI4JSON (servients are identified by their IP
address)

On another level, the feasability of our approach de-
pends on whether the kind of axioms we have intro-
duced in Sec. 3.1 can be defined at a large scale. Our
observation that existential restrictions and equality re-
lations between individuals were under-axiomatized
can be generalized to most Web ontologies. As a con-
sequence, future work also includes the engineering
of a dedicated ontology for physical bodies and their
properties, to fill the gap between existing models,
like OM and BOT, and the level of knowledge re-
quired in WoT systems. We believe that most thermo-
dynamic, optical, mechanical and geometrical proper-
ties of physical bodies can be axiomatized in terms
of rules with a reasonable effort. What remains open,
however, is how such an axiomatization can be com-
bined with numeric models (like thermic simulation
from a BIM).

References

[1] D. Guinard and V.M. Trifa, Towards the Web of Things: Web
Mashups for Embedded Devices, in: Proceedings of WWW (In-
ternational World Wide Web Conferences).

[2] S. Poslad, Ubiquitous Computing: Smart Devices, Environ-
ments and Interactions, John Wiley & Sons, Inc. ISBN 978-0-
470-77944-6.

[3] K. Kazuo, M. Kovatsch and U. Davuluru, Web of
Things (WoT) Architecture. https://www.w3.org/TR/
wot-architecture/.

[4] I. Toma, E. Simperl and G. Hench, A joint roadmap for Seman-
tic technologies and the Internet of Things.

[5] S. Kaebisch and T. Kamiya, Web of Things (WoT) Thing De-
scription. https://www.w3.org/TR/wot-thing-description/.

[6] V. Charpenay, S. Käbisch and H. Kosch, Introducing Thing
Descriptions and Interactions: An Ontology for the Web of
Things, in: Joint Proceedings of the 3rd Stream Reasoning (SR
2016) and the 1st Semantic Web Technologies for the Internet
of Things (SWIT 2016) workshops, CEUR-WS.org.

[7] T. Kindberg and S. Hawke, The ’tag’ URI Scheme. https:
//tools.ietf.org/html/rfc4151.

[8] P. Saint-Andre and J. Klensin, Uniform Resource Names
(URNs). https://tools.ietf.org/html/rfc8141.

[9] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen
and P. Hallam-Backer, Naming Things with Hashes. https://
tools.ietf.org/html/rfc6920.

[10] D. Guinard, Upgrading the Barcode to the
Web: GS1 Digital Link. https://evrythng.com/
upgrading-the-barcode-to-the-web-gs1-digital-link/.

[11] P. Pauwels and W. Terkaj, EXPRESS to OWL for con-
struction industry: Towards a recommendable and us-
able ifcOWL ontology 63, 100–133, ISSN 09265805.
doi:10.1016/j.autcon.2015.12.003.

[12] B. Bharathan, A.A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, Y. Agarwal, M. Berges,
D. Culler, R. Gupta, M. Baun Kjærgaard, J. Ploennigs and
K. Whitehouse, Brick v1.0 - Towards a Unified Metadata
Schema For Buildings.

[13] M.H. Rasmussen, P. Pauwels, M. Lefrançois, G.F. Schneider,
C.A. Hviid and J. Karlsh, Recent changes in the Building
Topology Ontology, in: LDAC2017 - 5th Linked Data in Archi-
tecture and Construction Workshop.

[14] A. Haller, K. Janowicz, S. Cox, D. Le Phuoc, K. Taylor and
M. Lefrançois, Semantic Sensor Network Ontology. https://
www.w3.org/TR/vocab-ssn/.

[15] R. Hajo, v.A. Mark and T. Jan, Ontology of units of measure
and related concepts, 3–13, ISSN 1570-0844. doi:10.3233/SW-
2012-0069.

[16] M. Hepp and A. Radinger, eClassOWL - The Web Ontology
for Products and Services. http://www.heppnetz.de/projects/
eclassowl/.

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-thing-description/
https://tools.ietf.org/html/rfc4151
https://tools.ietf.org/html/rfc4151
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc6920
https://tools.ietf.org/html/rfc6920
https://evrythng.com/upgrading-the-barcode-to-the-web-gs1-digital-link/
https://evrythng.com/upgrading-the-barcode-to-the-web-gs1-digital-link/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/
http://www.heppnetz.de/projects/eclassowl/
http://www.heppnetz.de/projects/eclassowl/

V. Charpenay et al. / Characterizing WoT Interactions with Existential Reasoning 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[17] R.V. Guha, D. Brickley and S. Macbeth, Schema.org: evolution
of structured data on the web 59(2), 44–51, ISSN 00010782.
doi:10.1145/2844544.

[18] J. Leighton and R. Sternberg, The nature of reasoning, Cam-
bridge University Press. ISBN 978-0-521-00928-7.

[19] P.J. Hayes and P. Patel-Schneider, RDF 1.1 Semantics, W3C.
http://www.w3.org/TR/rdf11-mt/.

[20] A. Hogan, Skolemising Blank Nodes while Preserving Isomor-
phism, ACM Press, pp. 430–440. ISBN 978-1-4503-3469-3.
doi:10.1145/2736277.2741653. http://dl.acm.org/citation.cfm?
doid=2736277.2741653.

[21] A. Hogan, Canonical Forms for Isomorphic and Equivalent
RDF Graphs: Algorithms for Leaning and Labelling Blank
Nodes 11.

[22] M. Krötzsch, S. Rudolph and P. Hitzler, ELP: Tractable Rules
for OWL 2, in: The Semantic Web - ISWC 2008, A. Sheth,
S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin and
K. Thirunarayan, eds, Springer Berlin Heidelberg, pp. 649–
664. ISBN 978-3-540-88564-1.

[23] F. Baader, S. Brandt and C. Lutz, Pushing the EL envelope, in:
IJCAI, Vol. 5, pp. 364–369.

[24] F. Baader, S. Brandt and C. Lutz, Pushing the EL envelope
further.

[25] S. Rudolph, Foundations of Description Logics, in: Reasoning
Web. Semantic Technologies for the Web of Data, A. Polleres,
C. d’Amato, M. Arenas, S. Handschuh, P. Kroner, S. Os-
sowski and P. Patel-Schneider, eds, Springer Berlin Heidelberg,
pp. 76–136. ISBN 978-3-642-23031-8 978-3-642-23032-5.

[26] M. Krötzsch, Description Logic Rules, Studies on the Semantic
Web, Vol. 008, IOS Press/AKA. ISBN 978-1-60750-654-6.

[27] F. Gasse, U. Sattler and V. Haarslev, Rewriting Rules into
SROIQ Axioms, in: Proceedings of the DL 21st International
Workshop on Description Logics (DL2008), Vol. 353, CEUR-
WS.org.

[28] S. Ceri, G. Gottlob and L. Tanca, What you always wanted to
know about Datalog (and never dared to ask) 1(1), 146–166,
ISSN 10414347. doi:10.1109/69.43410.

[29] B.N. Grosof, I. Horrocks, R. Volz and S. Decker, Description
logic programs, 48. doi:10.1145/775152.775160.

[30] A. Calì, G. Gottlob and T. Lukasiewicz, A gen-
eral Datalog-based framework for tractable query an-
swering over ontologies 14, 57–83, ISSN 15708268.
doi:10.1016/j.websem.2012.03.001.

[31] M. Krötzsch, S. Rudolph and P. Hitzler, Conjunctive Queries
for a Tractable Fragment of OWL 1.1, in: The Semantic Web,
Vol. 4825, K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-
I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mi-
zoguchi, G. Schreiber and P. Cudré-Mauroux, eds, Springer
Berlin Heidelberg, pp. 310–323. ISBN 978-3-540-76297-3
978-3-540-76298-0. doi:10.1007/978-3-540-76298-023.

[32] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenz-
erini and R. Rosati, Data complexity of query answer-
ing in description logics 195, 335–360, ISSN 0004-3702.
doi:https://doi.org/10.1016/j.artint.2012.10.003.

[33] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and
R. Rosati, Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family 39(3), 385–429,

ISSN 0168-7433, 1573-0670. doi:10.1007/s10817-007-9078-
x.

[34] C. Gutierrez, C. Hurtado and A.O. Mendelzon, Foundations
of semantic web databases, ACM Press, p. 95. ISBN 978-1-
58113-858-0. doi:10.1145/1055558.1055573.

[35] A.C. KAKAS, R.A. KOWALSKI and F. TONI, Abductive
Logic Programming 2, 719–770. doi:10.1093/logcom/2.6.719.

[36] Z. Wang, M. Chitsaz, K. Wang and J. Du, Towards Scalable
and Complete Query Explanation with OWL 2 EL Ontologies,
743–752. doi:10.1145/2806416.2806547.

[37] S. Klarman, U. Endriss and S. Schlobach, ABox Abduction in
the Description Logic ALC 46, 43–80. doi:10.1007/s10817-
010-9168-z.

[38] J. Du, K. Wang and Y.-D. Shen, A Tractable Approach
to ABox Abduction over Description Logic Ontologies., in:
AAAI, pp. 1034–1040.

[39] M. Gavanelli, E. Lamma, F. Riguzzi, E. Bellodi, R. Zese and
G. Cota, Reasoning on Datalog± Ontologies with Abductive
Logic Programming, 65–93, ISSN 18758681. doi:10.3233/FI-
2018-1658.

[40] V. Charpenay, S. Käbisch and H. Kosch, A Framework for Se-
mantic Discovery on the Web of Things, 147–162, ISSN 1868-
1158. doi:10.3233/978-1-61499-894-5-147.

[41] S. Lohmann, S. Negru, F. Haag and T. Ertl, Visualizing Ontolo-
gies with VOWL 7(4), 399–419. doi:10.3233/SW-150200.

[42] T.W.S.W. Group, SPARQL 1.1 Overview, W3C. https://www.
w3.org/TR/2013/REC-sparql11-overview-20130321/.

[43] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and J. Baner-
jee, RDFox: A Highly-Scalable RDF Store, in: The Semantic
Web - ISWC 2015, Vol. 9367, M. Arenas, O. Corcho, E. Sim-
perl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Du-
montier, J. Heflin, K. Thirunarayan and S. Staab, eds, Springer
International Publishing, pp. 3–20. ISBN 978-3-319-25009-0
978-3-319-25010-6.

[44] K. Sagonas, T. Swift and D.S. Warren, XSB as an efficient
deductive database engine 23(2), 442–453, ISSN 01635808.
doi:10.1145/191843.191927.

[45] V. Charpenay, S. Käbisch and H. Kosch, µRDF Store: To-
wards Extending the Semantic Web to Embedded Devices, in:
The Semantic Web: ESWC 2017 Satellite Events, Vol. 10577,
E. Blomqvist, K. Hose, H. Paulheim, A. łLawrynowicz,
F. Ciravegna and O. Hartig, eds, Springer International Pub-
lishing, pp. 76–80. ISBN 978-3-319-70406-7 978-3-319-
70407-4. doi:10.1007/978-3-319-70407-415.

[46] V. Charpenay, S. Käbisch and H. Kosch, Towards a Binary Ob-
ject Notation for RDF, in: Proceedings of the 15th Extended
Semantic Web Conference (ESWC), Springer.

[47] S.J. Russell and P. Norvig, Artificial intelligence: a modern
approach, 3rd ed edn, Prentice Hall series in artificial intelli-
gence, Prentice Hall. ISBN 978-0-13-604259-4.

[48] P. Leach, A Universally Unique IDentifier (UUID) URN
Namespace, IETF. https://tools.ietf.org/html/rfc4122.

[49] M. Rodríguez-Muro and D. Calvanese, High performance
query answering over DL-Lite ontologies, in: Proceedings of
the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012).

http://www.w3.org/TR/rdf11-mt/
http://dl.acm.org/citation.cfm?doid=2736277.2741653
http://dl.acm.org/citation.cfm?doid=2736277.2741653
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://tools.ietf.org/html/rfc4122

	Introduction
	Identification on the Web of Things

	Related Work: Identification by Reasoning
	RDF Graph Canonicalization
	Reasoning with Web ontologies
	Description Logics
	Semantics of Description Logics
	Relation to Other Logic Formalisms

	Query Answering and Abduction
	Conjunctive Query Answering
	Abductive Reasoning

	A Framework for Semantic Discovery on the Web of Things
	Expressiveness of a Web of Things Knowledge Base
	Expressing Existence and Equality Between Individuals
	Examples for Physical Bodies and their Properties

	Problem Statement
	A Tractable Approach

	Experiments
	Use Case: Intel Labs Sensor Network
	Use Case: Water Management Plant

	Conclusion
	References

