
Semantic Programming Framework for

developing ontology-controlled Applications

Lars Vogt
a, *

, Roman Baum
a
, Christian Köhler

a
, Sandra Meid

a
, Björn Quast

b
 and Peter Grobe

b

a
Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der

Immenburg 1, 53121 Bonn, Germany

E-mails: lars.m.vogt@googlemail.com, R.Baum@leibniz-zfmk.de, c.koehler@zfmk.de, s.meid.zfmk@uni-bonn.de
b
Biodiversity Informatics, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn,

Germany

E-mails: B.Quast@leibniz-zfmk.de, P.Grobe@leibniz-zfmk.de

Abstract. We demonstrate that ontologies are not restricted to modeling a specific domain, but can be used for programming

as well. We introduce the Semantic Programming Ontology (SPrO) and its accompanying Java-based middleware, which we

use as a semantic programming language. SPrO provides ontology instances as well as annotation, object, and data properties,

which function as commands, attributes, and variables that the middleware interprets. We use SPrO for describing data-centric

Semantic Web applications. Each description forms an ontology itself, i.e., the application’s source code ontology (SCO). The

Java-based middleware produces the respective application and controls its behavior based on the descriptions contained in

the SCO. The middleware thus functions like an interpreter that interprets the descriptions in the SCO in reference to SPrO. It

treats descriptions as specifications of the application and dynamically executes them. The goal of our semantic programming

approach is to have a development framework that not only seamlessly integrates the RDF world with the HTML world but

also allows domain experts to develop their own data-centric Semantic Web applications with as little programming experi-

ence required as possible. SPrO and its accompanying Java-based middleware and its interface are available from

(https://github.com/SemanticProgramming).

Keywords: Semantic Programming Ontology (SPrO), semantic programming, semantic programming language, ontology-

controlled application, Semantic Web application

*Corresponding author. E-mail: lars.m.vogt@googlemail.com.

1. Introduction

In the age of Big Data, Linked-Open-Data, and the

Semantic Web, efficiently managing and organizing

data has become key to data exploration and

eScience, a newly emerged driving force for scien-

tific progress in data-rich fields of empirical research

[1]. eScience requires data not only to be maximally

findable, accessible, interoperable and reusable

(FAIR guiding principle [2]), but also computer-

parsable [3–5]. As a consequence, new applications

and services have been developed, many of which

utilize Semantic Web technologies and web-based

data-centric applications, such as web content man-

agement systems. Ontologies and other controlled

vocabularies have taken a central role in this context

because they provide the required standardized se-

mantic structure for data and metadata to become

comparable and computer-parsable (e.g., [4,6–8]).

Ontologies are dictionaries that can be used for de-

scribing a certain reality. They consist of labeled

classes with commonly accepted definitions that are

formulated in a highly formalized canonical syntax

and standardized format, such as the Web Ontology

Language (OWL) serialized to the Resource Descrip-

tion Framework (RDF), with the goal to yield a lexi-

cal or taxonomic framework for knowledge represen-

tation [9]. Each ontology class possesses its own Uni-

form Resource Identifier (URI), through which it can

be identified and individually referenced.

Ontologies can be documented and represented in

form of class-based semantic graphs. A semantic

graph is a network of RDF/OWL-based triple state-

ments, in which a given URI takes the Object posi-

tion in one triple statement (i.e., a statement consist-

ing of Subject, Predicate, and Object) and the Subject

position in another triple statement and thus connect-

ing these statements to form a graph. Because infor-

mation about particular entities can be represented as

a semantic graph as well, we distinguish class-based

and instance-based semantic graphs.

Ontologies contain commonly accepted domain

knowledge about specific kinds of entities together

with their properties and relations in form of classes

defined through universal statements [10,11]. Ontol-

ogies in this sense do not include statements about

particular entities. Statements about particular enti-

ties are assertional statements
1
. If assertional state-

ments are grounded in empirical knowledge that is

based on observation and experimentation, we refer

to them as empirical data. In an assertional statement,

a particular entity can be referred to by providing it

its own URI, and its class affiliation can be specified

by referencing the URI of the respective class. Em-

pirical data can thus be formulated in OWL and doc-

umented in form of instance-based semantic graphs

(representing data as an instance-based instead of a

class-based semantic graph has many advantages

[12]). As a consequence, not every OWL file and not

every semantic graph is an ontology—it is an ontolo-

gy if and only if it limits itself to expressing only

universal statements about kinds of entities [11].

A knowledge base, in contrast, consists of a set of

ontology classes that are populated with particular

entities and assertional statements about these entities

(i.e., data) [11]. Ontologies, therefore, do not repre-

sent knowledge bases, but are part of them and pro-

vide a means to structure them [13]. In other words, a

knowledge base links data statements in form of in-

stance-based semantic graphs to specific ontology

classes, with the result that the data statements be-

come semantically transparent because they reference

the ontology classes that each of its described partic-

ular entities instantiates. Referencing the ontology

class of each described particular entity also substan-

tially increases the computer-parsability of the data

statements and the possibility to reason over them,

thereby taking full advantage of the power of Seman-

tic Web technologies. Ontologies thus provide a

1 Description Logic (DL) distinguishes TBox and ABox ex-

pressions. TBoxes contain assertions on classes, whereas ABoxes

contain assertions on instances. Class axioms expressed in OWL

are TBox expressions. An ontology contains TBox expressions,
whereas a knowledge base (see below) expressed in DL is consti-

tuted by TBox and ABox expressions [36].

framework for establishing standards that improve

the integration and interoperability of data and

metadata statements, all of which is much needed in

eScience [3,5,14].

Unfortunately, not many web content management

systems have implemented ontologies and semantic

graphs to their full potential by using them in a

knowledge base to document data statements. The

overwhelming majority of applications of ontologies

in the life sciences has been restricted to semantically

enriching documents and annotating database con-

tents by using the URIs of ontology classes as values

within tables of relational databases, instead of doc-

umenting and communicating data as instance-based

semantic graphs. This is not due to technological

limitations and restrictions. Tuple stores that store

triple statements based on RDF’s syntax of Subject,

Predicate and Object are capable of handling large

volumes of triples. These triples may express data

and metadata statements as well as underlying data

schemes in form of semantic graphs. Semantic tech-

nology facilitates detailed information retrieval of

information represented as either class-based or in-

stance-based semantic graphs through SPARQL end-

points [15] and inferencing over semantic graphs

through reasoners [16].

Despite these obvious advantages of tuple stores

and RDF/OWL-based data solutions, they neverthe-

less have yet to replace conventional databases such

as MySQL or PostgreSQL in rank as the prime data-

base technology for developing Semantic Web appli-

cations for scientific data. In search of an explanation

for this discrepancy, we believe that a lack of appli-

cation development frameworks that are well inte-

grated with RDF/OWL is responsible for this situa-

tion (for initial attempts, though not specifically de-

veloped for web content management systems, see,

e.g., [17–25]). RDF and OWL, coupled with a tuple

store, provide an efficient means to store and query

data. Semantic instance-based graphs representing

data and metadata statements can be readily con-

sumed by various applications through a correspond-

ing SPARQL endpoint. However, semantic graphs

often posses a rather complicated structure. They are

usually not as intuitively comprehensible for a human

reader as data and metadata represented in conven-

tional tables or entry forms. Thus it is not surprising

that human readers generally are not interested in

interacting with actual semantic graphs. As a conse-

quence, semantic data-centric applications would

have to hide the graphs from their users and, instead,

provide more user-friendly representations of their

data. Unfortunately, SPARQL endpoints only allow

interacting directly with a semantic graph and do not

provide a user-friendly presentation of the data, as for

instance through an HTML-based interface. What is

required in order to increase the applicability of se-

mantic graphs is a means for users to indirectly inter-

act with them through data entry forms, tables and

other ways of visualizing and interacting with data in

intuitive ways.

Here, we introduce SPrO, the Semantic Program-

ming Ontology, and its accompanying Java-based

middleware. With them, we want to contribute to the

development of a framework that will close the gap

between computer-parsable data represented in form

of semantic graphs on the one hand and a user-

friendly visualization of data in form of HTML-based

data entry forms on the other hand. SPrO enables

users to describe the data-centric Semantic Web ap-

plication they need for efficiently managing and dis-

seminating data in an eScience-compliant way. The

description of the respective application is formulat-

ed in OWL and stored as source code ontologies. The

accompanying middleware functions as an interpreter

that dynamically executes the description contained

in the source code ontologies by interpreting it as a

declarative specification. The overall goal of this

semantic programming approach is to provide a one-

stop framework for developing customized data-

centric Semantic Web applications.

2. Semantic Programming

2.1. General Idea for Semantic Programming using

SPrO

Within academia, the practical application of on-

tologies is usually restricted to providing URIs for

annotating data and metadata statements or docu-

menting them in form of semantic graphs for a spe-

cific scientific domain. With the Semantic Program-

ming Ontology (SPrO) we extend this application

and use ontologies in software programming. We

apply SPrO like a programming language to specify

and control data-centric Semantic Web applications.

This is achieved by describing the application within

a corresponding source code ontology (SCO) using

terms from SPrO. By being able to integrate the de-

scription of the application’s data model with the

description of its graphical user interface (GUI) and

the application’s overall functionality, we realize

another goal of ours: being able to implement chang-

es to a data-centric application such as a web content

management system without having to do program-

ming in three different layers (i.e., database, middle-

ware, and frontend) using three different sets of tech-

nologies. Using semantic programming, we only

have to make changes to the corresponding SCO us-

ing terms from SPrO.

SPrO defines ontology resources in form of classes,

individuals and properties that the accompanying

Java-based middleware interprets as a set of com-

mands, subcommands, and variables. The commands

and subcommands are defined as annotation proper-

ties. Specific values and variable-carrying resources

are defined as ontology individuals (i.e., instances of

ontology classes). Additional object properties are

used to specify relations between resources, and data

properties are used for specifying numerical values or

literals for resources that describe the application.

SPrO can be used to describe all features, work-

flows, database processes and functionalities of a

data-centric application, including its GUI. These

descriptions are formulated in form of annotations of

ontology classes and ontology individuals and docu-

mented in the SCO of the application. Each annota-

tion consists of a command followed by a value, in-

dex or resource and can be extended by axiom anno-

tations that contain subcommands, values, and varia-

bles taken from SPrO. In case the descriptions are

linked to ontology individuals of SCO, the annota-

tions can also be extended by property assertions.

The middleware associated with SPrO reads the

source code contained in the application’s SCO and

dynamically executes it in reference to SPrO. In other

words, the commands and variables from SPrO are

used for creating declarative specifications of the

application, which the middleware interprets and

dynamically processes on the fly—the specification

thus runs directly and no intermediate programming

step in another layer is required. We call this ap-

proach to programming semantic programming.

Semantic programming involves the following ele-

ments (Fig. 1):

1) the Semantic Programming Ontology

(SPrO), which we use like an ontology-

based programming language;

2) an application source code ontology

(SCO) that contains the description of all

database processes, data views and data

entry forms with input controls of the da-

ta-centric Semantic Web application we

want to develop, including the data

scheme underlying the application and

the overall appearance and organization

of its GUI;

3) the Java-based middleware associated

with SPrO that functions as an interpreter,

interpreting the SCO in reference to SPrO

and providing information for the

frontend, for which HTML5/CSS3

should be used, with a GUI that is based

on the specifications in SCO, as well as a

SPARQL endpoint;

4) a tuple store framework for storing not

only SCO and SPrO but also all data and

metadata statements produced by the us-

ers of the application. These statements

are stored in form of semantic graphs. We

use the Jena tuple store, which can be

organized into several independent physi-

cal RDF stores, with each such store rep-

resenting a separate workspace.

Fig. 1. Overall workflow of a data-centric Semantic Web applica-

tion based on semantic programming. Left: Jena tuple store

framework containing the data of the application as well as the
Semantic Programming Ontology (SPrO) and the source code

ontology (SCO) of the application. The data are stored in form of

instance-based semantic graphs. SPrO provides the commands,
subcommands, and variables used for describing the application.

SCO contains the descriptions formulated using terms from SPrO.

Middle: The Java-based middleware reads the descriptions con-
tained in SCO and interprets them as the specification of the appli-

cation. Right: The frontend, based on the JavaScript framework

AngularJS, with HTML and CSS output for browser requests and
access to a SPARQL endpoint for service requests.

The application with its tuple store framework

forms a knowledge base. In addition to its web por-

tal, all of its data and metadata statements can alter-

natively be accessed through the SPARQL endpoint

of the application. Moreover, semantic reasoners can

make inferences over the statements contained in the

tuple store of the application.

Contrary to other development frameworks that

utilize ontologies [17–25], SPrO and its accompany-

ing Java-based middleware can be used to describe a

particular data-centric Semantic Web application

within a source code ontology that is specifically

customized for the application. All information is

contained in the application’s tuple store framework,

including SPrO, the application’s SCO and all of its

data and metadata statements. The application and

all of its data are thus fully self-describing.

2.2. Example Descriptions from a Source Code

Ontology

In the following, we give examples for how com-

mands of SPrO and their subcommands are used

within the application’s SCO for describing functions

and execution procedures of a data-centric Semantic

Web application.

2.2.1. Sequences of Execution Steps

In our approach to semantic programming, many

functions and processes of an application require the

description of a specific sequence of commands and

accompanying subcommands within the application’s

SCO. This can be accomplished by using a command

annotation property from SPrO that triggers a certain

type of execution step. Within the application’s SCO,

an index is assigned as a value to this annotation

property, specifying the position of the corresponding

execution step within the particular sequence of exe-

cution steps describing a particular process or feature

for the application (Fig. 2). This overall scheme of

annotating ontology individuals as well as ontology

classes of the application’s SCO is used for describ-

ing the various features, processes, and functions of

the application.

2.2.2. Generating an Individual Resource of a Given

Ontology Class

In various occasions, for instance, when creating a

new data entry (see Fig. 2), individual instances must

be generated for ontology classes that are defined in

the application’s SCO or in one of the external do-

main reference ontologies that the data-centric appli-

cation references in its underlying data scheme. For

example, when creating a new data entry, a set of

resources must be generated that are mandatory for

this type of data entry, including all named graph
2

instances required for organizing and managing all

the triples associated with this entry.

2 A named graph identifies a set of triple statements by adding

the URI of the named graph to each triple belonging to this named

graph, thus turning the triple into a quad. The Jena tuple store
framework can handle such quadruples. The use of named graphs

enables partitioning data in an RDF store.

Fig. 2. Example for the annotation of a Source Code Ontology

(SCO) individual that describes the basic status transition ‘create
new entry’, a transition that is part of the life-cycle workflow of a

data entry in a web-based semantic content management system.

Left: The individual ontology resource from the application’s
SCO that contains the description of the status transition. Right:

The set of commands that describe the status transition as a set of

indexed execution steps using annotation properties from the Se-
mantic Programming Ontology (SPrO). The white boxes to the

right are the indices that specify the sequential order in which the

execution steps must be processed (from low to high numbers,
from A to Z). The first execution step ‘1A’ triggers the generation

of new resources, each of which receives its own URI, the follow-

ing execution steps ‘1B’ to ‘1D’ save or delete specific triple
statements. The commands together with their ordering indices are,

in this case, annotations of an ontology individual of SCO, but can

be annotations of an ontology class of SCO in another case. (The
subcommands accompanying each execution step are not shown in

this figure)

Using the SPrO annotation property ‘execution

step: generate resources’ in a description within the

application’s SCO specifies that this is an execution

step command that triggers the generation of new

resources. The index value assigned to the command

specifies the position within the sequence of execu-

tion steps. The linked subcommands specify the on-

tology classes for which new instances must be gen-

erated when executing the step (Fig. 3). Each newly

generated resource defines a corresponding SPrO

variable-carrying resource that can be used for refer-

encing the resource’s URI in a later execution step.

The instance of ‘specimen’, for example, a class

which is referenced in Figure 3, is generated based

on the SPrO annotation property ‘generated resource

of class [input_5]’ and can be referred to in subse-

quent execution steps through the SPrO variable-

carrying resource ‘SPrO_VARIABLE: generated re-

source [input_5]’.

The SPrO annotation property ‘generates re-

sources for entry ID’ is used as a subcommand that

defines for which entry ID the resources must be

generated. This affects the URI of all resources gen-

erated during this execution step and references the

entry’s URI within the URI of the generated re-

source
3
.

3 The URI of the generated resource is the combination of the

entry’s URI and the URI of the ontology class that the resource

instantiates. This way, the resource’s URI itself already provides

Fig. 3. Example of a Source Code Ontology (SCO) description of

an execution step for generating instances of defined ontology

classes. Left: The command, in form of a Semantic Programming
Ontology (SPrO) annotation property, specifies that this execution

step triggers the generation of new ontology resources. The value

assigned to the command determines that it takes the 19AB posi-
tion within the sequence of execution steps described in the appli-

cation’s SCO. Right: The set of subcommands that specify the
ontology classes for which new instances must be generated, the

entry ID of the data entry for which the resources are generated

and the named graph and workspace where a set of triple state-
ments must be stored indicating the class affiliation and the in-

stance-status of each newly generated resource. Note that in this

example the entry ID, as well as the named graph, is referred to by
using the variable-carrying resources ‘SPrO_VARIABLE: generat-

ed resource [input_1]’ and ‘SPrO_VARIABLE: generated re-

source [input_2]’, respectively, each of which has been defined in

a previous resource generating execution step (e.g., execution step

1A in Fig. 2).

The SPrO annotation property ‘load from/save

to/update in named graph’ is used as subcommand

that determines a particular named graph. The mid-

dleware automatically generates a set of triple state-

ments that specify the class affiliation and the in-

stance-status for each newly generated resource and

stores it to this named graph. Finally, the SPrO anno-

tation property ‘named graph belongs to’ is used as

subcommand that determines the workspace where

this named graph is located.

2.2.3. Saving or Deleting a Specific Triple Statement

Saving and deleting specific triple statements is an

essential process of any data-centric Semantic Web

application that uses a triple store. This process is

triggered using the SPrO annotation property ‘execu-

tion save/delete triple statement(s)’ in a description

within the application’s SCO as an execution step

command that triggers saving or deleting specific

triple statements. Additional SPrO annotation proper-

ties are used as subcommands that specify a triple

statement and the location where the triple statement

must be stored to or deleted from in terms of named

information of its class affiliation and for which data entry it has

been generated.

graph and workspace. The SPrO annotation property

‘delete triple statement [BOOLEAN]’ can be used

with the Boolean value ‘true’ to indicate that the tri-

ple statement must be deleted (Fig. 4). If the triple

statement must be saved, the respective Boolean sub-

command is not used in the description of this execu-

tion step.

Fig. 4. Example of a Source Code Ontology (SCO) description of
an execution step for saving/deleting a particular triple statement.

Left: The command, in form of a Semantic Programming Ontolo-

gy (SPrO) annotation property, specifies that this execution step
triggers the saving (or deleting) of a particular triple statement.

The value assigned to the command determines that it takes the

19AU position within the sequence of execution steps described in
the application’s SCO. Right: A set of subcommands specifies the

particular triple statement to be saved/deleted in form of the SPrO

annotation properties ‘subject’, ‘property’ and ‘object’. Note that
the resource assigned to ‘subject’ is a SPrO variable-carrying

resource that has been defined in a previous execution step. The

triple that must be saved/deleted states that the newly generated
resource instantiates the ontology class ‘specimen collection pro-

cess’. Additional subcommands are used to specify the location to

which the triple must be saved in terms of named graph and work-
space. If the specified triple statement should be deleted instead of

being saved, the SPrO annotation property ‘delete triple statement

[BOOLEAN]’ must be used and the value ‘true’ be assigned to it
(see transparent subcommand).

2.2.4. Copying and Deleting Named Graphs

Copying named graphs is a command that is trig-

gered using the SPrO annotation property ‘execution

step: copy named graphs’ in a description within the

application’s SCO. Additional SPrO annotation

properties are used as subcommands to specify the

named graph that must be copied by either referenc-

ing the class to which the named graph belongs

(‘load from/save to/update in named graph (this en-

try’s specific individual of)’) or the particular named

graph resource (‘load from/save to/update in named

graph’). The SPrO annotation property ‘copy from

workspace’ is used as a subcommand for specifying

the workspace where the named graphs are located

that must be copied.

Since SPrO also allows the definition of variable-

carrying named graph resources, which at their turn

can contain a list of several resources and thus also

several named graph resources, a variably-carrying

resource can reference to a list of named graphs that

must be copied by using the SPrO annotation proper-

ty ‘load from/save to/update in named graphs of this

SPrO variable list’ (Fig. 5). The SPrO annotation

property ‘named graph belongs to workspace’ is used

to specify the workspace to which the copied named

graphs must be saved.

Fig. 5. Example of a Source Code Ontology (SCO) description of
an execution step for copying named graphs. Left: The command,

in form of a Semantic Programming Ontology (SPrO) annotation

property, specifies that this execution step triggers the copying of
named graphs. Its value determines that it takes the 1AU position

within the sequence of execution steps. Right: A set of subcom-

mands specifies the particular named graphs to be copied and the
workspace in which they reside. The named graphs to be copied

can be specified in reference to either A) a respective class of

named graphs, in which case the middleware identifies the particu-
lar named graph resource (only applicable, if the data entry pos-

sesses exactly one named graph resource of this class), to B) a

particular named graph resource (through a SPrO variable-carrying
resource that references it, as for instance ‘SPrO_VARIABLE:

identified resource(s) [input_2]’, which at its turn must have been

defined in a previous execution step, for instance, as a result of a
search) or to C) a list of particular named graphs (through a SPrO

variable-carrying resource that is itself a named graph in which

several named graph resources are listed, for instance,
‘SPrO_VARIABLE: associated ‘list of URIs named graph’ [in-

put_A]’). Note that the subcommand at the top defines the focus to
be on a specific entry ID. This information is used by the middle-

ware to identify all entry specific individual resources for which

only the class affiliation is known (e.g., ‘load from/save to/update
in named graph (this entry’s specific individual of)’).

If desired, not only the copied named graphs

themselves but also all resources copied with them

can receive new URIs. This is accomplished through

referencing additional SPrO annotation properties in

the description within the application’s SCO. These

properties are used for defining which URIs should

be updated by indicating their namespaces (‘update

all URIs that share namespace with’).

Deleting entire named graphs, as opposed to delet-

ing single triple statements in a named graph, is trig-

gered through the SPrO annotation property ‘execu-

tion step: delete named graphs’, with the accompa-

nying subcommands specifying the named graph to

be deleted and the workspace they reside (Fig. 6). By

setting the focus to a variable-carrying resource that

is a named graph which contains the entry IDs of

several data entries (e.g., all draft versions of a given

entry), a single execution step can delete all named

graphs of a certain type of entry at once.

Fig. 6. Example of a Source Code Ontology (SCO) description of
an execution step for deleting named graphs. Left: The command,

in form of a Semantic Programming Ontology (SPrO) annotation
property, specifies that this execution step triggers the deletion of

named graphs. Its value determines that it takes the 2D position

within the sequence of execution steps. Right: A set of subcom-
mands specifies the particular named graphs to be deleted and the

workspace in which they reside. The named graphs to be deleted

can be specified in a similar manner as when copying them (see
Fig. 5). However, when deleting several named graphs of which

only the class affiliations are known, which in turn are listed in a

SPrO variable-carrying resource that is a named graph, an addi-
tional subcommand must be added with the value

‘SPrO_Variable: use hash-map list’ to indicate this.

2.2.5. Searching a Specific Resource Based on a

Known Triple Statement

Searching specific resources based on a (partly)

known triple statement is a command that is triggered

using the SPrO annotation property ‘execution step:

search triple store’, with the accompanying sub-

commands specifying the (partly) known triple and

its location in terms of named graph and workspace.

Using the SPrO annotation property ‘search target’

as a subcommand, one can specify the position of the

searched resource within the triple statement (Fig. 7).

If we know nothing about the class affiliation of a

resource within the triple, we use the

‘SPrO_VARIABLE: ?’ value to indicate that this po-

sition in the triple statement must be left blank. The

result of the search will be associated with a SPrO

variable-carrying resource that is specified through

the subcommand ‘search target defines SPrO varia-

ble’. If multiple hits are expected, the SPrO annota-

tion property ‘search target saved to ‘list of URIs

named graph’ SPrO variable’ must be used together

with ‘multiple-hits-search [BOOLEAN]’ with the

Boolean value ‘true’, which will save the list of

found resources to a SPrO variable-carrying resource

that is a named graph.

Fig. 7. Example of a Source Code Ontology (SCO) description of
an execution step for searching a particular resource in the applica-

tion’s triple store framework. Left: The command, in form of a

Semantic Programming Ontology (SPrO) annotation property,
specifies that this execution step triggers the search for a specific

resource within the application’s triple store framework. Its value

determines that it takes the 1AB position within the sequence of
execution steps. Right: A set of subcommands specifies the (part-

ly) known triple statement, its location in the triple store frame-

work in terms of named graph and workspace, and the position
that the searched resource takes within this statement. If we do not

know the class affiliation of one of the resources from the triple,

we can use the ‘SPrO_VARIABLE: ?’ value to leave that position
blank. The SPrO annotation property ‘search target’ can be used

as a subcommand to specify the position of the searched resource

within the triple statement and the SPrO annotation property
‘search target defines SPrO variable’ to specify the SPrO varia-

ble-carrying resource that can be used in subsequent execution

steps to refer to the resource found during this execution step.

As a side note: variable-carrying resources can be

defined not only during the generation of resources

(see 2.6.2) or through searches, but also directly us-

ing the SPrO annotation property ‘execution step:

define variables’ as a command. Corresponding sub-

commands also allow adding or deleting particular

resources to or from an already defined SPrO varia-

ble-carrying resource that tracks a list of resources.

2.2.6. If-Then-Else Conditions

If-then-else conditions can be specified through

the command that uses the SPrO annotation property

‘execution step: if-then-else statement’ in a descrip-

tion within the application’s SCO. The SPrO annota-

tion property ‘has IF input value’ can be used as an

accompanying subcommand that specifies a particu-

lar input value and the SPrO annotation property ‘has

IF target value’ for specifying a particular target val-

ue (both either a particular resource or a value/label).

The SPrO annotation property ‘has IF operation’ is

used as a subcommand for specifying a particular

defined SPrO if-operation (Fig. 8). Various SPrO if-

operations are defined (see Table 1) which specify

the criteria for which the if-then-else condition would

be ‘true’. The SPrO annotation properties ‘then:’ and

‘else:’
4
 are used for indicating to which execution

step the application should proceed in case the condi-

tion is ‘true’ or ‘false’, respectively. With the SPrO

annotation property ‘has THEN operation’ a particu-

lar defined SPrO operation can be triggered in case

the condition is ‘true’.

Fig. 8. Example of a Source Code Ontology (SCO) description of
an execution step for specifying an if-then-else condition. Left:

The command, in form of a Semantic Programming Ontology

(SPrO) annotation property, specifies that this execution step trig-
gers the specification of an if-then-else condition. Its value deter-

mines that it takes the 19AA position within the sequence of exe-

cution steps. Right: The SPrO annotation property ‘has IF input
value’ is used as a subcommand that specifies the if-input-value to

be the value that is assigned to a specific SPrO variable-carrying

resource that has been defined in a previous execution step. The
SPrO annotation property ‘has IF target value’ on the other hand

is used for specifying that the target value is a defined value that

indicates the application’s data entry type specimen entry. The
SPrO annotation property ‘has IF operation’ is used as a subcom-

mand with the value ‘SPrO__IF_OPERATION: ALL input is of

target type’, which triggers the application to compare the input

with the target value and returns ‘true’ if they are identical and

‘false’ if they differ. If ‘true’, the application will proceed with

execution step 19AB, if ‘false’ with 20AA.

Each if-then-else execution step only has a single

‘else’ clause. If you want to execute a more complex

if-then-else condition, you must concatenate several

if-then-else execution steps.

2.3. Overall Expressivity of SPrO

At its current state of development, SPrO and its

accompanying middleware can be used for describ-

ing a data-centric Semantic Web application such as

a semantic web content management system in an

SCO that is customized for the application. The de-

scription specifies workflows and database processes

(i.e., storing, retrieving, searching and updating tri-

ples in the tuple store framework) as well as different

data views with their corresponding HTML data en-

try forms and pages. SPrO and the middleware sup-

port basic functionalities like:

 input fields with auto-completion for ontol-

ogy terms,

 input control with message-feedback,

4 The SPrO annotation property ‘else’ must be used only if the

application should NOT proceed with the next execution step in

case the if condition is ‘false’.

 search and filtering of triples and of individ-

ual resources in the tuple store framework,

 semantic annotation of free texts,

 automatic provenance tracking and tracking

of user input in a history-log,

 user administration with signup and login

processes as well as session management,

 a publication life-cycle (draft > publish >

revise > publish) of data entries and

 a SPARQL endpoint.

As the examples above indicate, the more complex

specifications require the description of sequences of

ordered execution steps and cannot be handled in a

single command. Table 1 lists the label of all respec-

tive annotation properties from SPrO that serve as

commands together with their description and, where

applicable, also the corresponding Java method from

the accompanying middleware (Table 1, rows with

grey background). Each execution step annotation

property usually possesses a set of associated annota-

tion properties that serve as their subcommands,

which are used in axiom annotations or property an-

notations to further specify the command in descrip-

tions within the application’s SCO. These are also

listed in Table 1, directly below their respective

command (Table 1, rows with white background). In

some cases, SPrO value-carrying ontology instances

that relate to the respective execution step are listed

as well.

The underlying Jena tuple store framework is

organized into different workspaces. Each workspace

is an independent physical RDF store that can be

accessed through the application’s SPARQL end-

point. The different workspaces strictly separate data

from administrative and application-centered infor-

mation and can also be used for separating published

data from draft data. This physical separation of dif-

ferent types of information increases overall data

safety.

Each workspace can be further structured into var-

ious different named graphs, with each named graph

having its own URI and instantiating a specific class

of named graphs. This can be used to differentially

store triples and hence structure a workspace into

various instances of named graphs of different named

graph classes, which at its turn not only facilitates

data retrieval and increases data safety, but also al-

lows flexible and meaningful fragmentation of

data (for a discussion see [12,26]). Moreover, since a

named graph identifies an entire semantic graph

through its URI, named graphs can be used for reifi-

cation, i.e., making statements about statements,

such as when adding metadata to a single triple

statement or an entire semantic graph. Furthermore, a

named graph can also be used as a SPrO variable

containing an ordered list of resources, which can be

used for tracking specific resources during various

application processes.
SPrO annotation properties

for commands and their

subcommands and relevant

SPrO variables

Description Java Method

execution step trigger This annotation property is used for specifying what triggers a sequence of consecutive execution

steps, including specific requirements that must be met for triggering the sequence and specifying the

starting execution step.

autocomplete for ontolo-

gy

Specifies the ontology that provides the basis for the autocomplete function to compare with and make sug-

gestions for.

autocomplete for ontolo-

gy class

Specifies the ontology class that provides the basis for the autocomplete function to compare with and make

suggestions for.

execution step triggered Specifies the execution step that is triggered.

has default placeholder
value

This annotation property specifies a certain value (usually a literal) that is supposed to be used as the default
placeholder value/resource selected by this entry component. This value/resource is depicted until the user

selects a resource.

has GUI input type This annotation property specifies the type of GUI input required for triggering the execution step specified

in 'execution step triggered' annotation property.

include information from

execution steps of indi-

vidual [BOOLEAN]

This annotation property specifies, whether the ongoing execution process must include the information of

execution steps defined in the corresponding individual resource. If value 'true', the execution process must

include all information about execution steps from both class and individual resource, thereby merging the
information to a single process description. Default value = 'false'

input definition value de-

fines SPrO variable re-
source

This annotation property specifies a specific variable carrying resource (i.e. SPrO variable resource), to

which the input definition value (i.e. the definition of the selected resource) must be associated. As a conse-
quence, if in a subsequent step this variable carrying resource is referenced, it functions as a placeholder for

this input definition value.

input label value defines

SPrO variable resource

This annotation property specifies a specific variable carrying resource (i.e. SPrO variable resource), to

which the input label value (i.e. the label of the selected resource) must be associated. As a consequence, if

in a subsequent step this variable carrying resource is referenced, it functions as a placeholder for the input

label value.

input value/resource de-
fines SPrO variable re-

source

This annotation property specifies a specific variable carrying resource (i.e. SPrO variable resource), to
which the input value/resource (i.e. the value provided through user input or the URI of a selected resource)

must be associated. As a consequence, if in a subsequent step this variable carrying resource is referenced, it

functions as a placeholder for this input value/resource.

not editable
[BOOLEAN]

The value 'true' specifies that this entry component is not editable (e.g. a checkbox would be displayed and
have the functionality of an inactive checkbox). In other words, this entry component provides no possibility

to interact with it. Default value = 'false'

requirement for trigger-
ing the execution step

This specifies further requirement(s) for an execution step to be triggered in addition to a change or input
made by a user. Usually, a specific entry status is specified or a role or right, indicating that the execution

step to be triggered can only be conducted for entries that possess the specified status or by a user who pos-

sesses the right or role.

triggers 'click' for entry
component

This annotation property specifies an entry component, for which a user input of type 'click' is automatically
triggered.

execution step: application

operation

This annotation triggers a specific defined operation in the

middleware of the application.

executionStepApplicationOperation

application operation

'redirect to hyperlink'

Specifies a URI to which the application will navigate.

application operation

'save in cookie as key'

This annotation specifies a specific SPrO variable resource that must be saved in a cookie along with the

resource that has been specified in the same execution step using the annotation 'application operation: save
individual in cookie'.

application operation

'save individual in
cookie'

This annotation specifies a specific resource that must be saved in a cookie.

subsequently redirected

[BOOLEAN]'

If 'true', this annotation specifies that the application operation specified in this execution step must be trig-

gered subsequently, after the ongoing execution step has been executed. Default value: 'false'

execution step: copy and

save triple statement(s)

Specifies through respective annotations within this annotation

all information required for copying triple statement(s) of one

or more named graphs into memory and either write them

directly to other named graphs or update them in memory and

write the updated triple statement(s) to the source named

graph or another named graph.

executionStepCopyAndSaveTripleS

tatements

copied resource (of Specifies either directly the resource to be identified or indirectly the class of the resource that must be iden-

class) to be identified
[input_X]

tified. The resource belongs to the copied resources. The variable carrying resource 'SPrO_VARIABLE:
identified resource(s) [input_X]' refers to the resource identified based on this annotation. [with 'X' being any

letter between A and Z]

copy all individuals of
class

Specifies a specific class of which all individuals must be copied. This step includes copying all property
assertions and annotations of these individuals.

copy from named graph

(of class)

Specifies the named graph (sometimes by specifying the class of named graph it belongs to) from which the

triple statements are copied.

copy from workspace Specifies the workspace from which the triple statements are copied. The named graphs of which the content
is copied are specified in another annotation.

copy individual Specifies a specific individual that must be copied. This step includes copying all property assertions and

annotations of this individual.

do not update URI of This annotation property specifies a resource of which the URI must NOT be updated.

exclude all triple state-

ments with property

Specifies a property and all triple statements with the same property will not be copied.

replace with new indi-

vidual resources for

This annotation specifies a specific class (including all its subclasses) of individual resources for which new

resources must be generated when copied from the named graph specified by an accompanying annotation
property.

E.g. when the class 'entry component' is specified, all resources referring to individual entry components

must not be copied, but instead new individual resources generated that belong to the same classes and that
share all properties with the resources to be "copied" - in other words: generate duplicates with the same

properties but their own unique URL.

update all URIs that
share namespace with

Specifies a particular resource. All URIs of and in the copied named graphs that share the same namespace
as the here specified resource must be updated with the new namespace specified in another accompanying

annotation.

update URIs using

namespace of entry ID

This annotation property specifies the entry ID from which the namespace must be taken for updating the

URIs.

update composition

[BOOLEAN]

If 'true', the composition specified in an accompanying triple statement must be updated after the execution

process is terminated. Default value: 'false'

and all subcommands from table 2

execution step: copy named

graphs

Specifies through annotations within this annotation the

named graphs to be copied, from which workspace they must

be copied and to which namespace their URIs must be

changed.

executionStepCopyNamedGraphs

copy from workspace Specifies the workspace from which the triple statements are copied. The named graphs of which the content

is copied are specified in another annotation.

do not update URI of This annotation property specifies a resource of which the URI must NOT be updated.

save new URIs to named
graph

This annotation property specifies a named graph to which all newly created URIs must be stored to with
their type specification.

save new URIs to

workspace

Specifies a particular workspace to which the newly generated URIs must be stored.

update all URIs that
share namespace with

Specifies a particular resource. All URIs of and in the copied named graphs that share the same namespace
as the here specified resource must be updated with the new namespace specified in another accompanying

annotation.

update URIs of and in

named graphs using
namespace of entry ID

This annotation property specifies the entry ID from which the namespace must be taken for updating the

URIs of and in the copied named graphs.

update URIs using

namespace of entry ID

This annotation property specifies the entry ID from which the namespace must be taken for updating the

URIs.

use ontology IDspace

mapping

Specifies a SPrO variable carrying resource that contains the mapping between ontology IDspaces and their

corresponding namespaces

and all subcommands from table 2

execution step: decision

dialogue

This annotation property is used to prompt messages through

pop-up windows and the like and to communicate decisions

that the user must make. Messages and decisions (=requests)

are communicated using further annotation properties.

executionStepDecisionDialogue

application dialogue-
message

This annotation property is used to prompt a dialogue message through a pop-up window that requires some
input from the user to be closed again.

application error-

message

This annotation property is used to prompt an error message through a pop-up window or the like to inform

the user about incorrect input.

application info-message This annotation property is used to prompt a message through a pop-up window or the like to provide user
with relevant information.

end action operation This annotation property is used for indicating the end of an execution step chain by triggering the specified

SPrO operation. When reaching this step, the action is executed, the specified operation triggered and all
subsequent execution steps must be ignored. This annotation is often used in combination with an 'execution

step: if-then-else statement' annotation, which can result in a bifurcation of the execution chain. Allowed
values are restricted to individuals of the class 'SPrO operation'.

SPrO OPERATION:

end action

This SPrO operation specifies that the currently executed list of execution steps ends, irrespective of any

non-executed steps still remaining in the list.

SPrO OPERATION:

ERROR end action

This SPrO operation is used in cases in which a sequence of execution steps is stopped because of a wrong

input.

execution step: define vari-

ables

This annotation property is used to define SPrO variable re-

source values that will be used in a subsequent execution step.

executionStepDefineVariables

add resource to list This annotation property specifies a list to which a resource must be added that has been specified in an

accompanying triple statement.

delete resource from list This annotation property specifies a list from which a resource must be deleted that has been specified in an

accompanying triple statement.

resource to be added to a

list

This annotation property specifies a specific resource that must be added to a list of resources. The list-

resource is specified in an accompanying triple statement.

resource to be deleted

from a list

This annotation property specifies a specific resource that must be deleted from a list of resources. The list-

resource is specified in an accompanying triple statement.

resource(s) to be identi-

fied [input_X]

Specifies either directly the resource to be identified or indirectly the class of the resource that must be iden-

tified. The variable carrying resource 'SPrO_VARIABLE: identified resource(s) [input_X]' refers to the re-

source identified based on this annotation. [with 'X' being any number between 1 and 30]

execution step: delete all

triple statements of named

graph

Specifies through annotations within this annotation the

named graphs of which all triple statements must be deleted,

together with the workspace of this named graph.

executionStepDeleteAllTriplesOfNa

medGraph

and all subcommands from table 2

execution step: delete mul-

tiple triple statements

Specifies through respective annotations within this annotation

which triple statements must be deleted and from which

named graph and which work space.

executionStepDeleteMultipleTriple

Statements

and all subcommands from table 2

and all subcommands from 'execution step: save/delete triple statement(s)'

execution step: delete

named graphs

Specifies through annotations within this annotation the

named graphs to be deleted, from which workspace they must

be deleted and to which core ID or entry ID they belong to.

executionStepDeleteNamedGraphs

and all subcommands from table 2

execution step: delete part

of composition

Specifies through annotations within this annotation a particu-

lar entry component. All triple statements that have this entry

component or one of its children entry components as a subject

or an object must be deleted from the specified named graph

and workspace.

executionStepDeletePartOfComposi

tion

delete entry component
with all of its children

Specifies a particular entry component. All triple statements that have this entry component or one of its
children entry components as a subject or an object must be deleted from the named graph and workspace

that are specified in accompanying annotations. This must be conducted to the entire hierarchy of children.

delete entry component

with all of its children
(list)

Specifies a list of particular entry components. All triple statements that have one of these entry components

or one of its children entry components as a subject or an object must be deleted from the named graph and
workspace that are specified in accompanying annotations. This must be conducted to the entire hierarchy of

children for each entry component in the list.

update composition
[BOOLEAN]

If 'true', the composition specified in an accompanying triple statement must be updated after the execution
process is terminated. Default value: 'false'

and all subcommands from table 2

execution step: execute now This annotation triggers the processing of execution steps and

input held in memory that was provided through specific

workflow actions or entry components that have the annota-

tion 'wait for workflow execution [BOOLEAN]' 'true' or 'wait

for execution [BOOLEAN]' 'true'.

executionStepExecuteNow

execute now

[BOOLEAN]

For the value 'true', this annotation specifies that all input held in memory due to the 'wait for execution

[BOOLEAN]' annotation property is used in the running action. Default value: 'false'

update store

[BOOLEAN]

If 'true', this annotation specifies that all changes held in memory must be processed and the store updated for

the specified named graphs. Default value: 'false'

wait for execution

[BOOLEAN]

For the value 'true', this annotation specifies that all input given through this entry component must be held in

memory-queue until the 'execution step: execute now' or 'execute now [BOOLEAN]' is triggered, in which

case all input held in memory must be processed in order. Default value: 'false'

execution step: extract and

save entry composition

Specifies through annotations within this annotation the root

element of a composition, which can be used as a starting point

for extracting the corresponding composition from the applica-

tion ontology. Further annotation properties specify the named

graph to which the composition must be saved and the work-

executionStepExtractAndSaveEntr

yComposition

space of this named graph.

composition has root el-

ement

Specifies the root element of a composition, which can be used as a starting point for extracting the corre-

sponding composition from the application ontology. Further annotation properties specify the named graph

to which the composition must be saved and the workspace of this named graph.

and all subcommands from table 2

execution step: generate

resources

This annotation property specifies through respective annota-

tions within annotations a list of individual resources that must

be newly generated. These will be used in various triple state-

ments throughout this workflow action.

executionStepGenerateResources

change version ID to

status

This annotation property specifies the new entry status of the entry for which the resources are generated.

generate resource of
class [input_X]

Specifies the class for the resource that must be generated. This implicitly requires the generation of the
following triple statement: 'S:resource P:rdf:type O:class'. This triple statement must be added to the named

graph specified in another annotation.

The variable carrying resource 'SPrO_VARIABLE: generated resource [input_X]' refers to the resource
generated based on this annotation. [with 'X' being any number between 1 and 70]

generates resources for

entry ID

This specifies the entry for which the resources are generated.

and all subcommands from table 2

execution step: get DOI This annotation property triggers a procedure with which the

entry that is going to be published will receive its DOI.

executionStepGetDOI

DOI defines SPrO varia-

ble resource

This annotation property specifies a specific SPrO variable resource, to which the DOI that has been received

during this execution step must be associated. As a consequence, if in a subsequent step this variable carry-
ing resource is referenced, it is a place holder for this DOI, which must be used in this subsequent step in-

stead of the SPrO variable resource .

execution step: go to execu-

tion step

This annotation property specifies through the 'go to execution

step' annotation within this annotation the execution step that

must be processed next.

This is a special case, because the
associated subcommand can be used

in any execution step

go to execution step This annotation property specifies the execution step that must be processed next.

execution step: hyperlink Specifies through respective annotations within this annotation

a page to which the application should navigate to. The overall

composition of the page may have been specified through pre-

vious execution steps ('execution step: specifications and allo-

cations for hyperlink').

executionStepHyperlink

is general application

page [BOOLEAN]

This annotation property specifies a static page within the application that is not entry/input-data specific.

The default value is 'false'.

SPrO variable value
transferred to hyperlink

This annotation specifies a SPrO variable resource with a specific value, which was assigned during the
current workflow action. This value must be transferred to the here specified hyperlink.

switch to entry This annotation property specifies an entry ID, which the application uses for representing the composition

specified in a previous 'execution step: specifications and allocations for hyperlink' in combination with an
overlay or a page.

switch to overlay This annotation property specifies a widget, which the application uses for representing the composition

specified in a previous 'execution step: specifications and allocations for hyperlink' in an overlay.

switch to page This annotation property specifies a widget, which the application uses for representing the composition
specified in a previous 'execution step: specifications and allocations for hyperlink' in a page.

update composition

[BOOLEAN]

If 'true', the composition specified in an accompanying triple statement must be updated after the execution

process is terminated. Default value: 'false'

execution step: if-then-else

statement

Specifies through respective annotations within this annotation

a certain Boolean condition ('if:') that triggers a certain conse-

quence ('then:') if true and an alternative ('else:') if false. Of-

ten, however, an alternative is not specified, in which case no

consequence results from the condition being not met and the

process continues with the next execution step.

executionStepIfThenElseStatement

else: Specifies an alternative to a consequence described in another annotation ('then:'), which is triggered if a
Boolean condition that is described in yet another annotation ('if:') is true. This alternative is triggered if the

Boolean condition is false.

has IF input value This annotation property specifies an input value for an IF statement.

has IF operation This annotation property specifies the operation of an IF statement.

has IF target value This annotation property specifies an input target value for an IF statement.

has THEN operation This annotation property specifies the operation of a THEN statement.

then: Specifies a consequence ('then:') that is triggered if the Boolean condition described in another annotation

('if:') is true. If the resource connected to this annotation as an 'object' is a specific workflow action, this

action must be triggered in case the Boolean condition is true.

SPrO_VARIABLE: This SPrO variable resource is used whenever the general data scheme requires a specific variable to be

empty added, but for this specific case the variable is not needed and thus remains empty. If in subsequent execu-
tion steps this SPrO variable resource is used, the corresponding steps must not be executed but skipped.

SPrO IF OPERA-

TION: ALL empty

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotation(s) have some resource assigned to them or whether they are empty. In case they are
ALL empty, the IF statement is true (and the 'then:' statement must be processed). If at least one of them has

a specific resource assigned to it, the IF statement is false (and the 'else:' statement must be processed).

SPrO IF OPERA-
TION: ALL input al-

ready exists in triple

store

This SPrO IF operation checks whether the (SPrO variable) resources specified in accompanying 'has IF
input value' annotations ALL are new to the triple store. This may include accompanying 'has IF target

value' annotations that specify relevant class resources to which the searches of the application will be re-

stricted. In case ALL of the specified resources already exist in the triple store, the IF statement is true (and
the 'then:' statement must be processed). If at least one resource is new to the triple store, the IF statement is

false (and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: ALL input
equal

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotations ALL have the same resource assigned to them. In case they ALL have the same
resource assigned to them, the IF statement is true (and the 'then:' statement must be processed). If at least

one of them has another resource assigned to it, the IF statement is false (and the 'else:' statement must be

processed).

SPrO IF OPERA-

TION: ALL input is

of target type

This SPrO IF operation checks whether the (SPrO variable) resources specified in accompanying 'has IF

input value' annotations ALL are of the class resource specified in the accompanying 'has IF target value'

annotation. In case they ALL represent individuals of this class resource, the IF statement is true (and the
'then:' statement must be processed). If at least one of them has no resource assigned to it or the assigned

resource is not an individual of this class (or one of its subclasses), the IF statement is false (and the 'else:'

statement must be processed).

SPrO IF OPERA-
TION: ALL input is

some resource

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF
input value' annotations ALL have some resource/URI assigned to them (as opposed to some label/value). In

case they ALL have some resource in the form of a URI assigned to them, the IF statement is true (and the
'then:' statement must be processed). If at least one of them has a label or value assigned to it, the IF state-

ment is false (and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: ALL input is
value

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotations ALL have some label or value assigned to them (as opposed to some resource/URI).
In case they ALL have some label or value assigned to them, the IF statement is true (and the 'then:' state-

ment must be processed). If at least one of them has a resource/URI assigned to it, the IF statement is false

(and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: ALL null

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotation(s) are known to the application. In case they are ALL not known, the IF statement is

true (and the 'then:' statement must be processed). If at least one of them is known to the application, the IF
statement is false (and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: log in check

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotation(s) contain the correct log in information of one of the users of the application (user

email + user password). If correct, it is treated as 'true' and the specified 'THEN' clause must be executed. If
incorrect, it is treated as 'false' and the specified 'ELSE' clause must be executed.

SPrO IF OPERA-

TION: SOME empty

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotation(s) have some resource assigned to them or whether they are empty. In case at least
one (=SOME) is empty, the IF statement is true (and the 'then:' statement must be processed). If all of them

have a specific resource assigned to it, the IF statement is false (and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: SOME equal

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF

input value' annotations have the same resource assigned to them. In case at least two (=SOME) have the
same resource assigned to them, the IF statement is true (and the 'then:' statement must be processed). If all

of them have a different resource assigned to them, the IF statement is false (and the 'else:' statement must be

processed).

SPrO IF OPERA-

TION: SOME input

already exists in
triple store

This SPrO IF operation checks whether the (SPrO variable) resources specified in accompanying 'has IF

input value' annotations are new to the triple store. This may include accompanying 'has IF target value'

annotations that specify relevant class resources to which the searches of the application will be restricted.
In case at least one (=SOME) of the specified resources already exists in the triple store, the IF statement is

true (and the 'then:' statement must be processed). If all resources are new to the triple store, the IF state-

ment is false (and the 'else:' statement must be processed).

SPrO IF OPERA-

TION: SOME input

is of target type

This SPrO IF operation checks whether the (SPrO variable) resources specified in accompanying 'has IF

input value' annotations are of the class resource specified in the accompanying 'has IF target value' annota-

tion. In case at least one (=SOME) resource represents an individual of this class resource, the IF statement
is true (and the 'then:' statement must be processed). If all of them have no resource assigned to them or if all

have a resource assigned that is not an individual of this class (or one of its subclasses), the IF statement is

false (and the 'else:' statement must be processed).

SPrO IF OPERA-
TION: SOME input

larger than target

This SPrO IF operation checks whether some value specified in accompanying 'has IF input value' annota-
tion(s) is higher than the value specified in the accompanying 'has IF target value' annotation. In case at

least one input value is larger, the IF statement is true (and the 'then:' statement must be processed).

SPrO IF OPERA-
TION: SOME null

This SPrO IF operation checks whether the SPrO variable resources specified in accompanying 'has IF
input value' annotation(s) are known to the application. In case at least one (=SOME) is not known, the IF

statement is true (and the 'then:' statement must be processed). If all of them are known to the application,
the IF statement is false (and the 'else:' statement must be processed).

SPrO THEN OP-

ERATION: subse-

quent execution
steps with 'delete

triple statement

[BOOLEAN]' =
'true'

This SPrO THEN operation specifies that for all subsequent execution steps of the type 'execution step:

save/delete triple statement(s)' the specified triple statements must be deleted and not saved. This is the same

as if these execution steps would be annotated with 'delete triple statements [BOOLEAN]' = 'true'.

execution step: save/delete

triple statement(s)

Specifies through respective annotations within this annotation

the resources and values of the triple statements that i) must be

generated by the application or ii) must be deleted. Additional

annotations specify the named graph and workspace where the

triple statement must be saved to or deleted from.

executionStepSaveDeleteTripleState

ments

object This annotation property is used in combination with the 'subject' and 'property' annotation property to de-
scribe a triple statement. It specifies the resource/value that takes the 'object' position within the triple state-

ment.

object (all individuals of
class)

Same as the annotation 'object', with the difference that the range is any individual of the specified class.

object (copied individual

of)

Same as the annotation 'object', with the difference that the range is an individual of the specified class that

has been copied in a previous execution step within this workflow action.

object (this entry's spe-
cific individual in

memory of)

Same as the annotation 'object', with the difference that the range is an individual of the specified class that
refers to the entry ID that is currently in focus (the one to which the variable carrying resource

'SPrO_VARIABLE: this entry ID' refers to) AND the individual is currently held in memory. This is for

instance used when referring to a specific entry component of which several individuals exist in a given
composition.

object (this entry's spe-

cific individual of)

Same as the annotation 'object', with the difference that the range is an individual of the specified class that

refers to the entry ID that is currently in focus (the one to which the variable carrying resource
'SPrO_VARIABLE: this entry ID' refers to). This is for instance used when referring to a specific entry com-

ponent of which several individuals exist in a given composition.

object (unique individual

of)

Same as the annotation 'object', with the difference that the range is an individual of the specified class that is

the only individual of that class in the named graph that is specified in an accompanying triple statement.

object list Same as the annotation 'object', with the difference that the range is a list of individual resources.

an analogous list of annotation properties for 'subject'

property This annotation property is used in combination with the 'object' and 'subject' annotation property to describe

a triple statement. It specifies the property within the triple statement.

delete triple statement
[BOOLEAN]

The default value is 'false'. The value 'true' indicates that the respective triple statement must be deleted.
Specifies through respective annotations within this annotation the resources and values of a triple statement

that must be deleted.

and all subcommands from table 2

execution step: search

triple store

This annotation triggers a search of the triple store for the

existence of a specific resource. Further annotations specify

what is being searched and specify criteria that narrow in the

search space.

executionStepSearchTripleStore

multiple-hits-search

[BOOLEAN]

The value 'true' indicates that the respective search may yield more than one hit. The default value is 'false'.

search restricted to entry

URI (except for terminal
counter value)

This annotation property specifies an entry ID. The result of the search that is specified in accompanying

annotation properties is restricted to resources that share the same URI as the here specified entry ID, with
the exception that their last value may differ (i.e. the counter value that follows the last "_").

search target Specifies through the SPrO variable resource 'SPrO_VARIABLE: subject', 'SPrO_VARIABLE: object',

'SPrO_VARIABLE: property' or 'SPrO_VARIABLE: named graph' as its object, what element of the triple
statement to be searched is the target of this search.

search target defines

SPrO variable

Specifies the SPrO variable under which the search target result is referenced.

search target saved to
'list of URIs named

graph' SPrO variable

This annotation property triggers that the resource(s) identified through the search (in case 'multiple-hits-
search [BOOLEAN]='true', this can be more than one resource) will be stored into an internal hash map that

is identified through the specified SPrO variable resource.

use only results based on
namespace for

This annotation property specifies an entry status. Only the results of the search of which the URIs match the
here specified status will be considered and assigned to the target SPrO variable. If several of these annota-

tion properties are used in the same execution step, all the therein specified stati must be considered.

wild card search

[BOOLEAN]

The value 'true' indicates that the respective search uses a wild card function in case literals are searched. The

default value is 'false'.

and all subcommands from 'execution step: save/delete triple statement(s)'

and all subcommands from table 2

SPrO_VARIABLE: ? This SPrO variable is used for indicating an unknown resource in a triple statement that, for instance, has to

be SPARQLed or that can vary for the task to be conducted.

SPrO_VARIABLE:
object

used in combination with the 'search target' subcommand

SPrO_VARIABLE:

subject

used in combination with the 'search target' subcommand

SPrO_VARIABLE:
property

used in combination with the 'search target' subcommand

execution step: specifica-

tions and allocations for

hyperlink

This annotation property is used to prepare a subsequent

'execution step: hyperlink'. It specifies and allocates the com-

position(s) and components used in the hyperlink.

executionStepSpecificationsAndAllo

cationsFor

Hyperlink

position Specifies the position of this entry component in its parent component or widget.

use entry component This annotation property specifies an entry component that is used in a later 'execution step: hyperlink'.

use hierar-

chy/composition from
entry

This annotation property specifies an entry ID of a composition that is used in a later 'execution step:

hyperlink'.

use root element This annotation property specifies a root element of some hierarchy that is used in a later 'execution step:

hyperlink'.

use tab This annotation property specifies a tab from the interface that is used in a later 'execution step: hyperlink'.

use union of composi-

tions with child root en-

try component

This annotation property specifies that a union of compositions must be created that is used in a later

'execution step: hyperlink'. The entry component specified through this annotation property is the root ele-

ment of a composition that must be added to the composition of the root element specified through the anno-
tation property 'use union of compositions with parent root entry component'.

use union of composi-

tions with parent root en-
try component

This annotation property specifies that a union of compositions must be created that is used in a later

'execution step: hyperlink'. The entry component specified through this annotation property is the overall root
element of this merged union of compositions. Through the annotation property 'use union of compositions

with child root entry component', further compositions are specified through their respective root elements.

These additional compositions must be added to the composition of the parent root element.

and all subcommands from table 2

execution step: trigger

workflow action

This annotation property is used as a wrapper in combination

with other annotation properties that specify all information

required for triggering a specific workflow action.

executionStepTriggerWorkflowActi

on

requirement for trigger-
ing a workflow action

This specifies further requirement(s) for an action to be triggered in addition to a change or input made by a
user. Usually, a specific entry status is specified, indicating that the action to be triggered can only be con-

ducted for entries that possess the specified status. In case more than one requirement is specified, the rela-

tion between the requirements is OR not AND!

SPrO variable value

transferred to triggered

action

This annotation specifies a SPrO variable resource that has a specific value, which was assigned during the

current workflow action. This value must be transferred to the here triggered workflow action. E.g.: if the

variable carrying resource 'SPrO_VARIABLE: identified resource(s) [input_2]' has a specific individual
resource assigned, it must have the same resource assigned in the triggered workflow action.

subsequently triggered

workflow action

[BOOLEAN]

If 'true', this annotation specifies that the workflow action triggered in this execution step must be triggered

subsequently, after the ongoing execution step has been executed. Default value: 'false'

trigger action of button

(of class)

This annotation specifies an entry component that is a button, of which the action must be executed. It is

usually used in combination with the annotation 'subsequently triggered workflow action [BOOLEAN]'.

triggers workflow action This annotation specifies a workflow action that must be triggered for an entry ID that is specified in another

annotation.

execution step: update

triple statement(s)

Specifies through respective annotations within this annotation

all information required for changing a specific resource in all

triple statements of a specified named graph.

executionStepUpdateTripleStateme

nts

to be updated re-

source/value

Specifies a particular resource or value that must be changed in all the named graphs that are specified in

accompanying annotations.

to be updated re-

source/value (individual
of)

Same as the annotation 'to be updated resource/value', with the difference that the range is an individual of

the specified class.

update with (copied in-

dividual of)

Same as the annotation 'update with resource/value', with the difference that the range is an individual of the

specified class that has been copied in a previous execution step within this workflow action.

update with (this entry's
specific individual of)

Same as the annotation 'update with resource/value', with the difference that the range is an individual of the
specified class that refers to the entry ID that is currently in focus (the one to which the variable carrying

resource 'SPrO_VARIABLE: this entry ID' refers to). Contrary to the annotation 'update with re-

source/value', this annotation has no values as ranges.

update only for values This annotation property is used in combination with the 'update with resource/value' annotation property. It

higher than specifies a filter for what may be updated. Only triple statements with a value higher than here specified will
be updated.

update with (unique in-

dividual of)

Same as the annotation 'update with resource/value', with the difference that the range is an individual of the

specified class that is the only individual of that class in the named graph that is specified in an accompany-
ing triple statement.

update with re-

source/value

Specifies the particular resource or value with which the to-be-changed resource/value is replaced. Which

resources/values must be changed is specified in accompanying annotations.

and all subcommands from 'execution step: save/delete triple statement(s)'

and all subcommands from table 2

SPrO_VARIABLE:

to be updated

This SPrO variable is used to indicate which element (subject, property, object) in a triple statement is sub-

ject to an update.

Table 1: Excerpt of SPrO annotation properties that are used as execution step commands and their corresponding Java method (light gray
background) as well as the SPrO annotation properties that are used as their associated subcommands (white background) and, if applicable,

the defined value resources (SPrO variables, shown in italics). The first execution step (dark grey background) is a special case for the

middleware because input from and output for the web socket are treated differently than in the case of the other commands and subcommands.

SPrO annotation properties for

subcommands specifying named

graph and workspace
Description

load from/save to/update in all

named graphs (this entry's specific
individual of) of this SPrO variable

list

Same as the annotation 'load from/save to/update in named graph (this entry's specific individual of)',

with the difference that the range is a list of named graph classes from which the individuals that refer
to the entry ID that is currently in focus must be inferred.

load from/save to/update in multiple
named graphs (this entry's specific

individuals of)

Same as the annotation 'load from/save to/update in named graph (individual of)', with the difference
that the range refers to all individuals of the specified class that refer to the entry ID that is currently in

focus.

load from/save to/update in named

graph

Specifies the named graph from which a triple statement is loaded or to which it is saved or in which

triple statements must be updated. Together with information about the entry type and the workspace,
the directory can be located in the triple store for saving or loading the triple statement(s).

load from/save to/update in named

graph (copied individual of)

Specifies a subclass of the class named graph, the individual of which is the named graph from which

a triple statement is loaded or to which it is saved or in which triple statements must be updated. The
range is an individual of the specified class that has been copied in a previous execution step within

this workflow action.

load from/save to/update in named
graph (this entry's specific individu-

al of)

Same as the annotation 'load from/save to/update in named graph', with the difference that the range is
an individual of the specified class that refers to the entry ID that is currently in focus.

load from/save to/update in named

graphs of this SPrO variable list

Same as the annotation 'load from/save to/update in named graph', with the difference that the range is

a list of named graph individuals.

named graph belongs to entry ID Specifies a particular entry ID. The respective triple statement(s) to which this annotation property

relates to must be stored to or loaded from a named graph that belongs to this entry ID.

named graph belongs to workspace Specifies a particular workspace. The respective triple statement(s) to which this annotation property

relates to must be stored to or loaded from this respective workspace.

set new focus on entry ID This annotation specifies an entry ID that takes the function of the entry currently in focus for the

ongoing action. In other words, the SPrO variable resource 'this entry ID' and all its associated SPrO

variable resources will refer to the specified entry ID and its associated resources, just as if the action
had been triggered with the specified entry ID in focus. This change in focus to the specified entry ID

holds in all subsequent execution steps of this action, until another 'set new focus on entry ID' annota-

tion changes the focus again. If used within an execution step, this annotation is executed first before
any other annotations of this execution step can be executed.

set new focus on entry ID (individ-

ual of)

This annotation specifies a class of entry ID that defines the focus for the ongoing action. Based on the

specified class and the point from which the respective action has been triggered, the middleware is
able to identify the individual entry ID that defines the entry in focus. Based on this focus, the mid-

dleware is able to resolve all references to classes that are intended to be references to individual re-

sources to the respective individual resources. This specified focus holds in all subsequent execution
steps of this action, until another 'set new focus on entry ID' annotation changes the focus again. If

used within an execution step, this annotation is executed first before any other annotations of this

execution step can be executed.

set new focus on entry ID for this

execution step

This annotation specifies an entry ID that takes the function of the entry currently in focus for this

execution step only. In other words, the SPrO variable resource 'this entry ID' and all its associated

SPrO variable resources will refer to the specified entry ID and its associated resources, just as if the
action had been triggered with the specified entry ID in focus. This change in focus to the specified

entry ID is restricted to this execution step and will return to the former focus when the execution step

has been executed. If used within an execution step, this annotation is executed first before any other
annotations of this execution step can be executed.

Table 2: SPrO annotation properties that are used as subcommands for specifying the location in the application's triple store framework for

loading, saving and updating triple statements and for setting the focus on a specific entry ID.

SPrO annotation properties

for GUI-related commands

and relevant defined values

(SPrO variables)

Description

component status
[BOOLEAN]

This annotation property functions like a switch between two ways in which this entry component can be
represented (status 'true' and status 'false').

drag-and-drop position ena-

bled [BOOLEAN]

This annotation property specifies whether a user can drag and drop this entry component to change its posi-

tion relative to other entry components that can be dragged and dropped. If 'true', this component's position

can be changed through drag and drop.

drag-and-drop restricted to This annotation property specifies within which entry component and thus which area of the GUI this entry

component can be moved using drag and drop.

has associated instance re-

source [input_X]

Specifies an instance resource that is linked to this instance of an entry component class. This way, the re-

source is held available for the case it must be referred to in some other context. The SPrO variable resource
'SPrO_VARIABLE: associated instance resource [input_X]' refers to the input based on this annotation.

[with 'X' being any letter between A and N]

has associated 'list of URIs
named graph' [input_X]

Specifies the instance of a particular named graph in which a set of URIs is listed. A particular SPrO variable
resource 'SPrO_VARIABLE: associated 'list of URIs named graph [input_X]' refers to the list or URIs con-

tained in the indicated named graph. [with 'X' being any letter between A and T]

has Boolean value

[BOOLEAN]

Assigns a Boolean value (or a variable carrying resource from which a Boolean value can be inferred) to this

entry component, which is used for read-only purposes.

has default placeholder value This annotation property specifies a certain value (usually a literal) that is supposed to be used as the default

placeholder value/resource selected by this entry component. This value/resource is depicted until the user

selects a resource.

has GUI representation This annotation property specifies the HTML element with which this entry component is represented in the

GUI.

has scrollbar This annotation property specifies the type of scrollbar that this entry component should have.

hidden [BOOLEAN] This annotation property specifies the visibility of a given entry component. If 'true', the respective entry
component is not hidden, if 'false', it is visible.

hyperlink Specifies a hyperlink to this resource.

input of type [info-input_X] Specifies some information that is important for an input (e.g. the type of entry that will be newly created

when pushing a 'create new entry' button). The SPrO variable resource 'SPrO_VARIABLE: input of type
[info-input_X]' refers to the input based on this annotation. [with 'X' being any number between 1 and 20]

label status 'false' This specifies the content of a visible label for the status 'false' of this entry component. This annotation is

accompanied by the annotation property 'component status [BOOLEAN]' that specifies the status ('true' or

'false') of this entry component. The label is only visible if the component has the component status 'false'.

label X This specifies the content of a visible label. Label 1 is the first label (from left to right) and further labels

may exist. [with 'X' being any number between 1 and 5]

required input [BOOLEAN] Specifies, whether the user must provide input for this entry component because this information is required

for the respective type of entry. IMPORTANT NOTE: If some input has been provided for an entry compo-
nent with this annotation, a user cannot delete this input anymore, but merely change it; some valid input

must always remain, once input has been provided.

resource(s) to be identified
[input_X]

Specifies either directly the resource to be identified or indirectly the class of the resource that must be iden-
tified. Which resource(s) should be identified is further narrowed in by specifying a triple statement in which

the resource is used. The SPrO variable resource 'SPrO_VARIABLE: identified resource(s) [input_X]' refers

to the resource identified based on this annotation. [with 'X' being any number between 1 and 30]

tooltip text This specifies the content of a tooltip text, which appears when the mouse hovers over this entry component.

triggers 'click on' (individual

of)

This annotation property specifies an individual entry component for which a 'click on' event is triggered

when this button is clicked.

with information text This specifies a short text phrase that is shown in a text input field (e.g., "enter label"; "enter URL"), in order
to provide information about what should be entered in this text field. This text is not stored as input data and

disappears immediately when the input field is selected.

SPrO_VARIABLE: input

of type [info-input_X]

This SPrO variable refers to the information/resource for which the annotation 'input of type [info-input_X]'

specifies the input-information. [with 'X' being any number between 1 and 20]

SPrO_VARIABLE: iden-

tified resource(s) [in-

put_X]

This SPrO variable refers to the resource(s) that has been identified based on the annotation 'resource(s) to be

identified [input_X]' that has been used in some earlier execution step within this action. If several execution

steps of this action have used this annotation, the SPrO variable refers to the last usage. [with 'X' being any
number between 1 and 30]

SPrO_VARIABLE: asso-

ciated instance resource

This SPrO variable refers to the resource specified by the annotation property 'has associated instance re-

source [input_X]' that links it to an entry component. This way, the resource is held available for the case that

[input_X] it must be referred to in some other context. [with 'X' being any letter between A and N]

SPrO_VARIABLE: asso-

ciated 'list of URIs

named graph' [input_X]

This SPrO variable refers to a particular named graph that contains a list of URIs which has been specified by

the annotation property 'has associated 'list of URIs named graph' [input_X]'. Whenever the SPrO variable is

used in an execution step as placeholder for a resource, all resources (URIs) contained in the specified named
graph must be processed consecutively before proceeding with the next execution step. [with 'X' being any

letter between A and T]

Relevant SPrO object

properties

Description

belongs to radio button group Specifies to which GUI radio button group this radio button entry component belongs to.

entry component of Specifies an entry component that this entry component is part of. The parthood relations between entry

components describe the hierarchical encaptic structure in which the data belonging to a data entry are orga-
nized. The hierarchy of components nested within components forms the overall entry composition for a

specific data entry, which at its turn describes the organization of data items into sets and subsets, resulting in

a partonomic composition of groups of data items that are organized in entry components.

has entry component Specifies an entry component that is part of this entry component. The parthood relations between entry
components describe the hierarchical encaptic structure in which the data belonging to a data entry are orga-

nized. The hierarchy of components nested within components forms the overall entry composition for a

specific data entry, which at its turn describes the organization of data items into sets and subsets, resulting in
a partonomic composition of groups of data items that are organized in entry components.

has selected resource This object property specifies a specific resource that is to be recorded as the resource that has been selected

for this entry component. The label of this resource is depicted in the GUI until the user selects a different
resource.

has user/GUI input [input_X] Specifies a resource that is the user/GUI input that is based on one of the 'input restricted to individuals of

[input_X]' annotations. It links the component resource via this object property to the resource that is the

user/GUI input. This way one can easily document the input within the entry composition. [with 'X' being
any letter between A and G]

has user/GUI input [label] Specifies a label or value that belongs to the user/GUI input.

has user/GUI input [URI] Specifies a resource (i.e. URI) that belongs to the user/GUI input.

Relevant SPrO data prop-

erties

Description

has position in entry compo-

nent

Specifies the position (in the order: from left to right and top to bottom) of an entry component within its

parent entry component.

has user/GUI input [value_A] Specifies a value that is the user/GUI input. It links the component resource via this data property to the
value that is the user/GUI input. This way one can easily document the input within the entry composition.

has visible label X A visible label is a string that is visible in the interface somewhere within the area of its GUI element. Label

X is the Xth label (from left to right). Further labels may exist. [with 'X' being any number between 1 and 8]

new row [BOOLEAN] If 'true', this data property specifies that this entry component must be positioned in a new row. Default val-
ue: 'false'

Table 3: SPrO annotation properties that are used as GUI-related commands together with relevant defined value resources (SPrO variables,

shown in italics) as well as relevant SPrO object and SPrO data properties.

The location of a triple statement in the applica-

tion’s tuple store framework is therefore defined by

the combination of workspace and named graph. Ta-

ble 2 lists all SPrO annotation properties that can be

used as subcommands within execution steps for

specifying the location of triple statements.

Besides the specifications of database processes

and other workflows, SPrO can also be used to speci-

fy the GUI of a data-centric Semantic Web applica-

tion. This includes the description of HTML entry

forms for sign up and log in as well as for user pro-

files, but also for all types of data entry forms used in

the application.

Table 3 lists all the SPrO annotation properties

that can be used as commands to describe the overall

composition of an HTML page of a data entry. Each

page is described as a set of entry components. Each

entry component is represented in the corresponding

SCO as an instantiated ontology class. A given page-

composition is thus represented as a set of ontology

classes, of which the instances are linked to each

other through specific object properties (‘entry com-

ponent of’ and ‘has entry component’) into parent-

child relations, resulting in an encaptic hierarchy of

ontology instances. The resulting instance-based se-

mantic graph, which is described in the application’s

SCO, then functions as a template for the data entry

form of a given type of data entry for the application.

Each newly created data entry of a certain type is a

copy of its respective template graph.

The position of a child entry component in relation

to its sibling entry components is specified through a

respective data property (‘has position in entry com-

ponent’) on the child itself. The HTML representa-

tion, as well as the input control and the specific

functionality of each component, are specified in the

corresponding SCO class. The class also specifies the

data scheme of how the user input must be translated

into a semantic data graph and where this data graph

must be stored in the Jena tuple store framework in

terms of workspace and named graph.

The Java-based middleware interprets all these de-

scriptions, produces the application and coordinates

the application’s overall operation based on the in-

formation from the descriptions in SCO. This in-

cludes interpreting the descriptions of data entry

forms, data views, the overall architecture of the GUI

and the actual data in the tuple store framework,

communicating these interpretations with the

frontend, interpreting the user input from the

frontend and processing this input in accordance with

the descriptions from SCO. The middleware thus

mediates between SPrO, SCO and data graphs in the

underlying Jena tuple store framework on the one

hand and the browser-based GUI with the user input

and user interaction on the other hand (Fig. 1).

3. SPrO Use Cases

We believe that one of the main reasons why most

data-centric applications in science do not use seman-

tic technology to its full potential can be found in the

rather complex structure of semantic data graphs.

Semantic data graphs are often bulky and to a high

degree cross-linked, which makes them hard to com-

prehend for a human reader. If human readers have

substantial problems with directly consuming seman-

tic graphs, data-centric applications that store data

and metadata as semantic graphs would have to

translate those graphs into something that is more

accessible, such as tables and data entry forms pre-

sented in HTML pages. As already mentioned above,

SPARQL endpoints are no solution in this regard, as

they only allow direct interaction with the graphs

themselves.

So far, the development of data-centric Semantic

Web applications that integrate semantic graphs with

a user-friendly representation of their data has been

hampered by a lack of application development

frameworks that are well integrated with RDF/OWL.

With SPrO and its accompanying Java-based mid-

dleware, we attempt to provide such a development

framework and thus close the gap between the needs

for a user-friendly representation and an eScience-

compliant documentation of data and metadata.

3.1. Semantic Ontology-Controlled Application for

Web Content Management Systems (SOCCOMAS)

We use SPrO for describing a semantic web-based

content management system (S-WCMS), which we

call SOCCOMAS [27,28]. Its source code ontology

(available from [29]) contains descriptions of ready-

to-use features and workflows typically required by

an S-WCMS, including user administration with log-

in and signup forms, user registration and login pro-

cess and session management and user profiles. The

SOCCOMAS source code ontology also defines a

general publication life-cycle process for data entries

that allows a user to create a revised draft version

based on the current published version of a data entry.

Every published data entry receives its own digital

object identifier (DOI), and the creator of the entry

can specify under which creative commons license

the entry will be published. The publication life-cycle

covers all transitions between the following possible

states of a data entry:

1) current draft version;

2) backup draft version;

3) draft version in recycle bin;

4) deleted draft version;

5) current published version;

6) previously published version.

Moreover, the SOCCOMAS source code ontology

specifies automatic procedures for tracking overall

provenance (i.e., creator, authors, creation, and pub-

lication date, contributors, relation between different

versions, etc.) for each particular data entry. On a

significantly finer level of granularity, the source

code ontology also specifies automatic procedures

that track all changes made to a particular data record

at the level of individual input fields and documents

them in a detailed change-history log. This is espe-

cially useful when editing data entries collaboratively.

All the gathered metadata are recorded in RDF fol-

lowing established data and metadata standards using

terms and their corresponding URIs from established

ontologies.

An S-WCMS run by SOCCOMAS (and thus by

SPrO and its accompanying middleware) provides

human-readable output in form of HTML and CSS

for browser requests and access to a SPARQL end-

point for machine-readable service requests. Since

every published entry has its own DOI and is pub-

lished under a creative commons license, and since

all data and metadata are documented as semantic

graphs that are also accessible through a SPARQL

endpoint, all data published of such a S-WCMS

reaches the five star rank of Tim Berners-Lee’s rating

system for Linked Open Data [30].

SOCCOMAS thus provides the description of all

basic features and functionalities generally required

for an S-WCMS. All specific features and functional-

ities needed for a particular S-WCMS, however, still

have to be described in the source code ontology of

that S-WCMS, including HTML templates for data

entry forms, specifications of input control and over-

all behavior of each input field for the different types

of data entries that the S-WCMS manages. These

descriptions also include specifications of the under-

lying data scheme that determines how user input

triggers the generation of data-scheme-compliant

triple statements and where these triples must be

saved in the Jena tuple store framework in terms of

named graph and workspace.

3.2. Semantic Morph·D·Base

We use SOCCOMAS for developing a module for

morphological descriptions for the morphological

data repository Morph·D·Base [31]. This semantic

version of Morph·D·Base utilizes the general func-

tionality of an S-WCMS provided by SOCCOMAS,

to which additional features specifically required for

semantic Morph·D·Base have been added through its

own source code ontologies (available from [32]).

Semantic Morph·D·Base enables users to generate

highly standardized and formalized morphological

descriptions that are stored in the tuple store frame-

work as instance-based semantic graphs. When de-

scribing an anatomical structure, users can reference

any ontology class from any anatomy ontology that is

available at BioPortal [33] and describe the structure

and all of its parts as instances of these classes. Parts

can be further described through defined data entry

forms, often referencing specific ontology classes

from PATO [34]. Semantic Morph·D·Base is cur-

rently still in development, but a prototype [35] can

be accessed and functions as a proof of concept for

SOCCOMAS and our semantic programming ap-

proach.

Using SOCCOMAS and semantic programming

for developing the module for morphological de-

scriptions has proven to save valuable resources and

development time. The source code ontology for the

semantic Morph·D·Base prototype has been written

by a domain expert with knowledge in ontology

engineering, but no expertise in any programming

language. Moreover, because all the processes and

functionalities that any S-WCMS requires such as

login, signup, user administration, publication life-

cycle, and various automatic tracking procedures are

provided by SOCCOMAS, development of the proto-

type was restricted only to features specific to this

prototype. Furthermore, the approach has also proven

that changes to the organization of the GUI such as

adding a new input field to a data entry form can be

conducted on the fly, which facilitates a user-

centered design approach to application development.

4. Conclusion

Semantic programming with SPrO and its accom-

panying middleware can help to close the gap be-

tween the need for user-friendly web applications and

eScience-compliant data and metadata. Data-centric

applications that are based on the here proposed se-

mantic programming approach can provide HTML-

based data views that are easily comprehensible to

human users, thereby hiding the often rather compli-

cated semantic graphs that represent the actual data.

At the same time, data harvester services and other

applications can readily consume the semantic graphs

through the application’s SPARQL endpoint.

Because all data and metadata of applications

based on semantic programming are represented in

form of semantic graphs that can be searched through

the applications’ SPARQL endpoint, because the

semantic graphs link to ontology classes that provide

semantic transparency for the concepts used in the

data and metadata graphs, and because SPrO and its

accompanying middleware enable automatic prove-

nance tracking and detailed change-history tracking

for all user input, data and metadata of these applica-

tions are maximally findable, accessible, interopera-

ble and reusable, and thus comply with the FAIR

guiding principles [2]. Moreover, they are also com-

puter-parsable. Semantic programming with SPrO

and its accompanying middleware would thus pro-

vide a means to fully utilize the potential of semantic

technology for scientific data-centric Semantic Web

applications.

Moreover, since not only data and metadata of re-

spective applications are stored as semantic graphs,

but the application’s source code as an ontology, se-

mantic programming stands for taking semantic

transparency to a next level by also semantically de-

scribing the application itself using the terms defined

in SPrO.

References

[1] J. Gray, Jim Gray on eScience: A Transformed Scientific

Method, in: T. Hey, S. Tansley, and K. Tolle (Eds.), The
Fourth Paradigm: Data-Intensive Scientific Discoveries,

Microsoft Research, Redmond, Washington, 2009: pp. xvii–

xxxi.
[2] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton,

M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva

Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M.
Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R.

Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble,

J.S. Grethe, J. Heringa, P.A.. ’t Hoen, R. Hooft, T. Kuhn, R.

Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L.

Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik,

S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J.

Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J.

Zhao, and B. Mons, The FAIR Guiding Principles for
scientific data management and stewardship, Scientific Data. 3

(2016) 160018. doi:10.1038/sdata.2016.18.

[3] L. Vogt, The future role of bio-ontologies for developing a
general data standard in biology: chance and challenge for

zoo-morphology, Zoomorphology. 128 (2009) 201–217.

doi:10.1007/s00435-008-0081-5.
[4] L. Vogt, eScience and the need for data standards in the life

sciences: in pursuit of objectivity rather than truth, Systematics

and Biodiversity. 11 (2013) 257–270.
doi:10.1080/14772000.2013.818588.

[5] L. Vogt, M. Nickel, R.A. Jenner, and A.R. Deans, The Need

for Data Standards in Zoomorphology, Journal of Morphology.

274 (2013) 793–808. doi:10.1002/jmor.20138.

[6] A. Brazma, On the importance of standardisation in life

sciences, Bioinformatics. 17 (2001) 113–114.
[7] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P.

Spellman, C. Stoeckert, J. Aach, W. Ansorge, C.A. Ball, H.C.

Causton, T. Gaasterland, P. Glenisson, F.C.P. Holstege, I.F.
Kim, V. Markowitz, J.C. Matese, H. Parkinson, A. Robinson,

U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo,

and M. Vingron, Minimum information about a microarray
experiment (MIAME)–toward standards for microarray data,

Nature Genetics. 29 (2001) 365–371. doi:10.1038/ng1201-365.

[8] X. Wang, R. Gorlitsky, and J.S. Almeida, From XML to RDF:
how semantic web technologies will change the design of

“omic” standards, Nature Biotechnology. 23 (2005) 1099–

1103.
[9] B. Smith, Ontology, in: L. Floridi (Ed.), Blackwell Guide to

the Philosophy of Computing and Information, Blackwell

Publishing, Oxford, 2003: pp. 155–166.

[10] S. Schulz, H. Stenzhorn, M. Boeker, and B. Smith, Strengths

and limitations of formal ontologies in the biomedical domain,

RECIIS. 3 (2009) 31–45. doi:10.3395/reciis.v3i1.241en.
[11] S. Schulz, and L. Jansen, Formal ontologies in biomedical

knowledge representation., IMIA Yearbook of Medical
Informatics 2013. 8 (2013) 132–46.

http://www.ncbi.nlm.nih.gov/pubmed/23974561.

[12] L. Vogt, Morphological Descriptions in times of eScience:
Instance-Based versus Class-Based Semantic Representations

of Anatomy, n.d.

[13] M. Uschold, and M. Gruninger, Ontologies: Principles,
Methods and Applications, Knowledge Engineering Review.

11 (1996) 39–136.

[14] S.-A. Sansone, P. Rocca-Serra, W. Tong, J. Fostel, N.
Morrison, A.R. Jones, and R. Members, A Strategy

Capitalizing on Synergies: The Reporting Structure for

Biological Investigation (RSBI) Working Group, OMICS: A

Journal of Integrative Biology. 10 (2006) 164–171.

[15] SPARQL Query Language for RDF. W3C Recommendation
15 January 2008, (n.d.). https://www.w3.org/TR/rdf-sparql-

query/.

[16] OWL@Manchester: List of Reasoners, (n.d.).
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/.

[17] K. Wenzel, KOMMA : An Application Framework for

Ontology-based Software Systems, Semantic Web Journal. 0
(2010) 1–10. http://www.semantic-web-

journal.net/sites/default/files/swj89_0.pdf.

[18] M. Buranarach, T. Supnithi, Y.M. Thein, T. Ruangrajitpakorn,
T. Rattanasawad, K. Wongpatikaseree, A.O. Lim, Y. Tan, and

A. Assawamakin, OAM: An Ontology Application

Management Framework for Simplifying Ontology-Based
Semantic Web Application Development, International

Journal of Software Engineering and Knowledge Engineering.

26 (2016) 115–145. doi:10.1142/S0218194016500066.
[19] M.D. Wilkinson, B. Vandervalk, and L. McCarthy, The

Semantic Automated Discovery and Integration (SADI) Web

service Design-Pattern, API and Reference Implementation,
Journal of Biomedical Semantics. 2 (2011) 8.

doi:10.1186/2041-1480-2-8.

[20] D.D.G. Gessler, G.S. Schiltz, G.D. May, S. Avraham, C.D.
Town, D. Grant, and R.T. Nelson, SSWAP: A Simple

Semantic Web Architecture and Protocol for semantic web
services, BMC Bioinformatics. 10 (2009) 309.

doi:10.1186/1471-2105-10-309.

[21] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D.
Mcdermott, D. Mcguinness, B. Parsia, T. Payne, M. Sabou, M.

Solanki, N. Srinivasan, and K. Sycara, Bringing Semantics to

Web Services: The OWL-S Approach, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005. doi:10.1007/b105145.

[22] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E.

Mannens, and R. Van de Walle, RML: A Generic Language
for Integrated RDF Mappings of Heterogeneous Data,

Proceedings of the 7th Workshop on Linked Data on the Web.

1184 (2014). http://ceur-ws.org/Vol-
1184/ldow2014_paper_01.pdf.

[23] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen,

L. De Vocht, B. De Meester, G. Haesendonck, and P. Colpaert,
Triple Pattern Fragments: A low-cost knowledge graph

interface for the Web, Journal of Web Semantics. 37–38

(2016) 184–206. doi:10.1016/j.websem.2016.03.003.
[24] A. Katasonov, and M. Palviainen, Towards ontology-driven

development of applications for smart environments, in: 2010

8th IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOM Workshops),

IEEE, 2010: pp. 696–701.

doi:10.1109/PERCOMW.2010.5470523.

[25] J.Z. Pan, S. Staab, U. Aßmann, J. Ebert, and Y. Zhao,

Ontology-Driven Software Development, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-
31226-7.

[26] L. Vogt, Organizing Phenotypic Data—A Semantic Data

Model for Anatomy, n.d.
[27]L. Vogt, R. Baum, C. Köhler, S. Meid, B. Quast, and P. Grobe,

Using Semantic Programming for Developing a Web Content

Management System for Semantic Phenotype Data, Lecture
Notes in Computer Science. 11371 (2019).

[28] L. Vogt, R. Baum, P. Bhatty, C. Köhler, S. Meid, B. Quast,

and P. Grobe, SOCCOMAS: a FAIR Web Content
Management System that is based on Semantic Programming,

n.d.

[29] GitHub: Source Code Ontology for Semantic Ontology-
Controlled Web Content Management System (SOCCOMAS),

(n.d.).

https://github.com/SemanticProgramming/SOCCOMAS.

[30] T. Berners-Lee, Linked Data, (2009).
https://www.w3.org/DesignIssues/LinkedData.html.

[31] Morph·D·Base: a morphological online data repository, (n.d.).

https://www.morphdbase.de/.
[32] GitHub: Source Code Ontologies for semantic Morph·D·Base,

(n.d.).

https://github.com/SemanticProgramming/SemMorphDBase.
[33] BioPortal, (n.d.). http://bioportal.bioontology.org/.

[34] Phenotype And Trait Ontology (PATO), (n.d.).

http://obofoundry.org/ontology/pato.html.
[35] Semantic Morph·D·Base Prototype, (n.d.).

https://proto.morphdbase.de.

[36] G. De Giacomo, and M. Lenzerini, TBox and ABox
Reasoning in Expressive Description Logics, in: Proceedings

of the Fifth International Conference on Principles of

Knowledge Representation and Reasoning (KR’96), Morgan
Kaufmann, 1996: pp. 316–327. doi:10.1.1.22.8293.

