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Abstract.
A central problem in the context of the Web of Data, as well as in data integration in general is to identify entities in different

data sources that describe the same real-world object. There exists a large body of research on entity resolution. Interestingly,
most of the existing research focuses on entity resolution on dense data, meaning data that does not contain too many missing
values. This paper sets a different focus and explores learning expressive linkage rules from as well as applying these rules to
sparse web data, i.e. data exhibiting a large amount of missing values. Such data is a common challenge in various application
domains including e-commerce, online hotel booking, or online recruiting. We propose and compare three entity resolution
methods that employ genetic programming to learn expressive linkage rules from sparse data. First, we introduce the GenLinkGL
algorithm which learns groups of matching rules and applies specific rules out of these groups depending on which values are
missing from a pair of records. Next, we propose GenLinkSA, which employs selective aggregation operators within rules. These
operators exclude misleading similarity scores (which result from missing values) from the aggregations, but on the other hand
also penalize the uncertainty that results from missing values. Finally, we introduce GenLinkComb, a method which combines
the central ideas of the previous two into one integrated method. We evaluate all methods using six benchmark datasets: three of
them are e-commerce product datasets, the other datasets describe restaurants, movies, and drugs. We show improvements of up
to 16% F-measure compared to handwritten rules, on average 12% F-measure improvement compared to the original GenLink
algorithm, 15% compared to EAGLE, 8% compared to FEBRL, and 5% compared to CoSum-P.
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1. Introduction

As companies move to integrate data from even
larger numbers of internal and external data sources
and as more and more structured data is becoming
available on the public Web, the problem of finding
records in different data sources that describe the same
real-world object is moving into the focus within even
more application scenarios. There exists an extensive
body of research on entity resolution in the Linked
Data [20, 32, 34] as well as the databases commu-
nity [6, 14]. However, most existing entity resolution
approaches focus on dense data [8, 20, 33, 34]. This
paper sets an alternative focus and explores learning
expressive linkage (matching) rules from as well as ap-
plying these rules to sparse data, i.e. data that contains
a large amount of missing values.

A prominent example of an application domain that
involves data exhibiting lots of missing values is e-
commerce. Matching product data from different web-
sites (e.g. Amazon and eBay) is difficult as most web-
sites publish heterogeneous product descriptions us-
ing proprietary schemata which vary widely concern-
ing their level of detail [31]. For instance in [40],
we analyzed product data from 32 popular e-shops.
The shops use within each product category (mobile
phones, headphones, TVs) approximately 30 different
attributes to describe items. The subset of the attributes
that are used depends on the e-shop and even on the
specific product. This leaves a data aggregator that col-
lects product data for many e-shops into a rich schema
with lots of missing values.

In [20], we presented GenLink, a supervised learn-
ing algorithm that employs genetic programming to
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learn expressive linkage rules from a set of existing ref-
erence links. These rules consist of attribute-specific
preprocessing operations, attribute-specific compar-
isons, linear and non-linear aggregations, as well as
different weights and thresholds. The evaluation of
GenLink has shown that the algorithm delivers good
results with F-measures above 95% on different dense
datasets such as sider-drugbank, LinkedMDB, restau-
rants [20]. As shown in the evaluation section of this
paper, GenLink as well as other entity resolution meth-
ods run into problems once the datasets to be matched
are not dense, but contain larger amounts of missing
values.

In order to overcome the challenge of missing val-
ues, this article introduces and evaluates three methods
that build on the GenLink algorithm. First, we present
GenLink Group Learning (GenLinkGL), an approach
that groups linkage rules based on product attribute di-
versity, thus successfully circumventing missing val-
ues. Next, we introduce the GenLink Selective Ag-
gregations (GenLinkSA) algorithm which extends the
original approach with selective aggregation operators
to ignore and penalize comparisons that include miss-
ing values. Finally, we introduce GenLinkComb, an al-
gorithm that combines the central ideas of the previous
two into a integrated method. We evaluate all meth-
ods using six benchmark datasets: three of them are e-
commerce product datasets, the other datasets describe
restaurants, movies, and drugs.

The rest of this paper is structured as follows: Sec-
tion 2 formally introduces the problem of entity reso-
lution. Section 3 gives an overview of the GenLink al-
gorithm. Subsequently, in Section 4 we introduce Gen-
LinkGL, GenLinkSA and GenLinkComb methods for
dealing with sparse data. Section 5 presents the results
of the experimental evaluation in which we compare
the proposed methods with various baselines as well
as other entity resolution systems. Section 6 discusses
the related work.

2. Problem Statement

We consider two datasets, A the source, and B
the target dataset. Each entity e ∈ A ∪ B consists
of a set of attribute-value pairs (properties) e =
{(p1, v1), (p1, v2), . . . , (pn, vn)}, where the attributes
are numeric, categorical or free-text. For instance, an
entity representing a product might be described by
the name, UPC, color, camera properties as shown in
Figure 1. Our goal is to learn a matching rule that de-

termines whether a pair of entities (ea, eb) represents
the same real-world object. Or formally [15], given the
two datasets A and B, the objective is to find the set M
consisting of all pairs of entities for which a relation
∼R holds:

M = {(ea, eb); ea ∼R eb, ea ∈ A, eb ∈ B} (1)

Additionally, we compute its complement set U de-
fined as:

U = (A× B) \ M (2)

The purpose of relation ∼R is to relate all entities
which represent the same real-world object [15].

To infer a rule specifying the conditions which must
hold true for a pair of entities to be part of M, we rely
on a set of positive correspondences R+ ⊆ M that
contains pairs of entities for which the ∼R relation is
known to hold (i.e. which identify the same real world
object) . Analogously, we rely on negative correspon-
dences R− ⊆ U that contain pairs of entities for which
the ∼R relation is known not to hold (i.e. which iden-
tify different real world objects)..

Given the correspondences, we can define the pur-
pose of the learning algorithm as learning matching
rules from a set of correspondences:

m : 2(A×B) × 2(A×B) → (A× B→ [0, 1]) (3)

The first argument in the above formula denotes a
set of positive reference links, while the second argu-
ment denotes a set of negative reference links. The re-
sult of the learning algorithm is a linkage rule which
should cover as many reference links as possible while
generalising to unknown pairs.

3. Preliminaries

GenLink is a supervised algorithm for learning ex-
pressive linkage rules for a given entity matching task.
As all three algorithms that are introduced in this paper
build on GenLink, this section summarises the main
components of the GenLink algorithm. The full details
of the algorithm are presented in [20].
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Fig. 1. Examples of product specifications’ mappings: (left) specification from walmart.com, (center) centralised product catalog and (right) specification from
ebay.com

3.1. Linkage Rule Format

Within GenLink, linkage rules are represented as a
tree built out of four basic types of operators: (i) prop-
erty operators, (ii) transformation operators, (iii) com-
parison operators and (iv) aggregation operators. The
linkage rule tree is strongly typed i.e. only specific
combinations of the four basic operators are allowed.
Figure 2 shows two examples of linkage rules for
matching data describing mobile phones. The formal
grammar of the linkage rule format is found in [20].

Property operators. Retrieves all values of a specific
property p of each entity. For instance, in Figure 2a
the left most leaf in the tree retrieves the value for the
“phone_type” property from the source dataset.

Transformation operators. Transforms the values
of a set of properties or transformation operators. Ex-
amples of common transformation functions include
case normalization, tokenization, and concatenation of
values from multiple operators.

Comparison operators. GenLink offers three types
of comparison operators. The first type of opera-
tors are character-based comparisons: equality, Leven-
shtein distance, and Jaro-Winkler distance. The sec-
ond type includes token-based comparators: Jaccard
similarity and Soft Jaccard similarity. The comparison
is done over a single property or a specific combina-
tion of properties. The third type of comparison op-
erators, numeric-similarity, calculate the similarity of
two numbers. Examples of comparison operators can
be seen in Figure 2a as the parents of the leaf nodes.

Aggregation operators. Aggregation operators com-
bine the similarity scores from multiple comparison
operators into a single similarity value. GenLink im-
plements three aggregation operators. The maximum
aggregation operator aggregates similarity scores by
choosing the maximum score. The minimum aggrega-
tion operator chooses the minimum from the similarity
score. Finally, the average aggregation operator com-

bines similarity scores by calculating their weighted
average.

Note that these aggregation functions can be nested,
meaning that non-linear hierarchies can be learned.
For instance, in Figure 2a, four different properties
are being compared (“phone_type”, “brand”, “mem-
ory” and “display_size”). Subsequently, two aver-
age aggregations are applied to aggregate scores from
phone_type and brand, and memory and display_size,
respectively. Finally, a third average aggregation is ap-
plied to aggregate scores from the previous aggrega-
tors.

Compared to other linkage rule formats, GenLink’s
rule format is rather expressive, as it is subsuming
threshold-based boolean classifiers and linear classi-
fiers, hence allows for representing non-linear rules
and may include data transformations which normal-
ize the values prior to comparison [20]. Therefore,
it allows rules to closely adjust to the requirements
of a specific matching situation by choosing a sub-
set of the properties of the records for the compari-
son, normalizing the values of these properties using
chains of transformation operators, choosing property-
specific similarity functions, property-specific similar-
ity thresholds, assigning different weights to different
properties, and combining similarity scores using hier-
archies of aggregation operators.

3.2. The GenLink Algorithm

The GenLink algorithm starts with an initial popula-
tion of candidate solutions which is evolved iteratively
by applying a set of genetic operators.

Generating initial population. The algorithm finds
a set of property pairs which hold similar values be-
fore the population is generated. Based on that, ran-
dom linkage rules are built by selecting property pairs
from the set and building a tree by combining random
comparisons and aggregations.
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Selection. The population of linkage rules is bred
and the quality of the linkage rules is assessed by a
fitness function relying on user-provided training data.
The purpose of the fitness function is to assign a value
to each linkage rule which indicates how close the
given linkage rule is to the desired solution. The al-
gorithm uses Matthews Correlation Coefficient (MCC)
as fitness measure. MCC [27] is defined as the degree
of the correlation between the actual and predicted
classes or formally:

MCC =
tp× tn− f p× f n√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)

(4)

The training data consists of a set of positive corre-
spondences (linking entities identifying the same real-
world object) and a set of negative correspondences
(stating that entities identify different objects). The
prediction of the linkage rule is compared with the
positive correspondences, counting true positives and
false negatives, the negative correspondences, count-
ing false positives and true negatives. In order to pre-
vent linkage rules from growing too large and poten-
tially overfitting to the training data, we penalize link-
age rules based on the number of operators:

f itness = MCC − 0.05× operatorcount (5)

Once the fitness is calculated for the entire popula-
tion, GenLink selects individuals for reproduction by
employing the tournament selection method.

Crossover. GenLink applies six types of crossover
operators:

1. Function crossover. The function crossover se-
lects one comparison operator at random in each
linkage rule and interchanges the similarity func-
tions between the selected operators.

2. Operators crossover. The operators crossover is
designed to combine aggregation operators from
two linkage rules, by selecting an aggregation
from each linkage rule and combining their re-
spective comparisons. The crossover selects all
comparisons from both aggregations and removes
each comparison with a probability of 50%.

3. Aggregator crossover. In order to learn aggrega-
tion hierarchies, the aggregation crossover oper-
ator selects a random aggregation or comparison
operator in the first linkage rule and replaces it

with a random aggregation or comparison opera-
tor from the second linkage rule.

4. Transformation crossover. This crossover builds
chains of transformations. To recombine the
transformations of two linkage rules the transfor-
mation operators of both rules are combined by
randomly selecting an upper and a lower trans-
formation operator, recombining their paths via
a two point crossover and removing duplicated
transformations.

5. Threshold crossover and Weight crossover. The
last two types of crossovers are used to recombine
thresholds and weights respectively, for a random
comparison operator in each linkage rules, by av-
eraging their thresholds/weights.

An in-depth discussion of the crossover operators is
provided in [20].

4. Approaches

In [39] we have shown that the GenLink algorithm
struggles to optimise property selection for sparse
datasets. On an e-commerce dataset containing many
low-density attributes the algorithm only reached a F-
measure of less than 80%, in contrast to the above
95% results that are often reached on dense datasets. In
the following, we propose three algorithms that build
on the GenLink algorithm and enable it to properly
exploit sparse properties. The GenLinkGL algorithm
builds a group of matching rules for the given match-
ing task (group generation) and applies the group of
matching rules to create new correspondences (group
application). Next we introduce selective aggrega-
tions, new operators within the GenLink algorithm that
can better deal with missing values. Finally, we intro-
duce GenLinkComb approach, integrating the central
ideas of the previous two methods into a single com-
bined method.

4.1. The GenLinkGL Algorithm

The GenLink algorithm lacks the capability to opti-
mise property selection when dealing with sparse data.
The algorithm will select a combination of dense prop-
erties while sparse properties will rarely be selected.
This behavior influences adversely cases in which val-
ues from relatively dense properties are missing. For
instance, when matching product data describing mo-
bile phones from different e-shops, the brand, phone
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(a)

(b)

Fig. 2. Example of two rules from the group for the phone category together with the coverage of each rule

type, and memory properties will be rather important
for the matching decisions and these attributes will
also likely be rather dense as they are provided by
many e-shops. Therefore, GenLink will focus on these
attributes and due to the penalty on large rules (com-
pare Equation 5) will not include alternative attribute
combinations involving low-density properties, such
as gtin,1 display size, or operating system. In cases in
which a value of one of these dense attributes is miss-
ing, the algorithm will likely fail to discover the cor-
rect match, while by exploiting a combination of alter-
native low-density attributes it would have been pos-
sible to recognize that the both records describe the
same product. Including all alternative attribute combi-
nations into a single linkage rule would result in rather
large rules containing multiple alternative branches
that encode the different attribute combinations. Due
to the penalty for large rules from Equation 5, only the
most important alternative attribute combinations will
be included into the rules, whereas combinations hav-
ing a lower coverage will be left unused.

A way to deal with this problem could be to loosen
the size penalty in Equation 5, however removing (or

1Global Trade Item Number (GTIN) is an identifier for trade items, devel-
oped by GS1. – www.gtin.info/

loosening) the penalty has the potential to result in an
overfitted model. Thus, it might not improve the results
of our approach. With GenLink Group Learning (Gen-
LinkGL), we choose an alternative approach - instead
of trying to grow very large rules that cover different
attribute combinations, we learn sets of rules in which
each rule is optimized for a specific property combi-
nation. The method allows us to separate more clearly
the issue of avoiding overfitting rules while still being
able to cover multiple property combinations. By com-
bining multiple combinations of properties in a group,
the learning algorithm is given the freedom to optimize
matching rules not only for the most common attribute
combinations, but also for less common combinations
involving sparse properties, as a result increasing the
overall recall. In the following, we describe how Gen-
LinkGL combines rules into groups and later selects a
rule from the group in order to match a pair of records
having a specific property combination.

Group generation. The basic idea of the first al-
gorithm, presented in Algorithm 1, is that by group-
ing different linkage rules with different properties
we could circumvent the missing values in the data.
The initial group is populated with the fittest individ-
ual from the population generated by GenLink. Sub-
sequently, an initial fitness for this group is computed
using the MCC (compare Equation 4).

www.gtin.info/
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Algorithm 1 Generating a group

Input:
Group← rule top fitness matching rule
P ← Rules All matching rules in the available pop-
ulation
Output:
The fittest group
for all i ∈ P do

if i.properties 6⊂ Group.properties then
PotentialGroup← insert(Group, i)
if f itness(PotentialGroup) > f itness(Group)
then

Group = PotentialGroup
end if

end if
end for
return G

Motivated by the GenLink algorithm, our algorithm
builds a group that maximises fitness. To do that at
each learning iteration, the algorithm iterates through
the entire population of linkage rules and combines
their individual fitness. We restrict the combination to
linkage rules whose properties are not a subset of the
properties of the group and include a linkage rule that
has at least one new property that is not present in the
group. We combine the fitness of the linkage rules by
summing the number of correctly predicted instances
in the training set (compare Equations 6 and 7), calcu-
lating for each individual the percentage of the cover-
age of training examples in the group. Once the cor-
rectly predicted instances are summed the current fit-
ness function is applied to the group. If the fitness
of that combination is greater than the current fittest
group, the new group becomes the best group. As an
output the algorithm gives the fittest group.

tpgroup =

|G|∑
i=1

distinct tpi,

f pgroup = |R+| − tpgroup

(6)

tngroup =

|G|∑
i=1

distinct tni,

f ngroup = |R−| − tngroup

(7)

Algorithm 1 can potentially lead to groups con-
taining a large number of rules, up to the complete
population of learned rules. In such case the algo-
rithm is prone to overfitting, since the population might
capture the entire training set. In order to prevent
this, we penalize groups containing a large number
of rules: f itnessgroup = MCCgroup − c × rulecount.
Where, c = (0.001, 0.003, 0.005) is a small constant,
strictly depending on the number of individuals in the
population. The larger the population, the bigger the
chance for overfitting. Therefore, the constant should
be higher for larger populations in order to penalise the
fitness more. By penalizing the fitness by the number
of members in the group, we ensure that there will be
no unneeded bloating of the learned group.

For example, let the linkage rule in Figure 2a be the
fittest individual after the n − th learning iteration of
the algorithm. The initial group contains this linkage
rule. The group would not be able to correctly predict
correspondences that could only have been matched
by a combination of the gtin, phone_type and memory
properties. At the first iteration we combine the group
with the linkage rule in Figure 2b which exploits the
gtin property in cases in which this property is filled
(coverage of training examples 0.053). As a result, the
correspondences above could be captured by the group
leading to better fitness.

Algorithm 2 Applying a group to set of pairs for
matching

Input:
G ← group of matching rules
Pairs← pairs for matching
Output:
Linked instances
Result← nil
for all pair ∈ Pairs do

for all rule ∈ G do
if pair.properties ≡ rule.properties then

Result← match(pair, rule)
break

end if
end for
if 6 ∃match then

Result← match(pair,G.top)
end if

end for
return Result

Group application. As an input the second algo-
rithm, presented in Algorithm 2, takes the output of Al-



Learning Expressive Linkage Rules from Sparse Data 7

gorithm 1 and a set of pairs to be matched. The individ-
uals in the input group are sorted by the percentage of
coverage. Sorting enables Algorithm 2 to find the more
influential individual rules in less iterations. For each
pair the algorithm iterates through the group of match-
ing rules. If the pair to be matched contains the same
properties as in the matching rule, the matching rule
is applied. If there is no matching rule which has the
exact properties as the instances, the top matching rule
is applied. For instance, when matching (a) the spec-
ification from walmart.com with the product catalog
and (b) the specification from ebay.com with the prod-
uct catalog from Figure 1, the algorithm would use the
first rule from Figure 2 for the a pair, but use the sec-
ond matching rule from Figure 2 for the b pair since
in b one of the specifications does not have a value for
the display_size attribute, however it contains a gtin
attribute.

Property diversity is an underlying factor behind this
method. Since the prime goal is to enlarge the com-
bination of properties that are used for matching, it is
imperative that the dataset contains a diverse range of
properties. More precisely, if the dataset has a smaller
number of properties, the number of combination of
properties that can be made by grouping linkage rules
is smaller. Therefore, this approach would not improve
much upon GenLink when dealing with datasets with
smaller number of properties.

4.2. The GenLinkSA Algorithm

An alternative to learning groups of small rules spe-
cializing on a specific property combination each is
to learn larger rules covering more properties and ap-
ply a penalty for the uncertainty that arises from val-
ues missing in these properties. For instance, a larger
rule could rely on five properties for deciding whether
two records match. If two of the five properties have
missing values, the remaining three properties can still
be used for the matching decision. Nevertheless, a de-
cision based on three properties should be considered
less certain than a decision based on five properties.
In order to compensate for this uncertainty, we could
require the values of the remaining three properties to
be more similar than the values of the five properties
in the original case in order to decide for a match.
The GenLink Selective Aggregations (GenLinkSA) al-
gorithm implements this idea by changing the behavior
of the comparison operators as well as the aggregation
operators in the original GenLink algorithm.

Null-enabled Comparison Operators. The original
GenLink algorithm does not distinguish between a pair
of different values and a pair of values containing a
missing value. In both cases, the algorithm assigns the
similarity score 0. This is problematic when similarity
scores from multiple comparison operators are com-
bined using the aggregation function average or mini-
mum, as the resulting similarity score will be unnatu-
rally low for the case of missing values. In order to deal
with this problem, GenLinkSA amends the compari-
son operators with the possibility to return the value
null: a GenLinkSA comparison operator will return
null if one or both values are missing. If both values
are filled, the operator will apply its normal similarity
function and return a value in the range [0, .., 1].

Selective Aggregation Operators. The GenLink ag-
gregation operators calculate a single similarity score
from the similarity values of multiple comparison
operators using a specific aggregation function such
as weighted average, minimum, or maximum. Gen-
LinkSA adjusts the aggregation operators to apply the
aggregation function only to non-null values. In order
to compensate the uncertainty that results from miss-
ing values (comparison operators returning the value
null), the similarity score that results from the aggrega-
tion is reduced by constant factor α for each compari-
son operators that returns a null value. In this way, all
non-null similarity scores are aggregated and a penalty
is applied for each property pair containing missing
values. Formally, a GenLink aggregation is defined by
the following:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb))

(8)

The first argument S ∗ contains the similarity scores
returned by the operators of this aggregation while the
second argument N∗ contains a weight for each of the
operators, finally the third argument Fa represents the
aggregation function that is applied to compute the
similarity score S .
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Fig. 3. GenLinkSA rule for the phone category

Given the aggregation operators, we can now define
GenLinkSA’s selective aggregation operators as:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))− υ

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb)),

υ = β× | { si(ea, eb) | si(ea, eb)→ null ∧ si ∈ se } |

(9)

Where the uncertainty factor υ is defined as the
number of null values multiplied by a small valued
constant factor β = (0.01, 0.03, 0.05). The uncertainty
factor serves to penalize the rule for each null similar-
ity operator. As the overall similarity score is reduced
by the uncertainty factor, the values of the non-null
properties must be more similar in order to reach the
same similarity score as for a pair in which all proper-
ties are filled.

For example, let the rule learned by the GenLinkSA
algorithm be the one shown in Figure 3 and let in-
stances for matching be (a) the specification from wal-
mart.com that should be matched with the product cat-
alog and (b) the specification from ebay.com to be
matched with the product catalog from Figure 1. When
matching (a) only a small penalty will be applied since
for five out of six comparisons a non-null similar-
ity score will be returned and only the comparison
for one property (comp_os) will be penalised. On the
other hand, the pair (b) will be heavily penalised since
four of the six comparisons will return null values.
Evidently, this method will discourage high similarity
scores in the presence of missing values and will thus
refrain from considering borderline cases with missing
values as matches, resulting in a higher precision.

4.3. The GenLinkComb Algorithm

GenLinkGL and GenLinkSA tackle the issue of miss-
ing values differently. Namely, GenLinkGL strives to
group matching rules exploiting different combina-
tions of properties and thus is able to apply alterna-
tive rules given that values of important properties are
missing. By being able to exploit alternative property
combinations, GenLinkGL is tailored to improve re-
call. On the other hand, by penalizing comparisons
with missing values, GenLinkSA incentivises learn-
ing matching rules that include more properties and
substantially lowers the similarity scores of uncertain
pairs, and by that improves precision. As the basic
ideas behind GenLinkGL and GenLinkSA do not ex-
clude each other but are complementary, a combina-
tion of both methods into a single integrated method
could combine their advantages: optimize rules for al-
ternative attribute combinations while at the same time
dealing with the uncertainty that arises from miss-
ing values inside the rules. The GenLinkComb algo-
rithm achieves this by combining the GenLinkSA and
the GenLinkGL algorithms as follows: GenLinkComb
uses the GenLinkSA algorithm to evolve the popula-
tion of linkage rules. In each iteration of the learning
process, GenLinkComb groups the learned rules to-
gether using the GenLinkGL algorithm. By being able
to deal with missing values either inside the rules us-
ing the selective aggregation operators or within the
grouping of rules, the GenLinkComb learning algo-
rithm has a higher degree of freedom in searching for
a good solution.

5. Evaluation

The evaluation of the aforementioned methods was
conducted using six benchmark datasets: three e-
commerce product datasets, and three other datasets
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describing restaurants, movies, and drugs. In addi-
tion to comparing GenLinkGL, GenLinkSA, and Gen-
LinkComb with each other, we also compare the
approaches to existing systems including CoSum-P,
FEBRL, EAGLE, COSY, MARLIN, ObjectCoref, and
RiMOM. The following section will describe the six
benchmark datasets, give details about the experimen-
tal setup, and present and discuss the results of the
matching experiments.

5.1. Datasets

Product Matching Datasets. We use three different
product datasets for the evaluation:

Abt-Buy dataset: The dataset includes correspon-
dences between 1081 products from Abt.com and
1092 from Buy.com. The full input mapping con-
tains 1.2 million correspondences, from which
1000 are annotated as positive correspondences
(matches). Each entity of the dataset might con-
tain up to four properties: product name, descrip-
tion, manufacturer and price. The dataset was in-
troduced in [23]. Since the content of the prod-
uct name property is a short text listing various
product features rather than the actual name of the
product, we extract the product properties shown
in Table 1 from the product name values using the
dictionary-based method presented in [41]. We
choose the Abt-Buy dataset because it is widely
used to evaluate different matching systems [5, 9].

Amazon-Google dataset: The dataset includes corre-
spondences between 1363 products from Amazon
and 103,226 from Google. The full input map-
ping contains 4.4 million correspondences, from
which 1000 are annotated as matches. Each entity
of the dataset contains the same properties as the
Abt-Buy dataset. This dataset is presented in [23].
We perform the same extraction of properties as
in the Abt-Buy dataset. The Amazon-Google data
set has also been widely used as benchmark data
set [23].

WDC Product Matching Gold Standard: This gold
standard [40] for product matching contains cor-
respondences between 1500 products (500 each
from the categories headphones, mobile phones,
and TVs), collected from 32 different websites
and a unified product catalog containing 150
products with the following distribution: (1) Head-
phones - 50, (2) Phones - 50, and (3) TVs - 50.
The data in the catalog has been scraped from

Table 1

Properties together with their density in the Abt-Buy and Amazon-Google
datasets.

Dataset Property Density (A / B) %

Abt-Buy

Original Attributes
Product Name 100

Description 63
Manufacturer 48

Price 36
Extracted Attributes

Model 91
Brand 72

Amazon-Google

Original Attributes
Product Name 100

Description 70
Manufacturer 52

Price 31
Extracted Attributes

Model 88
Brand 76

leading shopping services, like Google Shop-
ping, or directly from the vendor’s website. The
gold standard contains 500 positive correspon-
dences (matches) and more than 25000 nega-
tive correspondences (non-matches) per category.
Compared to the Amazon-Google and Abt-Buy
datasets, the WDC Product Matching Gold Stan-
dard is more heterogeneous as the data has been
collected from different websites. The gold stan-
dard also features a richer integrated schema con-
taining over 30 different properties for each prod-
uct category.

Other Entity Resolution Datasets. In order to be
able to compare our approaches to more reference sys-
tems, as well as to showcase the ability of our algo-
rithms to perform on datasets from different applica-
tion domains, we run experiments with three additional
benchmark datasets which were used in [20]:

Restaurant dataset: The dataset contains correspon-
dences between 864 restaurant entities from the
Fodor’s and Zagat’s restaurant guides. Specifi-
cally, 112 duplicate records were identified.

Sider-Drugbank dataset: The dataset contains corre-
spondences between 924 drug entities in the Sider
dataset and 4772 drug entities in the Drugbank
dataset. Specifically, there have been 859 dupli-
cate records identified.

LinkedMDB dataset This dataset contains 100 cor-
respondences between 373 movies. The authors
note that special care was taken to include rel-
evant corner cases such as movies which share
the same title but have been produced in different
years.
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Table 2

Properties and property density of the WDC Product Matching Gold Standard,
Restaurants, Sider-Drugbank and LinkedMDB datasets. Note that properties
having a density below 10% are not included into the table.

Dataset Property Density (A / B) %

WDCPr Gold Standard

Headphones
Brand 97 / 100

Item Type 87 / 100
MPN 60 / 86
Color 56 / 96

Sensitivity 53 / 88
Impedance 53 / 92
Cup Type 47 / 38

Form Factor 43 / 77
Magnet Mat. 27 / 51
Diaphragm 25 / 35

Phones
Phone Type 91 / 100

Memory 87 / 95
Brand 86 / 100
Color 79 / 43

Display Size 71 / 92
Rear Cam. Res. 70 / 85

OS 64 / 64
Display Res. 48 / 53

Processor 28 / 36
Front Cam. Res. 20 / 66

TVs
Brand 100 / 100

Item Type 91 / 100
Display Type 81 / 85
Display Size 65 / 96
Display Res 55 / 87

Tot. Size 51 / 74
Ref. Rate 50 / 96

Img. Asp. Rat. 38 / 60
Connectivity 35 / 61
Resp. Time 10 / 25

Restaurant

Name 100
Address 100
Contact 100

Type 100

Sider-Drugbank
Name 100 / 100

Indication 100 / 93

LinkedMDB

Name 100 / 100
Director 100 / 100
Rel Date 100 / 100
Studio 95 / 97

Tables 1 and 2 give an overview of densities of
properties in the six evaluation datasets. If the den-
sity of a property differs in the source (A) and the tar-
get (B) dataset, both densities are reported. For the
Abt-Buy and Amazon-Google datasets, we show all
original property densities as well as the density of
the extracted properties. As stated before, the prod-
uct datasets exhibit more sparsity. The Abt-Buy and
Amazon-Google datasets follow a similar distribution

in which only the product name property has a den-
sity of 100%. It is worth to note that the product name
property in these datasets is actually a short description
of the product mentioning different properties rather
than the actual product name. WDC Product Matching
Gold Standard contains a small set of properties with
a density above 90% while most properties belong to
the long tail of rather sparse properties [40].

5.2. Experimental Setup

Baselines. As baselines for the WDC dataset, we re-
peat TF-IDF cosine similarity and Paragrph2Vec ex-
periments presented in [40], additionally we learn a
decision tree and a random forest as baselines. The
first baseline, considers pair-wise matching of product
descriptions for which TF-IDF vectors are calculated
using the bag-of-word feature extraction method. The
second baseline, considers building a Paragraph2Vec
model [25] for product names using 50 latent fea-
tures and the Distributed Bag-of-Words model. Deci-
sion trees and random forests are learned in Rapid-
miner2 using grid search parameter optimization as
well as offering the learning algorithm different simi-
larity metrics (e.g. Jaro-Winkler, Jaccard, numeric).

Other Entity Resolution Systems. In order to set the
GenLink results into context, we also ran the WDC
Gold Standard experiments with EAGLE [36], a super-
vised matching system that also employs genetic pro-
gramming,3, FEBRL [9]4 an entity resolution system
that internally employs an SVM, and CoSum-P [46],
an unsupervised system that treats entity resolution as
a graph summarization problem. We pre-compute at-
tribute similarities for CoSum-P as described in [46].

Additionally, we provide a comparison to handwrit-
ten Silk rules. These rules are composed of up to six
properties for each product category and were writ-
ten by the authors of the article using their knowl-
edge about the respective domains as well as statis-
tics about the datasets. As an example, the hand-
written rule that was used for matching headphones,
shown in Figure 4, implements the intuition that if the
very sparse properties html:gtin or html:mpn match
exactly, the record pair should be considered as a
match. If these numbers are not present or do not
match, the rule should fall back to averaging the sim-
ilarity of the properties html:model, html:impedence

2RapidMiner is a data science software platform - https://rapidminer.com/
3http://aksw.org/Projects/LIMES.html
4https://sourceforge.net/projects/febrl/

https://rapidminer.com/
http://aksw.org/Projects/LIMES.html
https://sourceforge.net/projects/febrl/
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and html:headphone_cup_type giving most weight to
html:model.

GenLinkGL, GenLinkSA, and GenLinkComb.
The GenLinkGL, GenlinkSA, and GenLinkComb

algorithms were implemented on top of the Silk
Framework.5 The source code of the original Gen-
Link implementation.6 as well as the source code of
GenLinkGL, GenlinkSA, GenLinkComb algorithms7

is publicly available, so all results presented in this ar-
ticle can be replicated. Table 3 gives an overview of
the aggregation, comparison, and transformation func-
tions the algorithms could choose from in the experi-
ments. It should be noted that for each aggregation op-
erator there exists also a selective aggregation opera-
tor. Hyper parameters are set using grid search. Even
though grid search was run for each dataset, the result-
ing parameter values were the same for all datasets.
Table 4 summarises the parameters that were used for
GenLink and its variants in the experiments. All exper-
iments are run 10 times and the results are averaged.

GenLink and its variants as well as EAGLE were
trained on a balanced dataset consisting of 66% pos-
itive correspondences and the same number negative
correspondences. The systems were evaluated after-
wards using the remaining 33% of the correspon-
dences. For training FEBRL, we calculated TF-IDF
scores and cosine similarity for all pairs given in the
dataset. As with GenLink and EAGLE, FEBRL was
trained on 66% of the data and evaluated on the rest.
For the experiments on the Abt-Buy and Amazon-
Google datasets, all systems were trained using the
original as well as the extracted attribute-value pairs.

Preprocessing. The restaurants, movies, and drugs
datasets have an original density of over 90%. In order
to use them to evaluate how the different approaches
perform on sparse data, we systematically removed
25%, 50% and 75% of the values. More precisely, we
first randomly sample 50% of properties (not includ-
ing the name property) and for those we randomly se-
lect 25%, 50% and 75% of the values and removed the
rest, thus introducing greater percentage of null val-
ues in the datasets. We do not remove values from all
properties since we want to recreate the sparseness as
in the product datasets as close as possible. We do not
remove the name property since it is the only relevant

5www.silkframework.org
6https://github.com/silk-framework/silk To be noted that the 2.6.0 version

was used for the experiments.
7https://github.com/petrovskip/silk.2.6-GenLinkSA and https:

//github.com/petrovskip/silk.2.6-GenLinkGL

Table 3

Available aggregation comparison and transformation functions. The transfor-
mation functions are used only for non-product datasets

Comparison Aggregation Transformations
Exact Similarity Average Tokenize

Levenstein Distance Maximum Lower Case
Jaccard Similarity Minimum Concatenate
Number Similarity

Table 4

GenLink (GL/SA/Comb) Parameters

Parameter Value
Population size |P| 1000

Maximum iterations I 100
Selection method Tournament selection
Tournament size 10

Probability of Crossover 50%
Probability of Mutation 50%

Stop Condition F-measure = 1.0
Matching Rule Penalty c 0.03
Uncertainty constant β 0.05

identifier for a human, i.e without it even a human can-
not decide whether two entities are the same.

5.3. Product Matching Results

Table 5 gives an overview of the matching results on
the WDC Product Matching Gold Standard dataset. As
baselines, we take TF-IDF cosine similarity and Para-
grph2Vec experiments presented in [40], and decision
tree and random forest explained above. Moreover, we
compare results from: (i) handwritten matching rules;,
(ii) the GenLink algorithm, (iii) GenLinkGL, (iv) Gen-
LinkSA and (v) GenLinkComb. Additionally, we com-
pare to three state-of-the-art matching systems for this
dataset: (i) EAGLE [36], (ii) FEBRL [23] and (iii)
CoSum-P [46] as explained above.

As expected both baselines perform poorly for each
product category. Specifically, TF-IDF could not cap-
ture enough details of a given entity. Paragaph2Vec,
improves on the TF-IDF baseline by including the se-
mantic relations between the words of a given record.
However, the semantic relationships do not prove to be
sufficient. The third baseline however, a decision tree
approach, is already an adequate baseline as it consis-
tently comes close to the handwritten rules. Moreover,
the random forest model gives very good results on all
three datasets. With that said, it is to be expected to
have better results for both decision tree and random
forest with a better feature extraction model as proven
in Ristoski et al. [42].

EAGLE [36] and GenLink [20] improve on the
baselines since they have the ability to optimise the

www.silkframework.org
https://github.com/silk-framework/silk
https://github.com/petrovskip/silk.2.6-GenLinkSA
https://github.com/petrovskip/silk.2.6-GenLinkGL
https://github.com/petrovskip/silk.2.6-GenLinkGL
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Fig. 4. Handwritten matching rule for the headphones category

thresholds for comparisons and the weights within
aggregations. Both methods have comparable results
with the handwritten rules. The first method that shows
a better performance than the handwritten rules for all
product categories is FEBRL [9]. Because of FEBRL’s
SVM implementation is optimized for entity resolu-
tion, the system seems to be able to capture more nu-
anced relationships between data points than the hand-
written rules. The main difficulty of the FEBRL is re-
call. In addition, the method has problems with match-
ing corner cases.

The more recent approach, CoSum-P [46], over-
comes the results of FEBRL. The graph summariza-
tion approach is able to successfully generalise entities
based on pair-wise pre-computed property similarities
that refer to the same entity into one super node. How-
ever, having no supervision (ability to learn from nega-
tive examples) the algorithm suffers from lower preci-
sion due to the inability to distinguish between closely
related entities. For instance, "name: iphone 6; mem-
ory: 16gb" and "iphone 6s; memory: 16gb" would give
a high pre-computed similarity score, and thus will be
clustered together. Without negative references there is
no way for the approach to differentiate between these
two products.

All of the GenLinkGL, GenLinkSA, and Gen-
LinkComb consistently outperform results to CoSum-
P, FEBRL and the handwritten rules, according to the
Friedman [non-parametric rank] test [16] with signif-
icance level of 0.01 6 p 6 0.05.8 Additionally, they
consistently show significant improvement over EA-

8The Friedman [non-parametric rank] test was performed on the averaged
F-measure results

GLE and GenLink according to the McNemar’s test
[30] with significance level of p 6 0, 01. For in-
stance, when comparing FEBRL to the GenLinkGL
algorithm, we can notice significantly worse recall re-
sults. The GenLinkGL algorithm decreases the num-
ber of false negatives by learning sets of rules in which
each rule is optimized for a specific property combina-
tion. Hence, the algorithm is successfully circumvent-
ing missing values, and in turn exhibits a jump in re-
call. Correspondingly, the GenLinkSA algorithm gives
better results for headphones and TVs and comparable
results for phones in F-measure compared to FEBRL,
mostly due to the jump in precision. The precision
jump occurs since the selective aggregation operators
substantially lower matching scores of uncertain pair-
ings due to the uncertainty factor. Due to this penalty,
pairs with missing values which otherwise would have
borderline similarity will not be considered matches.
Both the jump in recall of GenLinkGL and the jump
in precision of GenLinkSA contribute to improve the
matching and the algorithms have comparable results
in F-measure. Finally, GenLinkComb shows signifi-
cantly better performance in F-measure than the rest
of the tested field, due to the fact that the combina-
tion method is able of both preserving precision by
penalising borderline cases with missing values and
preserving recall by successfully exploiting alternative
attribute combinations.

Category wise, the headphones category proves to
be an easier matching task obtaining the best results
with 94% F-measure. Headphones have a smaller
number of distinct properties and therefore e-shops
tend to more consistently describe products with
the same attributes compared to the other two cate-
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Table 5

Matching results per category for the WDC Product Matching Gold Standard

Headphones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.622 0.559 0.588
Baseline Pargraph2vec 0.667 0.685 0.675
Baseline Decision Tree 0.892 0.712 0.791
Baseline Random Forest 0.891 0.764 0.822
Handwritten Rule 0.841 0.838 0.839
EAGLE [36] 0.661 0.905 0.763
GenLink [20] 0.692 0.946 0.799
CoSum-P [46] 0.795 0.868 0.830
FEBRL [9] 0.884 0.837 0.850
GenLinkGL 0.837 0.924 0.888
GenLinkSA 0.922 0.925 0.923
GenLinkComb 0.920 0.961 0.940

Phones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.385 0.676 0.491
Baseline Pargraph2vec 0.497 0.624 0.553
Baseline Decision Tree 0.751 0.600 0.667
Baseline Random Forest 0.771 0.726 0.747
Handwritten Rule 0.656 0.722 0.687
EAGLE [36] 0.699 0.672 0.685
GenLink [20] 0.708 0.715 0.712
CoSum-P [46] 0.746 0.821 0.781
FEBRL [9] 0.792 0.748 0.776
GenLinkGL 0.742 0.894 0.808
GenLinkSA 0.813 0.737 0.773
GenLinkComb 0.815 0.886 0.849

TVs
Precision Recall F-measure

Baseline TF-IDF Cosine 0.661 0.474 0.554
Baseline Pargraph2vec 0.654 0.553 0.572
Baseline Decision Tree 0.839 0.714 0.771
Baseline Random Forest 0.785 0.810 0.797
Handwritten Rule 0.782 0.716 0.747
EAGLE [36] 0.722 0.674 0.697
GenLink [20] 0.790 0.711 0.748
CoSum-P [46] 0.779 0.814 0.796
FEBRL [9] 0.807 0.747 0.775
GenLinkGL 0.791 0.875 0.819
GenLinkSA 0.864 0.745 0.810
GenLinkComb 0.863 0.815 0.838

gories. The TVs and phones category reach similar F-
measures of 83.8% and 84.9% respectively.

Table 6 shows the averaged results of the algorithms
and their standard deviation values. The stability of
GenLink and GenLinkSA is improved by GenLinkGL
and GenLinkComb. The latter, group multiple individ-
uals, thus increasing the probability to converge to the
optimal solution.

Comparison of the learned matching rules. In or-
der to explain the differences in the results of Gen-
LinkSA, GenLinkGL, and GenLinkComb, we analyze
and compare the rules that were learned by the three

Table 6

Standard deviation of the GenLink Algorithms on the WDC dataset

Headphones
Average F-score Standard Dev.

GenLink 0.799 ±0.054
GenLinkGL 0.888 ±0.029
GenLinkSA 0.923 ±0.051
GenLinkComb 0.940 ±0.034

Phones
Average F-score Standard Dev.

GenLink 0.712 ±0.092
GenLinkGL 0.804 ±0.035
GenLinkSA 0.773 ±0.095
GenLinkComb 0.849 ±0.039

TVs
Average F-score Standard Dev.

GenLink 0.748 ±0.087
GenLinkGL 0.819 ±0.042
GenLinkSA 0.910 ±0.087
GenLinkComb 0.838 ±0.047

algorithm for matching using the expample of mobile
phones. Figure 3 shows the GenLinkSA rule that was
learned. As we can see, the rules uses six properties
which are combined using a hierarchy of average ag-
gregations. Within the hierarchy, more weight is put
onto a branch containing four properties, as well as
on the properties brand and phone_type within this
branch. The GenLinkGL algorithm has learned a group
consisting of 12 matching rules that use 15 distinct
properties for matching phones. Table 7 shows the top
five rules from the GenLinkGL approach sorted by
their coverage. More than 50% of the rules contain the
model (phone_type) and the display size (disp_size)
attributes. It is interesting to examine the coverage of
the learned rules: The first rule was applied to match
80% of the pairs in the training data. The second rule
was only used for 5% of the cases, the next rule for 2%
and so on, meaning that the data contained one dom-
inant attribute combination (the one exploited by the
first rule) while by specializing on alternative combi-
nations (like the second rule involving the gtin prop-
erty) still improved the overall result. Furthermore,
most of the learned matching rules use similar com-
binations of aggregation functions (average aggrega-
tion). The only exception is the second rule which
uses the property gtin. Namely, the gtin property by
itself is enough to identify the specific product, thus
the maximum aggregation function is used. For match-
ing phones, the GenLinkComb algorithm has learned
a group that only consists of five matching rules which
use 10 distinct properties. Consequently it achieves a
better F1-performance using less rules and less prop-
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Table 7

Property, Comparisons, Aggregations and Training example coverage for the
top 5 rules in the learned group for phone category learned by GenLinkGL

Properties Comps. 1st 2nd Coverage
Agg. Agg.

phone_type Exact
Avg

Avg 0.800
brand Levens.
dips_size Levens.

Avg
memory Levens.
gtin Exact

Max
0.053memory Levens.

Avg
phone_type Levens.
phone_type Exact

Avg
Avg 0.020

brand Levens.
proc_type Exact

Avg
core_count Exact
phone_type Exact

Avg
Avg 0.017

comp_os Levens.
rear_cam_res Jaccard

Avg
front_cam_res Jaccard
disp_size Exact

Avg
Avg 0.013

brand Exact
rear_cam_res Jaccard

Avg
disp_res Jaccard

erties compared to GenLinkGL. Table 8 shows the
rules that were learnt by the GenLinkComb algorithm,
again sorted by coverage. Interestingly, the rules have
a more homogenous coverage distribution than the
GenLinkGL rules. Instead of generating low-coverage
rules for exotic property combinations as GenLinkGL
does, GenLinkComb generate less groups which ex-
ploit more properties each and uses the selective aggre-
gations and the uncertainty penalty to deal with miss-
ing values within these properties. The property com-
position also supports this argument: The robust prop-
erty composition of GenLinkComb suggests that the
learned matching rules in the group contain more nu-
anced differences, while GenLinkGL has more irregu-
lar property composition.

Amazon-Google and Abt-Buy Results. To evaluate
the algorithms on datasets having lower number of
distinct properties (see Table 1), we applied the algo-
rithms to the Amazon-Google and Abt-Buy datasets.
The results of these experiments are given in Ta-
ble 9 and Table 10. As reference systems, apart of
FEBRL, the best performing approaches found in lit-
erature are listed. Table 9 gives results on the match-
ing experiment done on the Amazon-Google dataset.
GenLinkComb outperforms a commercial system [23]
based on manually set attribute-level similarity thresh-
olds. The commercial system [23] derives matching
rules similar to the handwritten rules in WDC Prod-
uct Matching Gold Standard and therefore is inferior to
the GenLinkComb. CoSum-P [46], shows comparable

Table 8

Property, Comparisons, and Training example coverage and Normalized
threshold mean for the top 5 rules in the learned group for phone category
learned by GenLinkComb

Properties Comps. 1st 2nd 3rd Coverage
Agg. Agg. Agg.

phone_type Levens.
Avg

Min
0.492

brand Levens.

Avg
memory Jaccard

Avg
dips_size Jaccard
memory Exact.

Min
phone_type Levens.
phone_type Exact

Min

0.221
memory Exact.

Min
rear_cam_res Jaccard

Avg
memory Levens.

Avg
dips_size Levens.
phone_type Exact

Avg
Avg

Avg 0.215

brand Levens.
memory Levens..

Avg
rear_cam_res Jaccard
dips_size Jaccard

Avg
comp_os Levens.
phone_tupe Exact

Min
Min

Avg
0.037

memory Levens.
phone_type Levens.
proc_type Exact
phone_type Levens.

Min

Min 0.035

memory Exact
memory Levens.

Min
Avg

front_cam_res Jaccard
disp_res Jaccard

Avg
phone_type Jaccard

results to GenLinkComb. As the datasets only have a
low number of properties and as these properties often
contain multi-word texts, the token-similarity based
approach of CoSum-P can play its strength, leading
to much better relative results compared to the WDC
Gold Standard (Table 5).

Table 10 gives results on the matching experiment
done on the Abt-Buy dataset. As with previous datasets
GenLinkComb shows the best performance in terms
of F-Measure. Both, FEBRL’s SVM classifier [9] and
MARLIN [5]9 give comparable results to both Gen-
LinkSA and GenLinkGL. This is to be expected, as the
features for both FEBRL and MARLIN were manually
engineered for the given datasets whereas our methods
select features automatically. Moreover, the SVM’s for
both FEBRL and MARLIN were trained with larger
feature sets than our approaches (five matchers on two
properties).

When comparing the results of the experiments with
WDC Product Matching Gold Standard to the results
of the Abt-Buy and Amazon-Google datasets it be-

9Results from experiments with FEBRL and MARLIN are published in [23]
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Table 9

Product matching results for the Amazon-Google dataset

Precision Recall F-measure
GenLink [20] 0.493 0.571 0.513
GenLinkGL 0.501 0.813 0.604
GenLinkSA 0.691 0.632 0.643
GenLinkComb 0.690 0.651 0.669

Reference Systems F-measure
CoSum-P [46] 0.639 0.695 0.666
FEBRL [9] 0.601
COSY [23] 0.622

Table 10

Product matching results for the Abt-Buy dataset

Precision Recall F-measure
GenLink [20] 0.632 0.694 0.661
GenLinkGL 0.650 0.833 0.730
GenLinkSA 0.721 0.714 0.717
GenLinkComb 0.723 0.798 0.758

Reference Systems F-measure
FEBRL [9] 0.713
MARLIN [5] 0.708

comes evident that the GenLink variants perform bet-
ter on datasets containing a large number of properties
than on dataset containing only a smaller number of
properties.

5.4. Other Domains Results

Generally, for all datasets we can conclude that our
methods find it difficult to find the correct matches
when dealing with severely sparse data (25%). Ad-
ditionally, GenLinkComb and GenLinkSA have sim-
ilar performance and both tend to outperform Gen-
LinkGL for every dataset for the sparser settings. In
contrast, when the datasets have 75% property density,
our methods perform close to the results of reference
systems achieved on the datasets with more than 90%
property density.

Table 11 gives results on the matching experiment
done on the Restaurant dataset. GenLinkSA and Gen-
LinkComb perform closest to the reference systems,
while GenLinkGL does not show any improvement on
this dataset. Due to low number of properties that this
dataset has GenLinkComb and GenLinkGL show lit-
tle improvement compared to the other methods. Con-
sequently, GenLInkComb and GenLinkGL cannot find
enough matching rules with alternative attributes to
group, making GenLinkComb to boil down to Gen-
LinkSA and GenLinkGL to boil down to GenLink.
Density wise, all three methods follow the same down-
ward trend when the dataset is more sparse, keeping

Table 11

Results for the Restaurants dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [20] 0.651 0.654 0.909
GenLinkGL 0.642 0.661 0.905
GenLinkSA 0.654 0.660 0.938
GenLinkComb 0.653 0.664 0.936

Reference Systems on original dense dataset F-measure
GenLink [20] 0.993
Carvalho et al.[7] 0.980

Table 12

Results for the Sider-Drugbank dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [20] 0.345 0.388 0.837
GenLinkGL 0.399 0.424 0.875
GenLinkSA 0.401 0.422 0.871
GenLinkComb 0.402 0.422 0.872

Reference Systems on original dense dataset F-measure
ObjectCoref [19] 0.464
RiMOM[45] 0.504
GenLink [20] 0.970

the relative improvements of GenLinkSA and Gen-
LinkGL in comparison to GenLink.

Table 12 gives results on the matching experiment
done on the Sider-Drugbank dataset. Even though
we systematically lowered the quality of the dataset,
GenLink still outperforms the state-of-the-art [19, 45]
systems for the case of 75% property density. With
that said, GenLinkGL and GenLinkSA reach consid-
erably better results in recall and precision respec-
tively. When the data become severely sparse, like in
the case of 25% our methods show an increase of
5% in F-measure compared to GenLink. Similarly to
the Restaurant dataset the GenLinkComb does not im-
prove over GenLinkSA as again the grouping algo-
rithm could not find any suitable rules with alternative
attributes for grouping.

Table 13 gives results on the matching experiment
done on the LinkedMDB dataset, which contains more
properties compared to the other two datasets. In this
case GenLinkComb outperforms other variations of
GenLink even when data spareness is severe. Un-
like with the Restaurants and Sider-Drugbank datasets
GenLinkComb successfully finds rules with alternative
attributes to group and thus increasing F-measure by
5% compared to GenLinkSA.



16 Learning Expressive Linkage Rules from Sparse Data

Table 13

Results for the LinkedMDB dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [20] 0.540 0.587 0.873
GenLinkGL 0.550 0.627 0.911
GenLinkSA 0.559 0.624 0.920
GenLinkComb 0.611 0.658 0.952

Reference Systems on original dense dataset F-measure
EAGLE [36] 0.941
GenLink [20] 0.999

Table 14

Average runtimes on the WDC Product Matching dataset

Training time (sec.) Application time (sec.)
GenLink [20] 360.3 99.9
GenLinkGL 510.5 113.4
GenLinkSA 355.9 85.1
GenLinkComb 508.2 113.3

Reference Systems
EAGLE [36] 347.4 3.5
CoSum-P [46] N/A 78.4

5.5. Runtimes Discussion

Table 14 shows the average training as well as appli-
cation runtimes in seconds of GenLink and its variants
as well as EAGLE and CoSum-P on the WDC Prod-
uct Matching dataset. The experiments have been con-
ducted using a Intel(R) Xeon CPU with 6 cores avail-
able while the Java heap space has been restricted to
4GB. On average, it took GenLink and GenLinkSA
approximately 6 minutes to learn a matching rule us-
ing the maximum number of iterations (see Table 4 for
the exact configuration), while it took GenLinkGL and
GenLinkComb 8.5 minutes to learn a group of rules.
Similar to GenLink, EAGLE learns a matching rule
for the same dataset in just under 6 minutes. However,
when comparing application run times, GenLink and
its variants are at least 24.3 times slower than EAGLE.
This result is explained by the fact that GenLink and
its variants in their current implementation scale super-
linear with the number of records, as we do not apply
any blocking. Compared to CoSum-P, GenLink and its
variants are between 7 to 35 seconds slower.

6. Related Work

Entity resolution has been extensively studied under
different names such as record linkage [1, 8, 18, 34],
reference reconciliation [13], coreference resolution

[26, 33]. In the following, we review a set of represen-
tative entity resolution approaches; while we refer to
tutorials [17] and surveys [6, 10, 44] for more through-
out reviews.

Distance-based entity resolution approaches focus
on learning a pairwise distance metric between enti-
ties and then either set a distance threshold or build
a pairwise classifier to determine which entities are
merged. Such pairwise classifiers can be categorised
into threshold based boolean classifiers and linear clas-
sifiers. One of the first generic approaches for entity
resolution based on boolean classifiers is presented at
[2]. The approach is based on the assumption that the
entity resolution process consists of iterative match-
ing and merging which results in a set of merged
records that cannot be further matched or merged with
each other. The authors also assume that matching and
merging can be done if similar values exists, therefore
their approach would not be able to match or merge
records with missing values.

One of the most popular method to model distance-
based entity resolution approaches is with linear clas-
sifiers. There are two popular applications of SVMs to
entity matching MARLIN (Multiply Adaptive Record
Linkage with INduction) [5] and FEBRL (Freely Ex-
tensible Biomedical Record Linkage) [9]. While there
are numerous studies that propose approaches for han-
dling missing values in SVMs, for instance [38], these
optimizations are often expensive and to our knowl-
edge are not used in matching approaches.

An important use cases of entity resolution is match-
ing of product data. Following the same trend from
above various studies show optimization approaches
of linear classifiers for product resolution. For in-
stance, Kannan et al. [22] learn a logistic regression
model on product attributes extracted from a dictio-
nary model. Similarly, in [24] the authors extend the
FEBRL approach from [23] with more detailed fea-
tures. Finally, in [41], the authors compare various
classifiers for product resolution (SVMs, Random For-
est, Naive Bayes) with features extracted from a dictio-
nary method and multiple Conditional Random Fields
(CRFs) models. The authors, extended their work in
[42], where they present extraction models with latent
continuous features for product matching and classifi-
cation, proving that more sophisticated feature extrac-
tion methods significantly improve traditional machine
learning methods for entity resolution.

The entire process of entity resolution can be un-
supervised [11, 28, 37, 46] or supervised [33, 34].
To compare learning entity resolution methods, semi-
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automatic baseline approaches are used. These ap-
proaches are based on a definition of effective linking
specifications that excel in one-to-one matching tasks
including TF-IDF or Paragraph2Vec with cosine sim-
ilarity or based on other similarity functions as pre-
sented in Hassanzadeh et al. [18]. Limes [34] and Silk
[20] are examples of supervised entity resolution sys-
tems that focus on combining expressive comparisons
with good run-time behavior. Both Limes and Silk
learn linkage rules employing similar genetic program-
ming approaches, i.e EAGLE [36] and GenLink re-
spectively. In addition to GenLink, Silk provides Ac-
tiveGenLink an active learning approach presented in
Isele et al. [21]. As shown throughout this paper, both
algorithms do not handle missing values well.

Contrary to the above, in Ngomo et al. [35], the au-
thors present RAVEN - an entity resolution approach
based on perceptron learning. Namely, RAVEN treats
the discovery of link specifications as a classification
problem. It discovers link specifications by first find-
ing class and property mappings between knowledge
bases automatically, after which it computes linear and
boolean classifiers that can be used as link specifica-
tions. However, similar to FEBRL the main limita-
tion of RAVEN is that only linear and boolean classi-
fiers can be learned, making optimization for matching
sparse data expensive.

There is another direction of work which focuses on
collective entity resolution. For instance, Bhattacharya
and Getoor [4] proposed a novel relational clustering
algorithm that uses both property and relational infor-
mation between the entities of same type for determin-
ing the underlying entities. However, the defined clus-
ter similarity measure depends primarily on property
value similarity, thus missing values will have effect on
the cluster similarity measure. Another collective en-
tity resolution approach is introduced in [3] where the
authors use an extended LDA model to perform entity
resolution for authors and publications simultaneously.

In contrast, [29, 43] use probabilistic model for cap-
turing the dependence among multiple matching deci-
sions. Specifically, CRFs have been successfully ap-
plied to the entity resolution domain [29] and is one of
the most popular approaches in generic entity resolu-
tion. On another hand, a well-founded integrated solu-
tion to the entity-resolution problem based on Markov
Logic is proposed in [43]. However the approach ap-
ply the closed-world assumption, i.e.whatever is not
observed is assumed to be false in the world.

One of the first works in the Semantic Web on
the topic of unsupervised entity resolution is Nikolov

et al. [37]. The authors present a genetic algorithm
for matching, similar to EAGLE [36] and GenLink
[20]. However, instead of providing reference links
as basis for calculating fitness, the authors propose a
"pseudo F-measure"; an approximation to F-measure
based on indicators gathered from the datasets. Specif-
ically, the fitness function proposed by the author as-
sumes datasets not to contain any duplicates. This as-
sumption is violated by many real world datasets. For
instance, the WDC dataset contains many offers for the
same product all originating from eBay.

CoSum [46] and idMesh [12] are two represen-
tative unsupervised graph-based entity resolution ap-
proaches. CoSum and idMesh are both treating entity
resolution are graph summarisation problem, i.e. gen-
erating super-nodes by clustering entities and in the
case of CoSum by applying collective matching tech-
niques. Both approaches employ sophisticated generic
similarity metrics. Nevertheless, dues to not using neg-
ative evidence, they likely run into problems for use
cases in which small syntactic differences matter, such
as product type Lul5X versus Lul6X. As shown by the
good results of CoSum-P [46] on the Amazon-Google
dataset (see Section 5.3), unsupervised approaches can
excel in use cases that involve rather unstructured, tex-
tual data. But due to not using domain-specific evi-
dence, they likely reach lower relative results for use
cases that require domain-specific similarity metrics
and attribute weights.

7. Conclusion

The article introduces three methods for learning
expressive linkage rules from sparse data. The first
method learns groups of matching rules which are each
specialized on a specific combination of non-NULL
properties. Moreover, we introduce new operators to
the GenLink algorithm: selective aggregation opera-
tors. These operators assign lower similarity values to
pairings with missing values which in turn boosts pre-
cision. Finally, we presented a method that integrates
the central ideas of the previous two methods into
one combined method. We evaluate the three methods
on six different datasets, three of them are of the e-
commerce domain (as one of the domains that often in-
volves sparse datasets), and the other three datasets are
benchmark datasets that were used in previous work.
We show improvements of up to 16% F-measure com-
pared to handwritten rules, on average 12% F-measure
improvement compared to the original GenLink algo-
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rithm, 15% compared to EAGLE, 8% compared to
FEBRL, and 5% compared to CoSum-P. In addition,
we show that the method using group matching rules
improves recall up to 15%, while selective aggregation
operators mostly improve precision of up to 16%. The
combination that encompasses these methods allows
for improvement of up to 5% F-measure compared to
the GenLinkGL and GenLinkSA themselves.

As a general conclusion, the high gains in F-
measure clearly shows that identity resolution systems
should take sparse data into account and not only fo-
cus on dense datasets. When benchmarking and com-
paring systems, it is important to not only use dense
evaluation datasets, but also test on dataset with vary-
ing attribute density like the WDC Product Matching
Gold Standard [40].
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