
Semantic Web 0 (0) 1 1
IOS Press

metaphactory: A Platform for Knowledge
Graph Management
Peter Haase a, Daniel M. Herzig a, Artem Kozlov a, Andriy Nikolov a,* and Johannes Trame a

a metaphacts GmbH, Walldorf, Germany
E-mails: ph@metaphacts.com, dh@metaphacts.com, ak@metaphacts.com, an@metaphacts.com,
jt@metaphacts.com

Abstract. In this system paper we describe metaphactory, a platform for building knowledge graph management applications.
The metaphactory platform aims at supporting different categories of knowledge graph users within the organization by realizing
relevant services for knowledge graph data management tasks, providing a rich and customizable user interface, and enabling
rapid building of use case-specific applications. The paper discusses how the platform architecture design built on open standards
enables its reusability in various application domains and use cases as well as facilitates integration of the knowledge graph with
other parts of the organizational data and software infrastructure. We highlight the capabilities of the platform by describing
its usage in four different knowledge graph application domains and share the lessons learnt from the practical experience of
building knowledge graph applications in the enterprise context.

Keywords: Knowledge graph, Data management, End-user platform, Industrial application

1. Introduction

In the recent years, knowledge graph technologies
established a solid position in the enterprise world,
serving as a central element in the organizational data
management infrastructure. Knowledge graphs are
becoming both the repository for organization-wide
master data (ontological schema and static reference
knowledge) as well as the integration hub for vari-
ous legacy data sources: e.g., relational databases or
data streams. However, the tool support for managing
knowledge graphs and building custom applications on
top of them is still limited. To support organizations
in managing and making use of knowledge graphs, we
created the metaphactory platform which covers the
whole lifecycle of knowledge graph applications: from
data extraction & integration, storage, and querying to
visualization and data authoring.

In order to exploit the capabilities of knowledge
graph technologies to the maximal extent, an organiza-

*Corresponding author. E-mail: an@metaphacts.com. The au-
thors are listed in the alphabetical order.

tion requires many supporting functionalities beyond
merely being able to store data as a graph and query it.
Within a large organization, these functionalities have
to provide support for different user groups: from lay
users who merely want to explore the data in a conve-
nient way to expert users who manage and modify the
knowledge graphs and internal developers who create
targeted applications customized for specific end user
groups. Based on these diverse needs, such functional-
ities include:

– Data management: Common management tasks
can be time-consuming and expensive without
supporting tools. Even assistance in such ba-
sic functionalities like SPARQL querying with
graphical UI, auto-suggestions, and query cata-
log can already go a long way in uncovering the
added value of knowledge graphs. Moreover, sup-
port for knowledge graph authoring, including
both schema ontologies and the instance data, as
well as integration of data from other sources of
different types are the features needed in almost
any enterprise use case.

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:ph@metaphacts.com
mailto:dh@metaphacts.com
mailto:ak@metaphacts.com
mailto:an@metaphacts.com
mailto:jt@metaphacts.com
mailto:an@metaphacts.com

2 P. Haase et al. / metaphactory: A Platform for Knowledge Graph Management

– End-user oriented interaction: The user has to
be able to interact with the knowledge graph in
an intuitive and user-friendly way. This includes,
for example, the need for navigation, exploration
and visualization of knowledge graphs, rich se-
mantic search with visual query construction and
faceting, and a simple yet powerful interface for
data authoring and editing.

– Rapid application development: Generic support-
ing toolkit must enable creating use case-specific
user applications with minimal effort.

We developed the metaphactory platform to realize
these functionalities while primarily aiming at large
enterprises and organizations. The challenges of the
use case scenarios in such organizations necessitate
certain design principles which a generic knowledge
graph management platform has to follow:

– Reusability: The platform can be used in a great
variety of contexts, domains, and use cases to
serve multiple categories of users. All aspects and
functionalities of a generic platform must be cus-
tomizable to enable it to be reused in any context.
Whenever possible, the design must avoid any in-
herent assumptions about the data and user needs.
The use of generic open standards such as RDF1,
SPARQL2, SHACL3, and others where available
helps to achieve this.

– Compatibility: In most cases, the knowledge
graph constitutes only a part of the organiza-
tional data infrastructure and must be used in
combination with other elements: non-RDF data
sources, data processing APIs, external data an-
alytics tools. A knowledge graph management
platform must be compatible and envisage inte-
gration with other elements of the infrastructure
both at the input level (combining different kinds
of data for transparent access) as well as at the
output level (enabling knowledge graph data to
be consumed by external tools). Open interfaces
should be used whenever possible to simplify
such integration.

– Extensibility and customization: A platform which
is intended to be reused in different domains and
use cases must provide an expert user with capa-
bilities to build custom targeted applications for

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-query/
3https://www.w3.org/TR/shacl/

her needs with only a minimal support from the
platform vendor.

In this paper we present the key concepts of the
metaphactory platform showing how these design
principles help to address the knowledge graph man-
agement challenges and share our experiences and
lessons learnt in applying the platform in diverse real-
world use cases. The rest of the article is structured
as follows. Section 2 provides a high-level overview
of the architecture of the platform and its main build-
ing blocks. Further sections explain the functionali-
ties of each architecture layer in detail. Section 3 de-
scribes how the platform manages heterogeneous data
sources and provides a uniform querying mechanism.
Section 4 outlines the set of services realized by the
platform and exposed for consuming. Section 5 out-
lines the design decisions behind the customizable UI
of metaphactory and discusses different supported in-
teraction paradigms. In section 6 we describe four ap-
plication scenarios of the platform and discuss the ex-
periences and lessons learnt. Finally, section 7 con-
cludes the paper and provides the directions for future
work.

2. Architecture

Figure 1 shows a high-level overview of the archi-
tecture of the metaphactory platform developed to pro-
vide a variety of functionalities aiming at different tar-
get user groups. One such group includes the end users
within the organization. These users are not interested
in the internals of the knowledge graph data structure
or technical complexities of data access and integra-
tion. The expert users and data architects that have to
author and modify the knowledge graphs and incorpo-
rate legacy data are primarily interested in convenient
and efficient tools to make data management opera-
tions easier. Finally, application developers within the
organization require that it is easy to incorporate the
knowledge graph infrastructure into the overall soft-
ware infrastructure of the organization and build new
targeted end-user applications exploiting the knowl-
edge graph with a minimal effort. The architecture was
designed to reconcile the diverse requirements of these
groups while maintaining the design constraints out-
lined above: enabling reusability in different domains,
compatibility with other data sources and applications,
and supporting extensibility and customization.

The platform operates on top of a graph database
storing the knowledge graph. The communication is

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/shacl/

P. Haase et al. / metaphactory: A Platform for Knowledge Graph Management 3

Fig. 1. metaphactory system architecture.

performed by the data access infrastructure of the
platform using standard SPARQL 1.1 queries, which
makes the system independent from a specific database
vendor. Depending on the customer needs, this al-
lows the platform to connect to various different triple
stores or even non-RDF sources virtually integrated
and exposed via a SPARQL interface: e.g., a rela-
tional database integrated using R2RML4 mappings or
a custom keyword search index. To be able to interact
with multiple data sources using virtual data integra-
tion, the platform contains a SPARQL federation en-
gine Ephedra [1], which realizes SPARQL 1.1 query
federation over both SPARQL endpoints and custom
compute services.

On top of the data access infrastructure, the platform
services layer implemented at the platform backend
side realizes a range of generic functionalities for inter-
action with knowledge graphs. The services extend the
capabilities of the standard SPARQL access normally
provided by triple stores and offer the specific capa-

4https://www.w3.org/TR/r2rml/

bilities to serve the needs of each target user groups:
simplify the communication between web-based end-
user UI and the knowledge graph, perform knowl-
edge graph management operations over the ontolog-
ical schema and data required by expert users and
knowledge graph maintainers, and enable easy interac-
tion with other tools, which is needed by in-house de-
velopment teams. These services are exposed as REST
APIs to be consumed by the client-side user interface
as well as by third-party tools: e.g., Tableau5 or KN-
IME6 for data analytics. One critical functionality im-
plemented at this level is the user access control: the
platform allows configuring fine-grained access at the
level of specific APIs available to each user role.

The web-component based user interface is built us-
ing a customizable templating mechanism. Each URI
resource in the knowledge graph is visualized using an
HTML page. While one can design a separate HTML
page for each resource, in the majority of cases this is

5http://www.tableau.com
6http://www.knime.com

https://www.w3.org/TR/r2rml/
http://www.tableau.com
http://www.knime.com

4 P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management

not required: it is possible to specifytemplate pages
that can be applied to any resource of the same type.
When visualizing a data resource, the platform tries
to select an appropriate template among the available
ones. This template then gets rendered using the actual
URI of the resource. Themetaphactoryclient-side UI
provides a plethora of customizable UI components for
interacting with semantic data: from table-based and
graph-based visualizations to structured search envi-
ronments and data authoring controls based on knowl-
edge patterns. Each one represents an HTML5 compo-
nent that can be directly inserted and con�gured within
HTML code.

In this way the user interface can be easily cus-
tomized for the speci�c application use case at hand.
The use of the standard HTML5 format for storing
client-side UI views enables an expert user to create
and edit her own interface. Use case-speci�c con�gu-
ration parameters and UI templates can be packaged as
a separate app and added to the default platform instal-
lation to realize a custom domain-speci�c knowledge
graph management application.

At the core of the architecture is the use of open
standards at all levels to enable smooth integration of
the platform with existing tools and data providers.
This also allowed using open-source libraries devel-
oped in the Semantic Web community to implement
the platform functionalities. Table 1 summarizes the
open standards and tools used for implementation of
the metaphactoryplatform at different architecture
layers.

3. Data Access Infrastructure

Themetaphactorydata access infrastructure is built
on top of the RDF repository that serves as the storage
for the managed knowledge graph data. The SPARQL
1.1 query language supported by most available RDF
databases serves as a common communication proto-
col. The platform reuses a popular RDF4J framework7

to realize access to data repositories. In this way, (a)
the platform can be installed in any environment that
already includes a triple store chosen by the customer
organization as well as (b) enables selecting any data
storage solution based only on the use case require-
ments without introducing additional constraints on its
own. In particular, this helps addressing the scalability

7http://rdf4j.org/

issue: an appropriate backend triple store and a suit-
able hardware infrastructure for it can be selected de-
pending on the size of the dataset. The platform can be
installed separately from the triple store and interact
via HTTP.

Themetaphactoryplatform of�cially supports most
of the well-known triple store solutions available on
the market, e.g. Blazegraph8, Stardog9, Amazon Nep-
tune10, GraphDB11, Virtuoso12, and others.

While the platform requires the existence of one
main default RDF repository containing domain data,
it allows working with multiple repositories as well:
the platform'srepository managerenables con�guring
and managing connections to many data repositories
in a declarative way. In particular, this enables manag-
ing domain data separately from the system data such
as saved SPARQL queries or SHACL data quality re-
ports. Different data sources maintained by the repos-
itory manager are described in RDF using the RDF4J
repository con�guration ontology. These repositories
can include not only native RDF triple stores but other
data sources accessible via SPARQL: most impor-
tantly, relational databases virtually integrated using
R2RML mappings and exposed via SPARQL with an
ontology-based data access engine, either a separate
one like Ontop [2] or one integrated with a triple store
like Stardog.

In many use case scenarios there arises a need to
handle hybrid information needsthat require com-
bining information from multiple data sources. These
needs are characterized by such dimensions as:

– Variety of data sources: The data to be integrated
is often stored in several physical repositories.
Such repositories can include both RDF triple
stores and datasets that are only virtually pre-
sented as RDF: e.g., relational databases exposed
using R2RML mappings.

– Variety of data modalities: RDF graph data of-
ten needs to be combined with other data modali-
ties: e.g., textual, temporal, or geospatial data. To
be able to integrate those, SPARQL queries need
to support special extensions for full-text, spatial,
and other corresponding types of search.

8https://www.blazegraph.com/
9https://www.stardog.com/
10https://aws.amazon.com/neptune/
11https://ontotext.com/products/graphdb/
12https://virtuoso.openlinksw.com/

http://rdf4j.org/
https://www.blazegraph.com/
https://www.stardog.com/

P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management 5

Table 1

Open standards and open-source semantic web tools utilized in themetaphactoryplatform.

Architecture layer Standards used Open-source semantic web tools
Data access infrastructure RDF, SPARQL 1.1, GeoSPARQL, R2RML RDF4J, Ontop
Platform services LDP, SHACL, RDFS/OWL, REST RDFUnit
User interface HTML5, Web Components SPARQL.js

– Variety of data processing techniques: Relevant
data is often not stored directly in some reposi-
tory, but has to be computed by some dedicated
domain-speci�c services: e.g., graph analytics
(�nding the shortest path or interconnected graph
cliques), statistical analysis and machine learning
(applying a machine learning classi�er, �nding
similar entities using a vector space model), etc.

An application scenario can require dealing with
several of these aspects simultaneously. While fed-
erated query processing appears a natural way for
on-the-�y integration of diverse data sources, the re-
search effort, however, mainly concentrated on achiev-
ing the transparent query federation over native RDF
datasets as opposed to the hybrid query challenges.
Existing approaches either utilize meta-level informa-
tion about federation members in order to build an
optimal query plan (e.g., DARQ [3], SPLENDID [4],
ANAPSID [5], or HiBISCuS [6]) or use special run-
time execution techniques targeting remote service
queries (e.g., FedX [7]). Among the approaches target-
ing hybrid query processing, SCRY [8] and Quetzal-
RDF [9] deal with calling data processing services
using SPARQL queries. Quetzal-RDF de�nes custom
functions and table functions (generalized aggregation
operations) and invokes them from a SPARQL query,
but does not follow the SPARQL 1.1 syntax. SCRY
conforms to SPARQL 1.1 using special GRAPH tar-
gets to wrap service invocations, although it cannot
distinguish between multiple input/output parameters.
Thus, both these solutions are not generic enough
to handle the whole range of available hybrid data
sources that include arbitrary structure of input and ar-
bitrary size of the solution sets.

Given the limitations of existing solutions, to ad-
dress these challenges we implemented Ephedra: a
SPARQL federation engine for hybrid queries [1]. We
adopt the SPARQL 1.1 federation mechanism using
the SERVICE keyword, but broaden its usage to enable
custom services to be integrated as data sources and
optimize such hybrid SPARQL queries to be executed
ef�ciently.

Ephedra de�nes a common implementation inter-
face, in which interactions with external services are

encapsulated in an RDF4J SAIL module13. In this way,
a custom compute service can be registered in the
repository manager as yet another SPARQL repository
and referenced inside SERVICE clauses in SPARQL
queries. SPARQL graph patterns speci�ed inside such
SERVICE clauses are parsed to extract input parame-
ters for a service call as well as the variables to bind the
results returned by the service. The Ephedra SPARQL
query execution strategy sends the sub-clauses of a
query to corresponding data sources, gathers partial re-
sults, combines them using union and join operations,
and produces result sets. In this way, processing hybrid
queries is transparent and performed in the same way
as ordinary SPARQL queries.

In order to express custom service requests as part of
SPARQL queries, hybrid services integrated through
Ephedra are declaratively described using the Ephedra
service descriptor ontology. This ontology extends the
well-known SPIN14 ontology to de�ne the accepted
graph patterns, input arguments, and output results.
For example, a wrapper for a custom service that re-
trieves similar entities based on the proximity in the
word2vec vector embedding space looks like the fol-
lowing:

:Word2VecSimilarityService a eph:Service ;
rdfs:label "A wrapper for the word2vec
similarity service." ;
eph:hasSPARQLPattern (

[
sp:subject :_entity ;
sp:predicate mph:hasSimilar ;
sp:object :_similar

]
) ;
spin:constraint
[

a spl:Argument ;
rdfs:comment "URI of the search entity" ;
spl:predicate :_entity ;
spl:valueType xsd:anyURI

] ;
spin:column
[

a spin:Column ;
rdfs:comment "URI of a similar entity" ;
spl:predicate :_similar ;
spl:valueType xsd:anyURI

] .

13http://docs.rdf4j.org/sail/
14http://spinrdf.org/

6 P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management

Based on this descriptor, Ephedra will be able to in-
terpret and process the following query answering the
question “Which painters are similar to Rembrandt?”
and returning service outputs among the query result:

SELECT ?artist ?label WHERE {
SERVICE mpfed:wikidataWord2Vec {

wd:Q5598 mph:hasSimilar ?artist .
}
?artist wdt:P106 wd:Q1028181 . # painter
?artist rdfs:label ?label .

}

With this approach, services with standardized in-
terfaces (e.g., REST APIs) can be included into the
Ephedra federation in a fully declarative way, without
the need to implement speci�c service wrappers.

Processing hybrid queries including custom service
calls requires modifying the query processing proce-
dures, because a hybrid query does not follow the
standard SPARQL semantics. Processing a SERVICE
clause realizing a custom service call requires all in-
put parameters to be bound, which means that the join
operands cannot be arbitrarily re-ordered. For this rea-
son, Ephedra implements dedicated static query opti-
mization strategies, which produce an optimal and ex-
ecutable query plan. The SPARQL query algebra is ex-
tended to includeservice call patterns� S as �rst-class
elements. Building a query plan containing hybrid ser-
vice call patterns involves join order optimization to
ensure that such patterns can be only joined after their
input dependencies are bound. Moreover, presence of
a service call pattern in the query plan imposes addi-
tional restrictions on the selection of suitable join op-
erators: for example, it necessitates the use of nested
bound join as opposed to hash join.

After constructing an executable hybrid query plan,
Ephedra uses dynamic query optimization techniques
to reduce the processing time: in particular,synchro-
nizing loop join requestsandadaptive processing of n-
ary joins. The evaluation experiments reported in [1]
show that these techniques result in runtime improve-
ments for all test queries, sometimes by an order of
magnitude.

4. Platform Services

The platform backend realizes a range of services
that implement additional functionalities on top of
the standard interfaces of triple stores. These services
streamline the speci�c types of interactions with the
knowledge graph that are required by different tar-
get user groups. They include (a) convenience services
that realize commonly required tasks that are usually

not provided by triple stores directly and (b) connec-
tor services that make data from the knowledge graph
consumable by applications.

Convenience services implement commonly re-
quired routines that are either too cumbersome to be
realized by sending SPARQL queries directly or re-
quire additional tools (e.g., a separate keyword search
index). These services are implemented in a generic
way avoiding dependencies on a particular triple store
and/or ontology. A simple example of a convenience
service is a generic label service retrieving a human-
readable label for a given resource. The service can
be con�gured to deal with various modelling pat-
terns (e.g., taking into account notrdfs:label, but
skos:prefLabelor even property paths) and language
preferences. Such services provide the functionalities
utilized by the end-user interface components.

Another set of generic convenience services realizes
the knowledge graph management tasks required by
expert users and their tools:

– Linked Data Platform (LDP) service for resource-
based access, creation, update, and deletion of
linked data according to the W3C LDP speci�ca-
tion15

– Data quality service for performing data valida-
tion using SHACL constraints.

– Query catalog service for saving and managing
reusable SPARQL query templates (expressed us-
ing the SPIN ontology).

– Keyword search service based on the Graph-
Scope16 data search engine integrated into the
platform.

Manual modi�cations of a knowledge graph as well
as bringing in transformed legacy data sources cause
the need to verify and maintain the knowledge graph
data quality: its adherence to the schema ontologies
and domain constraints. To this end, themetaphactory
platform utilizes the SHACL standard for de�ning and
verifying the data constraints. SHACL provides an on-
tology for expressing data constraints in the form of
shapes: RDF structures describing sets of restrictions
that the data in the main knowledge graph must con-
form to. SHACL allows de�ning complex combina-
tions of constraints more expressive than those sup-
ported by OWL. Themetaphactoryplatform supports
both SHACL constraints de�ned manually by the user
as well as automatically generated from the OWL on-

15https://www.w3.org/TR/ldp/
16http://metaphacts.com/graphscope

P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management 7

tology. Auto-generator bootstrapping rules process the
RDFS and OWL restrictions and generate correspond-
ing SHACL shapes. The platform includes a SHACL
execution engine based on the open-source RDFUnit17

implementation that transforms SHACL shapes into
SPARQL queries, executes them against the knowl-
edge graph and generates a data quality report.

Connector services aim at pre-processing and ex-
posing knowledge graph data in a way that makes it
easily consumable by external applications. These ser-
vices are primarily available for the needs of applica-
tion developers utilizing the knowledge graph infor-
mation in combination with other elements of the in-
frastructure within an organization. Examples of such
services are theTableau connector servicethat ex-
poses the data for analysis by a popular Tableau ap-
plication and theAlexa skill servicethat generates
an Alexa18 skill description to enable voice interac-
tion with knowledge graph. To ease the integration
of the platform into an organizational infrastructure,
the Query-as-a-Service (QaaS) functionality is imple-
mented. This allows exposing pre-saved parameterized
SPIN query templates as custom REST APIs that are
easy to call by internally developed tools within a cus-
tomer organization. Ability to work with a REST API
is usually preferred by internal developer teams to the
need to compose and send SPARQL queries directly.

To reconcile the needs to support diverse user
groups and to keep the platform adaptable to various
different use cases and ease integration with other tools
and applications in the organization, the service layer
was implemented based on open standards whenever
possible. While SPARQL 1.1 is used as a common
query language, other standards are used for realiz-
ing more speci�c functionalities: for example, SHACL
to specify and process the constraints over the data,
LDP to enable management operations over RDF us-
ing HTTP requests, REST as a communication inter-
face for external applications.

5. User Interface

The user interface design of themetaphactoryplat-
form aims at satisfying the requirements outlined in
section 1: enabling reusability, compatibility, and cus-
tomization. For this reason, the core platform interface
is implemented in a generic way, providing tools for

17https://github.com/AKSW/RDFUnit
18https://developer.amazon.com/alexa

custom-building of all speci�c views for the use case
at hand. In addition to that, the platform envisages ex-
ternal applications connecting to it, which gives possi-
bility to use alternative user interfaces according to the
user needs. One example of such an alternative UI is
Amazon Alexa.

5.1. Customizable UI: templates and custom
components

The web-based UI of themetaphactoryplatform is
resource-centric: the platform renders an HTML view
for a provided URI of a resource from the knowl-
edge graph (Fig. 2). Resource views can be speci�ed
at different levels of abstraction: it is possible to de-
�ne a dedicated HTML view for one speci�c resource
as well as providetemplatesthat will be applied to all
resources of a speci�c kind. The criterion for choos-
ing a template for a resource is con�gurable: by de-
fault, the template is selected according to therdf:type
property value, but this can be changed by providing a
special template selection SPARQL query. This allows
adapting the platform setup depending on the high-
level structure of the knowledge graph.

Resource views and templates are de�ned as HTML
pages. These can be created and edited directly in the
platform using the provided HTML editor. Besides
standard HTML tags, a view can contain special UI
components: con�gurable custom client-side UI ele-
ments which can be referenced in the template source
code as special HTML5 tags. A custom UI compo-
nent receives its con�guration parameters as tag at-
tributes. A generic component that needs to interact
with the knowledge graph (e.g., to visualize data) re-
ceives the data selection SPARQL query as part of its
con�guration and interacts with the platform backend
service layer APIs to obtain the required data. In par-
ticular, the built-in components reuse the open-source
SPARQL.js19 library to operate with SPARQL queries.

Moreover, the web components provided bymetaphac-
tory are not only customizable individually, but are
composable. Some component can de�ne an environ-
ment that can include other nested components able
to communicate via pre-de�ned interfaces. Such en-
vironments can de�ne common con�guration param-
eters that are applied to all included components as
well as de�ne a layout for these components. An ex-
ample of such environment is a structured search com-

19https://github.com/RubenVerborgh/SPARQL.js

8 P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management

Fig. 2. Example resource view for a protein in the Wikidata knowledge graph.

ponent that is able to combine different input controls
for generating a search request (e.g., keyword search
or form-based search) with various options for visual-
izing and exploring search results. With this approach,
complex user interaction functionalities can be spec-
i�ed in a fully declarative way by composing pre-
existing atomic elements without the need to build new
components for each new use case application.

In this way, the user interface addresses the design
requirements supporting reusability and custom appli-
cation building. View templates and con�gurable cus-
tom components provided by the platform enable parts
of the UI to be reused for different resources, datasets,
and applications. Building a custom end-user applica-
tion for a speci�c use case involves de�ning and pack-
aging a set of required UI templates and con�gurations
and does not require modi�cations of the platform it-
self. An application can be delivered as a simple plu-
gin that can be installed automatically on top of the
standard platform release.

The platform provides a wide range of custom com-
ponents for various user needs primarily focusing on
the functionalities most often required by end users:
search, visualization, and authoring. The main proto-
col of interaction with RDF stores is the SPARQL
query language: an expressive formalism, which how-

ever is not convenient for non-expert users. For this
reason, search and visual exploration capabilities that
would capture information needs in a user-friendly
way and generate information retrieval queries based
on them are crucial for an end-user tool working with
knowledge graphs.

Semantic search and visual exploration capabilities
complement each other in enabling the user interac-
tion with the knowledge graph. Semantic search allows
de�ning exact information needs in a user-friendly
way and retrieving relevant data from the knowledge
graph. On the other hand, “exploration is about ef-
�ciently extracting knowledge from data even if we
do not know exactly what we are looking for” [10].
Structure of semantic datasets was exploited to gener-
ate facets for search re�nement [11] and linked data
browsing [12], where facets are selected based on data
distribution within the dataset. The need to express in-
formation needs using complex SPARQL queries led
to development of query builder tools providing vi-
sual assistance to the user. For example, the ExCon-
Quer [13] framework provides an interface for con-
structing SPARQL queries where the user expresses
her information need by selecting the concepts and
properties from the ontology and building an abstract
query structure which is afterwards translated into

P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management 9

a SPARQL query. OptiqueVQS [14] provides visual
query formulation allowing the user to select rele-
vant concepts and properties, express value restric-
tions, and visualize the resulting query pattern as a
graph structure. QueryVOWL [15] combines elements
of search and exploration as it provides a visual con-
struction of queries over the linked data and converts
the user-generated diagrams into SPARQL. However,
its use of exploration is rather limited as its only goal
is construction of the SPARQL query, rather than en-
abling the user working with its results. Others, like
Lodlive [16] or Aemoo [17] primarily focus on brows-
ing and graph-based exploration of data. Inmetaphac-
tory we aimed at combining components for structured
semantic search to capture the user needs and trans-
late them into SPARQL queries with powerful explo-
ration tools that would pick up the semantic search re-
sults and allow the user to further explore them (e.g,
by means of the Ontodia tool [18]).

In its structured search functionality, themetaphac-
tory platform puts emphasis on the capability to con-
�gure search and adapt it to different use cases with
a minimal effort. In particular, search over the knowl-
edge graph is realized as an environment, which allows
specifying different ways for generating the search
query, re�ning it, and visualizing the search results. A
search request can be generated in several ways: e.g.,
by using a simple keyword search text �eld, by en-
tering parameters in a pre-de�ned form, or by con-
structing the search criteria iteratively, selecting rele-
vant properties and constraints. All these multiple ap-
proaches for expressing user information needs gener-
ate the search request in the same form: as a SPARQL
query. The query can be further re�ned using facets
that can be con�gured declaratively as part of the
search environment. Finally, the search results returned
by the produced query can be visualized by any ap-
propriate UI component depending on the form of data
and customer preferences: e.g., as a table or as a chart.

Built-in visualization components in themetaphac-
tory platform provide the capabilities to show subsets
of a knowledge graph in an informative way, facilitate
exploration of the graph, and summarize the informa-
tion. Depending on the structure of the data and the
target view, the developer can select alternative visu-
alization strategies, e.g., a table that condenses graph
data into a more traditional relational format or a graph
that emphasizes inter-relations between entities. For
the latter, themetaphactoryplatform is integrated with
a powerful Ontodia [18] tool for building custom RDF
graph diagrams (Fig. 3). At the moment, Ontodia rep-

resents one of the most powerful ontology visualiza-
tion tool taking into account the range of supported in-
teraction techniques [19]. Ontodia allows not only vi-
sualizing parts of an RDF graph, including concepts,
entities, relations, and properties, but also enables the
user to further explore the dataset and extend the view
in an interactive way. User experiments performed to
validate Ontodia in combination with semantic search
within the diagrammatic question answering work�ow
on the Wikidata dataset have shown that the system
allows the users to interact with the knowledge graph
effectively without having upfront knowledge of the
dataset structure [20].

To summarize aggregated data and show the user the
analysis results, various charts are available. Common
special types of data, such as geospatial and temporal,
can be visualized using appropriate views: e.g., map or
timeline.

To support creation and editing of knowledge graphs,
the platform provides end-user friendly, customizable,
and extensible authoring UI based on the compos-
ite component environment andknowledge graph pat-
terns. In essence, a knowledge graph pattern is a struc-
ture including a SPARQL query pattern with some ad-
ditional metadata that is used for creation and vali-
dation of the user input. This concept helps to hide
the complexity of the underlying data model from the
end user, but at the same time allows expert users to
precisely capture information needs and adjust author-
ing UI for these needs by using various components
for data input, ranging from simple text inputs to hi-
erarchical suggestion components and nested forms
(Fig. 4). The application of knowledge graph patterns
is not limited only to data authoring. The same pattern
can be re-used in structured search for query genera-
tion and in visualization components for data retrieval.
This re-usability helps to make sure consistency of the
UI across the whole application.

5.2. Expressive keyword search querying with
GraphScope

GraphScope is a data search engine for knowledge
graphs that allows the user to access RDF data in a sim-
ple way by entering keyword queries. These keyword
queries are interpreted by GraphScope and the results
matching the information need are shown to the user.
GraphScope tries to answer the user's query by �nding
the most suitable interpretation of each keyword with
respect to concepts, properties, and instances of the
knowledge graph. To this end, GraphScope relies on

10 P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management

Fig. 3. Graph visualization with Ontodia.

Fig. 4. Authoring forms using knowledge graph patterns.

a set of specialized indices that contain various meta-
information about the distribution of entities and asso-
ciated keywords in the data repository. Based on these
indices, GraphScope identi�es the most appropriate
matches for the keywords in the user query and gener-
ates a corresponding SPARQL query to retrieve the re-
sults. After the system returned an initial result set for
the user's keyword query, GraphScope provides possi-
bilities to further re�ne the query and explore the initial
result set. The user can select an appropriate interpreta-
tion for keywords to re�ne the meaning of the query as
well as further expand the results by exploring the rela-

tions of the entities in the result set. These re�nements,
which the user performs from the UI, are automatically
transformed into modi�cations of the SPARQL query.

GraphScope, originally developed as a standalone
tool, was integrated with themetaphactoryplatform to
serve as an additional query generation approach in the
generic architecture. The integration is realized both
at the backend and frontend levels. GraphScope and
metaphactoryreuse the same connection to the back-
end triple store to access data via SPARQL. At the
frontend level, the GraphScope user interface for de�n-
ing a keyword search query and re�ning the search re-

P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management 11

sults is wrapped as a metaphactory UI HTML5 com-
ponent that can be added on a template page.

5.3. Voice interface using Amazon Alexa

Separating the service layer backend and the client-
side UI makes it easy to integrate the platform with
external tools at the UI level: an alternative UI can
be deployed on top of the platform, while it can in-
teract with the knowledge graph by invoking rele-
vant platform services. An example of such alternative
user interface is voice interaction using Alexa that can
be used alongside the more traditional paradigms de-
scribed above [21]. The Amazon Alexa framework al-
lows the developer to de�ne a speci�c service (called
Skill) to process user requests and generate verbalized
answers. The Alexa framework includes two parts: an
Alexa skill which provides an abstraction over com-
plex voice processing and generation services and an
Amazon Lambda serviceimplementing the applica-
tion logic. An Alexa skill processes the voice mes-
sages from the user and transforms them into service
requests with provided parameters. A skill can de�ne
a number of request types calledintents, which can
in turn be mapped to severalutterances(natural lan-
guage phrases). An utterance can be parameterized
using slots (request parameters): for example, when
Alexa receives a user's question “Alexa, ask Wikidata
what is the capital of Poland”, it extracts the skill name
(Wikidata), identi�es the intent corresponding to the
question “what is the capital of: : :?” and the corre-
sponding Lambda service. Then, the Lambda service
is invoked with the extracted parameters: the ID of the
intent (e.g., “capitalcity”) and the request parameter
(“Poland”). The Lambda service is then responsible for
�nding the right answer and returning it in a verbalized
form. The Alexa service is then merely pronounces the
returned verbalized answer.

Our Lambda function �nds an answer to the query
in the knowledge graph by mapping an intent to a
SPARQL query pattern. For example, to answer our
example question over the Wikidata knowledge graph,
we need to �nd the value of the propertyP36“capital”
for the entityQ36“Poland”.

To handle such a direct factual question, our Lambda
function uses a SPARQL query pattern of the follow-
ing form (here using the Blazegraph full-text search):
SELECT ?answer WHERE {

?uri rdfs:label ?label.
?label bssearch:search "${entity}".
?label bssearch:minRelevance "0.5".
?label bssearch:matchAllTerms "true".
?uri ${property} ?answer .

} LIMIT 1

We use an automated procedure to bootstrap the
Alexa skill de�nition and generate descriptions of in-
tents as well as example entities and verbalization tem-
plates. Our Alexa skill is available in the Amazon Skill
store under the name “metaphacts” in German and En-
glish20.

6. Experiences and Lessons Learnt

Themetaphactoryplatform is used in production in
a variety of use cases involving knowledge graph man-
agement in different application domains. In the fol-
lowing we consider four diverse practical use cases
from the open knowledge graphs, cultural heritage, en-
ergy industry, and life sciences domains highlighting
different aspects of knowledge graph management.

6.1. Open Knowledge Graphs (Wikidata)

Wikidata21 is a free and open knowledge graph
containing general-purpose data across domains. It
is used as a reference data storage for other Wiki-
media projects (in particular, Wikipedia). Due to its
comprehensive nature and popularity, there exists a
large volume of mappings between Wikidata entities
and instances of other repositories, including domain-
speci�c ones (e.g., UniProt22 for proteins, GeoN-
ames23 for geographical locations, etc.).

To exploit this data, we have set up a public show-
case system for the community24, easing access to
the information provided by the Wikidata query ser-
vice. The system provides different search interfaces
as entry points into Wikidata's knowledge base and
visualizes search results based on a comprehensive
HTML5 based templating approach. Internally, the
public metaphactoryWikidata system is used both
as an integration hub to facilitate integration of data
from multiple sources for the needs of industrial use
cases as well as a demo system to highlight various
platform features. Among others, the public Wikidata
metaphactorysystem includes such functionalities as

– Structured search over Wikidata (con�gured for
general-purpose person-organisation data as well
as for the life sciences domain)

20https://www.amazon.com/metaphacts/dp/B0745KLCFX/ for
US English.

21https://www.wikidata.org
22https://www.uniprot.org/
23http://www.geonames.org
24https://wikidata.metaphacts.com/

12 P. Haase et al. /metaphactory: A Platform for Knowledge Graph Management

– Integration with the Wikidata free-text search ser-
vice

– Integration with life science-speci�c repositories
to show additional views

– Semantic similarity search based on a word2vec
vector space embedding model [22]

– Geospatial search using a combination of
GeoSPARQL25 queries, external services like
OpenStreetMap26, and map-based visualizations.

Using the links to external repositories, the Wikidata
metaphactorysystem is used to integrate external data
in other use cases: e.g., to bring in geospatial data in
the cultural heritage use case or additional protein tis-
sue data from neXtProt27 in the life science scenario.

6.2. Cultural Heritage

Knowledge graph technologies have become promi-
nent in the context of the cultural heritage domain,
where the CIDOC-CRM ontology28 became a popu-
lar standard for exposing cultural heritage information
as linked data. Themetaphactoryplatform is utilized
in the context of the ResearchSpace project29 to man-
age the British Museum knowledge graph and help the
researchers (a) explore meta-data about museum arti-
facts: historical context, associations with geograph-
ical locations, creators, discoverers and past owners,
etc, and (b) use this meta-data in collaborative work
by creating annotations, narratives involving semantic
references, and argumentations exploiting knowledge
graph data as evidence [23].

A crucial piece of functionality is thestructured
search, where the user can de�ne complex multi-
criteria information needs iteratively, by selecting ap-
propriate clauses in the user interface (Fig. 5). A query
request, which can look like “give me all bronze arti-
facts created in Egypt between 2500BC and 2000BC”,
then gets translated into SPARQL and answered us-
ing the knowledge graph data. Given the complexity
and very high expressivity of the CIDOC-CRM on-
tology, using it directly at the level of user interface
would make the system complicated for the end-user.
For this reason, we de�ned a set of specialfundamen-
tal concepts(FCs) andrelations(FRs) [24], which ab-
stract over physical classes and properties of the ontol-

25http://www.opengeospatial.org/standards/geosparql
26https://www.openstreetmap.org
27https://www.nextprot.org/
28http://www.cidoc-crm.org/
29http://www.researchspace.org/

ogy, while being intuitively understandable to the user
(e.g., Thing, Actor, Event and relations between them).
With the structured search interface, the user can spec-
ify the criteria for data selection, interactively re�ne
the initial selection results, explore the returned result
set with faceted search and different results visualiza-
tion views, and �nally save the de�ned search for fu-
ture reuse.

Knowledge graph data is used to support research
collaborations by enabling the argumentation process
and making assertions about graph entities following
the direction outlined in [25]. User assertions have ex-
plicitly stored provenance information and can com-
pose complex exchanges of arguments allowing to
trace the whole reasoning process back to its origins
and base evidence. Finally, the data selected from the
knowledge graph can be used as references insemantic
narrativesthat combine user-authored text, references
to knowledge graph entities and different data visual-
izations supported by the platform: from images asso-
ciated to entities to charts summarizing selected data
subsets.

A demo installation of the ResearchSpace platform
over the British Museum knowledge graph collection
is available on the Web30.

While the British Museum data collection was the
�rst target use case in the cultural heritage domain,
the resulting ResearchSpace platform extension was
re-applied for other use cases in this area. Sphaera Cor-
pusTracer [26], a practical application developed in
collaboration with the Max-Planck Institute manages a
knowledge graph addressing science history informa-
tion: e.g., tracing the survived printed publications of
medieval astronomy textbooks in the early modern pe-
riod31.

6.3. Engineering & Manufacturing Industry

Large-scale organizations involved in the engineer-
ing and manufacturing industry use knowledge graph
representation to model master data: e.g., information
about products and their typology, separate assembly
parts, projects and their topics, etc. An inherent trait
of these use cases is the condition that the knowledge
graph constitutes only a part of a complex infrastruc-
ture involving heterogeneous data sources and large-
scale networks of atomic devices able to communicate
data. This raises a number of challenges for data man-

30https://demo.researchspace.org
31http://db.sphaera.mpiwg-berlin.mpg.de

	Introduction
	Architecture
	Data Access Infrastructure
	Platform Services
	User Interface
	Customizable UI: templates and custom components
	Expressive keyword search querying with GraphScope
	Voice interface using Amazon Alexa

	Experiences and Lessons Learnt
	Open Knowledge Graphs (Wikidata)
	Cultural Heritage
	Engineering & Manufacturing Industry
	Life Sciences
	Discussion

	Conclusions and Outlook
	References

