
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

VSSo: a Vehicle Signal and Attribute
Ontology for the Web of Things
Klotz Benjamin a,b,*, Troncy Raphaël a, Wilms Daniel b and Bonnet Christian b

a EURECOM, Sophia Antipolis, France
E-mails: benjamin.klotz@eurecom.fr, raphael.troncy@eurecom.fr, christian.bonnet@eurecom.fr
b BMW Group, Munich, Germany
E-mails: benjamin.bk.klotz@bmwgroup.com, daniel.dw.wilms@bmwgroup.com

Abstract. Application developers in the automotive domain have to deal with thousands of different signals and attributes,
represented in highly heterogeneous formats, and coming from various car architectures. This situation limits the development
of modern applications. We hypothesize that a formal model of car signals, in which the definition of signals are uncorrelated
with the physical implementations producing them, as well as a common data layer, would improve interoperability between
connected cars and their ecosystem. In this paper, we propose VSSo, a vehicle signal and attribute ontology that builds on the
automotive standard VSS, and that follows the SSN/SOSA design pattern for representing observations and actuations. We also
describe a more general driving context ontology supporting the description of events. VSSo is comprehensive while being
extensible for OEMs, so that they can use additional private signals in an interoperable way. We developed a simulator for
interacting with data modeled using VSSo is available at http://automotive.eurecom.fr/simulator/query

Keywords: Automotive, Ontology, Web of Things, SSN/SOSA, Signal, Sensor, LwM2M

1. Introduction

Automotive applications rely on the ability to man-
age highly heterogeneous data, coming from cars
themselves or from other parties such as web services,
or connected things like smart homes and smart cities.
For instance, there are important opportunities in the
embedded AI (Artificial Intelligence), predictive main-
tenance and safety-enhancing systems1. In this con-
text, vehicle data needs to be interoperable in order
to be handled by remote applications and services re-
gardless of the brand, model, and internal network ar-
chitecture of each connected vehicle. This is actually
challenging today as a developer needs deep insights
into the architecture of a vehicle2 in order to have ac-
cess and to process data coming from the vehicle sen-
sors. In addition, information about signal metadata

*Corresponding author. E-mail: benjamin.klotz@eurecom.fr.
1http://www.visualcapitalist.com/future-automobile-innovation/
2http://www.ieee802.org/1/files/public/docs2013/new-tsn-diarra-

osi-layers-in-automotive-networks-0313-v01.pdf

is needed in order to interpret the returned values. As
soon as the internal architecture changes, the developer
has to update the implementation and will need the
same prior knowledge. This might be the case already
with different models of the same brand. With an his-
toric legacy, OEMs (Original Equipment Manufactur-
ers) have a digitalization effort to do in order to catch
up with Internet and telecommunication leaders3.

One particularly eloquent example of such legacy
is the implementation of ADAS (Advance Driver As-
sistance Systems) in more and more complex fashion.
The early ADAS like the ABS (Antilock Braking Sys-
tem) and TCS (Traction Control System) existed be-
fore the 2000s to solve the problem of vehicle dynam-
ics stabilization. The 2000s have seen developed the
Adaptive Cruise Control, Lane Departure Warning and
new sensors in car (radar, infrared) to include more
warnings, comfort and information [1]. Future ADAS

3https://hbr.org/2016/04/a-chart-that-shows-which-industries-
are-the-most-digital-and-why

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:benjamin.klotz@eurecom.fr
mailto:raphael.troncy@eurecom.fr
mailto:christian.bonnet@eurecom.fr
mailto:benjamin.bk.klotz@bmwgroup.com
mailto:daniel.dw.wilms@bmwgroup.com
http://automotive.eurecom.fr/simulator/query
mailto:benjamin.klotz@eurecom.fr
http://www.visualcapitalist.com/future-automobile-innovation/
http://www.ieee802.org/1/files/public/docs2013/new-tsn-diarra-osi-layers-in-automotive-networks-0313-v01.pdf
http://www.ieee802.org/1/files/public/docs2013/new-tsn-diarra-osi-layers-in-automotive-networks-0313-v01.pdf
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why

2 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

are meant to make vehicle more and more autonomous.
A side effect of this development is the complexity
of vehicle’s electronic architecture and software sys-
tem [2]. Current premium vehicles embed millions of
lines of code4, and potentially more than a hundred
ECU5 (Electronic Control Unit) while a car in 1981
could require 50,000 lines of code [3].

Finally, the vehicle’s electronic architecture and
software system is not only massive, it also contains
thousands of parts (sensors or actuators). Wikipedia
lists already about 500 of them but provides a defini-
tion for about 2006 while all parts listed are not ba-
sic components. To produce them, OEM hire several
suppliers, and the global understanding of a vehicle is
therefore distributed among communities.

We notice a growing interest in using semantic tech-
nologies for addressing the challenge of defining a for-
mal model of car signals [4]. The Internet of Things
(IoT) is a novel paradigm that has been “rapidly gain-
ing ground in the scenario of modern wireless telecom-
munications” [5]. Its basic idea is the “pervasive pres-
ence around us of a variety of things or objects which,
through unique addressing schemes, are able to inter-
act with each other and cooperate with their neigh-
bors to reach common goals” [5]. The Web of Things
(WoT) [6] is a specification from the W3C that narrows
down the semantic description of Things and protocol
binding so that devices from different IoT standards
(OCF, OMA, Zigbee..), data formats and protocol can
be operated from the same applications.

We therefore observe a gap between the need for
data interoperability and the current state of the art in
terms of vehicle modeling. We see a need for an on-
tology or an equivalent data model focusing on vehi-
cle signals and attributes. We identify a requirement: a
vehicle data model should be compliant with automo-
tive standards such as VSS [7] (Vehicle Signal Speci-
fication) or ISO 20078 [8] and ISO 20080 [9] and fol-
low best modeling practices from the Web of Things
(WoT) in order to be used. We require such an ontol-
ogy to be comprehensive enough to cover most known
signals and attributes while being extensible by OEMs.
This paper proposes the VSSo ontology for this pur-
pose. In this context, we raise the following research
questions:

4https://futuremonger.com/100-million-lines-of-code-4-tb-data-
per-day-is-that-your-next-car-a2724e9bd3fa

5https://www.techopedia.com/your-car-your-computer-ecus-
and-the-controller-area-network/2/32218

6https://en.wikipedia.org/wiki/List_of_auto_parts

– How to design an ontology describing vehicle
data?

– How to enable automotive application to interact
through the Web of Things?

Enabling automotive applications to interact through
the WoT would mean to widen the range of develop-
ers that could work on it. The goal of enabling a wider
range of developers means to ensure the ease of use
for non automotive experts, the availability of meta-
data and documentation, and the reuse of well-known
standards and best practices that web developers are
experienced with. In order to test our proposal, we for-
mulate the following hypothesis:

– Using the Web of Things will improve the effi-
ciency of developing applications on vehicle data,
compared to the state of the art

– Non automotive experts can use the Web of
Things and the VSSo ontology more effectively
than the state of the art to interact with a vehicle
and build cross-industries applications.

The remainder of this paper is structured as follow.
First, we extensively describe the related work in terms
of automotive data access and data models, as well as
the broader set of connected things using semantic web
technologies 2. Next, we introduce the so-called VSSo
and Driving Context ontologies, discussing their de-
sign in Section 3, how it maps to the Web of Things in
Section 4. We evaluate the VSSo usage in Section 5,
and we show how this ontology can be used and con-
sumed in Section 6. Finally, we conclude and outline
some future work in Section 7.

2. Related Work

2.1. Automotive data access

There are flourishing means to access vehicle data
ranging from OEM-specific implementations to new
standards which are arising. In this section, we ex-
tensively described the various mechanisms that have
been proposed so far.

2.1.1. OEM APIs and Web services
Despite the complexity of modern vehicles, there is

a trend of publishing understandable Web services and
APIs by OEMs, that enable to access to specific ve-
hicle signals and use tree structures to represent car
data. For example BMW uses the platform If This
Then That (IFTTT) to expose vehicle data in order

https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://futuremonger.com/100-million-lines-of-code-4-tb-data-per-day-is-that-your-next-car-a2724e9bd3fa
https://www.techopedia.com/your-car-your-computer-ecus-and-the-controller-area-network/2/32218
https://www.techopedia.com/your-car-your-computer-ecus-and-the-controller-area-network/2/32218
https://en.wikipedia.org/wiki/List_of_auto_parts

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

to connect with a wide range of Web Servicesfoot-
notehttps://ifttt.com/bmwlabs. These simple tree struc-
tures can be related to VSS 7 which is further detailed
in Section 2.2.

With the OEM APIs come automotive-specific data
models. For instance Mercedes-Benz released four
APIs8:

– Car Configurator API that describes vehicles op-
tions and configurations;

– Dealer API that describes car dealers;
– Remote Diagnostic Support that retrieves Diag-

nostic Trouble Codes (DTC);
– Vehicle Image API that provides images of com-

ponents.

They also announced a Connected Vehicle API that
would read different states of the car (tire, location,
odometer, fuel, doors, battery). It currently interacts
only with records. For the 2018 OI Competition9,
Porsche released APIs for 140 data sources for sim-
ulated sports cars including a race API (vehicle dy-
namics signals), charging, offroad (suspensions), chas-
sis settings, light and weather conditions APIs. It is
now being standardized under the High Mobility plat-
form10. This API is made for a simulator.

PSA Group has realeased two APIs11:

– Connected Car Development, with 89 signals.
Certain signals are only readable while other are
also writable. The signals are clustered in cate-
gories: crash, eco-driving, environment, mainte-
nance, place, referential, running, safety, trip, ve-
hicle.

– Eligibility API, to check if a vehicle is eligible for
remote management.

The Connected Car Development API mostly focus on
signal that do not change much over time and space, as
for instance the reference fuel price. As part of it Next
Generation Infotainment system (NGI), General Mo-
tors released several commercial APIs12 dealing with
the navigation and infotainment system, dynamic sig-
nals as well as about 400 data points13 to cover use
cases such as hard braking or display alerts. Ford has

7https://github.com/GENIVI/vehicle_signal_specification/
8https://developer.mercedes-benz.com/
9http://www.porsche-next-oi-competition.com/
10https://high-mobility.com
11https://developer.psa-peugeot-citroen.com/inc/
12https://developer.gm.com/vehicle-apis
13https://techcrunch.com/2017/01/26/gms-new-sdk-for-in-car-

infotainment-apps-offers-access-to-nearly-400-data-points/

incorporated the AppLink technology [10] in its ve-
hicles14 which allows the integration of mobile apps
from smartphones with the Human-Machine Interface
(HMI) of the connected vehicle. Its APIs concern the
dashboard and steering wheel buttons as well as facial
and vocal recognition. Toyota is developing a Mobility
Services Platform15 (MSPF) to make their future vehi-
cle fit for sharing within the scope of smart cities. This
platform will not only focus on the identification and
payment aspects of mobility, but also fleet manage-
ment and vehicle unlocking from smartphones. Volk-
swagen released a Car Configurator Web API1617 that
focuses on the configuration management of a vehicle.

2.1.2. Other automotive standards
There are also several automotive standards that en-

able to access to vehicle data. We describe the most
notable examples in the following paragraphs.

OBD-II. On-board diagnostics (OBD) are vehicleś
self-diagnostic and reporting capabilities. Its main us-
age consist in providing a vehicle owner or repair tech-
nician access to the status of the various vehicle sub-
systems. Current OBD implementation uses a stan-
dardized digital communications port to provide real-
time data in addition to a standardized series of diag-
nostic trouble codes (DTC) identifying malfunctions.

OBD-II is a set of standards18 specifying the type
of diagnostic connector and its pinout, the electrical
signalling protocols available, and the messaging for-
mat. In addition, it provides a list of vehicle signals
to monitor and a way to encode the data for each of
them. They are referred by their Parameter ID (PID) to
cross-reference between the pinouts of electronic com-
ponents and their functions. There are 10 diagnostic
services described in OBD-II19:

1. Show current data;
2. Show freeze frame data;
3. Show stored Diagnostic Trouble Codes;
4. Clear Diagnostic Trouble Codes and stored val-

ues;
5. Test results, oxygen sensor monitoring (non

CAN only);

14https://developer.ford.com/pages/applink
15https://corporatenews.pressroom.toyota.com/releases/toyota+

launches+new+mobility+ecosystem+concept+vehicle+2018+ces.
htm

16https://productdata.vwgroup.com/overview.html
17http://udc-configurator.volkswagen.nl/
18https://www.outilsobdfacile.fr/norme-communication-obd.php
19https://www.sae.org/standards/content/j1979_201009/

https://ifttt.com/bmwlabs
https://github.com/GENIVI/vehicle_signal_specification/
https://developer.mercedes-benz.com/
http://www.porsche-next-oi-competition.com/
https://high-mobility.com
https://developer.psa-peugeot-citroen.com/inc/
https://developer.gm.com/vehicle-apis
https://techcrunch.com/2017/01/26/gms-new-sdk-for-in-car-infotainment-apps-offers-access-to-nearly-400-data-points/
https://techcrunch.com/2017/01/26/gms-new-sdk-for-in-car-infotainment-apps-offers-access-to-nearly-400-data-points/
https://developer.ford.com/pages/applink
https://corporatenews.pressroom.toyota.com/releases/toyota+launches+new+mobility+ecosystem+concept+vehicle+2018+ces.htm
https://corporatenews.pressroom.toyota.com/releases/toyota+launches+new+mobility+ecosystem+concept+vehicle+2018+ces.htm
https://corporatenews.pressroom.toyota.com/releases/toyota+launches+new+mobility+ecosystem+concept+vehicle+2018+ces.htm
https://productdata.vwgroup.com/overview.html
http://udc-configurator.volkswagen.nl/
https://www.outilsobdfacile.fr/norme-communication-obd.php
https://www.sae.org/standards/content/j1979_201009/

4 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6. Test results, other component/system monitoring
(test results, oxygen sensor monitoring for CAN
only);

7. Show pending Diagnostic Trouble Codes (de-
tected during current or last driving cycle);

8. Control operation of on-board component/sys-
tem;

9. Request vehicle information;
10. Permanent Diagnostic Trouble Codes (DTCs)

(Cleared DTCs).

The main benefit of OBD-II is that the physical and
digital interface is standard for vehicles regardless of
their brands.

Extended vehicle standard. The Extended Vehicle
is a set of ISO standards [11] that were initiated in
2014 and are still under development. The purpose of
the Extended Vehicle is to abstract vehicles from its
physical form and to interact with its extended inter-
faces [12]. These interfaces are being standardized in
[8], on similar way as OBD-II. They also define a basic
data model, further described in specific use cases [9]
like identify ECUs, read DTC, read readiness codes,
read DTC snapshot data, read diagnostic parametric
data, read malfunction indicator status, clear DTCs,
adjust system settings, activate actuators or activate a
self-test routine20.

The Neutral Vehicle. With the similar goal of expos-
ing vehicle data, the Neutral Vehicle [13] platform21

aims at being a standard combining automotive speci-
ficity and neutral servers. The Neutral Vehicle platform
provides an end-to-end framework for exchanging ve-
hicle data between physical cars and the cloud with ac-
cess from third parties. The platforms aims at provid-
ing security, scalability and interoperability to enable
the development of future advanced applications by
third parties. Its data access reuses OBD-II, data link
devices, ECU readers and other connected devices. Its
core is a neutral server providing neutral data exchange
between all parties.

VISS. The Vehicle Information Server Specifica-
tion [14] (VISS) is a vehicle server specification, cur-
rently a candidate recommendation from the W3C.
This enables a client to GET or SET vehicle signals
and data; to SUBSCRIBE to receive notifications and
to UNSUBSCRIBE from receiving notifications. Its

20Current draft available: https://www.iso.org/obp/ui/#iso:std:iso:
20080:dis:ed-1:v1:en

21https://neutralvehicle.com/

data model is per default VSS. This allows, among
others, to take advantage of the extension mechanism
from VSS to include more signals and attributes. The
VISS also describes a discovery mechanism that de-
fines the set of signals and data that a client can access
at a particular point in time. Its interface is being spec-
ified in the Vehicle Information API Specification [15]
(VIAS).

2.2. Data models in the automotive domain

There are important similarities between most data
models developed by OEM and the structure of the
Vehicle Signal Specification22 (VSS). Its tree structure
was originally specified by the GENIVI Alliance and
W3C. The specification states, for example, that the
speed measured by the GPS can be accessed by going
through a tree from the Cabin, the Infotainment and
then the GPS branches to finally reach the Speed sig-
nal. Hence, car signals data is accessed within some
context (the branch of the vehicle that generates it).
VSS is the building block of VISS [14] and VIAS [15].
However, its structure does not solve entirely the issue
of interoperability. Indeed, with a huge amount of sen-
sors embedded in most modern cars, many of them can
be still obscure to non automotive experts and rely on
non standard units. Therefore, the knowledge on how
to interpret values should also be represented. A sin-
gle API for all vehicles, for instance, would make im-
plementations very complex as soon as the unit system
changes. In addition, the tree structure of VSS creates
a lot of redundancy. For instance, about 63% of VSS
signals are about seats23 because VSS considers 25 po-
tential seats positions.

There are also data models that include semantic
metadata in the automotive domain. Many ontologies
have been developed in order to model specific use
cases in the automotive domain. In 2003, [16] pro-
posed an ontology-based data access for vehicles. [17]
describes the relationship between components, fail-
ures and their symptoms. [18] proposes an automo-
tive ontology describing the user’s actions and car con-
text. More generally, several research projects pro-
posed ontology-based representations of some vehicle
context to provide advanced driver-assistance systems

22https://github.com/GENIVI/vehicle_signal_specification/
23In https://github.com/GENIVI/vehicle_signal_specification/

blob/master/vss_rel_1.0.vsi there are 707 concepts relating to seats
out of 1110 concepts

https://www.iso.org/obp/ui/#iso:std:iso:20080:dis:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:20080:dis:ed-1:v1:en
https://neutralvehicle.com/
https://github.com/GENIVI/vehicle_signal_specification/
https://github.com/GENIVI/vehicle_signal_specification/blob/master/vss_rel_1.0.vsi
https://github.com/GENIVI/vehicle_signal_specification/blob/master/vss_rel_1.0.vsi

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(ADAS) [19, 20, 21, 22, 23], but they are not complete
or extensible, nor they are automotive standards.

schema.org is also a de facto standard [24] for mark-
ing up web pages with structured metadata to facili-
tate Web search. There are extensions dedicated to the
IoT24 and the automotive25 domain. They are still un-
der development, notably for aligning some WoT con-
cepts with other ontologies like SSN/SOSA [25, 26],
and currently, they only define a small set of static
properties describing cars. The automotive extension
comes from the work of the W3C Automotive Ontol-
ogy Working Group26 which started with the goal of
describing cars in e-commerce. It is based on a number
of ontologies that describe cars’ attributes and config-
uration in the e-commerce:

– Car option ontology27 for the commercial aspects
of offers for sale or rental. It contains 12 classes
and 19 properties.

– Vehicle sales ontology28 (VSO) for describing
cars, boats, bikes, and other vehicles for e-
commerce with 33 classes and 54 properties.

– Used cars ontology29 for describing aspects of
used cars for e-commerce with 22 classes and 46
properties.

– Volkswagen Vehicle Ontology30 for describing
Volkswagen-specific features of automobiles with
30 classes and 50 properties. Its interest is limited
to the domain of the e-commerce for one brand.

However, they do not include sensors or signal data.

2.2.1. Modeling requirements
A suitable connected car signal data model should

enable a web developer to query and extract knowl-
edge from a set of vehicle signal data stream and static
database with no deep expertise of the automotive do-
main. In this section, we define a set of competency
questions, which we will later use as a mean of evalu-
ating the produced data model.

Such a data model should be generic and be suitable
for all automotive domains and use cases. For exam-
ple, the e-commerce and configuration management is
already well-known with schema.org, while the diag-
nosis domain is well-studied [17] but not accessible for

24iot.schema.org
25auto.schema.org
26http://www.automotive-ontology.org/
27http://semanticweb.org/wiki/Car_Options_Ontology.html
28http://www.heppnetz.de/ontologies/vso/ns
29http://ontologies.makolab.com/uco/ns.html
30http://www.volkswagen.co.uk/vocabularies/vvo/ns

web developers. In addition are the domain of telemat-
ics [13] and the seamless experience in regard to smart
cities and smart homes for instance.

The e-commerce requires to answer questions like
What is the model of this car? or How old is this car?.
The diagnosis and maintenance domain would have to
provide answers for questions like What type of trans-
mission does this car have? or How many different
speedometers does this car contain?. Telematics ser-
vice providers would query current signals, such as
What type of fuel does this car need? or What is the
current gear?. For seamless experience, an application
developer would ask What are the destination coordi-
nates? or What is the local temperature on the driver
side?. Such competency question can be clustered in
function of the type of information requested: static at-
tributes of vehicles, static description of car signals,
and dynamic values of signals.

Description of car attributes. There is a need to de-
fine a number of static properties or attributes describ-
ing either a complete vehicle or its parts (later named
branches), such as the engine, and their position.

– What are the attributes of a car and what do they
express?

– How many attributes does a car have?
– What is the model of this car?
– What is the brand of this car?
– What is the VIN of this car?
– When was this car produced?
– What are the dimensions of this car?
– What type of fuel does this car need?
– What type of transmission does this car have?
– What are the characteristics of this engine?
– How many doors does this car have?
– How many seats does this car have?
– On which side is the steering wheel located?

Description of car signals. A car contains numerous
sensors that produce signals. Here is a list of compe-
tency questions that should return metadata about a ve-
hicle signal: its host branch, its sensor or actuator, its
unit system or its position in the vehicle.

– Is there a signal measuring the steering wheel an-
gle?

– Which signals are actuatable?
– Which signals are both observable and actuable?
– How many sensors does this car contain?
– How many different speedometers does this car

contain?

schema.org
iot.schema.org
auto.schema.org
http://www.automotive-ontology.org/
http://semanticweb.org/wiki/Car_Options_Ontology.html
http://www.heppnetz.de/ontologies/vso/ns
http://ontologies.makolab.com/uco/ns.html
http://www.volkswagen.co.uk/vocabularies/vvo/ns

6 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Which part of this car produces a signal of type
vss:LongitudinalAcceleration?

– Which signals measure a temperature and in
which part are they located in the car?

– What unit type does the signal vss:VehicleYaw
use?

– What are the characteristics of the sensor produc-
ing the signal “TravelledDistance” in the OBD
branch?

– What are the maximum values allowed for all sig-
nals from a Vehicle?

Description of dynamic car states. When being used,
car sensors will generate a lot of values that depend
on time and space. One should be able to query the
current values of the signals as well as past historical
ones. This leads to additional competency questions.

– What is the current gear?
– What are the values of all signals representing the

speed of this car in this moment?
– Which windows are currently open?
– What is the local temperature on the driver side

now?
– What are the current values of signals defining the

driver seat position?
– When was the last time the speed was over 100

km/h?
– When and where was the last time the driver’s

door was unlocked?
– What was the maximal speed reached by the car?

2.3. Connected Things on the Semantic Web

The Semantic Web would tackle the connected vehi-
cle the same way it would do with connect things from
other domains. Thus, standards and best practices are
developed for domain-independent connected Things.

2.3.1. Ontologies for connected Things
W3C and OGC have developed standards for defin-

ing systems with their signals. The Semantic Sensor
Network31 (SSN) ontology [25] is an ontology for de-
scribing sensors and their observations, the involved
procedures, the studied features of interest, the sam-
ples used to do so and the observed properties, as well
as actuators and actuations. SSN follows a horizontal
and vertical modularization architecture by including
a lightweight but self-contained core ontology called

31http://www.w3.org/ns/ssn/

SOSA32 [26] (Sensor, Observation, Sample, and Actu-
ator) for its elementary classes and properties, that was
released in October 2017. Both SSN and SOSA are do-
main independent. There are applications built using
them in different domains including satellite imagery,
large-scale scientific monitoring, industrial and house-
hold infrastructures, social sensing, citizen science,
observation-driven ontology engineering, and the Web
of Things (WoT) [25].

Fig. 1. The SOSA modeling pattern for sensors and observable prop-
erties

We hypothesize that the generic modeling patterns
defined in the SSN/SOSA ontology [26] are adequate
to describe observations and that an additional vocab-
ulary is needed to define the specific terms in the auto-
motive domain.

2.3.2. The Web of Things
For interacting with heterogeneous systems follow-

ing different standards in the Internet of Things (IoT),
we look at the solution proposed by the Web of Things
(WoT) at the W3C [6, 27, 28]. Started in 2016, the
goals of the WoT Working Group33 are to allow the
discovery, sharing, composition and reuse of con-
nected physical devices in a web layer and, therefore,
counter the fragmentation of the IoT34.

The WoT Working Group has split its activities into
four main categories:

1. WoT Things Description (TD) Specification,
defining the description of metadata and interac-
tion of Web Things,

2. WoT Scripting API Specification, defining a Web
Thing API as well as discovery mechanisms,

32http://www.w3.org/ns/sosa/
33https://www.w3.org/WoT/WG/
34https://webofthings.org/2016/01/23/wot-vs-iot-12/

http://www.w3.org/ns/ssn/
http://www.w3.org/ns/sosa/
https://www.w3.org/WoT/WG/
https://webofthings.org/2016/01/23/wot-vs-iot-12/

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. WoT Binding Templates Specification, providing
solution to include Web Things from different
standards of the IoT,

4. WoT Authentication and security.

At the heart of the specification is the WoT servient [27]:
an entity consisting of a Web client, a Web server and
device control capabilities. It is essentially a virtual
device which provides access, controls and get statuses
from physical IoT devices.

The W3C Web of Things WG presented a few use
cases of servients including one about a connected
car35 as visible in Figure 2, with WoT-based services
running in the back-end of the connected car. The col-
lection and analysis is deployed to a fleet of cars to
determine traffic patterns. In this use case, after a dis-
covery phase of car components through a connection
gateway, the WoT servient collects data pushed from
car components and allows services to access car com-
ponents through its WoT interface. There have been
early implementation [29] of this use case.

Fig. 2. W3C Web of Things use case: a connected car with a cloud
server defined in [27]

This example shows the main benefit of WoT for the
automotive domain: it would allow the decorrelation
from automotive standard for car data and, therefore,
allow developers who are not automotive experts to use
WoT interaction patterns with vehicles as Web Things.
It also would enable the collection and analysis of sen-
sor data coming from vehicles of different models and
brands. We are using WoT in our research to benefit
from WoT interactions and be able to combine them in
a common web layer.

In the Thing Descriptions (TD), annotations about
Things, capacities and interactions are semantic anno-
tations. The WoT ontology [28] defines those terms. In

35https://w3c.github.io/wot-architecture/#connected-car

this ontology, a wot:Thing implements a wot:Se-
curity, defined as its security mechanism, and a
number of wot:InteractionPattern that can
be subclassed as wot:Property, wot:Action
and wot:Event. Their instances are the interac-
tions associated with a Thing, and are defined by a
wot:Link and wot:CommunicationProtocol
to access the device, and wot:DataSchema for their
input/output. In addition to that wot:Property instances
can have a property wot:isMeasuredIn to define
a om:Unit36.

Fig. 3. A set of WoT classes, as visible in a TD

3. VSSo and Driving Context Ontology

We developed VSSo, a vehicle signal ontology
based on the GENIVI and W3C standard data model
VSS (Vehicle Signal Specification). This ontology and
its documentation are available at http://automotive.
eurecom.fr/vsso. The version v1.12 of VSSo con-
tains 496 classes, 84 object properties and 59 datatype
properties. It has a Description Logic expressivity of
ALUHOI+, and it is interlinked with the auto.schema.org
properties.

3.1. VSS

The Vehicle Signal Specification defines a tree con-
taining 452 Branches, 59 Attributes and 1062 Signals
that aim to represent car data (Figure 4). The specifi-
cation states that:

36http://www.wurvoc.org/vocabularies/om-1.8/Unit_of_measure

http://automotive.eurecom.fr/vsso
http://automotive.eurecom.fr/vsso
http://www.wurvoc.org/vocabularies/om-1.8/Unit_of_measure

8 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Branches are car parts or components. They are
represented as nodes in the VSS tree. Branches
can contain other branches or signals and at-
tributes. For instance the top branches in the VSS
tree are Body, ADAS, Cabin, Chassis, Drivetrain,
OBD and Vehicle.

– Attributes are the static information about a car
that should not change over time and space. At-
tributes are represented as leaves in the VSS tree.
For instance, the dimensions and VIN (Vehicle
Identification Number) of a car are attributes of
the Vehicle branch. Attributes are defined by a
path starting with “Attribute” and defining its po-
sition in the VSS tree. For instance the VIN is
Attribute.Vehicle.VehicleIdenti-
fication.VIN. They also have entries such as
a description, a type, a unit or restrictions on val-
ues. All properties defined in http://auto.schema.
org are attributes in VSS.

– Signals are the dynamic information about a
car that is either produced by a sensor, con-
sumed by an actuator or properties of com-
plex embedded systems. Signals are also repre-
sented as leaves in the VSS tree. For instance,
Signal.Drivetrain.Transmission.-
Speed is the car speed, measured in the Trans-
mission branch. Signals, like attributes, have en-
tries providing a description, a type, and poten-
tially a unit and restrictions on values.

Fig. 4. The GENIVI Vehicle Signal Specification structure

In its original form, VSS did not contain informa-
tion about sensors or actuators producing or consum-
ing data. In order to describe the difference between
signals measuring the same phenomenon, but sensed
by different sensors, such as the car speed, we added

new entries in VSS signals. We also corrected some
entries to make VSS more consistent, especially in the
naming convention and choice of standard units. Those
corrections have been approved by GENIVI and are
now part of evolution of this standard. VSS is meant
to be a technology-independent specification for car
data. This means that a component or signals specific
to a particular brand or car model should not define a
specific technology as other competing ones exist to
do the same task. For instance, the traveled distance is
measured by an Odometer regardless of the technology
used.

3.2. General modeling pattern

The general idea behind the design of the VSS on-
tology is to take advantage of the structure of VSS. All
branches are part of a complete tree, as sub-branches
of bigger branches. This structure gives a more un-
derstandable meaning to signals. Therefore, we reuse
it in a component-based pattern using subclasses of
vsso:Branch linked with the transitive object prop-
erty vsso:partOf. This means that a VSS Branch
is used to generate a new class, and the mother or chil-
dren branches are attached to it with a vsso:partOf
property (Listing 1.1).

Listing 1: vsso:Drivetrain is an example of a
generated class part of vsso:Vehicle
vsso : D r i v e t r a i n a r d f s : C las s , owl : C l a s s ;

r d f s : s u b C l a s s O f vs so : Branch ;
r d f s : s u b C l a s s O f [

a owl : R e s t r i c t i o n ;
owl : o n P r o p e r t y vs so : p a r t O f ;
owl : a l l V a l u e s F r o m vsso : V e h i c l e

] ;
r d f s : l a b e l " D r i v e t r a i n "@en ;
r d f s : comment " D r i v e t r a i n . A l l body components "@en .

The second interesting structural aspect of VSS is
the set of entries defining VSS concepts. Indeed, at-
tributes, branches and signals are all defined by at least
a name, a type and a description. These entries allow
the generation of one class per VSS concept, with a
RDFS label and comment. Attributes and signals also
have additional entries, such as a unit, or a set of poten-
tial values (sometimes a minimum and maximum val-
ues) and a sensor or actuator. All these entries define
the specific details of an attribute or signal, and make
more sense to a machine than a label or description
(Listing 1.2).

http://auto.schema.org
http://auto.schema.org

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 2: vsso:AmbientAirTemperature is
a signal measured by a vsso:Thermometer in
qudt:DegreeCelcius

vsso : Ambien tAi rTempera tu re a r d f s : C las s , owl : C l a s s ;
r d f s : s u b C l a s s O f vs so : O b s e r v a b l e S i g n a l ;
r d f s : l a b e l " Ambien tAi rTempera tu re "@en ;
r d f s : comment " S i g n a l . V e h i c l e . Ambien tAi rTempera tu re :

Ambient a i r t e m p e r a t u r e "@en ;
r d f s : s u b C l a s s O f [

a owl : R e s t r i c t i o n ;
owl : o n P r o p e r t y s o s a : i sObse rvedBy ;
owl : a l l V a l u e s F r o m vsso : Thermometer

] ;
r d f s : s u b C l a s s O f [

a owl : R e s t r i c t i o n ;
owl : o n P r o p e r t y qud t : u n i t ;
owl : a l l V a l u e s F r o m qud t : T e m p e r a t u r e U n i t

] .

We generate a datatype property for each VSS at-
tribute which are sub-properties of a generic vsso:at-
tribute datatype property. All those attributes be-
ing static, since their values do not evolve in time and
space, there is no need to model them using a pattern
involving dynamic observations. VSS attributes are at-
tached to VSS branches which is materialized in the
domain of those properties, while their range makes
use of a custom datatype (Listing 1.3).

Listing 3: vsso:tankCapacity is an attribute of
the vsso:FuelSystem branch
vsso : t a n k C a p a c i t y a owl : D a t a t y p e P r o p e r t y ;

r d f s : s u b P r o p e r t y O f vs so : a t t r i b u t e ;
r d f s : l a b e l " TankCapac i ty "@en ;
r d f s : comment

" A t t r i b u t e . D r i v e t r a i n . Fue lSys tem . . Tank . C a p a c i t y :
C a p a c i t y o f t h e f u e l t a n k i n l i t e r s "@en ;

r d f s : domain vs so : Fue lSys tem ;
r d f s : r a n g e c d t : volume .

Signals, however, are going to be observed over time
and space and there is a need for an adapted model-
ing pattern taking dynamics into account. In order to
model it, we take advantage of the SSN/SOSA pattern
for modeling sensors, actuators, observable and actu-
atable properties, observations and actuations. SOSA
uses the triplets (Observation, ObservableProperty,
Sensor) and (Actuation, ActuatableProperty, Actuator)
where the first element defines the abstraction data,
the second the signal and the third the appliance pro-
ducing or consuming the data. Observations and Ac-
tuations contextualize the data with properties such
as sosa:FeatureOfInterest (e.g. a car), the
sosa:Result or sosa:SimpleResult depend-
ing on how units are defined, as well as sosa:phenom-
enonTime and geo:lat, geo:long for the spa-

tiotemporal context of the observation or actuation
(Figure 1).

SSN/SOSA does not define a unique unit ontology,
but it is open to use multiple ones. The examples pro-
vided in the specification37 use QUDT38[30], OM3940

[31] or a custom datatype41 [32]. The main unit ontolo-
gies have been compared in [33]: OM is the largest one
with relatively few issues, while QUDT is a medium
sized ontology with some inferential inconsistencies
but a partial mapping with schema.org42. The authors
of [32] have developed a custom datatype supporting
the units from the UCUM (Unified Code for Units of
Measure) system43. In order to remain open, we only
set restrictions on unit systems in QUDT and let the
user choose the units freely.

3.3. Modeling problems and new VSS policies

Several exceptions and issues prevent the trivial
generation of a proper ontology from VSS. Some con-
cepts share the same name or require clarification, sig-
nals must be compliant with the SOSA pattern and
there are branches defining position concepts that are
not relevant for a VSS ontology.

3.3.1. Clarification of concept names
Homonymy. VSS relies on a full path to define an
attribute or a signal. Usually, the path contains all
the context to be interpreted as generic name. For in-
stance Signal.Drivetrain.Engine.Speed,
is clearly the rotation speed of the engine while
Signal.Cabin.Infotainment.Navigation-
.CurrentLocation.Speed is the vehicle speed
measured by the GPS. However they would both
generate a class vsso:Speed if we would take
the leaf of the tree as a basis. Therefore, VSS con-
cepts are renamed for clarification. In the same ex-
ample, they will generate vsso:EngineSpeed and
vsso:VehicleSpeed.

Synonymy. Sometimes, two different path in the VSS
tree actually refer to the same concept. This happens
when the same phenomenon can be measured by more

37https://www.w3.org/TR/vocab-ssn/#examples
38http://www.qudt.org
39Version 1.8.6 from http://www.wurvoc.org/vocabularies/om-1.

8/
40Version 2.0.6 from https://github.com/HajoRijgersberg/OM
41https://ci.mines-stetienne.fr/lindt/v2/custom_datatypes.html
42https://www.w3.org/TR/2016/NOTE-tabular-data-primer-

20160225/#units-of-measure
43http://unitsofmeasure.org/ucum.html

https://www.w3.org/TR/vocab-ssn/#examples
http://www.qudt.org
http://www.wurvoc.org/vocabularies/om-1.8/
http://www.wurvoc.org/vocabularies/om-1.8/
https://github.com/HajoRijgersberg/OM
https://ci.mines-stetienne.fr/lindt/v2/custom_datatypes.html
https://www.w3.org/TR/2016/NOTE-tabular-data-primer-20160225/#units-of-measure
https://www.w3.org/TR/2016/NOTE-tabular-data-primer-20160225/#units-of-measure
http://unitsofmeasure.org/ucum.html

10 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Two signals representing the same concept of vehicle speed

than one sensor or in different parts of the vehicle. For
example, both signals Signal.Drivetrain.Tran-
smission.Speed and Signal.Cabin.Infotai-
nment.Navigation.CurrentLocation.Speed
measure the speed of the car, one in the gearbox using
rotation speed measures and the other one using GPS
coordinates. The transformed vsso:VehicleSpeed
class is unique in VSSo. Its instances differ given the
sensors that will produce the value and the branch host-
ing the sensor (Figure 5).

3.3.2. Restriction required by the SOSA pattern
In SOSA, there is no definition of specific sig-

nals but only sosa:ObservableProperty and
sosa:ActuatableProperty. These classes are
not mutually exclusive but simply define signals that
are meant to be read or written.

Signals are observable, actuatable or both. We de-
fine two main signal classes in the VSS ontology:
vsso:ObservableSignal, as a subclass of sosa-
:ObservableProperty, and vsso:Actuatable-
Signal subclass of sosa:ActuatableProperty.
All signals in VSS are subclasses of at least one of
them. For instance, vsso:VehicleSpeed is only
measured and is therefore a subclass of sosa:Obser-
vableProperty, while vsso:MirrorHeating
only acts on the mirror and is a subclass of sosa:Act-
uatableProperty. Many signals are subclasses of
both. The choice of making a signal observable or ac-
tuatable is based on the existence of the sensor and ac-
tuator entries of each VSS Signal. If it has a sensor, it
is observable, but if it has an actuator, it is actuatable.

All signals have at least a sensor or actuator. In or-
der to be compliant with SOSA, we must define a
sosa:Sensor for all sosa:ObservableProper-
ty and a sosa:Actuator for all sosa:Actua-
tableProperty. This means that the entries we
added in VSS to define those devices are used to

create classes, subclasses of either sosa:Sensor
or sosa:Actuator. These sensors and actuators
should be as technology-independent as possible, as
their physical instances vary from one OEM to another.
Some signals relate to complex systems such as the
infotainment system where there are no physical sen-
sors or actuators. In this case, a virtual system defines
the sensor/actuator producing or consuming the data
without being a physical device.

3.3.3. Branch structure modeling choices
The VSS tree structure contains choices that pre-

vents an automatic generation of RDF classes for
branches.

All branches are vsso:partOf vsso:Vehicle.
The path defining attributes and signals begins with
the top element of the tree, being either “Attribute”
or “Signal”. The modeling choice would require the
top branch to be the complete vehicle that contains all
branches. There is, nevertheless, a branch among the
top one called “Vehicle” containing attributes and sig-
nals about the full vehicle, such as its VIN. We take
this branch as the top one containing all other branches
(Figure 6).

Fig. 6. The vsso:Vehicle branch is taken as the one containing
all other branches and corresponds to the full vehicle

Position-related concepts are not branches. In VSS,
the path to certain attributes and signals contains the
position of certain branches. This is especially the
case for elements that exist multiple times within one
car, such as doors, seats and mirrors. For instance,
there are signals like Door.Left.IsLocked and
Mirror.Right.Tilt. It is not desired to have

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

classes defining the concepts of “left” and “right”. A
solution could be to define a class per signal in VSS,
but the result would not be consistent with the goal
of having generic signal classes. Instead, we decide
to model the hosting branches with an object prop-
erty vsso:position. This defines instances of such
branches with the correct positions and still refer to a
unique class. Using the same example, a door instance
would have vsso:position vsso:Left and the
mirror instance a vsso:position vsso:Right.

3.4. The driving context ontology

VSSo models signals and attributes of vehicles.
However, automotive data generally refers to a much
broader set of domains. One can cite, for example, the
description of trajectories, points of interest, the behav-
ior and mental state of the driver, or even the weather
and the road states. Such automotive domains are de-
picted in Figure 7

Fig. 7. The driving context model encapsulates numerous factors re-
lated to the driver, the environment and the vehicle itself

3.4.1. Driving context model
VSSo, based on the SSN/SOSA modeling pattern,

describes signals as observable or actuatable proper-
ties of vehicle branches which are feature of interests.
The main limitation of this model is that it describes
signals as states or properties of its features of inter-
est. In contrast, the Web of Things proposes three main
interaction patterns: properties that one can read and

write, actions that one can invoke, and events that one
can observe. We will see in Section 4 how we can bind
our automotive-specific data model with the Web of
Thing, which requires an additional event-based mod-
eling pattern.

Another motivation for more generic contextual
driving data is the large number of domains interact-
ing with vehicles. There has been research on multiple
domains which resulted on new data models or ontolo-
gies [19, 34, 35, 36, 37, 38]. The following models are
of interests to model a driving context:

– Car signals and attributes
– Driver/passenger emotions and mental state
– Driver/passenger behavior
– Road state and close events
– Area state and close Points of Interest (PoI)
– Weather

Based on the existing work on those different do-
mains and the resulting models, we created a central
pattern for making these domains interact one with an-
other. Our model focuses on three central concepts:
the driver, the car and the road on which it is driv-
ing. Those central features of interest can be further
detailed but are always described either in a state-
oriented or event-oriented pattern. Their contextual
features are either their state, such as a mental state
of a driver, or events they are involved in, such as an
accident involving cars and their passengers.

A state is a class that refers to a certain observation
of a property of a feature of interest. The state pattern
is here, as for VSSo, the SSN/SOSA pattern. The dif-
ferent states we have identified are the car signals, the
weather state, the emotional and behavioral state of the
driver and passengers and the states of a spatial region,
including the roads and local area.

To be compliant with current best practices in event
modelling for a driving context, we use a popular event
ontology [39]. We have a need to describe events as
classes, with object properties linking them to their
participants - mostly cars and people - as well as the
potential result of the event. Furthermore, we need an
event composition pattern, to create sub-events, and we
want to use the same modeling of time and locations
as in SSN/SOSA. With its simple pattern and its reuse
of FOAF, OWL-Time and the WGS84 Geo Position-
ing Ontology, the Event ontology is the most adapted
choice.

Based on this central pattern, we created the driv-
ing context ontology. It is composed of four main con-
cepts:

12 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– The vehicle and all its signals and attributes im-
ported from the VSSo ontology

– Driver and passengers and their mental and be-
havioral States

– The road and surroundings state and events
– The trajectory and its sequences and points of in-

terest

3.4.2. Driving context ontology
The driving context core ontology is centered on the

:State class. Its subclasses are the :WeatherState,
:EmotionalState, :BehavioralState of oc-
cupants, :SpatialRegionState and VSS sig-
nals.

The :WeatherState is aligned to the wo:Wea-
therState in the Weather ontology44 [35] and
seas:WeatherForecast in the SEAS weater on-
tology45. These ontologies have different approaches
to describe a weather state with several subclasses or
literal description.

The driver and passenger State model first describes
their roles. :Driver and :Passenger are mu-
tually exclusive roles of a foaf:Person, linked
with a :role object property. A foaf:Person
has then independently a :MentalState and a
:BehavioralState. These states are mapped to
the MFOEM Emotion ontology46 [37] and SIO ontol-
ogy47 [36] that contain extensive subclasses of respec-
tively affective and bodily processes, and emotions and
interactions.

The :SpatialRegionState has two subclasses:
:RoadState and :AreaState. :RoadState is
aligned to tti:RouteOfTransport in the Toy-
ota TTI ontology48 [38], and ro:RoadSystem in the
Road Ontology49.

4. Automotive Web Things

In order to take advantage of the best practices of the
WoT specification to interact with VSSo data, we first
need to ensure that the models are compatible. Next,

44https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/
WeatherOntology.owl

45https://ci.mines-stetienne.fr/seas/WeatherOntology
46http://purl.obolibrary.org/obo/mfoem.owl
47http://semanticscience.org/ontology/sio.owl
48https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Ontology/

TTICore-0.03/
49http://ci.emse.fr/opensensingcity/ns/wp-content/plugins/

smartcities/survey_files/vocabs/vocabulary_81

we need to bind it to a certain access and communica-
tion protocol.

4.1. VSSo-WoT modeling patterns

Web Things are defined in their Thing Descriptions,
which are based on the WoT ontology [28]. They are
usually serialised in JSON-LD using the WoT ontol-
ogy as main context. For instance a car, defined as
a wot:Thing could have an interaction to control
a window. It is an instance of wot:Action, that
expects an input. It has another interaction to read
its speed value. In this case, it is instantiated as a
wot:Property and expects a wot:DataSchema
output as well as a unit.

With VSSo, we apply the following matching rules.
All vss:ObservableSignal and vss:Actua-
tableSignal instances can be used as wot:Property
of a car Thing, and all vss:ObservableSignal
instances are not writable. Likewise, all vss:Actua-
tableSignal instances can be used as wot:Action.
We do not cover the case of wot:Event in this re-
search.

Fig. 8. Modeling pattern of VSSo with WoT (VSSo in blue, WoT in
green, units and literals in orange)

Listing 4: extracts from a TD representing a car and
the wot:Property of the vss:VehicleSpeed
" @context " : [
" h t t p s : / / w3c . g i t h u b . i o / wot / w3c−wot−td−c o n t e x t . j s o n l d / " ,
" h t t p s : / / w3c . g i t h u b . i o / wot / w3c−wot−common−c o n t e x t . j s o n l d / " ,
{"om " : " h t t p : / / www. wurvoc . o rg / v o c a b u l a r i e s / om−1 .8 / "} ,
{" a u t o " : " h t t p s : / / a u t o . schema . o rg / " } ,
{" vs so " : " h t t p : / / a u t o m o t i v e . eurecom . f r / v s so #" }]
" @type " : [" Thing " , " v s s : V e h i c l e " , " a u t o : Car "] ,
" name " : "BMW 7 S e r i e s " ,
" a u t o : b rand " : "BMW" ,
" i n t e r a c t i o n " : [

https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl
https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl
https://ci.mines-stetienne.fr/seas/WeatherOntology
http://purl.obolibrary.org/obo/mfoem.owl
http://semanticscience.org/ontology/sio.owl
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Ontology/TTICore-0.03/
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Ontology/TTICore-0.03/
http://ci.emse.fr/opensensingcity/ns/wp-content/plugins/smartcities/survey_files/vocabs/vocabulary_81
http://ci.emse.fr/opensensingcity/ns/wp-content/plugins/smartcities/survey_files/vocabs/vocabulary_81

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

{
" @type " : [" P r o p e r t y " , " v s so : V e h i c l e S p e e d "] ,
" wot : i s M e a s u r e d I n " : " om : Speed_Uni t " ,
" name " : " speed " ,
" o u t p u t D a t a " : { " t y p e " : " f l o a t " } ,
" o b s e r v a b l e " : t r u e ,
" w r i t a b l e " : f a l s e ,
" l i n k " :
[{

" h r e f " : " p r o p e r t y / r e a d / speed " ,
" mediaType " : " a p p l i c a t i o n / j s o n "

}] }]

4.2. Protocol Binding

The WoT specification does not yet provide strict
rules about how WoT can be bound to specific ecosys-
tems and communication protocols. We proposed two
bindings in regards to two usage of WoT in the au-
tomotive domain: connected vehicle with limited re-
source, and vehicle fleet abstraction in the cloud.

4.2.1. HTTP(S) binding
In recent experiments, we used HTTP and HTTPS

for interacting with a car servient. Even though there
are no strict standard on how HTTP is bound to a WoT
thing, there are some common practices: GET to read
a property, PUT or POST to write a property or invoke
an action. In our approach, we can read and write prop-
erties respectively with a GET and a POST method
containing the new value as payload. We can invoke
actions with a POST request with an optional payload.
One can observe events using HTTP long-polling 50. In
this case, the sub protocol is defined as in Listing 4.2.1.

Listing 5: Extract from a TD defining an event ac-
cessed by HTTP long-polling
" e v e n t s " : {

" t i r e −p r e s s u r e−warn ing " : {
" t y p e " : " s t r i n g " ,
" forms " : [{

" h r e f " : " h t t p s : / / myCar . example . com / t i r e " ,
" s u b P r o t o c o l " : " LongPo l l "

}]
}

}

4.2.2. LwM2M binding
We use the device management protocol LwM2M51

(LightweightM2M) specified at the Open Mobile Al-
liance52 for exchanging data between the vehicle and
our backend. LwM2M is designed for remote manage-

50https://realtimeapi.io/hub/http-long-polling/
51http://openmobilealliance.org/iot/lightweight-m2m-lwm2m
52http://openmobilealliance.org

ment of sensor networks in machine-to-machine en-
vironments. It is built on top of CoAP and features a
RESTful architectural design, with an extensible re-
source and data model.

A READ request can give information about a sen-
sor value at one moment. If the server subscribes to
speed sensor value, the client will do regular READ
request and the server will access it in soft real-time.
A WRITE request can update a value for an actuator.
In this case, the WRITE request would also contain a
parameter value pushed to the vehicle.

A discovery and a Thing Description consump-
tion phase provides the remote servient a description
of properties, actions and events that can be called
through LwM2M equivalent operations on mapped ob-
jects. In this case, a mapping between LwM2M and
WoT operations, as well as a definition of TD as
LwM2M objects will be provided. Our implementa-
tion demonstrates the usability of LwM2M as proto-
col for WoT, and allows its usage. This is especially
relevant for applications with constrained devices.

5. Evaluation

5.1. Competency questions

In order to evaluate the coverage of the VSS ontol-
ogy, we tried to write SPARQL queries for all compe-
tency questions described in the Section ??53. We gen-
erate synthetic traces data using the VSSo ontology.

What are the attributes of a car and what do they ex-
press? This query retrieves the static attributes infor-
mation about a car.

SELECT ? b ra nc h ? a t t r i b u t e ? v a l u e
WHERE {

? a t t r i b u t e r d f s : s u b P r o p e r t y O f vs so : a t t r i b u t e .
? b r an ch ? a t t r i b u t e ? v a l u e . }

What are the attributes of the chassis? This query is
interesting for focusing on only one branch of the car.

SELECT ? a t t r i b u t e ? v a l u e
WHERE {

? a t t r i b u t e r d f s : s u b P r o p e r t y O f vs so : a t t r i b u t e .
? b r an ch ? a t t r i b u t e ? v a l u e ;

a vs so : C h a s s i s . }

53A more complete list is available at https://github.com/
klotzbenjamin/vss-ontology

https://realtimeapi.io/hub/http-long-polling/
https://github.com/klotzbenjamin/vss-ontology
https://github.com/klotzbenjamin/vss-ontology

14 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
WoT binding with LwM2M and HTTP(S)

WoT LwM2M HTTP(S)

Interaction Method Method Input Method Input

Property
Read Read Property object GET
Write Write Property instance, parameter POST Parameter
Observe GET (longpoll)

Action
Invoke Execute Action object POST Parameter
Update/cancel task Write on instance Action instance, parameters

Event
Subscribe Observe Event object GET (longpoll)
Update/Cancel subscription Write on instance Event instance, parameter

Which unit system does the signal vsso:VehicleYaw
use? The ontology enables to perform queries on
units.

SELECT ? u n i t s y s t e m
WHERE {

?yaw a vsso : VehicleYaw ;
qud t : u n i t ? u n i t s y s t e m . }

What is the current gear? A developer should only
be required to know the URI of a signal to retrieve its
last value and metadata54. In this example, with the SS-
N/SOSA observations, we check that the current time
is the time of the observation and retrieve the value and
unit.

SELECT ? s i g n a l ? r e s u l t ? t ime
WHERE {

? s i g n a l a vs so : C u r r e n t G e a r .
? obs a s o s a : O b s e r v a t i o n ;

s o s a : o b s e r v e d P r o p e r t y ? s i g n a l ;
s o s a : h a s S i m p l e R e s u l t ? r e s u l t ;
s o s a : phenomenonTime ? t ime .

FILTER (? t ime == NOW())
}

Which windows are currently open? In this case, we
consider the position of a car component, to make sure
that one can define it in instances of car branches and
signals. The window position is in percent, so if a sig-
nal is observed with a value different from 100, the
branch that contains it is kept and we look at the prop-
erty vsso:position of the remaining branches.

SELECT ? p o s i t i o n
WHERE {

? w i n d o w P o s i t i o n a vs so : WindowPos i t ion .
? window vsso : h a s S i g n a l ? w i n d o w P o s i t i o n .
? obs a s o s a : O b s e r v a t i o n ;

s o s a : o b s e r v e d P r o p e r t y ? w i n d o w P o s i t i o n ;
s o s a : h a s R e s u l t ? r e s u l t ;

54In the case of time-related query, we assume we can define the
current time with a function NOW().

s o s a : PhenomenonTime ? t ime .
FILTER (? t ime == NOW())
? r e s u l t qud t : numer icVa lue ? v a l u e .
FILTER (? v a l u e < 100)
? window vsso : p o s i t i o n ? p o s i t i o n .

}

VSSo fits our requirements of being based on an au-
tomotive standard and semantically enriching car data.
Furthermore, with more than 300 different signals and
50 attributes, VSSo defines more concepts than all
ontologies, vocabularies and schemata from the state
of the art, making it more complete. Finally, because
VSSo is based on a specification meant to be extended,
it is also easy to extend, as we will see in Section 6.2.

5.2. Efficiency of interactions with a car

In regard to the research question, we want our
model to fit the following requirements:

– Be automotive specific,
– Contain the semantic metadata of automotive

concepts, through a vocabulary, ontology or schema
for instance,

– Describe most attributes of a car,
– Describe most signals of a car,
– Be generic, or as use-case independent as possi-

ble.

In the state of the art (Section ??), most initia-
tives were developed for the automotive domain only.
Only the Web of Things model is independent from
it. Therefore, when used alone, it is missing domain-
specific knowledge. The static attributes are described
in several models from the state of the art. The auto.
schema.org extension has 20 attributes, and the ontolo-
gies it originates from have up to 50 attributes specific
to their usage. This is quite close to the number of at-
tributes described in VSS, which already includes all
auto.schema.org concepts. OBD-II provides access to

auto.schema.org
auto.schema.org

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Comparison of the different models in regard to the hypothesis: we can describe most automotive signals and attributes with semantics in generic
applications

Initiative Automotive Attributes signals Semantic Application Release
specific coverage coverage metadata status

auto.schema.org and its sources[24] Yes High Very limited Yes E-commerce Schema
Toyota TTI Car ontology[38] Yes Limited Limited Yes ADAS Ontologies
Context-aware services[20, 21, 22, 23] Yes very limited Very limited Yes ADAS Not public
DFKI automotive ontology[40] Yes Limited Limited Yes ADAS Not public
OCM ontology[41] Yes Very limited Limited Yes ADAS Not public

VSS Yes High Very high No Generic Standard available
OBD2 Yes Limited High No Diagnosis Standard available
Extended Vehicle[8, 9, 11, 12] Yes Unknown Unknown No Telematics, Diagnosis Not released

Mercedes Benz Connected Vehicle API Yes Very limited Limited No Multiple use cases Not released
Mercedes Benz other APIs Yes High Limited No Multiple use cases APIs available
High Mobility APIs Yes High High No Mutliple use cases APIs available
PSA Connected Car API Yes Very limited Limited No Telematics API available
General Motors APIs Yes Unknown Unknown No Multiple use cases APIs available
Ford/AppLink Yes Very limited Limited No HMI SDK available
Toyota MSPF Yes Limited Very limited No Carsharing API available

WoT No Not relevant Not relevant Yes Not relevant Specification available
VSSo+SOSA/SSN+WoT Yes Yes Yes Yes Generic Available

the main identifiers of a vehicles, hence a tenth of at-
tributes. Most ontologies developed for the automotive
domain, with the exception of the e-commerce ones,
have a very limited coverage of car attributes, due to
the limited scope of their applications (mostly ADAS)
with at most 13 attributes [40]. Proprietary OEM APIs
provide access and descriptions of some attributes, but
depending on the API, the number will vary from zero
to a few tens in the High Mobility API and the various
Mercedes APIs.

The dynamic signals are described in most models
from the state of the art. In the e-commerce, the signals
are barely described. In auto.schema.org, the only sig-
nal available is the speed for instance. In ADAS mod-
els, only limited sets of signals are described, usually
the speed, acceleration and distance to other vehicles,
while one finds up to 25 signals in [40]. Those ontolo-
gies have more classes defining contextual features not
produced by cars themselves. VSS defines about 1100
signals, reduced to about 300 when the redundancy is
removed. OBD-II provides about 200 signals with a
strong focus on diagnosis. Most OEM APIs provide
access to some signals. With the exception of High
Mobility that describes hundreds of signals, those APIs
define only limited subsets, usually for telematics use

cases limited to about 40 signals in the PSA Connected
Car API.

The auto.schema.org extension and the automotive
ontologies provide formal definitions of their signals
and attributes and define formally what a vehicle is.
This is not the case in VSS, OBD-II, the Extended Ve-
hicle or any OEM API. The WoT provides formal defi-
nitions of interaction patterns, but lack domain seman-
tics. They are provided by VSSo.

Automotive ontologies are, in their vast majority,
defined for two specific use cases: e-commerce and
ADAS. OBD-II and the Extended Vehicle, despite
some reported usage55, focus on diagnosis. VISS and
VSS are generic and do not emphasize a specific use
case or set of signals. OEMs API are generally use case
dependent, but with the multiplication of them, their
are multiple use cases covered. The PSA Connected
Car API, Ford AppLink and Toyota MSPF are excep-
tion with focuses respectively on telematics, HMI data
and the car sharing use case.

Finally, a data model for the automotive domain
should be as open and standard as possible. This is the
case of auto.schema.org and the TTI ontologies, but

55https://www.postscapes.com/connected-car-devices/

auto.schema.org
https://www.postscapes.com/connected-car-devices/

16 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

not for most ADAS ontologies that were not made pub-
licly available. Both VSS and OBD-II are well-known
standards, while the Extended Vehicle is not yet re-
leased. The Mercedes Benz Connected Vehicle API is
not yet released, while its other APIs are available.
Most OEMs APIs and SDKs are available with a possi-
bility to developers to become a partner and test them.
The WoT specification is available, yet not a standard.

We presented our work to the WoT communities
during multiple plugfests. Such meetings consist in
gathering researchers from multiple domains to try to
interact with Web Things, and learn as much as pos-
sible in a short period of time. This test consisted in
checking if non-experts could manage to interact with
a car without a training. In 2017, we presented a car
directly connected to the WoT and proved that any-
one with the right access could interact with a set of
signals from a simple Web browser. In 2018, we pre-
sented simulations of cars running in the cloud, and
managed to have them interact with other Web Things.
In a first case a single car56 was parsed, understood
and used by multiple non-experts. In a second time,
we presented a fleet of three vehicles57 that was ac-
cessed safely, parsed, and used by other non-experts.
From those experience, we get the empirical validation
of our hypothesis: non-experts can interact with our
cars in the WoT efficiently and easily.

6. Applications

6.1. Use cases benefiting from VSSo

We used VSSo in various use cases to highlight its
benefits. The most general use case for VSSo is the
creation and query of triples about observations. Such
triples are created following the SOSA pattern. For in-
stance, an observation of a temperature in degrees Cel-
sius would be written as in Listing 6.1, with description
of the geolocation with geo:lat and geo:long.

Listing 6: An Observation of a temperature
: Ambien tAi rTempera tu re / o b s e r v a t i o n 1 7 1 a s o s a : O b s e r v a t i o n ;

geo : l a t " 4 8 . 1 5 1 0 9 9 " ^ ^ xsd : l ong ;
geo : l ong " 1 1 . 5 4 0 3 5 4 " ^ ^ xsd : l ong ;

56https://github.com/w3c/wot/blob/master/plugfest/2018-
prague/result.md

57https://github.com/w3c/wot/blob/master/plugfest/2018-sept-
online/result-fujitsu.md, https://github.com/w3c/wot/blob/master/
plugfest/2018-sept-online/result-panasonic.md

s o s a : h a s F e a t u r e O f I n t e r e s t : MyCar ;
s o s a : h a s R e s u l t [a qudt −1−1: Q u a n t i t y V a l u e ;

qudt −1−1:numer icVa lue "−0.5" ;
qudt −1−1: u n i t qudt−u n i t −1−1: D e g r e e C e l c i u s] ;

s o s a : madeBySensor : MyThermometer ;
s o s a : o b s e r v e d P r o p e r t y : MyAmbientAirTemperature ;
s o s a : phenomenonTime "2018−01−22T08 : 1 7 : 1 5 . 6 7 Z"

^^ xsd : da teTime .
: MyThermometer a vs so : Thermometer .
: MyAmbientAirTemperature a vs so : Ambien tAi rTempera tu re .
: MyCar a vs so : V e h i c l e .

We developed a simulator for car data, produc-
ing RDF triples following the SSN/SOSA and VSSo
ontologies. These observations are available for try-
ing the queries presented in Section 5.1. A public
sparql endpoint is available at automotive.eurecom.fr/
simulator/query.

A current challenge in trajectory pattern mining [42]
is the production and analysis of car data. Among
the benefits of such an analysis is the knowledge
about patterns but also the understanding of trajecto-
ries for drivers [43], outlier detection [44], and pre-
dictions [45]. The current trend is to use smartphones
and a limited set of signals, mostly time and location.
There has been some research on the case of the auto-
motive domain [43, 44], but it is mostly limited to open
datasets of fleets of taxis or from one unique vehicle.
VSSo makes it easier to combine data from a heteroge-
nous fleet [46]. We recorded data from a BMW car
and developed a interfacing server58 to interact with
these traces using the VSSo model. In this demonstra-
tion, we create a static graph describing the car’s at-
tributes, then fill it with sosa:Observation and
use a simple reasoner to label trajectories segments be-
tween consecutive observations.

6.2. VSSo Extensions

Just like VSS is meant to be extended with private
signals and branches, VSSo can import new concepts
defined in other namespaces. In order to do so, a de-
veloper can directly use VSSo and its patterns to man-
ually create new attributes, branches and signals. An-
other solution consists in writing the VSS extension in
vspec format, and generate a new ontology. However
this second solution requires a step of validation after-
wards. We extended the generator with a health check
script59 in order to reduce the effort of manual valida-
tion. For instance, an OEM can define a private sig-

58automotive.eurecom.fr/trajectory
59https://github.com/klotzbenjamin/vss-ontology/tree/master/

rdf-generation

https://github.com/w3c/wot/blob/master/plugfest/2018-prague/result.md
https://github.com/w3c/wot/blob/master/plugfest/2018-prague/result.md
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/result-fujitsu.md
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/result-fujitsu.md
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/result-panasonic.md
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/result-panasonic.md
automotive.eurecom.fr/simulator/query
automotive.eurecom.fr/simulator/query
automotive.eurecom.fr/trajectory
https://github.com/klotzbenjamin/vss-ontology/tree/master/rdf-generation
https://github.com/klotzbenjamin/vss-ontology/tree/master/rdf-generation

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nal for a new embedded camera. In order to use it, a
developer will define this camera as part of the VSSo
extension in a new namespace.

6.3. Automotive Semantic Web Thing Prototypes

In our prototyping, we have three challenges in re-
gard to vehicle data-based applications:

– Find the right degree of abstraction from of a data
model for vehicle data and services;

– Transport the data to the cloud reliably, securely
and efficiently;

– Ease the access to both internal and external ap-
plications.

6.3.1. Connected car with LwM2M binding
This first demonstration establishes the benefits of

using VSSo and a binding with LwM2M to interact
directly with a vehicle and was presented at the W3C
WoT F2F meeting (Düsseldorf, 2017). In this proto-
type, we demonstrate the feasibility of implementation
of a car as a WoT servient. The prototype highlights
the potential use of properties, actions and events on
a motionless vehicle based on doors/windows sensors
and actuators.

Architecture. As depicted in Figure 9, the general ar-
chitecture of the prototype contains six main parts:

1. Car data access with the computing device,
through the OBD (On Board Diagnosis) inter-
face;

2. Implementation of a LwM2M client on the com-
puting device and server in the cloud exchanging
messages over CoAP;

3. Protocol Binding: implementation of a mapping
between LwM2M and WoT (Table 1);

4. Thing Description: retrieval and parsing of meta-
data;

5. Scripting API: WoT endpoint;
6. WoT client in a browser exchanging over HTTP

with the WoT server.

The vehicle is connected to a computing device
through its OBD dongle, which is then connected to
the cloud via a LTE connection. A CoAP60 (Con-
strained Application Protocol) server is running on the
latter, that can notice a client running on the comput-
ing device and do GET/SET/SUBSCRIBE/EXECUTE
calls. When a sensor value is required, the client sends

60http://coap.technology/

an OBD job on the vehicle to retrieve the raw informa-
tion, then enrich it with semantic annotations based on
its TD, and sends the enriched data to the WoT server.

One possible implementation of LwM2M in java is
the open source project Leshan61. Through Leshan and
an additional implementation running in the vehicle, it
is possible to have read and write access to selected
and published data streams of the vehicle. To facili-
tate an easy integration of other components and do-
mains a separate high-level, but proprietary API is im-
plemented. An important aspect is to work on the same
data model throughout the stack. Table 1 presents the
WoT interactions patterns mapped between HTTP in
the OEM cloud and LwM2M to reach the vehicle.

Implementation notes. In our implementation, we
used a Rasperry Pi as a computing device, connected
to the OBD interface. In this demonstration, we imple-
ment the following interactions:

– Properties speed, passenger door lock,
– Actions passenger doors lock and unlock, honk,
– Event speed value: built as a subscription to a

property speed.

6.3.2. Simulated cars in the cloud with a HTTP(S)
binding

In order to focus on the data model and semantic in-
teroperability challenge, we also created a servient for
an abstracted vehicle in the cloud. This makes it easier
to test WoT principles on a virtual fleet with simulated
data, or records.

Architecture. The general architecture of these servients
is composed of 6 main parts, as depicted in Figure 10:

1. Car data mockup
2. Thing description
3. Device scripting API
4. HTTP protocol binding and access control
5. Application scripting API
6. Application script

The Car data mockup uses either a simulation of sig-
nals, or real historical data. In the case of a written
property or an action updating a property value, we
create an intermediate dictionary that will check, for
a value to read, if it has already been overwritten. If
this is the case, it will take the value from the in-
termediate dictionary. The device scripting API con-
sumes the Thing Description, and creates the interac-

61https://www.eclipse.org/leshan/

http://coap.technology/
https://www.eclipse.org/leshan/

18 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 9. Prototype architecture: a WoT servient runs in the OEM clouds and interacts with a WoT client in a browser. Box colors match the color
scheme of the WoT servient architecture.

Fig. 10. Prototype architecture: multiple device servients in the cloud and and an application servient connected to them via HTTP(S).

tions mapped to the mockup. The HTTP(S) binding
is based on the proposal presented in Section 4.2.1.
In these implementations, both the device servient and
the application servient use HTTP or HTTPS. The de-
vice servient uses also OAuth 2.062 to grant access to
allowed users. Interactions are therefore protected, but
the Thing Description is always available. The Appli-
cation scripting API discovers the Thing Description
of connected device servients, and retrieves their inter-
actions and metadata. The application script then al-
lows a developer to use those interactions and write
applications.

We developed several applications during the plugfest.
For example, we connected multiple times our vehicle
servient to a smart home 63 or a set of devices from
a smart home 64. We also monitored a fleet, including
three vehicles that we had created, and a car 65 and a

62https://oauth.net/2/
63https://youtu.be/zkL8Cdgy8PE
64https://youtu.be/pjgTLPlAsKQ
65https://github.com/w3c/wot/blob/master/plugfest/2018-sept-

online/TDs/Oracle/Connected_Car_Shared.jsonld

truck 66 from Oracle. In this case, we retrieved all in-
teractions and metadata for all vehicles, and due to the
lack of semantic annotations of certain Thing Descrip-
tions, we hard-coded interfaces and monitored the lo-
cation and speed of all vehicles. Finally, we had appli-
cations only interacting with one vehicle servient. In
this case, we applied simple rules to check if the doors
of the vehicle were closed while it was moving, and
turned on the DSC (Dynamic Stability Control) if the
temperature was below 0 degree Celcius.

7. Conclusion and Future Work

In this paper, we identified a gap in formal definition
of car signals and sensors. We used some best practices
both from the Semantic Web community and the auto-
motive standards to propose VSSo, an ontology devel-
oped on top of the SSN/SOSA W3C recommendation.
This new formal representation of car signals and at-
tributes allows semantic queries and annotation of au-

66https://github.com/w3c/wot/blob/master/plugfest/2018-sept-
online/TDs/Oracle/Truck_Shared.jsonld

https://oauth.net/2/
https://youtu.be/zkL8Cdgy8PE
https://youtu.be/pjgTLPlAsKQ
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/TDs/Oracle/Connected_Car_Shared.jsonld
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/TDs/Oracle/Connected_Car_Shared.jsonld
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/TDs/Oracle/Truck_Shared.jsonld
https://github.com/w3c/wot/blob/master/plugfest/2018-sept-online/TDs/Oracle/Truck_Shared.jsonld

B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tomotive Web Things. The Web of Things enables to
expose vehicle data and servers through multiple stan-
dard protocols and ecosystems, while keeping the data
model unique and standard. The experiments carried
out confirm that this approach makes interactions and
application development more accessible to a wider
range of developers.

In the future, we will work on VSS to make it more
complete and consistent, and update VSSo in order to
cover even more signals and attributes. VSSo will be
the basis of the development of a data model in the
W3C automotive Working Group and we will provide
several examples of Thing Description to use as mod-
ules describing vehicles in various use cases.

References

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller and
H. Winner, Three Decades of Driver Assistance Systems: Re-
view and Future Perspectives, IEEE Intelligent Transportation
Systems Magazine 6(4) (2014), 6–22.

[2] M. Broy, I.H. Kruger, A. Pretschner and C. Salzmann, Engi-
neering Automotive Software, Proceedings of the IEEE 95(2)
(2007), 356–373.

[3] J. Bereisa, Applications of Microcomputers in Automotive
Electronics, IEEE Transactions on Industrial Electronics IE-
30(2) (1983), 87–96.

[4] P. Barnaghi, W. Wang, C. Henson and K. Taylor, Semantics for
the Internet of Things: early progress and back to the future, In-
ternational Journal on Semantic Web and Information Systems
(IJSWIS) 8(1) (2012), 1–21.

[5] L. Atzori, A. Iera and G. Morabito, The internet of things: A
survey, Computer networks 54(15) (2010), 2787–2805.

[6] D. Raggett, The Web of Things: Challenges and Opportunities,
Computer 48(5) (2015), 26–32.

[7] V. Charpenay, Build a OWL ontology from VSS, 2016, unpub-
lished.

[8] I. 20078, Road vehicles – Extended vehicle (ExVe) web ser-
vices, Standard, ISO, 2018.

[9] I. 20078, Road vehicles – Information for remote diagnos-
tic support – General requirements, definitions and use cases,
Standard, ISO, 2018.

[10] S. Murphy, A. Nafaa and J. Serafinski, Advanced service de-
livery to the Connected Car, in: 2013 IEEE 9th International
Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), 2013, pp. 147–153.

[11] François Croc, Extended Vehicle: The answer for a Safe & Se-
cure connected vehicle, 2018.

[12] I. 20077, Road Vehicles – Extended vehicle (ExVe) methodol-
ogy, Standard, ISO, 2018.

[13] T.N.V.W. Group, Neutral Vehicle - Technical Concept, 2017.
[14] K. Gavigan, A. Crofts, P. Kinney and W. Lee, Vehicle Informa-

tion Service Specification, Candidate Recommendation, W3C,
2018.

[15] M. Aro, S. Urata and P. Kinney, Vehicle Information API Spec-
ification, Working Draft, W3C, 2017.

[16] A. Maier, H.-P. Schnurr and Y. Sure, Ontology-Based Infor-
mation Integration in the Automotive Industry, in: 2nd Interna-
tional Semantic Web Conference (ISWC), 2003, pp. 897–912.

[17] A. Reymonet, J. Thomas and N. Aussenac-gilles, Ontology
Based Information Retrieval: an application to automotive di-
agnosis, in: 20th International Workshop on Principles of Di-
agnosis (DX), Stockholm, Sweden, 2009, pp. 9–14.

[18] M. Feld and C. Müller, The Automotive Ontology: Managing
Knowledge Inside the Vehicle and Sharing it Between Cars,
in: 3rd International Conference on Automotive User Inter-
faces and Interactive Vehicular Applications, Salzburg, Aus-
tria, 2011, pp. 79–86.

[19] L. Zhao, R. Ichise, S. Mita and Y. Sasaki, Core Ontologies for
Safe Autonomous Driving, in: 14th International Semantic Web
Conference, Posters and Demos Track (ISWC), 2015.

[20] A. Armand, D. Filliat and J. Ibañez-Guzman, Ontology-based
context awareness for driving assistance systems, in: IEEE In-
telligent Vehicles Symposium Proceedings, 2014, pp. 227–233.

[21] M. Madkour and A. Maach, Ontology-based context modeling
for vehicle context-aware services, Journal of Theoretical and
Applied Information Technology 34(2) (2011).

[22] Z. Xiong, V.V. Dixit and S.T. Waller, The development of an
Ontology for driving Context Modelling and reasoning, in:
IEEE 19th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2016, pp. 13–18.

[23] S. Kannan, A. Thangavelu and R. Kalivaradhan, An Intelligent
Driver Assistance System (I-DAS) for Vehicle Safety Mod-
elling using Ontology Approach, International Journal Of Ubi-
Comp (IJU) 1(3) (2010).

[24] R.V. Guha, D. Brickley and S. Macbeth, Schema. org: evolu-
tion of structured data on the web, Communications of the ACM
59(2) (2016), 44–51.

[25] K. Janowicz, S. Cox, K. Taylor, D.L. Phuoc, M. Lefrançois and
A. Haller, Semantic Sensor Network Ontology, Recommenda-
tion, W3C, 2017.

[26] A. Haller, K. Janowicz, S. Cox, M. Lefrançois, K. Taylor,
D.L. Phuoc, J. Lieberman, R. García-Castro, R. Atkinson and
C. Stadler, The Modular SSN Ontology: A Joint W3C and
OGC Standard Specifying the Semantics of Sensors, Observa-
tions, Sampling, and Actuation, 2018, under review.

[27] K. Kajimoto, R. Matsukura, J. Hund, M. Ko-
vatsch and K. Nimura, Web of Things (WoT)
Architecture, W3C Unofficial Draft, W3C,
2018, https://w3c.github.io/wotwg/architecture/wot-
architecture.html.

[28] V. Charpenay, S. Käbisch and H. Kosch, Introducing Thing
Descriptions and Interactions: An Ontology for the Web of
Things..

[29] S.K. Datta, R.P. Ferreira Da Costa, C. Bonnet and J. Härri, Web
of things for connected vehicles, in: WWW 2016, 25th Interna-
tional World Wide Web Conference, W3C Track, April 11-15,
2016, Montreal, Canada, Montreal, CANADA, 2016.

[30] R. Hodgson, P.J. Keller, J. Hodges and J. Spivak, QUDT-
quantities, units, dimensions and data types ontologies, 2014.

[31] H. Rijgersberg, M. Van Assem and J. Top, Ontology of Units
of Measure and Related Concepts, Semantic Web journal 4(1)
(2013), 3–13.

[32] M. Lefrançois and A. Zimmermann, Supporting arbitrary cus-
tom datatypes in RDF and SPARQL, in: International Seman-
tic Web Conference (ISWC), 2016, pp. 371–386.

20 B. Klotz et al. / VSSo: a Vehicle Signal and Attribute Ontology

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[33] J.M. Keil and S. Schindler, Comparison and Evaluation of
Ontologies for Units of Measurement, Semantic Web journal
(2018).

[34] M. Lefrançois, J. Kalaoja, T. Ghariani and A. Zimmermann,
The SEAS Knowledge Model, PhD thesis, ITEA2 12004 Smart
Energy Aware Systems, 2017.

[35] M.J. Kofler, C. Reinisch and W. Kastner, An ontological
weather representation for improving energy-efficiency in in-
terconnected smart home systems (2012).

[36] M. Dumontier, C. Baker, J. Baran, A. Callahan, L. Chepelev,
J. Cruz-Toledo, N. R Del Rio, G. Duck, L.I. Furlong, N. Keath,
D. Klassen, J. McCusker, N. Queralt-Rosinach, M. Samwald,
N. Villanueva-Rosales, M. Wilkinson and R. Hoehndorf, The
Semanticscience Integrated Ontology (SIO) for biomedical re-
search and knowledge discovery, Journal of Biomedical Se-
mantics 5(1) (2014).

[37] J. Hastings, W. Ceusters, K. Mulligan and B. Smith, Anno-
tating affective neuroscience data with the emotion ontology
(2012).

[38] L. Zhao, R. Ichise, S. Mita and Y. Sasaki, Core Ontologies for
Safe Autonomous Driving, in: 14th International Semantic Web
Conference, Posters and Demos Track (ISWC), 2015.

[39] Y. Raimond, S.A. Abdallah, M.B. Sandler and F. Giasson, The
Music Ontology., in: ISMIR, 2007.

[40] M. Feld and C. Müller, The Automotive Ontology: Managing
Knowledge Inside the Vehicle and Sharing it Between Cars,
in: 3rd International Conference on Automotive User Inter-

faces and Interactive Vehicular Applications, Salzburg, Aus-
tria, 2011, pp. 79–86.

[41] Z. Xiong, V.V. Dixit and S.T. Waller, The development of an
Ontology for driving Context Modelling and reasoning, in:
IEEE 19th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2016, pp. 13–18.

[42] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra and
K. Aberer, Semantic Trajectories: Mobility Data Computation
and Annotation, ACM Transactions on Intelligent Systems and
Technology (TIST) 4(3) (2013), 49–14938.

[43] H. Su, K. Zheng, K. Zeng, J. Huang and X. Zhou, STMaker: A
System to Make Sense of Trajectory Data, 40th International
Conference on Very Large Data Bases (VLDB) 7(13) (2014),
1701–1704.

[44] A.R. de Aquino, L.O. Alvares, C. Renso and V. Bogorny, To-
wards Semantic Trajectory Outlier Detection., in: 14th GeoInfo
Conference (GEOINFO), 2013, pp. 115–126.

[45] A. Monreale, F. Pinelli, R. Trasarti and F. Giannotti,
WhereNext: A Location Predictor on Trajectory Pattern Min-
ing, in: 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), Paris, France,
2009, pp. 637–646.

[46] B. Klotz, R. Troncy, D. Wilms and C. Bonnet, Generating Se-
mantic Trajectories Using a Car Signal Ontology, in: The Web
Conference (WWW), Demo Track, Lyon, France, 2018.

	Introduction
	Related Work
	Automotive data access
	OEM APIs and Web services
	Other automotive standards

	Data models in the automotive domain
	Modeling requirements

	Connected Things on the Semantic Web
	Ontologies for connected Things
	The Web of Things

	VSSo and Driving Context Ontology
	VSS
	General modeling pattern
	Modeling problems and new VSS policies
	Clarification of concept names
	Restriction required by the SOSA pattern
	Branch structure modeling choices

	The driving context ontology
	Driving context model
	Driving context ontology

	Automotive Web Things
	VSSo-WoT modeling patterns
	Protocol Binding
	HTTP(S) binding
	LwM2M binding

	Evaluation
	Competency questions
	Efficiency of interactions with a car

	Applications
	Use cases benefiting from VSSo
	VSSo Extensions
	Automotive Semantic Web Thing Prototypes
	Connected car with LwM2M binding
	Simulated cars in the cloud with a HTTP(S) binding

	Conclusion and Future Work
	References

