
Semantic Web 1 (0) 1–5 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF Graph Validation Using
Rule-Based Reasoning
Ben De Meester a,*, Pieter Heyvaert a, Dörthe Arndt a, Anastasia Dimou a, and Ruben Verborgh a

a Ghent University – imec – IDLab, Department of Electronics and Information Systems,
Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium
E-mails: ben.demeester@ugent.be, pheyvaer.heyvaert@ugent.be, doerthe.arndt@ugent.be,
anastasia.dimou@ugent.be, ruben.verborgh@ugent.be

Abstract.The correct functioning of SemanticWeb applications requires that given RDF graphs adhere to an expected shape. This
shape depends on the RDF graph and the application’s supported entailments of that graph. During validation, RDF graphs are
assessed against sets of constraints, and found violations help refining the RDF graphs. However, existing validation approaches
cannot always explain the root causes of violations (inhibiting refinement), and cannot fully match the entailments supported
during validation with those supported by the application. These approaches cannot accurately validate RDF graphs, or combine
multiple systems, deteriorating the validator’s performance. In this paper, we present an alternative validation approach using
rule-based reasoning, capable of fully customizing the used inferencing steps. We compare to existing approaches, and present a
formal ground and practical implementation “Validatrr”, based on N3Logic and the EYE reasoner. Our approach – supporting
an equivalent number of constraint types compared to the state of the art – better explains the root cause of the violations due
to the reasoner’s generated logical proof, and returns an accurate number of violations due to the customizable inferencing rule
set. Performance evaluation shows that Validatrr is performant for smaller datasets, and scales linearly w.r.t. the RDF graph
size. The detailed root cause explanations can guide future validation report description specifications, and the fine-grained level
of configuration can be employed to support different constraint languages. This foundation allows further research into, a.o.,
handling recursion, validating RDF graphs based on their generation description, and providing automatic refinement suggestions.

Keywords: Constraints, Rule-based Reasoning, Validation

1. Introduction

Semantic Web data is represented using the Re-
sourceDescription Framework (RDF), forming anRDF
graph [20]. The quality of an RDF graph – its “fitness
for use” [74] – heavily influences the results of a Se-
mantic Web application [51]. An RDF graph’s fitness
for use depends on its shape i.e., the RDF graph it-
self and the application’s supported entailments of that
RDF graph. For example, some applications support
inferring rdfs:subClassOf entailments [16], whereas
other applications require the RDF graph to explicitly
contain all classifying triples (i.e., rdfs:subClassOf
entailment is not supported).

*Corresponding author. E-mail: ben.demeester@ugent.be.

RDF graphs are validated by assessing their adher-
ence to a set of constraints [50], and different applica-
tions (i.e., different use cases) specify different sets of
constraints. Via validation, we discover (portions of)
RDF graphs that do not conform to these constraints,
i.e., the violations that occur. These violations guide
the user to the resources and relationships related to the
constraints. Refining these resources and relationships
results in an RDF graph of higher quality [26], thus,
RDF graph validation is an important element for the
correct functioning of Semantic Web applications.

1.1. Validation problems

Let us consider the following example: anRDFgraph
containing people and their birthdates is validated. The
use case dictates the set of constraints and the supported

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:ben.demeester@ugent.be
mailto:pheyvaer.heyvaert@ugent.be
mailto:doerthe.arndt@ugent.be
mailto:anastasia.dimou@ugent.be
mailto:ruben.verborgh@ugent.be
mailto:ben.demeester@ugent.be

2 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

entailments. Specifically,we validate formula (1)1, with
a relevant ontology represented in formula (2).

:Bob :firstname "Bob" ; (1)

:birthdate "1970-01-01"ˆˆxsd:date .

:birthdate rdfs:domain :Person . (2)

:Bob a :Person . (3)

Problem 1 (P1): finding the root causes of violations.
For example, the use case dictates following compound
constraint ccompound: given a resource r , this resource
has (rfirstname ∧ rlastname) ∨ (rnickname). When the RDF
graph contains formula (1) and formula (3), :Bob should
be marked as a resource violating ccompound. However,
when refining the RDF graph, the root cause of the
violation is needed: does the resource lack firstname,
lastname, or nickname?
For constraint types such as compound constraints,

existing validation approaches typically return the re-
source that violates the constraint. However, more de-
tailed descriptions are typically not provided, and man-
ual inspection is needed to discover the root cause: why
a resource violates a constraint. Without the root cause,
it is hard to (automatically) refine the RDF graph and
improve its quality.

Problem 2 (P2): the number of found violations de-
pends on the supported entailments. A mismatch be-
tween which entailments are supported during valida-
tion and which entailments are supported by the use
case influences, e.g., whether formula (3) is inferred or
not. Thus, either too many or too few violations can
be returned [13]. This difference in number of found
violations gives a biased idea of the real quality of the
validated RDF graph.
Too many violations: formula (2) specifies the do-

main of :birthdate. Let us validate that “every re-
source in the RDF graph that has a birthdate, is a per-
son” given formula (1). When the entailments of for-
mula (2) are not supported, this would result in a viola-
tion: formula (3) is missing in the RDF graph. However,
when the entailments of formula (2) are supported, we
can infer formula (3), and no violation is returned.
Too few violations: Let us validate that “every person

in the RDF graph adheres to constraint ccompound” given

1For the remainder of the paper, empty prefixes denote the fictional
schema http://example.com/, other prefixes are conform with the
results of https://prefix.cc.

formula (1). Formula (3) is not explicitly stated and
the entailments of formula (2) are not supported. No
violations are found: :Bob is not explicitly classified
as a :Person, thus :Bob is not targeted by ccompound.
However, supporting those entailments can create new
statements to be validated, and lead to new violations.
For example, by inferring formula (3) using formula (2),
:Bob is targeted by – and violates – ccompound. Such
violations are not found in the original RDF graph, but
discovered due to the supported entailments.

Customizing the set of inferencing steps during vali-
dation (e.g., whether rdfs:domain entailments are sup-
ported or not) allows to match the entailments sup-
ported by the use case with those of the validation
approach. However, support for customizable infer-
encing steps is limited. When a fixed set (or no set)
of inferencing steps is supported, a separate reason-
ing process is needed to infer unsupported entail-
ments, and edge cases handling this fixed set can-
not be validated accurately. For example, let us look
at the W3C recommended Shapes Constraint Lan-
guage (SHACL): a language for validating RDF graphs
against a set of constraints [47]. SHACL specifies a
fixed set of inferencing steps during validation, namely,
rdfs:subClassOf entailment. Thus, one cannot vali-
date, e.g., whether an RDF graph explicitly contains all
triples that link resources to all their classes given a
set of rdfs:subClassOf axioms, as rdfs:subClassOf
triples are always inferred by a conform SHACL val-
idator. RDF graphs that do not contain all classifying
triples will be valid according to SHACL validators,
however, they are handled poorly by applications that
do not support rdfs:subClassOf entailment.

Problem 3 (P3): Combining validation with a reason-
ing preprocessing step decreases performance En-
tailments can be inferred by performing reasoning as a
preprocessing step prior to validation [13], thus com-
bining multiple systems. The resulting RDF graph then
explicitly contains all supported entailments, given that
the reasoner can be configured to only infer the entail-
ments that are supported by the use case. The number of
found violations is then accurate with respect to the use
case (solving P2). However, this requires a sequence
of independent systems. Thus, the preprocessing step
possibly produces entailments not relevant for valida-
tion [13]. This independent generation of unnecessary
entailments can decrease the performance compared
to a single validation system. More, due to this se-
quence of independent systems, finding the root causes
involves investigating the results of both systems: the

http://example.com/
https://prefix.cc

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

validator who detects violations, and the reasoner who
infers entailments.

1.2. Hypotheses

To solve aforementioned observed validation prob-
lems, we pose following hypotheses:

Hypothesis 1: root causes can be explained more ac-
curately compared to existing validation approaches
when using a declarative logic.

Hypothesis 2: a more accurate number of violations
are found compared to existing validation approaches
when supporting a custom set of inferencing steps.

Hypothesis 3: a validation approach supporting more
accurate root cause explanations and a custom set of
inferencing steps can support an equivalent number of
constraint types compared to existing approaches.

Hypothesis 4: a validation approach supporting a cus-
tom set of inferencing steps is faster than an approach
that includes the same inferencing as a preprocessing
step.

1.3. Contributions

In this paper, we propose an approach for RDF graph
validation that uses a rule-based reasoner as its under-
lying technology. Rule-based reasoners can generate a
proof stating which rules were triggered for which re-
turned violation. Thus, the root causes of violations can
be accurately explained (solving P1).

A validation approach using rule-based reasoning
natively support the inclusion of a custom set of in-
ferencing steps by adding custom rules. The supported
entailments during validation can thus be matched to
the entailments supported by the use case, and the val-
idation returns an accurate number of found violations
(solving P2).
Moreover, rule-based reasoners only need a single

language to declare both the constraints and the set of
inferencing rules, and only a single system to execute
the validation. Compared to a combination of a rea-
soner and a validation system, this approach does not
lead to the generation of entailments unnecessary to the
validation step, making it potentially faster than includ-
ing an inferencing preprocessing step (solving P3).

Our contributions are as follows:

i An analysis of existing validation approaches and
comparison to a rule-based reasoning approach.

ii A formal ground for using rule-based reasoning for
validation.

iii An implementation using N3Logic [8] to define the
inferencing and validation rules, executed using the
EYE reasoner [73], supporting general constraint
types as described by Hartmann et al. [35].

iv An evaluation of our approach, positioning it within
the state of the art by functionally validating the
hypotheses and comparing the validation speed.

We validated that (a) the formal logical proof ex-
plains the root cause of a violation more detailed than
the state of the art; (b) an accurate number of violations
is returned by using a custom set of inferencing rules
up to at least OWL-RL complexity and expressiveness;
(c) the number of supported constraint types is equiva-
lent to existing validation approaches; and (d) our im-
plementation is faster than a combined system, and
faster than an existing validation approach when RDF
graphs are smaller than one hundred thousand triples.

The remainder of the paper is organized as follows:
We give an overview of the state of the art (Section 2),
after which we position and compare rule-based rea-
soning as validation approach (Section 3). We provide
a formal ground (Section 4) and practical implementa-
tion (Section 5), evaluate our proposed approach (Sec-
tion 6), and summarize our conclusions (Section 7).

2. State of the art

In this work, we propose an alternative validation
approach using rule-based reasoning.We first provide a
background on validation and reasoning in Section 2.1.
Then, we give an overview of existing validation ap-
proaches in Section 2.2, and of related vocabularies
and ontologies in Section 2.3. We conclude with an
overview of general constraint types in Section 2.4,
which allows us to functionally compare validation ap-
proaches. Our categorization is derived from the gen-
eral quality surveys ofZaveri et al. [74], Ellefi et al. [28],
and Tomaszuk [72], and from the “Validating RDF
Data” book [51]. The related works are extended with
recent works published in, a.o., the major Semantic
Web conferences (ESWC and ISWC), and the major
Semantic Web journals (Journal of Web Semantics and
Semantic Web Journal).

2.1. Background

Validation Data quality can be assessed by employ-
ing a set of data quality assessment metrics [9]. Quality

4 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

assessment for the Semantic Web – and more specifi-
cally, for Linked Data – spans multiple dimensions, fur-
ther categorized in accessibility, intrinsic, trust, dataset
dynamicity, contextual, and representational dimen-
sions [74]. Validating an RDF graph directly relates
to intrinsic quality dimensions, as defined by Zaveri
et al. [74]: (i) independent of the user’s context, and
(ii) checking if information correctly and compactly
represents the real world data and is logically consistent
in itself, i.e., the graph’s adherence to a certain schema
or shape. In this paper, we specifically focus on RDF
graph validation, i.e., the intrinsic dimensions.
Validation of an RDF graph can be automated by

using a set of test cases, each assessing a specific con-
straint [50]. Violations of those constraints are then in-
dicated when a validation returns negative results. Val-
idation is typically achieved following Closed World
Assumption (CWA): what is not known to be true must
be false. For example, a validation assesses for a spe-
cific RDF graph if all objects linked via the predicate
schema:birthdate are a valid xsd:date, or if all sub-
jects and objects linked via the predicate foaf:knows

are explicitly listed to be of type :Human. Negative re-
sults are returned, indicating violations.

Reasoning Ontologies are prevalent in the Seman-
tic Web community to represent the knowledge of
a domain. Ontology languages are used to anno-
tate asserted facts (axioms). Examples include RDF
Schema (RDFS) [16] and the Web Ontology Language
(OWL) [39]. Reasoning on top of these axioms is
achieved, as the calculus of the used logic specifies a
set of inferencing steps, inferring logical consequences
(entailments) from these axioms [24]. Semantic Web
logics – given the open nature of the Web – typically
follow the Open World Assumption (OWA): what is
not known to be true is simply unknown.
Semantic Web reasoners are typically description

logic-based reasoners supporting OWL-DL or sub-
profiles such as OWL-QL [55], or rule-based reason-
ers [59]. Description logic-based reasoners are typi-
cally optimized for specific description logics, such as
KAON22 forSHIQ and FaCT++3 forSROIQ. Rule-
based reasoners typically follow two types of inferenc-
ing algorithms: forward chaining and backward chain-
ing [59]. Whereas forward chaining tries to infer as
much new information as possible, backward chaining
is goal-driven: the reasoner starts with a list of goals

2http://kaon2.semanticweb.org/
3http://owl.cs.manchester.ac.uk/tools/fact/

and tries to verify whether there are statements and
rules available that support any of these goals [59].
The employed rules define the logic followed by rule-
based reasoners such as EYE [73] or cwm [6].Whereas
description logic-based reasoners have (optimized) in-
ferencing steps for, e.g., rdfs:subClassOf and other
RDFS or OWL constructs embedded, rule-based rea-
soners commonly rely on the general “implies” con-
struct. Each rule specifies “A implies B”, where both
the antecedent “A” and the consequence “B” can con-
sist of statements [59]. Certain constructs such as
rdfs:subClassOf can be translated into one or more
rules4.
There is a clear distinction between ontologies and

the constraint set for RDF graph validation: ontologies
focus on the representation of a domain, whereas RDF
graph validation checks whether the resources of that
graph conform to a desired schema [51]. It is not re-
quired that the representation of a domain aligns with
the schema for validation. However, they can comple-
ment each other. The usage of ontologies prescribes a
set of inferencing steps, for example, the FOAF ontol-
ogy declares the rdfs:range of the foaf:knows pred-
icate as foaf:Person [17]. Whether these inferencing
steps are taken into account during validation or not,
influences the number of found violations [13].

2.2. Validation Approaches

In this section, we discuss RDF graph validation ap-
proaches. Tools and surveys that cover quality dimen-
sions other than the intrinsic dimensions such as acces-
sibility or representational dimensions are out of scope.
We discuss the approaches roughly in chronological
order: hard-coded, using integrity constraints, query-
based, and using a high-level language. Except from
hard-coded systems, these validation approaches pro-
pose or use some kind of declarative means to describe
RDF graph constraints.

2.2.1. Hard-coded
Hard-coded systems are a black box where the busi-

ness logic lies within the code base: the implementation
embeds both description and validation of constraints.
Hogan et al. analyzed common quality problems both
for publishing and intrinsic quality dimensions [40],
providing an initial set of best practices [41]. Efforts
focus on a limited set of configurable settings (i.e.,
turning constraint rules on or off) [53].

4http://eulersharp.sourceforge.net/#theories

http://schema.org/birthdate
http://www.w3.org/2001/XMLSchema#date
http://xmlns.com/foaf/0.1/knows
http://kaon2.semanticweb.org/
http://owl.cs.manchester.ac.uk/tools/fact/
http://eulersharp.sourceforge.net/#theories

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2.2. Integrity Constraints
For these validation approaches, the axioms of vo-

cabularies and ontologies used by the validated RDF
graph are interpreted as integrity constraints [54, 60,
71]. For example, disjointness forces a description
logic-based reasoner to throw an error, which is inter-
preted as a violation. To combine CWA typically as-
sumed for validation with OWA assumed in ontology
languages, alternative semantics for these ontology lan-
guages are proposed. The underlying technology used
is a description logic-based reasoner or a SPARQL
endpoint.

Description logic-based reasoner Motik et al. [54]
propose semantic redefinitions, where a certain subset
of axioms are designated as constraints. To knowwhich
alternative semantics for OWL apply, constraints have
to be marked as such. They propose to integrate their
implementationwithKAON2. Furthermore, custom in-
tegrity constraints forWordnet have been verified using
Protégé [56] with FaCT++ [18].

SPARQL endpoint Tao et al. [71] propose using OWL
expressions with Closed World assumption and a weak
variant ofUniqueName assumption to express integrity
constraints. OWL semantics are redefined, without be-
ing explicitly stated as such during validation. They use
SPARQL [1] for axioms described in RDF, RDFS, and
OWL [71], e.g., using SPARQL property paths to sim-
ulate rdfs:subClassOf entailment. Tao et al. work in a
general OWL setting, where their approach is sound but
not complete. In an RDF setting the approach is both
sound and complete, as there is only a single model that
needs to be considered [60]. This implementation is in-
corporated into Stardog ICV [63]. Patel-Schneider sep-
arates validation into integrity constraints and Closed
World recognition [60], showing that RDF and RDFS
entailment can be implemented for both by translation
to SPARQL queries.

2.2.3. Query-based
In query-based approaches, constraints are described

and interpreted similar to SPARQL queries [61]: only
RDF graphs whose structure is compatible with the
defined structure are returned. These approaches use an
embedded or external SPARQL endpoint as underlying
technology.
CLAMS [29] is a system to discover and resolve in-

consistencies in Linked Data. They define a violation
as a minimal set of triples that cannot coexist. The sys-
tem identifies all violations by executing a SPARQL
query set. Knublauch et al. propose the SPARQL Infer-

ence Notation (SPIN) [48]: a SPARQL-based rule and
constraint language. The SPARQL query is described
using RDF statements instead of using the original
SPARQL syntax. Kontokostas et al. [50] propose Data
Quality Test Patterns (DQTP): tuples of typed pattern
variables and a SPARQL query template to declare test
case patterns. The validation framework that validates
these DQTPs is called RDFUnit. The DQTPs are trans-
formed into SPARQL queries, where every SPARQL
query is a test case. RDFUnit additionally allows auto-
matically generated test cases, depending on the used
schema.

RDFUnit is also used to validate Linked Data gener-
ation rules in the RDFMapping Language (RML) [25],
by manually defining different DQTPs to target the
generation description instead of the generated RDF
graph [26]. This means the RDF graph can be vali-
dated before any data is generated, as the generation
description reflects how the RDF graph will be formed.

2.2.4. High-level language
These approaches use a terse high-level language

specifically designed to describe constraints for vali-
dation [51]. These languages are independent of un-
derlying technologies, and alternative implementation
strategies can be devised. We first discuss initial high-
level languages, after which we discuss high-level lan-
guages with wide adoption from the community: ShEx
and SHACL.

Description Set Profiles (DSP) [57] define a set
of constraints using Description Templates, targeted
specifically to Dublin Core Application Profiles, and
implemented using SPIN [12]. Other high-level lan-
guages to describe constraints include OSLC Resource
Shapes [68] – part of IBM Resource Shapes – and
RDF Data Descriptions [30]. Luzzu [22] uses a custom
declarative constraint language (Luzzu Quality Metric
Language, LQML). Anymetric that can be expressed in
a SPARQL query can be defined using LQML. More-
over, quality dimensions other than the intrinsic dimen-
sions are also expressible using LQML. Luzzu supports
basic metrics and custom JAVA code allowing users to
implement custom metrics.

ShEx Shape Expressions (ShEx) [65, 66] is a struc-
tural schema language which can be used for RDF
graph validation. The grammar of ShEx is inspired by
Turtle and RelaxNG, its semantics are well-founded,
and its complexity and expressiveness are formal-
ized [10, 70]. ShEx provides an extension point to han-
dle advanced constraints via Semantic Actions, which

6 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

allows to evaluate a part of the validated RDF graph
using a custom function.

SHACL TheShapesConstraint Language (SHACL) [47]
is the W3C Recommendation for validating RDF
graphs against a set of constraints [47]. The core of
SHACL is independent of SPARQL, which promotes
the development of new algorithms and approaches
to validate RDF graphs [52]. The original specifica-
tion does not include a denotational semantics such as
ShEx, however, the recent work of Corman et al. pro-
pose a concise formal semantics for SHACL’s core con-
straint components, and a way of handling recursion
in combination with negation [19]. Advanced features
of SHACL include SHACL Rules (to derive inferred
triples from the validated RDF graph) and SHACL
Functions (to evaluate a part of the validated RDF
graph using a custom function) [49].

2.3. Validation reports

Validation reports handle identification of which
data quality dimensions are assessed in general, and the
representation of violations in particular.
To identify data quality dimensions, Radulvic et al.

extended the Dataset Quality Ontology (daQ) [23] to
include all data quality dimensions as identified by Za-
veri et al. [74], leading to the Data Quality Vocabu-
lary [67]. This allows the comparison of data quality
dimension coverage of different frameworks.
The violations report itself allows to distribute and

compare the violations found in an RDF graph, and can
refer to the dimension specifications using aforemen-
tioned general vocabularies. For example, the Quality
Problem Report Ontology assembles detailed quality
reports for all data quality dimensions [22]. The Rea-
soning Violations Ontology (RVO) is used to represent
integrity constraint violations [15], and Kontokostas
et al [50] use the RDF Logging Ontology5 (RLOG)
to describe RDFUnit’s violation results. Both ShEx
and SHACL provide violation report descriptions, with
means to specify the violating resources, using a
ShapeMap [66] and a Focus node [47], respectively.

2.4. Constraint types

Hartmann né Bosch et. al identify eighty-one gen-
eral constraint types [14]. These constraint types are
an abstraction of specific constraints, independent of

5http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#

the constraint language used to describe them. A con-
straint type can be defined in different ways. For exam-
ple, the property domain constraint type specifies that
resources that use a specific property should be clas-
sified via a specific class, e.g., all resources using the
:birthdate property that are not classified as a :Person
are violating resources. Using RDFS [16], the property
domain constraint type can be assessed by interpreting
rdfs:domain as an integrity constraint. Using SHACL,
this can be achieved by defining a sh:property with
sh:class for a sh:targetSubjectsOf shape [47].

Moreover, Hartmann et al. provide a logical under-
pinning stating the requirements for a validation ap-
proach to support all constraint types [13]. For thirty-
five out of eighty-one constraints types (43.2%), rea-
soning (up to OWL-DL expressiveness) can improve
the validation: without reasoning, either too many or
too few violations can be returned.

3. Comparative analysis

Different types of validation approaches are pro-
posed in the state of the art. The most prominent
approaches are hard-coded, based on integrity con-
straints, query-based, and using high-level languages.
In this section, we compare them with our proposed
rule-based reasoning approach. Our analysis is sum-
marized in Table 1.

We adapt the framework presented by Pauwels et
al. [62], which introduces comparative factors of key
implementation strategies for compliance checking ap-
plications. We adjust these factors with respect to the
validation problems identified in Section 1.1. We gen-
eralize the factors time, customization, and inferencing
steps, and introduce explanation and reasoning prepro-
cessing as validation-specific factors.

Explanation The explanation as to why a certain vio-
lation occurs (i.e., the root cause). The more specific a
validator can explain, the easier it is to (automatically)
refine the RDF graph and improve its quality. Existing
approaches typically have the means to explain viola-
tions up to the level of which resource violates which
constraint. Explanations of hard-coded approaches ei-
ther need to be explicitly implemented, or are provided
by inspecting the code base. When using integrity con-
straints, approaches exist for resolving inconsistencies.
These approaches perform some sort of root cause anal-
ysis, but are usually targeted at refining the axioms
of the ontologies themselves [33]. It is not a standard

http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog#
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/ns/shacl#property
http://www.w3.org/ns/shacl#class
http://www.w3.org/ns/shacl#targetSubjectsOf

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Comparing the prominent validation approaches with rule-based reasoning, using factors explanation, time, customization, inferencing steps, and
reasoning preprocessing. The time row indicates which approaches’ execution time is influenced due to the reasoning preprocessing using an
asterisk. The asterisk in the inferencing steps row indicates that approaches based on integrity constraints cannot combine with a custom set of
inferencing steps that overlaps with the integrity constraints, as their semantics are redefined.

Approach Hard-coded Integrity
constraints Query-based High-level

language
Rule-based
reasoning

Explanation No Limited / Yes Limited Limited Yes
Time Short* Long Long* Short* Long

Customization Limited Limited Open Open Open
Inferencing steps No / Limited Yes* Limited / Yes Limited / Yes Yes

Reasoning preprocessing Yes Limited Yes Yes N/A

feature to produce proofs of the results of description
logic-based reasoners [58]. In a query-based approach,
the used SPARQL endpoint returns bindings [1]. In the
case of validation, it returns the violating resources,
without additional explanation. High-level languages
can have mechanisms to additionally include the vio-
lating resources in the validation report. For example,
ShEx and SHACL provide ShapeMaps [66] and Fo-
cus nodes [47], respectively. SHACL’s Focus nodes can
further specify which predicate and object cause the
violation, except for, e.g., compound constraints. Using
rule-based reasoning allows the generation of a logi-
cal proof, as rule-based reasoning relies on a general
“implies” construct to describe rules, and rule-based
reasoners typically do not contain description logic op-
timizations. Such a logical proof declares which rules
were triggered to arrive at a certain conclusion, giv-
ing a precise explanation for the root causes of con-
straint violations. Where existing approaches typically
have the means to explain violations up to the level of
which resource violates which shape, a logical proof
can provide a more detailed explanation.

Time The time needed to execute the validation: short
versus long. Typically, specialized approaches allow
for optimizations, making them faster than general ap-
proaches. Hard-coded is usually the fastest and needs
the shortest processing time, followed by systems that
use high-level languages: both can be optimized for
validation tasks. The other approaches (using integrity
constraints, query-based, and rule-based reasoning)
are typically built using an underlying existing technol-
ogy (description logic-based reasoners, SPARQL end-
points, and rule-based reasoners, respectively). They
are not built (or optimized) for validation tasks. This
makes them independent of the constraint language,
but can also slow down the validation. The total execu-
tion time of validation approaches depends on whether
a reasoning preprocessing step to include additional

inferencing steps is required or not. Using rule-based
reasoning is thus potentially slower than existing ap-
proaches, however, it does not require inclusion of rea-
soning preprocessing.

Customization The extent of customization each type
of approach enables. Typically, ease of customization is
improved by using a declarative language. Customiza-
tion of a hard-coded system requires development ef-
fort, as the business logic is embedded within the
code. Other approaches rely on declarations to cus-
tomize the validation. Declarations are decoupled, i.e.,
independent of the tool’s implementation. Thus, they
can be shared and easier customized to a certain use
case. Description logic-based reasoners used to iden-
tify integrity constraints are typically optimized for
description logics such as OWL-QL and OWL-DL.
Customization is limited to the description logic that
the reasoner is optimized for. Query-based approaches
allow customization by defining additional SPARQL
queries and registering custom functions [34]. Systems
using high-level languages are customized using the
declarations as specified by the used language. The
adoption of ShEx and SHACL shows that these lan-
guages provide sufficient customization. The extension
mechanisms of these languages such as Semantic Ac-
tions [66] and SHACLAdvanced Features [49], respec-
tively, allow to customize the validation even further.
Using rule-based reasoning allows customization by
adding and removing rules. As opposed to existing ap-
proaches, users can customize both the constraint types
and the set of inferencing steps within the same declar-
ative language.

Inferencing steps Whether the validation approach
supports a (custom) set of inferencing steps. Hard-
coded systems can support a fixed set of inferencing
steps, but this set cannot be inspected or altered with-
out investigating the code base. Approaches that use in-

8 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tegrity constraints for validation propose alternative se-
mantics of commonly agreed upon ontology languages
to include, a.o., some form of CWA [54, 71]. This
leads to ambiguity in the Semantic Web as an existing,
globally agreed upon logic, is changed [3]. It is not
possible to combine such validation with a (custom)
set of inferencing steps within a description logic: the
same inferencing step has different semantics whether
it is used for validation or for inferring new statements.
SPARQL endpoints used for query-based approaches
can support up to OWL-RL reasoning [46], or support
up to RDF and RDFS entailment via translation of the
SPARQL queries using property paths [71].High-level
languages such as SHACL allow specifying the used
entailment regime [32]: SHACL validators may oper-
ate on RDF graphs that include entailments using the
sh:entailment property [47]. Furthermore, SHACL
Rules [49] can be used to a certain extent to generate
inferred statements during validation. By design, rule-
based reasoning allows inclusion of a set of additional
(custom)) inferencing rules [59]. Whereas existing ap-
proaches mostly allow configuration to support, e.g.,
a specific entailment regime, the customization of the
set of inferencing steps is more fine-grained for rule-
based reasoners. This can increase complexity, but also
allows catering the validation to use cases that depend
on a specific set of inferencing steps. The importance
of such use cases is evidenced by the fact that SHACL
Rules is proposed as an advanced feature to the SHACL
specification [49].

Reasoning preprocessing Existing approaches have
no support for including a custom set of inferencing
steps, propose alternative semantics, or allow a specific
entailment regime. By including a reasoning step as
preprocessing step to these approaches (see Fig. 1.1),
the entailments valid during validation can be matched
with the entailments valid for the use case, even when
that use cases requires a custom set of inferencing
steps [13]. First, a reasoner – optionally, hence the
dashed line – infers all valid entailments of the original
RDF graph (Fig. 1.1, Reasoner), taking into account
the axioms of the relevant ontologies and vocabular-
ies (Axioms). Then, the newly generated RDF graph
(RDF graph*) is validated with respect to the specified
constraints (Fig. 1.1, Validator).

By using a preprocessed inferred RDF graph, mul-
tiple systems (i.e., the reasoner and the validator) need
to be combined, configured, and maintained. This sep-
arates concerns, however, this also means that differ-
ent languages may need to be learned and combined

for specifying the inferencing steps and constraints. As
these multiple systems are not aligned, the reasoner
could infer a large number of new triples that are irrele-
vant to the defined constraints, which could lead to bad
scaling (Fig. 1.1, RDF graph*). Also, explaining the
violation is hindered. Even when the reasoner can dif-
ferentiate between the original triples and the inferred
triples, finding the root causes involves investigating
the output of both systems: the validator detecting the
violations, and the reasoner inferring the supported en-
tailments.

Reasoning preprocessing is not required when using
rule-based reasoning. The set of inferencing steps and
the set of constraints can be defined using the same dec-
laration (Fig. 1.2, Inferencing rules and Constraints*),
and executed simultaneously on the RDF graph and the
axioms. Which statements need to be inferred can be
optimized guided by the set of constraints, and only the
output of a single system needs to be investigated to
explain the found violations.

4. Logical Requirements

In this section, we discuss the requirements for a
logic to be a valid choice for RDF graph validation, and
argue for using a rule-based logic.

Constraint languages need to copewith different con-
straint types depending on users’ needs. Each constraint
type implies logical requirements. The constraint types
and the requirements they entail are investigated by
Hartmann et al., claiming that Closed World Assump-
tion (CWA) and Unique Name Assumption (UNA) are
crucial for validation [13]. These requirements are not
common for Semantic Web logics, as data on the Web
is decentralized, information is spread (“anyone can say
anything about anything” [20]), and single resources
can have multiple URIs. Instead, Semantic Web logics
such as OWL-DL assume OWA and in general non-
Unique Name Assumption [55]. Hartmann et al. em-
phasize the difference between reasoning and valida-
tion, and favor query-based approaches for validation.
The latter – when needed – can be combined with, e.g.,
OWL-DL or OWL-QL reasoning as a preprocessing
step.

However, we show that Semantic Web rule-based
reasoning can be used for validation, even though typ-
ically CWA and UNA is not followed. Specifically, we
state that the requirements for using rule-based rea-
soning are (i) supporting Scoped Negation as Failure
(SNAF) [21, 45, 64] instead of CWA (Section 4.1),

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Violations Violations

RDF graph RDF graph

Rule-based

reasoner
RDF graph*

Inferencing

rules

Reasoner Axioms Axioms

Validator Constraints Constraints*

(1) Preprocessing approach

Violations Violations

RDF graph RDF graph

Rule-based

reasoner
RDF graph*

Inferencing

rules

Reasoner Axioms Axioms

Validator Constraints Constraints*

(2) Rule-based reasoning approach

Figure 1. The preprocessing approach: first (optionally, hence the dashed line), a reasoner is used to generate intermediate data (RDF graph*).
That intermediate data is then the input data for the Validator. Using a rule-based reasoner only needs a single system and language to combine
reasoning and validation.

(ii) containing predicates to compare URIs and literals
instead of supporting UNA (Section 4.2), and (iii) sup-
porting expressive built-ins, as validation often deals
with, e.g., string comparison and mathematical calcu-
lations (Section 4.3).

4.1. Scoped Negation as Failure

Existing works claim that CWA is needed to perform
validation [13, 60, 71]. Given that most Web logics
assumeOWA, this would require semantic redefinitions
to include inferencing during validation [54], which
leads to ambiguity. However, as validation copes with
the local knowledge base, and not the entire Web, we
claim Scoped Negation as Failure (SNAF) is sufficient.
This is an interpretation of logical negation: instead of
stating that ρ does not hold (i.e., ¬ρ), it is stated that
reasoning fails to infer ρ within a specific scope [21,
45, 64]. This scope needs to be explicitly stated. As
such, SNAF keeps monotonicity.
To understand the idea behind Scoped Negation as

Failure, let us validate following RDF graph:

:Kurt a :Researcher; (4)

:name "Kurt01". (5)

We validate the constraint “every individual which is
declared as a researcher is also declared as a person”.
This thus means a violation is returned when an indi-
vidual is found during validation which is a researcher,

but not a person:

∀x : ((x a :Researcher)∧

¬(x a :Person))

→ (:constraint :isViolated "true".)

(6)

As stated, this constraint cannot be tested with OWA:
the knowledge base contains the triple of formula (4),
but not of:

:Kurt a :Person. (7)

The rule is more general: given its open nature, we
cannot guarantee that there is no document in the entire
Web which declares the triple of formula (7).

This changes if we take into account SNAF. Suppose
that K is the set of triples we can derive (either with or
without reasoning) from our knowledge base of formu-
las (4) and (5). Having K at our disposal, we can test:

∀x : (((x a :Researcher) ∈ K)∧

¬((x a :Person) ∈ K))

→ (:constraint :is :violated.)

(8)

The second conjunct is not a simple negation, it is a
negation with a certain scope, in this case K. If we
add new data to our knowledge base, e.g., the triple
of formula (7), we would have a different knowledge

10 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

baseK′ forwhich other statements hold. The truth value
of formula (8) would not change since this formula
explicitly mentions K. SNAF is what we actually need
for validation: we do not validate the Web in general,
we validate a specific RDF graph.

4.2. Predicates for Name Comparison

UNA is deemed required for validation [13], i.e.,
every resource taken into account can only have one
single name (a single URI in our case) [44]. UNA is
in general difficult to obtain for the Semantic Web and
Web logics due to its distributed nature: different RDF
graphs can – and actually do – use different names for
the same individual or concept. For instance, the URI
dbpedia:London refers to the same place in Britain as,
e.g., dbpedia-nl:London. That fact is even stated in the
corresponding datasets using the predicate owl:sameAs.
The usage of owl:sameAs conflicts with UNA and in-
fluences validation [13].
Let us look into the following example. We assume

dbo:capital is an owl:InverseFunctionalProperty.
Our knowledge base contains:

:Britain dbo:capital :London. (9)

:England dbo:capital :London. (10)

Since both :Britain and :England have :London as
their capital and dbo:capital is an inverse functional
property, an description logic-based reasoner would
derive that

:Britain owl:sameAs :England. (11)

This thus influences the validation result. Such a deriva-
tion cannot be made if UNA holds, since UNA explic-
itly excludes this possibility.
The related constraint – defined as INVFUNC by

Kontokostas et al. [50] – specifies that each re-
source should contain exactly one relationship via
dbo:capital, i.e., the capital is different for ev-
ery resource. The constraint INVFUNC is related to
owl:InverseFunctionalProperty, but it is slightly dif-
ferent: while OWL’s inverse functional property refers
to the resources that are in the domain of dbo:capital,
the validation constraint INVFUNC refers to the repre-
sentation of those resources. The RDF graph of formu-
las (9) and (10) thus violates the INVFUNC constraint.
Even if our logic does not follow UNA, this violation
can be detected if the logic offers predicates to compare
the (string) representation of resources.

4.3. Expressive Built-ins

Validation often deals with, e.g., string comparison
and mathematic calculations. These functionalities are
widely spread in rule-based logics using built-in func-
tions. While it typically depends on the designers of a
logic which features are supported, there are also com-
mon standards. One of them is the Rule Interchange
Format (RIF), whose aim is to provide a formalism to
exchange rules in the Web [43]. Being the result of a
W3Cworking group consisting of developers and users
of different rule based languages, RIF can also be un-
derstood as a reference for the most common features
rule based logics might have.

Let us take a closer look to the comparison of URIs
from the previous section. func:compare can be used to
compare two strings. This function takes two string val-
ues as input, and returns -1 if the first string is smaller
than the second one regarding a string order, 0 if the
two strings are the same, and 1 if the second is smaller
than the first. The example above gives:

("http://example.com/Britain"

"http://example.com/England")

func:compare -1. (12)

To refer to a URI value, RIF provides the predicate
pred:iri-stringwhich converts a URI to a string and
vice versa. To enable a rule to detect whether the two
URI names are equal or not, an additional function is
needed: the reasoner has to detect whether the compar-
ison’s result is different from zero. That can be checked
using the predicate pred:numeric-not-equal, which is
the RIF version of , for numerical values. In the exam-
ple, the comparison would be true since 0 , −1. Us-
ing these RIF built-ins, a reasoner can check the name
equality between :Britain and :England, and return
a violation. Whether a rule based Web logic is suited
for validation highly depends on its built-ins. If it sup-
ports all RIF predicates, this can be seen as a strong
indication that it is expressive enough.

5. Application

In this section, we present our approach that uses
rule-based reasoning for validation. We discuss the dif-
ferent components and the workflow in Section 5.1, the
underlying technologies in Section 5.2, and implemen-
tation in Section 5.3. We end with an example using
rules in Section 5.4.

http://dbpedia.org/resource/London
http://nl.dbpedia.org/resource/London
http://www.w3.org/2002/07/owl#sameAs

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rule-based reasoner

RDF graph

Axioms

Inferencing

rules

Constraint

translation
Constraints

Violations
Violations*

using specific

report format

RDF graph*
with all valid

entailments

Constraints*
using general types

Validation Report

Figure 2. Components view of our approach. All double-snipped rectangles are rule sets, the single-snipped rectangles are RDF graphs or
constraint declarations. The large overlapping rectangle is the rule-based reasoner. By taking all rule sets into account, the rule-based validator
is formed. Four parts can be identified within the validation execution: (i) possibly guided by provided Axioms, all supported entailments of the
given RDF graph can be generated using the Inferencing rules, resulting in RDF graph*; (ii) the general Constraints* are inferred from the given
Constraints using a set of rules for Constraint translation; (iii) the rules for Validation generate Violations; and (iv) the returned Violations* are
structured given a set of rules that specify the Report format.

5.1. Customizable validation

Our validator consists of multiple components that
can be configured by adjusting the different rule sets
(Fig. 2). The execution is primarily handled using the
rule-based reasoner as underlying technology.
The set of Inferencing rules specifies the supported

entailments during validation. This set can either be a
predefined set to support, e.g., RDFS entailment [16],
or can be fully customized. Optionally, the relevant
axioms are provided during validation. As such, the
entailments supported by the use case can be matched
during validation.
The set of rules forming the Constraint translation

allows our validator to infer the general constraint types
– common across existing constraint languages [14] –
from specific constraint descriptions. It can thus infer
these types from the constraints described in a specific
language such as SHACL [47]. The general constraint
types are described using RDF-CV6 [11], which gen-
eralizes the constraint types into a coherent structure.
Our rule-based validator is thus constraint language-
independent.
The set of rules forming the Validation allows our

validator to infer violations on the RDF graph with all
supported entailments, based on the general constraint
types. This set of rules specifies how to detect each
constraint type.
The set of rules forming the Report allows our val-

idator to infer the resulting violations in the required
format. This set can be adapted to, e.g., the SHACL
report format [47].

6https://github.com/boschthomas/RDF-Constraints-Vocabulary

As a result, this declarative approach is decoupled
from ontology language, constraint language, and re-
port format. When no additional rule sets are included
(i.e., only the Validation rule set is used), this valida-
tor does not infer any entailments, only validates con-
straints described using RDF-CV, and returns a report
in a format based on RDF-CV.

All rule sets and input data are taken into account
during a single reasoner execution. As opposed to using
a reasoning preprocessing step, the inferred entailments
can be geared towards the specified constraints (when
making use of a backward chaining reasoner), and no
unnecessary entailments are produced. For example,
when an axiom specifies the range of a certain path,
but no constraints are related to that path, this range
might not need to be inferred. Moreover, as you only
have a single system, finding the root cause does not
require investigation of multiple systems: the logical
proof contains the complete overview of which rules
were used to generate which entailments and which
violations.

5.2. Technologies

The most important technological considerations
are the rule-based web logic and reasoner in accor-
dance with that logic. Rule-based web logics include
the Semantic Web Rule Language (SWRL) [42] and
N3Logic [8]. However, as opposed to N3Logic, SWRL
does not support SNAF7, a logical requirement for
being used for validation. N3Logic supports at least

7https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#
Does_SWRL_support_Negation_As_Failure

https://github.com/boschthomas/RDF-Constraints-Vocabulary
https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#Does_SWRL_support_Negation_As_Failure
https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#Does_SWRL_support_Negation_As_Failure

12 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

OWL-RL inferencing [2], which can be included dur-
ing validation.
The rule language introduced togetherwithN3Logic

is N3 [7]. Everything covered by RDF 1.1 Seman-
tics [37] is covered in N3. Syntactically, it is a superset
of Turtle [4]. N3 allows declaring inferencing rules, ax-
ioms, and constraints in the same language. As in RDF,
blank nodes are understood as existentially quantified
variables and the co-occurrence of two triples as in the
RDF graph of formulas (9) and (10) is understood as
their conjunction. More, N3 supports universally quan-
tified variables, indicated by a leading question mark ?.

?x :likes :IceCream. (13)

stands for “Everyone likes ice cream.”, or in first order
logic

∀x : likes(x, ice-cream) (14)

Rules arewritten using curly brackets { } and the impli-
cation symbol =>. An rdfs:subClassOf relation such
as :Person rdfs:subClassOf :Researcher can be ex-
pressed as:

{?x a :Researcher} => {?x a :Person}. (15)

The general rdfs:subClassOf relation can be ex-
pressed as:

{?C rdfs:subClassOf ?D. ?X a ?C}

=> {?X a ?D}.
(16)

Reasoners that support N3Logic include FuXi, cwm,
and EYE. FuXi8 is a forward chaining production sys-
tem for N3 whose reasoning is based on the Rete al-
gorithm [31]. The forward chaining cwm [6] reasoner
is a general-purpose data processing tool which can be
used for querying, checking, transforming and altering
information. EYE9 [73] is a high-performance reasoner
written in Prolog, enhanced with Euler path detection,
allowing the creator of the rules to decide when to do
forward reasoning and when backwards. EYE has gen-
erous support for built-in functions10, among which,
the RIF functions. We choose the EYE reasoner as it
fulfills the requirements as presented in Section 4. Fur-

8http://code.google.com/p/fuxi/
9https://github.com/josd/eye
10http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html

thermore, its ability to combine forward and backward
chaining proves especially useful since constraint types
are mostly localized to single relationships [13]. This
means backward chaining has a potentially large im-
pact on the performance: reasoning during validation
can be very targeted, and in most cases, only facts that
are relevant to the defined constraints are inferred.

5.3. Implementation

Our implementation is dubbed “Validatrr”: a valida-
tor using rule-based reasoning. A Node.js JavaScript
framework was created to discover and retrieve the
vocabularies and ontologies as required by the use
case, manage the commandline arguments, etc. The
implementation is available at https://github.com/
IDLabResearch/validatrr, and the set of validation
rules (Fig. 2, center) is available at https://github.com/
IDLabResearch/data-validation.

5.4. Execution example

As example, we validate anRDFgraphwith a custom
set of inferencing steps using SHACL constraints. We
take into account the example of the introduction (for-
mula (1)), but the case where :Bob has two birthdates
defined. The implications of rdfs:domain (formula (2))
should be taken into account as defined in RDFS [16]
during validation, and the SHACL constraint states that
each person should have exactly one birthdate (List-
ing 1). The result should be in the SHACL validation
report format. Using this example, we can detail every
step as show in Fig. 2: the RDF graphwith all supported
entailments (RDF graph*) and general constraint types
(Constraints*) are inferred using a (custom) set of in-
ferencing rules (Inferencing rules) and constraint trans-
lation rules (Constraint translation), after which the
validation occurs (Validation), and the resulting vio-
lations are translated via rules (Report) in a specific
report format (Violations*).

:PersonShape a sh:NodeShape ;
sh:targetClass :Person ;
sh:property [
sh:path :birthdate ;
sh:minCount 1 ; sh:maxCount 1 ;
sh:datatype xsd:date] .

Listing 1: Person Shape in SHACL

http://code.google.com/p/fuxi/
https://github.com/josd/eye
http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html
https://github.com/IDLabResearch/validatrr
https://github.com/IDLabResearch/validatrr
https://github.com/IDLabResearch/data-validation
https://github.com/IDLabResearch/data-validation

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

To make sure rdfs:domain is correctly interpreted
during validation, we include additional inferencing
rules11 (Inferencing rules), described in N3 as

{?P rdfs:domain ?C. ?X ?P ?Y}

=> {?X a ?C} .
(17)

Given formula (17), it is inferred that :Bob is a person
(RDF graph*).
To make sure SHACL constraints are correctly inter-

preted, SHACL translation rules need to be included
during validation (Constraint translation). The gen-
eral “Exact Qualified Cardinality Restrictions” RDF-
CV constraint is inferred from the SHACL constraint
of Listing 1, using the rules of Listing 2 (Constraints*).

{
?sh a sh:NodeShape ;
sh:targetClass ?Class ;
sh:property [
sh:path ?p ;
sh:minCount ?v ; sh:maxCount ?v1 ;

sh:datatype ?C] .
?v pred:numeric-equal ?v1

} => {
?constraint a rdfcv:SimpleConstraint ;
:originalShape ?sh ;
:constraintType :ExQualCardRestr ;
rdfcv:constrainingElement
:exact-cardinality ;

rdfcv:contextClass ?Class ;
rdfcv:leftProperties ?p ;
rdfcv:classes ?C ;
rdfcv:constrainingValue ?v

} .

Listing 2: Translate the SHACL shape to a general
constraint type

Validation makes use of general rules, i.e., List-
ing 3 (Validation). Lines 11–14 define how to find
a violation, relying on built-ins: gather a set of re-
sources in a list (e:findall), calculate the length of
that list (e:length), and mathematically compare num-
bers (math:notEqualTo). For all objects of a certain
class or datatype related using predicate ?p (in this case
:birthdate) where the number of objects is different
from the constraint value ?v (in this case 1), a violation
is returned (lines 16–21).

11http://eulersharp.sourceforge.net/2003/03swap/rdfs-domain.html

1 {
2 ?constraint a rdfcv:SimpleConstraint ;
3 :constraintType :ExQualCardRestr ;
4 rdfcv:constrainingElement
5 :exact-cardinality ;
6 rdfcv:contextClass ?Class ;
7 rdfcv:leftProperties ?p ;
8 rdfcv:classes ?C ;
9 rdfcv:constrainingValue ?v .
10 ?x a ?Class.
11 _:x e:findall
12 (?C {?x ?p ?o. ?o a ?C} ?list) .
13 ?list e:length ?l .
14 ?l math:notEqualTo ?v
15 } => {
16 _:v a :constraintViolation ;
17 :violatedConstraint ?constraint ;
18 :class ?Class ;
19 :instance ?x ;
20 :objectClass ?C ;
21 :property ?p
22 } .

Listing 3: Validate using general constraint types

The general violations are translated into a report
format (Fig. 2, Violations*), e.g., using the SHACL
Validation Report [47] (see Listing 4). The result is a
set of triples using the exact same input and output as
a SHACL processor. However, the RDF graph’s sup-
ported entailments can be matched to the use case, and
the process is a single reasoning execution with trans-
parent rule sets.

{
_:v a :constraintViolation ;
:violatedConstraint [
:originalShape ?sh ;
:constraintType :exact-cardinality

] ;
:class ?Class ;
:instance ?x ;
:objectClass ?C ;
:property ?p

} => {
_:y a sh:ValidationReport ;
sh:conforms false ;
sh:result [
a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:focusNode ?x ;
sh:resultPath ?p ;
sh:resultMessage "No exact match" ;
sh:sourceShape ?sh]

http://eulersharp.sourceforge.net/2003/03swap/rdfs-domain.html

14 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

} .

Listing 4: Translate the general violations to the
SHACL validation report

Moreover, different constraint descriptions are eas-
ily supported via the general constraint types. Given
the OWL restriction of Listing 5: using a different set
of rules, we can translate this restriction into the same
constraint type (Listing 6). The validation process con-
tinues exactly the same.

:Person rdfs:subClassOf _:x .
_:x a owl:Restriction ;
owl:onProperty :birthdate ;
owl:qualifiedCardinality

"1"^^xsd:nonNegativeInteger ;
owl:onDataRange xsd:date .

Listing 5: An OWL restriction

{
?Class rdfs:subClassOf ?c .
?c a owl:Restriction ;
owl:onProperty ?x ;
owl:qualifiedCardinality ?v ;
owl:onDataRange ?C

} => {
?constraint a rdfcv:SimpleConstraint ;
:originalShape _:x ;
:constraintType :ExQualCardRestr ;
rdfcv:constrainingElement
:exact-cardinality ;

rdfcv:contextClass ?Class ;
rdfcv:leftProperties ?p ;
rdfcv:classes ?C ;
rdfcv:constrainingValue ?v

} .

Listing 6: Translate the OWL restriction to the
general constraint type

6. Hypothesis validation

To validate the hypotheses of Section 1.2, we com-
pare Validatrr to different validation approaches. We
show that Validatrr (i) accurately explains the root
cause of why a violation occurs in more cases than
specified in SHACL, given the SHACL core constraint
components (accepting Hypothesis 1, see Section 6.1);

(ii) returns an accurate number of validation results
with respect to the used set of inferencing steps, com-
pared to an integrity constraints validator with a fixed
set of inferencing steps using RDFUnit (accepting Hy-
pothesis 2, see Section 6.2); and (iii) supports an
equivalent number of constraint types than existing ap-
proaches (acceptingHypothesis 3, see Section 6.3). The
performance evaluation shows that our implementation
is faster than the state of the art when combining infer-
encing and validation for commonly published datasets
(accepting Hypothesis 4, see Section 6.4).

6.1. Root cause explanation of constraint violations

Using the logical proof, we increase the explana-
tion’s accuracy compared to what is currently expected
of a validation approach. SHACL is a W3C Recom-
mendation standardizing the description of constraints
and violation reports for RDF graph validation. We
show that the logical proof produced by the rule-
based reasoning execution provides more detailed root
cause explanations of constraint violations, compared
to SHACL’s violation report description.

The SHACL recommendation provides a set of test
cases, enabling implementations prove compliance12.
The validation report denotes the violating resources
via sh:focusNode, and in some cases can further spec-
ify the violating path via sh:resultPath and the vio-
lating value via sh:value [47]. However, it is not al-
ways possible to retrieve such additional information
about the root cause. We revisit the previous example
constraint that given a resource r , this resource has
(rfirstname ∧ rlastname) ∨ (rnickname)13. Validation of for-
mula (1) using a conform SHACL implementation re-
sults in a validation report similar to Listing 7. The
validation report does not provide any further details to
explain why :Bob is invalid14.

[rdf:type sh:ValidationReport ;
sh:conforms "false"^^xsd:boolean ;
sh:result [
rdf:type sh:ValidationResult ;
sh:focusNode :Bob ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent

12https://github.com/w3c/data-shapes/tree/gh-pages/
data-shapes-test-suite/tests

13This example is similar to the following SHACL
test case: https://github.com/w3c/data-shapes/blob/gh-pages/
data-shapes-test-suite/tests/core/node/or-001.ttl

14https://www.w3.org/TR/shacl/#validator-OrConstraintComponent

https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
https://github.com/w3c/data-shapes/blob/gh-pages/data-shapes-test-suite/tests/core/node/or-001.ttl
https://github.com/w3c/data-shapes/blob/gh-pages/data-shapes-test-suite/tests/core/node/or-001.ttl
https://www.w3.org/TR/shacl/#validator-OrConstraintComponent

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sh:OrConstraintComponent ;
sh:sourceShape :PersonNameShape ;
sh:value :Bob ;] ;]

Listing 7: Validation report of an OR constraint

The rule-based reasoning execution of Validatrr can
generate a proof, showing the rules used to reach a con-
clusion. This logical proof allows to determine, for each
violation, which part of the RDF graph is the root cause
of the violation, and which axiom of the used ontology
triggered an inference causing the violation. Listing 8
shows the part of the proof which contains the rules de-
riving the violation. For :firstname, :lastname, and
:nickname, we query objects that are linked using the
respective predicate (Listing 8, lines 12–15, 18–21, and
24–27).K is the scope of our knowledge base, in which
we look for violations. We count the number of ob-
jects found and compare them with the needed number.
For :firstname, one linked object is found (Listing 8,
lines 16–17), however, no linked object is found for
:lastname nor :nickname (Listing 8, lines 22–23 and
28–29): a violation is returned.

1 <#lemma20> a r:Inference;
2 r:gives {
3 _:b1 a :constraintViolation.
4 _:b1 :violatedConstraint _:b2.
5 _:b1 :class :Man.
6 _:b1 :instance :Bob.
7 _:b1 :property :lastname.
8 _:b1 :property :nickname. };
9 r:evidence (
10 ...
11 <#lemma37>
12 [a r:Fact; r:gives { (K 1) e:findall
13 (1
14 {:Bob :firstname _:b3}
15 (1))}]
16 [a r:Fact; r:gives {(1) e:length 1}]
17 [a r:Fact; r:gives {1 math:greaterThan 0}]
18 [a r:Fact; r:gives {(K 1) e:findall
19 (1
20 {:Bob :lastname _:b3}
21 ())}]
22 [a r:Fact; r:gives {() e:length 0}]
23 [a r:Fact; r:gives {0 math:lessThan 1}]
24 [a r:Fact; r:gives {(K 1) e:findall
25 (1
26 {:Bob :nickname _:b3}
27 ())}]
28 [a r:Fact; r:gives {() e:length 0}]
29 [a r:Fact; r:gives {0 math:lessThan 1}]).

Listing 8: Validation proof of an OR constraint

Due to this proof, Validatrr can provide detailed
explanations for the root causes of violations for
all SHACL core constraint components, compared to
46%–75% of SHACL-conforming implementations.
Analysis of the SHACL specification shows that, out
of the 28 core constraint components, 13 (46%) pro-
vide a full explanation of the root cause (summarized
in Table 2). For eight of the remaining components (an
additional 29%), the validation report returns which
resource violates which constraint, but does not return
a detailed explanation. For example, a sh:class viola-
tion occurs when the targeted node is a literal, or when
the targeted node is not classified accordingly, but this
disjunction is not reflected in the validation report. For
the remaining seven components, the validation report
does not provide an explanation at all. For example,
violations of nested shapes are not reflected in the val-
idation report, only violations of top-level shapes.

Compared to SHACL-conforming implementations,
Validatrr supports, a.o., explanation of disjunction and
nested shapes. Our approach provides detailed explana-
tions for all core components of W3C’s recommended
high-level language to describe constraints. We thus
accept Hypothesis 1.

6.2. Accurate number of found violations

Validatrr finds a more accurate number of violations
compared to the state of the art. To prove this, we first
compare Validatrr with the state of the art functionally,
and then include a set of inferencing steps to clarify the
difference.

Specifically, we compare with RDFUnit [50]. Hart-
mann et. al explicitly proposed using query-based ap-
proaches for validation [11], and RDFUnit is such a
query-based approach, relying on a SPARQL endpoint,
and describing the constrains using SPARQL templates
named Data Quality Test Patterns (DQTP). As such,
RDFUnit is highly configurable and one of the imple-
mentations that supports SHACL15.

Functional comparison We compare with the origi-
nal pattern library of RDFUnit [50]. This pattern li-
brary is the closest to the constraint types as introduced
by Hartmann et al. [14]: the mapping between those
two is presented in previous work [3]. We test all unit
tests defined by RDFUnit16 after retrieving them as-is
from the RDFUnit repository. As Validatrr validates

15https://w3c.github.io/data-shapes/data-shapes-test-suite/
16https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/src/test/

resources/org/aksw/rdfunit/validate/data

https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/src/test/resources/org/aksw/rdfunit/validate/data
https://github.com/AKSW/RDFUnit/tree/master/rdfunit-core/src/test/resources/org/aksw/rdfunit/validate/data

16 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Analysis of root cause explanation of violations for SHACL core con-
straint components. Validatrr can provide more detailed explanations
for up to 56% of the components compared to SHACL-conforming
implementations.

SHACL Name
Root
Cause

Explanation
Comment

sh:class ~ disjunction
sh:datatype ~ disjunction
sh:nodeKind ~ disjunction
sh:minCount 7 no explanation
sh:maxCount 7 no explanation

sh:minExclusive 3

sh:minInclusive 3

sh:maxExclusive 3

sh:maxInclusive 3

sh:minLength ~ disjunction
sh:maxLength ~ disjunction

sh:pattern 3

sh:languageIn ~ disjunction
sh:uniqueLang 7 no explanation

sh:equals 3

sh:disjoint 3

sh:lessThan 3

sh:lessThanOrEquals 3

sh:not 3

sh:and ~ conjunction
sh:or ~ disjunction

sh:xone 3

sh:node 7 nesting
sh:property 7 nesting

sh:qualifiedValueShape,
sh:qualifiedMinCount,
sh:qualifiedMaxCount

7 nesting

sh:close,
sh:ignoredProperties

3

sh:hasValue 3

sh:in 7 nesting

general constraint types, a custom profile was created
that translates the RDFUnit patterns to general con-
straint types. For a detailed explanation of the different
test cases, we refer to the original RDFUnit paper [50].
The validation results depend on the used set of infer-

encing steps. RDFUnit implicitly takes “every resource
is an rdfs:Resource” and the rdfs:subClassOf con-
struct into account, forming the custom set of inferenc-
ing steps υ. We compare RDFUnit with Validatrr using
three sets of inferencing steps, taking into account (i) no
entailment at all (∅), (ii) the custom set of inferencing
steps (υ), and (iii) full RDFS entailment (ρ).

Table 3
Comparing RDFUnit to Validatrr using different sets of inferencing
steps (∅, υ, and ρ). Validatrr finds more violations given the same set
of inferencing steps, and the set of inferencing steps used impacts the
result. Test cases where Validatrr outperforms RDFUnit are starred.
Rows where Validatrr and RDFUnit differ are marked gray.

Test Case # found violations
RDFUnit Validatrr

υ ∅ υ ρ

invfunc_correct 0 0 0 0
invfunc_wrong 2 0 2 2

owlcardt_correct 0 0 0 0
owlcardt_wrong_exact 6 6 6 6
owlcardt_wrong_max 2 2 2 2
owlcardt_wrong_min 2 2 2 2

owldisjc_correct 0 0 0 2
owldisjc_wrong 6 2 6 6

owlqcardt_correct 0 0 0 0
owlqcardt_wrong_exact 6 6 6 6
owlqcardt_wrong_max 2 2 2 2
owlqcardt_wrong_min 2 2 2 2
rdflangstring_correct 0 0 0 0

rdflangstring_wrong 2 2 2 0
rdfsrange-miss_wrong* 1 3 3 0

rdfsranged_correct 0 0 0 0
rdfsranged_wrong* 2 3 3 0
rdfsrange_correct* 0 5 4 0
rdfsrange_wrong* 1 3 3 3

rdfsrang_lit_correct 0 0 0 0
rdfsrang_lit_wrong 3 3 3 1

Table 3 summarizes the results. For each constraint,
we mention the test case’s name, the number of vio-
lations that RDFUnit detects, and the number of vio-
lations that Validatrr detects using the different sets of
inferencing steps. The table shows the impact of using
different sets of inferencing steps: depending on the set,
Validatrr finds a different number of violations. More,
Validatrr detects more violations using the same set of
inferencing steps: there is a higher number of found
violations for Validatrr under υ compared to RDFUnit.

Validatrr finds more violations and supports more
constraint types than RDFUnit, denoted as starred test
cases rdfsrange-miss_wrong, rdfsranged_wrong,
rdfsrange_correct, and rdfsrange_wrong. RDFUnit
does not yet support the constraint typemultiple ranges:
when a certain predicate is used, each resource linked
as an object to that predicate should be classified into
multiple classes. In all other cases, both solutions iden-
tify the same number of violations when using the same
set of inferencing steps. Validatrr thus functionally out-

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

performs the pattern library (i.e., the corresponding
constraint types) of RDFUnit.

Impact of including sets of inferencing steps during val-
idation Running Validatrr using different sets of in-
ferencing steps impacts the number of found violations.
Validatrr is designed to easily configure this set using
inferencing rules (Fig. 2, top-left). The results are found
in Table 3, comparing the different Validatrr columns.
On the one hand, certain violations are not found with-
out entailment (∅), as is the case for invfunc_wrong
and owldisjc_wrong. On the other hand, violations are
resolved early-onwhen includingRDFS entailment (ρ),
as is the case for rdflangstring_wrong.
Compared to existing validation approaches, our ap-

proach allows including custom sets of inferencing
steps during validation. The inferencing provenance is
retained in the proof, as all inferencing occurs during a
single reasoning execution. The logical proof can thus
distinguish between violations that are caused due to
constraint violations in the original RDF graph, or due
to entailment during validation. We thus accept Hy-
pothesis 2.

6.3. Equivalent number of constraint types

Validatrr can support an equivalent number of
constraint types compared to existing validation ap-
proaches such as RDFUnit and SHACL. In the pre-
vious section, we showed we functionally outperform
the original pattern library of RDFUnit whilst includ-
ing a custom set of inferencing steps during validation.
In this section, we compare our number of supported
constraint types to that of SHACL [47].
We testValidatrr against general constraint types [36],

to show that the number of supported constraint types
is equivalent to SHACL. We do not test specifically
against SHACL’s test cases, as Validatrr is indepen-
dent of the constraint language. On https://github.com/
IDLabResearch/data-validation, we provide a set of
test cases, used to test these different constraint types.
Hartmann et al. investigated the constraint type

support of SHACL, and stated that its coverage
is 52% [36]. We updated the coverage report as
presented by Hartmann et al. to take the latest
SHACL specification and advanced features into
account [47, 49]. The relevant data is available
at Appendix A and online at https://github.com/
IDLabResearch/constraint-types-coverage. This up-
dated report shows that SHACL’s constraint type cov-
erage is 84%.

Validatrr can cover up to 94%of all constraint types –
given the current expressive support for built-ins – and
has been tested to cover a similar number of constraint
types as SHACL17. After including the rules for the
remaining constraint types, we support an equivalent
number of constraint types compared to SHACL. We
thus accept Hypothesis 3.

Achieving 100% coverage (i.e., the remaining five
constraint types) requires additional development on
the reasoner to support specific built-ins. “Whites-
pace Handling” and “HTMLHandling” require parsing
built-ins, and “Valid Identifiers” requires a built-in to
test URIs’ dereferencability. The remaining two types
(“Structure” and “Data Model Consistency”) are gen-
eral constraint types, defined by Hartmann et al., re-
quiring SPARQL support. Supporting these constraint
types requires a translation from SPARQL queries to
N3 rules, for which we refer to related work [69].

6.4. Speed

A validation approach that supports a custom set of
inferencing steps is faster than a validation system that
includes a reasoning preprocessing step. We first com-
pare the performance of Validatrr to that of RDFUnit,
both without and with a custom set of inferencing steps.

For these performance evaluations, we used 300 data
sets with sizes ranging from ten to one million
triples, and an executing machine consisting of 24
cores (Intel Xeon CPU E5-2620 v3 @ 2.40GHz) and
128GB RAM. All evaluations were performed us-
ing untampered docker images for both approaches
to maintain reproducibility, the different tests were
orchestrated using custom scripts. All timings in-
clude the docker images’ initialization time. The
data is available at https://github.com/IDLabResearch/
validation-benchmark/tree/master/data/validation-journal.

Performance comparison We compare the execution
time of Validatrr to RDFUnit, following RDFUnit’s
original evaluation method. We use a default set of
constraints for a fixed set of schemas, as defined by
Kontokostas et al. [50]. We consider six commonly
used schemas: FOAF, GeoSPARQL, OWL, DC terms,
SKOS, and Prov-O. For each schema, we use RDF
graphs of varying size. The validated RDF graphs’ size
range from ten triples to one million triples, in logarith-
mic steps of base ten. At most ten different RDF graphs

17The test report is available at https://github.com/
IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl

https://github.com/IDLabResearch/data-validation
https://github.com/IDLabResearch/data-validation
https://github.com/IDLabResearch/constraint-types-coverage
https://github.com/IDLabResearch/constraint-types-coverage
https://github.com/IDLabResearch/validation-benchmark/tree/master/data/validation-journal
https://github.com/IDLabResearch/validation-benchmark/tree/master/data/validation-journal
https://github.com/IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl
https://github.com/IDLabResearch/validatrr/blob/v0.2.0/reports/validatrr-rdfcv-earl.ttl

18 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– per schema, per RDF graph size – were downloaded,
by querying LODLaundromat’s SPARQL endpoint [5].
We validate the different RDF graphs against their

respective schema using the default set of constraints
and set of inferencing steps (υ) of RDFUnit, and mea-
sure total execution time ofValidatrr andRDFUnit. The
median execution time across all schemas is plotted
against RDF graph size per approach in a log-log scale
(see Fig. 3). To make sure we can combine execution
times across schemas, we tested the null hypothesis that
no significant difference in execution time was found
between schemas, by performing an ANOVA statistical
test with single factor “used schema” for measurement
variable “execution time per triple”, executed pairwise
for all used schemas. The null hypothesis with α = 0.05
was accepted for every pair. The number of found vio-
lations are not plotted, as statistical analysis shows no
large correlation between execution time and number
of found violations, neither for Validatrr or RDFUnit
(−0.0203 and 0.0458, respectively).

Validatrr’s execution time is highly correlated with
the number of triples of the validated RDF graph. Re-
gression analysis shows an R square value of 0.9998,
the null hypothesis with α = 0.05 is accepted: Valida-
trr’s execution time grows linearly with respect to the
size of the validated RDF graph.Meanwhile, the execu-
tion time of RDFUnit remains constant at around 30s.
This could largely be due to the set-up time required
by RDFUnit, however, the timings attained via RDF-
Unit’s docker image does not allow us to draw further
conclusions. The set-up time of RDFUnit thus possibly
dominates the total execution time.
Without customizing the set of inferencing steps and

docker images, Validatrr is faster for small RDF graphs.
Validatrr is about an order of magnitude faster until
10,000 triples, namely, 1-2s per RDF graph compared
to 30s per RDF graph for RDFUnit. After 100,000
triples, Validatrr is slower than RDFUnit, as Validatrr’s
linearly growing execution time surpasses RDFUnit’s
execution time.

Custom inferencing steps’ performance impact We
compare the execution time of Validatrr to RDFUnit
when using a custom set of inferencing steps. We use
RDFS entailment (ρ): it is commonly used, and the
evaluation of Section 6.2 showed it affects the num-
ber of violations found. For Validatrr, we include the
RDFS rules during validation. For RDFUnit, we in-
clude an RDFS entailment preprocessing step, as RDF-
Unit’s docker image does not allow configuration to
use a SPARQL engine that has inferencing capabilities.

However, even if it would be possible to use a different
SPARQL engine, a reasoning preprocessing step would
still be needed for use cases that require support for a
specific set of inferencing steps, not covered by typical
entailment regimes [1].

To keep the measures comparable, we use the EYE
reasoner as used in Validatrr with the same RDFS en-
tailment rule set to execute the reasoning preprocess-
ing step. This also precludes the need to compare with
other sets of inferencing steps than RDFS entailment:
the conclusions will be similar due to the usage of the
same reasoner. Fig. 4 depicts the timings of RDFUnit
and Validatrr. For RDFUnit, it depicts the combined
timings of RDFS entailment as preprocessing step and
validation on the newly inferred RDF graph(RDFUnit
(ρ)), and it depicts solely the validation timings on the
newly inferred graph (RDFUnit). For Validatrr, it de-
picts the timings of the validation with the two sets
of inferencing rules (Validatrr (ρ) and Validatrr (υ),
respectively).

Validatrr’s performance is not affected by using a
different set of inferencing steps, whereas the prepro-
cessing step deteriorates RDFUnit’s performance. This
effect is noticable starting from RDF graphs of 10,000
triples. For RDF graphs of one million triples, com-
pared to the previous evaluation,median execution time
rises from 27s to 210s for RDFUnit, largely due to the
reasoning preprocessing step.

The number of found violations inversely affects the
validation execution speed. Most original violations
handle missing domain and range classes, which is in-
ferred in RDFS entailment. Statistical analysis does not
allow us to accept the null hypothesis that the number
of violations found is inversely correlated to the execu-
tion time. However, we notice increased performance
for both approaches when less violations need to be
handled. Compared to previous evaluation, for one mil-
lion triples, execution time (without reasoning prepro-
cessing) drops from 27s to 21s for RDFUnit, and from
116s to 80s for Validatrr.

The performance evaluations show that the execu-
tion time of Validatrr outperforms RDFUnit for small
RDF graphs up to 100,000 triples, and its linear scal-
ing behavior is not affected by including RDFS entail-
ment during validation. Validatrr outperforms RDF-
Unit when reasoning preprocessing is needed, i.e.,
when the used SPARQL endpoint does not support in-
ferencing up to the needed expressiveness, or cannot be
sufficiently customized to the use case. Where RDF-
Unit first needs to infer all implicit data before valida-

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1

10

100

1000

10 100 1k 10k 100k 1m

T
im

e
(s

)

Number of triples

RDFUnit (υ) Validatrr (υ)

Figure 3. Validatrr’s execution speed (dotted line) is up to an order of magnitude faster than RDFUnits’s (solid line) when the number of triples
per RDF graph is below 100,000 triples

1

10

100

1000

10 100 1k 10k 100k 1m

T
im

e
 (

s)

Number of triples

RDFUnit (ρ) Validatrr (ρ) RDFUnit Validatrr (υ)

Figure 4. Validatrr’s performance is not affected when including the RDFS inferencing rules (dotted line, compared to the lighter dotted line),
whereas the reasoning preprocessing time deteriorated RDFUnit’s performance (solid line, compared to the lighter solid line).

tion, Validatrr can infer this data during validation, and
thus performs better. We thus accept Hypothesis 4.

7. Conclusion and future work

In this section, we discuss our proposed rule-based
reasoning validation approach and introduced imple-
mentation. We provide concluding remarks and guide
towards future work with respect to (i) the detailed
root cause explanations, (ii) the fine-grained level of
configuration, (iii) the number of constraint types sup-
ported by our approach, and (iv) the scaling behavior of
Validatrr’s performance. We close by providing some
further research perspectives.
The logical proof of a validation execution, generated

by the rule-based reasoner, provides a more detailed
root cause explanation of why a violation occurs than
the state of the art. Our evaluation does not imply that
existing approaches and implementations are not capa-
ble of providing a similar level of detail. However, it

does show the feasibility of more detailed explanations,
and the capability of our approach to generate them. To
improve the level of detail of explanations provided in
the validation report, our work can guide future itera-
tions of, e.g., SHACL’s validation report descriptions,
and the algorithms that generate them.

Our approach is fully configurable by adjusting dif-
ferent rule sets: only a single declaration and single im-
plementation is needed to support different constraint
languages, sets of inferencing steps, and validation re-
port descriptions. This level of control considerably in-
creases expressiveness and complexity of the valida-
tor, and a small change in a rule set could have large
effects on the validation results. However, such fine-
grained configuration is not needed for every use case.
Future work requires investigation into configuration
defaults for, a.o., ShEx and SHACL: to what extend
can Validatrr be configured to function as a compliant
ShEx or SHACL validator, and how will the combi-
nation of inferencing rule sets look like? A short-term

20 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

goal is showing that Validatrr with the right configu-
ration passes the core SHACL tests and is included as
a compliant SHACL validator in the respective W3C
documentation18. As such, we can provide a compli-
ant SHACL validator where sh:entailment is accu-
rately supported: the user can choose exactly which in-
ferencing rule set is supported during validation, and
can choose not to rely on the predefined custom set of
inferencing steps (i.e., support for rdfs:subClassOf,
but no other RDFS entailments) as currently specified
in SHACL [47].
Our approach supports an equivalent number of con-

straint types compared to the state of the art, with
description logic-expressiveness up to at least OWL-
RL. An important point of interest is handling recur-
sion, one of the main differences between ShEx and
SHACL. The semantics of ShEx are defined, also for
recursion [10], and – as it is currently undefined in
the SHACL specification [47] – current works are in-
vestigating recursion in combination with negation for
SHACL [19]. Future work for our approach is inves-
tigating recursion, taking into account the conclusions
and mentioned complexity issues of aforementioned
works. Accepting that the general problem is NP-Hard,
using rule-based reasoning gives us a strong tool to
handle recursion. A rule-based reasoner such as the
EYE reasoner has path detection: different validations
calling each other can be handled, as path detection pre-
vents the reasoner from applying the same rule to the
same data twice. In this regard, we can further inves-
tigate whether the strategies of Answer Set Program-
ming [27] help to solve related problems, taking into
account their two kinds of negation (Negation as Failure
and strong negation). After investigating which rules
are needed to handle recursion, the user can choose
whether or not recursion should be supported during
validation, as these extra rules can be added or not.
The performance of Validatrr is up to an order of

magnitude faster than RDFUnit for RDF graphs up to
100,000 triples, and scales linearly w.r.t. the number of
triples in the RDF graph. However, it scales less than
RDFUnit, making Validatrr less suitable for large RDF
graphs. As such, a trade-off must be made: our ap-
proach, which performs better for smaller RDF graphs,
allows fine-grained configuration and detailed expla-
nation, whereas other approaches scale better but do
not provide the same level of detail. For future work,
further investigation into related works that aim to im-

18https://w3c.github.io/data-shapes/data-shapes-test-suite/

prove the performance of rule-based reasoners, such as
the work of Arndt et al. [2], can be used to improve the
current scaling behavior of Validatrr.

Further research perspectives include validation of
RDF graph generation descriptions, and automatic
graph refinement based on violation explanations. The
combination reduces the effort required to provide
high-quality RDF graph generation descriptions, and is
being further investigated by Heyvaert et al. [38].

On the one hand, a declarative description for gen-
erating an RDF graph – e.g., using the RDF Map-
ping Language (RML) [25] – can be validated, to
show whether that description produces a valid RDF
graph [26]. Certain constraints that apply to the descrip-
tion can be inferred based on the constraints that apply
to the RDF graph. By including a custom inferencing
rule set that reflects such inferencing in Validatrr, the
generation description can be validated based on the
set of constraints that apply to the RDF graph. As such,
only a single set of constraints needs to be maintained
and understood. The requirements of this custom in-
ferencing rule set, and which constraint types can be
applied to generation descriptions, is future work.

On the other hand, rules that handle the accurate
explanations of why a violation is returned, can provide
suggestions to (automatically) resolve the violation. For
example, the constraint specifying “every book should
have either an ISSN or an ISBN number” is violated by
a resource that has both numbers. Suggestions include
removing the ISSN number and removing the ISBN
number. Which types of suggestions can be provided,
and in which order these should be applied, is future
work.

Acknowledgements

The described research activities were funded by
Ghent University, imec, Flanders Innovation & En-
trepreneurship (VLAIO), and the European Union.
Ruben Verborgh is a postdoctoral fellow of the Re-
search Foundation – Flanders (FWO).

Appendix A. Updated Constraint Types Coverage

https://w3c.github.io/data-shapes/data-shapes-test-suite/

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Coverage of validation approaches w.r.t. constraint types. Taken
from Hartmann et al. [36], updated take the recent advancements
of SHACL into account [47, 49]. Changes w.r.t. the original tabe of
Hartmann et al. are marked grey.

Type Name SHACL Validatrr
A01 *Functional Properties 3 3

A02 *Inverse-Functional Properties 7 3

A03 *Primary Key Properties 7 3

A04 *Subsumption 3 3

A05 *Sub-Properties 7 3

A06 *Object Property Paths 7 3

A07 Allowed Values 3 3

A08 Not Allowed Values ∼ 3

A09 *Class Equivalence 7 3

A10 *Equivalent Properties 3 3

A11 Literal Value Comparison 3 3

A12 Value is Valid for Datatype 3 3

A13 *Property Domains 3 3

A14 *Property Ranges 3 3

A15 *Class-Specific 3 3

Property Range
A16 Data Property Facets 3 3

A17 Literal Ranges 3 3

A18 Negative Literal Ranges ∼ 3

A19 IRI Pattern Matching 3 3

A20 Literal Pattern Matching 3 3

A21 Negative ∼ 3

Literal Pattern Matching
A22 *Existential Quantifications 3 3

A23 *Universal Quantifications 3 3

A24 *Value Restrictions 3 3

A25 Use Sub-Super Relations 7 3

in Validation
A26 Negative Property Constraints ∼ 3

A27 Language Tag Matching 3 3

A28 Language Tag Card. ∼ 3

A29 Whitespace Handling 7 7

A30 HTML Handling 7 7

A31 Structure 3 7

A32 *Minimum Unqualified Card. 3 3

A33 *Minimum Qualified Card. 3 3

A34 *Maximum Unqualified Card. 3 3

A35 *Maximum Qualified Card. 3 3

A36 *Exact Unqualified Card. 3 3

A37 *Exact Qualified Card. 3 3

A38 *Cardinality Shortcuts ∼ ∼

A39 Vocabulary 3 3

A40 Provenance 3 ∼

A41 Required Properties ∼ 3

A42 Optional Properties ∼ 3

Table 5
Coverage of validation approaches w.r.t. constraint types. Taken
from Hartmann et al. [36], updated take the recent advancements
of SHACL into account [47, 49]. Changes w.r.t. the original tabe of
Hartmann et al. are marked grey (2).

Type Name SHACL Validatrr
A43 Repeatable Properties ∼ 3

A44 Conditional Properties 3 3

A45 Recommended Properties 3 3

A46 Severity Levels 3 ∼

A47 Labeling and Documentation 3 ∼

A48 Context-Sp. Property Groups 3 3

A49 Context-Sp. Exclusive OR of P. 3 ∼

A50 Context-Sp. Exclusive OR of P. 3 ∼

Groups
A51 Context-Sp. Inclusive OR of P. 3 3

A52 Context-Sp. Inclusive OR of P. 3 3

Groups
A53 Mathematical Operations ∼ ∼

A54 Ordering 3 ∼

A55 *Inverse Object Properties 3 ∼

A56 *Symmetric Object Properties 3 ∼

A57 *Asymmetric Object Properties 3 3

A58 *Transitive Object Properties 7 ∼

A59 *Self Restrictions 3 ∼

A60 Valid Identifiers 7 7

A61 Recursive Queries 3 ∼

A62 *Reflexive Object Properties 3 ∼

A63 *Class-Sp. Reflexive Object P. 3 ∼

A64 *Irreflexive Object Properties 3 3

A65 *Class-Specific 3 ∼

Irreflexive Object Properties
A66 Data Model Consistency 3 7

A67 Handle RDF Collections 3 ∼

A68 Membership in 3 ∼

Controlled Vocabularies
A69 Disjoint Properties 7 3

A70 Disjoint Classes ∼ 3

A71 String Operations ∼ ∼

A72 Aggregations 3 ∼

A73 *Individual Equality 3 ∼

A74 Individual Inequality 3 ∼

A75 Context-Specific 7 ∼

Valid Classes
A76 Context-Specific 3 ∼

Valid Properties ∼

A77 Property Assertions ∼ ∼

A78 *Intersection 3 3

A79 *Disjunction 3 ∼

A80 *Negation 3 3

A81 *Default Values 3 3

22 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

References

[1] Carlos Buil Aranda, Olivier Corby, Souripriya Das, Lee Feigen-
baum, Paula Gearon, Birte Glimm, Steve Harris, Sandro
Hawke, Ivan Herman, Nicholas Humfrey, Nico Michaelis,
Chimezie Ogbuji, Matthew Perry, Alexandre Passant, Axel
Polleres, Eric Prud’hommeaux, Andy Seaborne, and Gre-
gory Todd Williams. SPARQL 1.1 Overview. Recommenda-
tion, World Wide Web Consortium (W3C), March 2013. URL
http://www.w3.org/TR/sparql11-overview/.

[2] Dörthe Arndt, Ben De Meester, Pieter Bonte, Jeroen Schabal-
lie, Jabran Bhatti, Wim Dereuddre, Ruben Verborgh, Femke
Ongenae, Filip De Turck, Rik Van deWalle, and Erik Mannens.
ImprovingOWLRL reasoning in N3 by using specialized rules.
In Valentina Tamma, Mauro Dragoni, Rafael Gonçalves, and
Agnieszka Ławrynowicz, editors, Ontology Engineering: 12th
International Experiences and Directions Workshop on OWL,
volume 9557 of Lecture Notes in Computer Science, pages 93–
104. Springer, April 2016.

[3] Dörthe Arndt, Ben De Meester, Anastasia Dimou, Ruben Ver-
borgh, and Erik Mannens. Using rule based reasoning for RDF
validation. In RuleML+RR, 2017.

[4] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and
Gavin Carothers. RDF 1.1 Turtle – Terse RDF Triple Lan-
guage. Recommendation, World Wide Web Consortium
(W3C), February 2014. URL http://www.w3.org/TR/turtle/.

[5] Wouter Beek, Laurens Rietveld, Hamid R Bazoobandi, Jan
Wielemaker, and Stefan Schlobach. LOD Laundromat: A Uni-
formWay of Publishing Other People’s Dirty Data. InProceed-
ings of the 13th International Semantic Web Conference, pages
213–228. Springer, Springer International Publishing, 2014.

[6] Tim Berners-Lee. Cwm, October 2000. URL http://www.w3.
org/2000/10/swap/doc/cwm.html.

[7] Tim Berners-Lee. Notation 3 Logic, August 2005. URL http:
//www.w3.org/DesignIssues/N3Logic.

[8] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf,
and Jim Hendler. N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming, 8(3):
249–269, 2008.

[9] Christian Bizer and Richard Cyganiak. Quality-driven infor-
mation filtering using the WIQA policy framework. Web Se-
mantics: Science, Services and Agents on the World Wide Web,
7(1):1–10, January 2009.

[10] Iovka Boneva, Jose Emilio Labra Gayo, and Eric
Prud’hommeaux. Semantics and validation of shapes schemas
for rdf. In Claudia d’Amato, Miriam Fernandez, Valentina
Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Se-
queda, Christoph Lange, and Jeff Heflin, editors, The Seman-
tic Web – ISWC 2017: 16th International Semantic Web Con-
ference, Vienna, Austria, October 21–25, 2017, Proceedings,
Part I, volume 10587, pages 104–120, Cham, October 2017.
Springer International Publishing.

[11] Thomas Bosch and Kai Eckert. Requirements on RDF con-
straint formulation and validation. In Proceedings of the 2014
International Conference on Dublin Core and Metadata Ap-
plications, number September 2013, pages 95–108. Citeseer,
2014.

[12] Thomas Bosch and Kai Eckert. Towards Description Set Pro-
files for RDF using SPARQL as Intermediate Language. In-
ternational Conference on Dublin Core and Metadata Applica-
tions, (November 2013):129–137, 2014.

[13] Thomas Bosch, Erman Acar, Andreas Nolle, and Kai Eckert.
The role of reasoning for RDF validation. In Proceedings of
the 11th International Conference on Semantic Systems, pages
33–40. ACM, 2015.

[14] Thomas Bosch, Andreas Nolle, Erman Acar, and Kai Eckert.
RDF Validation Requirements – Evaluation and Logical Un-
derpinning. arXiv preprint arXiv:1501.03933, 2015.

[15] Bojan Bozic, Rob Brennan, Kevin Feeney, and Gavin Mendel-
Gleason. Describing reasoning results with rvo, the reasoning
violations ontology. InMEPDaW/LDQ@ESWC, pages 62–69,
2016.

[16] Dan Brickley and R. V. Guha. RDF Schema 1.1. Recommen-
dation, World Wide Web Consortium (W3C), February 2014.
URL http://www.w3.org/TR/rdf-schema/.

[17] Dan Brickley and Libby Miller. FOAF Vocabulary Speci-
fication 0.99. Namespace document, January 2014. URL
http://xmlns.com/foaf/spec/.

[18] Fabricio Chalub and Alexandre Rademaker. Verifying integrity
constraints of a rdf-based wordnet. In Global WordNet Confer-
ence, page 309, 2016.

[19] Julien Corman, Juan L. Reutter, and Ognjen Savković. Seman-
tics and Validation of Recursive SHACL. In Denny Vrandečić,
Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina
Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and
Elena Simperl, editors, The Semantic Web – ISWC 2018: 17th
International Semantic Web Conference, Monterey, CA, USA,
October 8–12, 2018, Proceedings, Part II, volume 11137 of
Lecture Notes in Computer Science, pages 318–336. Springer,
Cham, 2018.

[20] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF
1.1 Concepts and Abstract Syntax. Recommendation, World
Wide Web Consortium (W3C), February 2014. URL http:
//www.w3.org/TR/rdf11-concepts/.

[21] Carlos Viegas Damásio, Anastasia Analyti, Grigoris Antoniou,
and Gerd Wagner. Supporting open and closed world reason-
ing on the web. In Principles and Practice of Semantic Web
Reasoning, pages 149–163. Springer Berlin Heidelberg, 2006.

[22] JeremyDebattista, SÖrenAuer, andChristophLange. Luzzu – a
methodology and framework for linked data quality assessment.
J. Data and Information Quality, 8(1):4:1–4:32, October 2016.

[23] Jeremy Debattista, Makx Dekkers, Christophe Guéret, Deirdre
Lee, Nandana Mihindukulasooriya, and Amrapali Zaveri. Data
on the web best practices: Data quality vocabulary. Working
group note, World Wide Web Consortium, December 2016.
URL https://www.w3.org/TR/vocab-dqv/.

[24] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nico-
lette de Keizer. Comparison of Reasoners for Large Ontologies
in the OWL 2 EL Profile. Semantic Web Journal, 2(2):71–87,
April 2011.

[25] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben
Verborgh, Erik Mannens, and Rik Van de Walle. RML: A
Generic Language for Integrated RDF Mappings of Heteroge-
neous Data. InProceedings of the 7th Workshop on LinkedData
on the Web, volume 1184 of CEUR Workshop Proceedings.
CEUR, 2014.

[26] Anastasia Dimou, Dimitris Kontokostas, Markus Freudenberg,
RubenVerborgh, Jens Lehmann, ErikMannens, SebastianHell-
mann, and Rik Van de Walle. Assessing and refining mappings
to RDF to improve dataset quality. In Marcelo Arenas, Oscar
Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin,
Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin,

http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/turtle/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/DesignIssues/N3Logic
http://www.w3.org/DesignIssues/N3Logic
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/vocab-dqv/

B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Krishnaprasad Thirunarayan, and Steffen Staab, editors, The
Semantic Web – ISWC 2015, volume 9367 of Lecture Notes
in Computer Science, pages 133–149, Bethlehem, PA, USA,
October 2015. Springer International Publishing.

[27] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwall-
ner. Answer Set Programming: A Primer. In Sergio Tessaris,
Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried
Handschuh, Marie-Christine Rousset, and Renate A. Schmidt,
editors,ReasoningWeb. Semantic Technologies for Information
Systems, volume 5689 of Lecture Notes in Computer Scinece,
pages 40–110. Springer Berlin Heidelberg, 2009.

[28] Mohammed Ben Ellefi, Zohra Bellahsene, John Breslin, Elena
Demidova, Stefan Dietze, Julian Szymanski, and Konstantin
Todorov. Rdf dataset profiling - a survey of features, methods,
vocabularies and applications. Semantic Web Journal, 2017.

[29] Mina Farid, Alexandra Roatis, Ihab F Ilyas, Hella-Franziska
Hoffmann, and Xu Chu. Clams: bringing quality to data lakes.
In Proceedings of the 2016 International Conference on Man-
agement of Data, pages 2089–2092. ACM, 2016.

[30] Peter M Fischer, Georg Lausen, Alexander Schätzle, and
Michael Schmidt. Rdf constraint checking. In Peter M Fis-
cher, Gustavo Alonso, Marcelo Arenas, and Floris Geerts, ed-
itors, Proceedings of the Workshops of the EDBT/ICDT 2015
Joint Conference (EDBT/ICDT 2015), volume 1330 of CEUR
Workshop Proceedings, pages 2015–2012, Brussels, Belgium,
March 2015. CEUR-WS.org.

[31] Charles L. Forgy. Rete: A fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelligence, 19
(1):17–37, sep 1982.

[32] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entail-
ment Regimes. Recommendation, World Wide Web Con-
sortium (W3C), March 2013. URL https://www.w3.org/TR/
sparql11-entailment/.

[33] Peter Haase and Guilin Qi. An Analysis of Approaches to
Resolving Inconsistencies in DL-based Ontologies. In Pro-
ceedings of the International Workshop on Ontology Dynamics
(IWOD-07), pages 97–109, 2007.

[34] Steve Harris and Andy Seaborne. SPARQL 1.1 Query
Language. Recommendation, World Wide Web Consor-
tium (W3C), March 2013. URL https://www.w3.org/TR/
sparql11-query/.

[35] ThomasHartmann. Validation Framework for RDF-basedCon-
straint Languages. PhD thesis, Karlsruher Institut für Tech-
nologie (KIT), 2016.

[36] Thomas Hartmann. Validation framework for rdf-based con-
straint languages - phd thesis appendix. Technical report,
Karlsruher Institut für Technologie (KIT), 2016. URL http:
//digbib.ubka.uni-karlsruhe.de/volltexte/1000054062.

[37] Patrik J. Hayes and Peter F. Patel-Schneider. RDF 1.1 Seman-
tics. Recommendation, World Wide Web Consortium (W3C),
February 2014. URL http://www.w3.org/TR/rdf11-mt/.

[38] Pieter Heyvaert, Anastasia Dimou, Ben DeMeester, and Ruben
Verborgh. Rule-driven inconsistency resolution for knowledge
graph generation rules. Semantic Web Journal, February 2019.

[39] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph. OWL 2 Web Ontology
Language – Primer (Second Edition). Recommendation, World
Wide Web Consortium (W3C), December 2012. URL http:
//www.w3.org/TR/owl2-primer/.

[40] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan
Decker, and Axel Polleres. Weaving the pedantic web. In 3rd
International Workshop on Linked Data on the Web, volume
628 of CEUR Workshop Proceedings. CEUR, 2010.

[41] Aidan Hogan, JüRgen Umbrich, Andreas Harth, Richard Cyga-
niak, Axel Polleres, and Stefan Decker. An empirical survey of
linked data conformance. Web Semant., 14:14–44, July 2012.

[42] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: A seman-
tic web rule language combining OWL and RuleML. Member
submission, World Wide Web Consortium (W3C), May 2004.
URL https://www.w3.org/Submission/SWRL/.

[43] Michael Kifer. Rule interchange format: The framework. In
Diego Calvanese and Georg Lausen, editors, RR 2008: Web
Reasoning and Rule Systems, volume 5341 of Lecture Notes
in Computer Science, pages 1–11. Springer Berlin Heidelberg,
2008.

[44] Michael Kifer, Georg Lausen, and James Wu. Logical founda-
tions of object-oriented and frame-based languages. Journal of
the ACM, 42(4):741–843, jul 1995.

[45] MichaelKifer, Jos deBruijn,HaroldBoley, andDieter Fensel. A
realistic architecture for the semantic web. In Asaf Adi, Suzette
Stoutenburg, and Said Tabet, editors, Rules and Rule Markup
Languages for the SemanticWeb, volume 3791 of Lecture Notes
in Computer Science, pages 17–29. Springer Berlin Heidelberg,
2005.

[46] Holger Knublauch. OWL 2 RL in SPARQL. Documentation,
TopBraid. URL http://topbraid.org/spin/owlrl-all.html.

[47] Holger Knublauch and Dimitris Kontokostas. Shapes Con-
straint Language (SHACL). Recommendation, World Wide
Web Consortium (W3C), July 2017. URL https://www.w3.org/
TR/shacl/.

[48] Holger Knublauch, James A. Hendler, and Kingsley Idehen.
SPIN – Overview and Motivation. Member submission, World
Wide Web Consortium (W3C), February 2011. URL https:
//www.w3.org/Submission/spin-overview/.

[49] Holger Knublauch, Dean Allemand, and Simon Steyskal.
SHACL Advanced Features. Working group note, World Wide
Web Consortium (W3C), June 2017. URL https://www.w3.
org/TR/shacl-af/.

[50] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian
Hellmann, Jens Lehmann, Roland Cornelissen, and Amrapali
Zaveri. Test-driven evaluation of linked data quality. In Pro-
ceedings of the 23rd international conference on World Wide
Web, pages 747–757. ACM, March 2014.

[51] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva,
and Dimitris Kontokostas. Validating RDF Data, volume 7.
Morgan & Claypool Publishers LLC, sep 2017.

[52] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Harold Solbrig,
and IovkaBoneva. Validating and describing linked data portals
using shapes. arXiv preprint arXiv:1701.08924, 2017.

[53] Pablo N Mendes, Hannes Mühleisen, and Christian Bizer.
Sieve: linked data quality assessment and fusion. In Proceed-
ings of the 2012 Joint EDBT/ICDTWorkshops, pages 116–123.
ACM, 2012.

[54] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap
between owl and relational databases. In Proceedings of WWW
2007, volume 7, pages 74–89. Elsevier, 2009.

[55] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu,
Achille Fokoue, and Carsten Lutz. OWL 2 Web Ontology
Language Profiles (Second Edition). Recommendation, World

https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000054062
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000054062
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
https://www.w3.org/Submission/SWRL/
http://topbraid.org/spin/owlrl-all.html
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/TR/shacl-af/
https://www.w3.org/TR/shacl-af/

24 B. De Meester et al. / RDF Graph Validation Using Rule-Based Reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Wide Web Consortium (W3C), December 2012. URL https:
//www.w3.org/TR/owl2-profiles/.

[56] Mark A. Musen. The protégé project: A look back and a look
forward. AI Matters, 1(4):4–12, jun 2015.

[57] Mikael Nilsson. Description set profiles: A constraint language
for dublin core application profiles. Working draft, Dublin Core
Metadata Initiative (DCMI), 2008. URL http://dublincore.org/
documents/2008/03/31/dc-dsp/.

[58] Bijan Parsia, Nicolas Matentzoglu, Rafael Gonçalves, Birte
Glimm, and Andreas Steigmiller. The owl reasoner evalua-
tion (ore) 2015 competition report. In Thorsten Liebig and
Achille Fokoue, editors, Proceedings of the 11th International
Workshop on Scalable Semantic Web Knowledge Base Sys-
tems co-located with 14th International Semantic Web Confer-
ence (ISWC 2015), volume 1457 of CEUR Workshop Proceed-
ings, pages 2–15, Bethlehem, PA, USA, October 2015. CEUR-
WS.org.

[59] Adrian Paschke. Rules and logic programming for the web. In
Reasoning Web. Semantic Technologies for the Web of Data,
pages 326–381. Springer Berlin Heidelberg, 2011.

[60] Peter F. Patel-Schneider. Using Description Logics for RDF
constraint checking and closed-world recognition. Proceedings
of the 29th AAAI Conference on Artificial Intelligence, 2014.

[61] Peter F. Patel-Schneider. Diverging Views of SHACL,
October 2016. URL https://research.nuance.com/
diverging-views-of-shacl/.

[62] Pieter Pauwels and Sijie Zhang. Semantic rule-checking for
regulation compliance checking: an overview of strategies and
approaches. In Jakob Beetz, Léon van Berlo, Timo Hartmann,
and Robert Amor, editors, 32rd international CIB W78 confer-
ence, Proceedings, 2015.

[63] Héctor Pérez-Urbina, Evren Sirin, and Kendall Clark. Val-
idating RDF with OWL integrity constraints. Technical re-
port, LLC, 2012. URL https://www.stardog.com/docs/4.1.3/
icv/icv-specification.

[64] Axel Polleres, Cristina Feier, and Andreas Harth. Rules
with Contextually Scoped Negation. In York Sure and John
Domingue, editors, The Semantic Web: Research and Appli-
cations: 3rd European Semantic Web Conference, ESWC 2006

Budva,Montenegro, June 11-14, 2006Proceedings, pages 332–
347, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[65] Eric Prud’hommeaux, Jose Emilio LabraGayo, andHarold Sol-
brig. Shape expressions: an rdf validation and transformation
language. In Proceedings of the 10th International Conference
on Semantic Systems, pages 32–40. ACM, 2014.

[66] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo,
and Gregg Kellogg. Shape Expressions Language 2.1. Draft
community group report,WorldWideWebConsortium (W3C),
November 2018. URL http://shex.io/shex-semantics/.

[67] Filip Radulovic, Nandana Mihindukulasooriya, Raúl García-
Castro, and Asunción Gómez-Pérez. A comprehensive quality
model for linked data. Semantic Web, (Preprint):1–22, 2017.

[68] Arthur G Ryman, Arnaud Le Hors, and Steve Speicher. Oslc
resource shape: A language for defining constraints on linked
data. LDOW, 996, 2013.

[69] José Hiram Soltren. Query-based database policy assurance us-
ing semantic web technologies. Master’s thesis, Massachusetts
Institute of Technology, 2009.

[70] Slawek Staworko, Iovka Boneva, Jose Emilio Labra Gayo,
Samuel Hym, Eric Prud’hommeaux, and Harold Solbrig. Com-
plexity and expressiveness of shex for rdf. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 31. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[71] Jiao Tao, Evren Sirin, Jie Bao, and Deborah LMcGuinness. In-
tegrity constraints in owl. InProceedings of the 24th AAAI Con-
ference onArtificial Intelligence (AAAI 2010), Atlanta, Georgia,
USA, July 2010.

[72] Dominik Tomaszuk. Rdf validation: A brief survey. In In-
ternational Conference: Beyond Databases, Architectures and
Structures, pages 344–355. Springer, 2017.

[73] Ruben Verborgh and Jos De Roo. Drawing Conclusions from
Linked Data on the Web: The EYE Reasoner. IEEE Software,
32(5):23–27, May 2015.

[74] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo
Pietrobon, Jens Lehmann, and Sören Auer. Quality assessment
for linked data: A survey. Semantic Web Journal, 7(1):63–93,
March 2015.

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
http://dublincore.org/documents/2008/03/31/dc-dsp/
http://dublincore.org/documents/2008/03/31/dc-dsp/
https://research.nuance.com/diverging-views-of-shacl/
https://research.nuance.com/diverging-views-of-shacl/
https://www.stardog.com/docs/4.1.3/icv/icv-specification
https://www.stardog.com/docs/4.1.3/icv/icv-specification
http://shex.io/shex-semantics/

	Introduction
	Validation problems
	Hypotheses
	Contributions

	State of the art
	Background
	Validation Approaches
	Hard-coded
	Integrity Constraints
	Query-based
	High-level language

	Validation reports
	Constraint types

	Comparative analysis
	Logical Requirements
	Scoped Negation as Failure
	Predicates for Name Comparison
	Expressive Built-ins

	Application
	Customizable validation
	Technologies
	Implementation
	Execution example

	Hypothesis validation
	Root cause explanation of constraint violations
	Accurate number of found violations
	Equivalent number of constraint types
	Speed

	Conclusion and future work
	Acknowledgements
	Appendix A. Updated Constraint Types Coverage
	References

