o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 1 (0) 1-5 1
10S Press

Combining Chronicle Mining and Semantics
for Predictive Maintenance in Manufacturing
Processes

Qiushi Cao a*  Ahmed Samet?, Cecilia Zanni-Merk 2, Francois de Bertrand de Beuvron and
Christoph Reich ©

& Normandie Université, INSA Rouen, LITIS, 76000 Saint-Etienne-du-Rouvmy, France
E-mails: giushi.cao @insa-rouen.fr, cecilia.zanni-merk @insa-rouen.fr

b ICUBE/SDC Team (UMR CNRS 7357)-Pole API BP 10413, 67412 Illkirch, France

E-mails: ahmed.samet @insa-strasbourg.fr, francois.debertranddebeuvron @insa-strasbourg.fr
¢ Hochschule Furtwangen University, 78120 Furtwangen, Germany

E-mail: rch@hs-furtwangen.de

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country

Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,
Country

Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. Within manufacturing processes, faults and failures may cause severe economic loss. With the vision of Industry 4.0,
artificial intelligence techniques such as data mining play a crucial role in automatic fault and failure prediction. However, data
mining especially pattern mining results normally lack both machine and human understandable representation and interpretation
of knowledge, bringing obstacles to novice users to interpret the prediction results.

To tackle this issue, in this paper we introduce a novel hybrid approach to facilitate predictive maintenance tasks in manu-
facturing processes. The proposed approach is a combination of data mining and semantics, within which chronicle mining is
used to predict the future failures of the monitored industrial machinery, and a Manufacturing Predictive Maintenance Ontology
(MPMO) with its rule-based extension is used to predict temporal constraints of failures and to represent the predictive results
formally. As a result, Semantic Web Rule Language (SWRL) rules are constructed for predicting occurrence time of machinery
failures in the future. The proposed rules provide explicit knowledge representation and semantic enrichment of failure predic-
tion results, thus easing the understanding of the inferred knowledge. A case study on a semi-conductor manufacturing process
is used to demonstrate our approach in detail.

Keywords: Semantics, Chronicle Mining, Predictive Maintenance, Manufacturing Process, Industry 4.0

1. Introduction facturing processes, the detection of harmful tenden-

cies and conditions of production lines is a crucial is-

Manufacturing processes are sets of structured oper-
ations to transform raw material or semi-finished prod-
uct parts into further completed products. To ensure
high productivity, availability and efficiency of manu-

*Corresponding author. E-mail: qiushi.cao @insa-rouen.fr.

sue for manufacturers. In general, anomaly detection
on production lines is performed by analyzing data col-
lected by sensors, which are located on machine com-
ponents and also in production environments. The col-
lected data record real-time situations and reflect the
correctness of mechanical system conditions. When
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the tendency of a mechanical failure emerges, experi-
enced operators in factories are able to take appropri-
ate operations to prevent the outage situations of pro-
duction systems. However, as the collected data be-
come more heterogeneous and complex, it is conceiv-
able that the operators may fail to respond to mechani-
cal failures timely and accurately. In the context of In-
dustry 4.0, advanced techniques such as the Industry
Internet of Things (IIoT) and Cloud Computing enable
machines and production systems in smart factories to
be interconnected to exchange data continuously. This
trend has brought opportunities to manufactures to ef-
fectively manage and use the collected big data and
has triggered the demand of methodologies to detect
anomalies on production lines automatically.

In the manufacturing domain, the detection of
anomalies such as mechanical faults and failures en-
ables the launching of predictive maintenance tasks,
which aim to predict future faults, errors, and failures
and also enable maintenance actions. Normally, a pre-
dictive maintenance task relies on the monitoring of a
measurable system diagnostic parameter, which iden-
tifies the state of a system [2]. In this way, maintenance
decisions, such as calling the intervention of a machine
operator, are proposed based on the severity of anoma-
lies, to prevent the halt of the production lines and to
minimize economic loss. Several techniques have been
used to detect wear and tear in mechanical units and
to predict future machinery conditions, such as ma-
chine learning, data mining, statistics, and information
theory [39]. Among these techniques, data mining has
shown notable competence for automatic anomaly de-
tection in industry [29]. In smart factories, data min-
ing is normally performed by obtaining and process-
ing sensor data, which contain measurements of physi-
cal signals of machinery, such as temperature, voltage,
and vibration. By identifying events and patterns that
are not consistent with the expected behavior, potential
hazards in production systems, such as a mechanical
system deterioration tendency, could be detected.

However, to interpret the data mining results, do-
main knowledge is required. This brings obstacles to
novice users for having a deep understanding of the
results. Furthermore, sometimes the extracted knowl-
edge is presented in a complex structure, therefore
needs formal knowledge representation methods to fa-
cilitate the understanding and exploitation of it [31]. To
overcome this issue, semantic technologies have been
utilized in several research efforts to promote the inter-
pretation and management of knowledge [3, 7, 31, 32].
Several stages of data mining can benefit from the in-

volvement of formal semantics, such as data transfor-
mation, algorithm selection, and post-processing [7].
Moreover, the use of semantic technologies can also
integrate the capitalization of domain experts’ experi-
ence. For example, in a predictive maintenance task of
machine cutting tool, when data mining algorithms fail
to identify the occurrence time of a future cutter fail-
ure, logic-based expert rules which capitalize experi-
ence of domain experts can be applied to propose pre-
dictive decisions.

In the context of predictive maintenance in smart
factories, pattern mining has been widely used to
discover frequently occurring temporally-constrained
patterns, through which warning signals can be sent
to humans for a timely intervention [4]. Among pat-
tern mining techniques, chronicle mining has been
applied to industrial data sets for extracting tempo-
ral information of events and to predict potential ma-
chinery failures [6]. However, even though chronicle
mining results are expressive and interpretable repre-
sentations of complex temporal information, domain
knowledge is required for users to have a compre-
hensive understanding of the mined chronicles [16].
As the predictive maintenance domain is becoming
more knowledge-intensive, tasks performed in this do-
main can often benefit from incorporating domain and
contextual knowledge, by which the semantics of the
chronicle mining results can be explicitly represented
and clearly interpreted. This helps to reduce the se-
mantic gap issue, which stands for the incoherence
between the knowledge extracted from industrial data
and the interpretation of the knowledge from a user
[7]. However, to the best of our knowledge, no work
has been proposed to combine chronicle mining, and
semantics to facilitate the predictive maintenance of
manufacturing processes. Also, most of the existing re-
search works about predictive maintenance in the man-
ufacturing domain merely focus on the classification
of operating conditions of machines (e.g., normal op-
erating condition, breakdown condition...), while lack-
ing the extraction of specific temporal information of
failure occurrence. This brings obstacles for users to
perform maintenance actions with the consideration
of temporal constraints. To this end, in this paper, we
use an ontology-based approach to represent chroni-
cle mining results in a semantic rich format, which en-
hances the sharing and reuse of knowledge. By speci-
fying domain semantics and annotating industrial data
with rich and formal semantics, ontologies with their
rule-based extensions help to reduce the aforemen-
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tioned issues. In more detail, the contributions of this
paper are as follows:

— We present a domain ontology named Manufac-
turing Predictive Maintenance Ontology (MPMO),
which is a Web Ontology Language (OWL) [8]
based ontology designed to model the knowl-
edge related to condition-based maintenance. The
MPMO ontology provides the foundation to for-
mally represent chronicles with their numerical
time constraints, for the purpose of predictive
maintenance.

— We propose an algorithm to transform chroni-
cles into Semantic Web Rule Language (SWRL)
based logic rules, by which the predictive results
are formalized, thus interpretable for both human
and machines. The proposed transformation en-
ables the automatic generation of SWRL rules
from chronicle mining results, thus allowing an
automatic semantic approach for machinery fail-
ure prediction.

— We evaluate the feasibility and effectiveness of
our approach by conducting experimentation on
a real industrial data set. The performance of
SWRL rule construction and the quality of fail-
ure prediction is evaluated against the aforemen-
tioned data set.

The rest of this paper is structured as follows. Sec-
tion 2 provides a review of existing ontology-based
models and systems developed for predictive mainte-
nance. Section 3 introduces the foundations and basic
notions of chronicle mining and semantics that are nec-
essary for describing our approach. It contains formal
definitions of chronicles and the Semantic Web Rule
Language (SWRL). Sections 4 presents a hybrid se-
mantic approach for automatic failure prediction. The
approach includes the use of the MPMO ontology,
which models necessary and principle knowledge re-
lated to chronicles. Also, the algorithm for transform-
ing chronicles to SWRL-based predictive rules is in-
troduced in detail. Section 5 evaluates our approach
through a real industrial data set. Section 6 gives con-
cluding remarks and outlines future research direc-
tions.

2. Related Work

In recent years, several efforts have been proposed
to facilitate knowledge representation and interpreta-
tion in predictive maintenance tasks. Among them, the

ontology-based approach is an effective and notable
method that has drawn considerable attention from
researchers. Ontologies are explicit specifications of
conceptualizations, and they are comprehensive and
reusable knowledge repositories in various domains
[37]. In general, this type of approach uses ontolo-
gies to formally define the semantics of knowledge and
data, and utilizes sets of logic rules to enable onto-
logical reasoning, for inferring new knowledge. The
available research works related to this approach can
be categorized into two major fields, according to dif-
ferent purposes: i) using ontology-based approach to
represent data mining results in a formal and struc-
tured way, to further enrich knowledge bases; ii) using
ontology-based approach to facilitate knowledge for-
malization,sharing and reuse in the predictive mainte-
nance domain.

To formalize the data mining results and to facili-
tate the interpretation of them, many researchers tried
to incorporate explicit domain knowledge with using
ontologies. The DAMON ontology [20] is developed
as a data mining ontology to simplify the development
of distributed knowledge discovery systems. The on-
tology is used as a knowledge reference model to help
domain experts solve tasks. Also, the ontology enables
users to search for data mining resources and soft-
ware when they want to find solutions for a specific
problem. The EXPO ontology [18] formalizes con-
cepts about experimental design, methodologies and
results representation in a general way. The ontology
promotes the sharing of experimental results within
and among different subjects, and it can reduce the in-
formation duplication and loss in the sharing process.
The OntoDM-core ontology [30] is developed to for-
mally describe core data mining entities. The ontol-
ogy provides a framework to represent essential and
basic data mining concepts, such as data sets, data
mining tasks, algorithms, and constraints. The advan-
tage of this ontology is its powerful representation of
constraint-based data mining activities.

The use of an ontology-based approach can also
facilitate knowledge formalization, sharing and reuse
in the predictive maintenance domain. In the con-
text of predictive maintenance, several ontologies and
ontology-based intelligent systems are developed to
achieve this goal. To enhance the expressiveness of
these ontologies, several rule-based extensions were
proposed to perform ontological reasoning, in order to
facilitate maintenance decisions of users. We review
existing ontologies according to two aspects: ontolo-
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4 Qiushi Cao et al. / Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes

gies that model manufacturing processes and ontolo-
gies that model preventive maintenance tasks.

As indicated in the introduction, manufacturing pro-
cesses are structured sets of operations that transform
raw materials or semi-finished product segments into
further completed product parts. Over the last decades,
several ontologies have been developed to represent
knowledge about manufacturing processes. The Pro-
cess Specification Language (PSL) ontology [21] is
one of the early-stage contributions. This ontology ax-
iomatizes a set of semantic primitives that are essen-
tial for describing a wide range of manufacturing pro-
cesses. The axioms defined in this ontology model the
key elements of manufacturing processes, such as pro-
cess scheduling, process modeling, production plan-
ning, and project management [21]. Another contribu-
tion in this subdomain is the Manufacturing Service
Description Language (MSDL) ontology, which de-
fines a well-defined framework for formal represen-
tation of manufacturing services [12]. This ontology
formalizes manufacturing capabilities of manufactur-
ing resources in different levels of abstraction, based
on which a rule-based extension of the ontology is
proposed to enable automatic supplier discovery. At
last we mention the Manufacturing Reference Ontol-
ogy (MRO) [42] that is developed to formalize a set
of core concepts about the manufacturing in a high
abstraction level. The ontology categorizes the manu-
facturing domain into eight general concepts: Realized
Part, Part Version, Manufacturing Facility, Manufac-
turing Resource, Manufacturing Method, Manufactur-
ing Process, Feature and Part Family. This categoriza-
tion enables further development of more specific on-
tologies in the production domain.

Compared to ontologies that model manufacturing
processes, ontologies for predictive maintenance are
much less numerous. These type of ontologies nor-
mally focus on the issues of fault or failure prognostics
and machine health monitoring. Among these ontolo-
gies, the OntoProg Ontology [9] addresses the failure
prediction of machines in smart factories. The ontol-
ogy is developed based on a set of international stan-
dards, and a classification for severity criteria, detec-
tion, diagnostics and prognostics of failure modes is
provided. The ontology standardizes the concepts that
are necessary for tackling machinery failure analysis
tasks. As another most recent contribution, the Sensing
System Ontology [10] is proposed to define the em-
bedded sensing systems for industrial Product-Service
Systems (PSSs). This ontology is used as the back-
bone of the PSS knowledge-based framework and it

describes the sensors that are embedded on PSSs, for
the aim of providing customized services for users.

After reviewing the ontologies mentioned above,
we recognize that none of them provides satisfactory
knowledge representation of both manufacturing and
predictive maintenance domains. Some of these on-
tologies focus on a narrow field, such as the manufac-
turing resource planning domain, and they do not for-
malize predictive maintenance-related concepts, e.g.,
machinery Failure and Fault. Also, none of the ex-
isting ontologies standardize the concepts related to
chronicle mining. To jointly use chronicle mining with
semantic technologies for a predictive maintenance
task on a piece of machinery, the knowledge base
should incorporate not only the machine-interpretable
knowledge of manufacturing entities such as product
and process, but also the knowledge about chronicles
within which the machinery failures are described in
a structured way. In this context, in this paper, we
present the MPMO ontolgoy with its rule-based exten-
sion, for the goal of proposing an automatic semantic
approach for machinery predictive maintenance. The
proposed automatic semantic approach aims to bridge
the semantic gap issue mentioned in Section 1.

3. Foundations and Basic Notions

In this section, we introduce foundations and ba-
sic notions of chronicle mining and semantics that are
necessary for describing our approach. The founda-
tions include a formal description of Sequential Pattern
Mining (SPM) and chronicles, as well as an introduc-
tion to Semantic Web Rule Language (SWRL).

3.1. Foundations of Sequential Pattern Mining

In industry, data collected for preventive mainte-
nance tasks are normally represented as sets of se-
quences with time stamps [5]. To cope with this type
of data sets, SPM is one important technique to ex-
tract frequently occurring patterns. SPM was first stud-
ied by [33], to analyze customer purchase behavior se-
quences. One SPM task could be described as follows:
Given a data set containing a number of sequences, the
goal of SPM is to find sequential patterns whose sup-
port exceed a predefined numeric support threshold.

This support threshold indicates the minimal num-
ber of occurrences of the sequential patterns, and the
found patterns are called frequent sequential patterns.
For the output of SPM algorithms, each frequent se-
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quential pattern is a sequence which consists of a set
of items in a certain order.

To give a formal description of sequential patterns,
in this subsection we review the definitions of key con-
cepts. A sequence S is a set of ordered itemsets, de-
noted by S =< SID,< L1 I15...1, >>, with SID
standing for the index of the sequence with I; repre-
senting a non-empty set of items. Given two sequences
S, =< SID,< ajasas...a, >>and S, =< SID,<
by by bs ...b, >>, the sequence S, is considered to be
the subsequence of S, denoted as S, C S, if there
exists integers 1 < k1 < k2 < ... < k;; < n such that
ay - bkl, as - bkg, ey iy - bkm [38] One exam-
ple of sequence data set is shown in Table 1. In the ta-
ble, each row is a sequence of elements. The elements
are presented with a certain order, showing the prece-
dence relationships among them. For example, regard-
ing the definitions we recalled before, the sequence
< ce(ac) > is the subsequence of < c(abe)(acf) >. If
we set the minimum support to 3, we can validate that
< (ab)c > is a sequential pattern with the support of 3.

Over the last decades, considerable contributions
have been settled in the research field of SPM [28]. As
a result, various SPM algorithms have been proposed
to mine frequent sequential patterns. Based on these
proposed SPM algorithms, a variety of approaches and
experiments have been launched to improve the perfor-
mance and efficiency of SPM tasks.

3.2. Sequential Pattern Mining with Time Intervals

Even though sequential patterns contain information
about the orders of items, the algorithms introduced
in the previous section can not specify the time in-
tervals between elements and items. In real-world sit-
uations, the occurrences of events are often recorded
with temporal information, such as time points and
time intervals between events. Thus, several contri-
butions have been proposed to obtain the time inter-
vals between successive items in sequences. The no-
tion of the time-interval sequential pattern is first pre-
sented by Yoshida et al. [27]. The authors name this
kind of patterns as “delta patterns”. A delta pattern is
an ordered list of itemsets with the time intervals be-

tween two neighboring itemsets. It can be represented

03 25 .
as A u) B u> C, where A — B — C is a fre-

quent sequential pattern. The time intervals [0, 3] and
[2,5] are bounding intervals, which means the transi-
tion time of A — B is contained in the time interval
[0, 3], and the transition time of B — C is placed in the
time interval [2, 5].

With the introduction of delta patterns, a group
of algorithms were proposed to facilitate the min-
ing process in temporal sequence data sets. One sig-
nificant contribution is the work by Hirate et al.
[41]. In this work, the authors propose the Hirate-
Yamana algorithm to mine all frequent time-extended
sequences. To do this, the authors generalize SPM
with item intervals. In the generalization, they define
a set of time-extended sequences , denoted as §; =<
SID, (2‘1,1, il), (2‘1,2, i2), (2‘1,3, i3), ooy (tl,na ln) >> where
i; means an item, and #, g is the item interval between
items i, and i, 7, can be interpreted according to two
aspects of conditions [41]:

— If the data sets contain time stamps, which indi-
cate the transaction occurrences of items, then z,
becomes the time interval and can be computed
by the equation 1,5 = ig.time — i,.time, where
ig.time and i,.time are time stamps of items i, and
ig respectively. For example, one time-extended
sequence could be < (0, ¢), (1, abe), (3,ac), (5, f)
>, which means item ¢ occurs at time point 0,
followed by itemset abe occurring at 1 time unit
later. Itemset ac occurs 2 time unites after abe,
and the last itemset f occurs 2 time unites after
ac.

— If the data sets do not contain time stamps, then
top may become the item gap and defined by the
equation #, g = § — «. In this case, the item gap is
defined as the number of items that occur between
two items. This type of representation is suitable
to be applied to data sets which contain fixed item
intervals, but it is not applicable to data sets which
contain various length of time intervals.

The study on existing notions and algorithms help
to capture the core concepts in the domain of time-
interval SPM. These core concepts form the founda-
tions of chronicle mining.

3.3. Foundations of Chronicle Mining

As introduced in the previous section, the temporal
patterns we consider in this paper are chronicles. To
give formal definition of chronicles, we start by intro-
ducing the concept of Event, given by [6].

Definition 1 (Event). Let E be a set of event types, and
T a time domain such that T C R. E is assumed totally
ordered and is denoted <g. According to [6], an event
is a couple (e,t) where e € E is the type of the event
andt € T is its time. In SPM, events represent itemsets
of a single sequence.
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An example sequence data set.

SID Sequences

10 < c(abe) (acf) >

20 < (bed)(ac)(bd)(adf) f >
30 < (cd)(ab)(bef)e >

40 < b(df)(bdf)c(ab) >

50 < (ab)(bef)de >

60 < (abe) (cd) (ce) >

A sequence contains a set of ordered events, which
are timestamped. The events contained in a sequence
appear according to their time of occurrences.

Definition 2 (Sequence). Let E be a set of event
types, and T a time domain such that T C R. E
is assumed totally ordered and is denoted <g. Ac-
cording to the definition in [6], a sequence is a
couple (SID,{(e1,11), (€2,12), ..., (en,1n))) such that
((e1,11), (€2,12), ..., (€n, 1,)) is a sequence of events.
Foralli,j € [L,n],i < j =t < t;. Ift; = t] then
e; <g é€;.

When the events are time-stamped, how to describe
the quantitative time intervals among different events
is vital important for the prediction of possible future
events. To achieve this goal, we introduce the notion
temporal constraints in the following definition. The
definition of temporal constraints is adopted from the
one introduced in [6].

Definition 3 (Temporal constraint). A temporal con-

straint is a quadruplet (e, e2,1™,tT), denoted e1[t ™, tV]es,

where ei,eq €E, e <g e andt—,tt € T.

t~ and t are two integers which are called lower
bound and upper bound of the time interval, such that
1~ < 1. A couple of events (e1,#1) and (eg, f2) are
said to satisfy the temporal constraint e [r~, 7 1]eq iff
ty—t; € [t7,17).

We say that eq[a,bles C €[a’,b']ely iff [a,b] C
[@',b'], e1 = ¢, and e5 = ¢}

With obtaining introducing the events and temporal
constraints among different events within a sequence,

we are able to to define the concept of chronicles [6].

Definition 4 (Chronicle). A chronicle is a pair C =
(E,T) such that:

1. &€ ={ey...en}, whereVi,e; € £ and e; <g eiy1,
2. T = {tij}i<i<j<ie| is a set of temporal con-
straints on € such that for all pairs (i, j) satisfy-

ing i < j, t;j is denoted by eilt;;, t;]ej.

£ is called the episode of C, according to the defini-
tion of episode’s discovery in sequences [6].

In the chronicle discovery process, support is used
as a measure to compute the frequency of a pattern in-
side a sequence. It can therefore be formalized by the
definition below.

Definition 5 (Chronicle support). An occurrence of a
chronicle C in a sequence S is a set (e1,11)...(€n, 1)
of events of the sequence S that satisfies all temporal
constraints defined in C. The support of a chronicle C
in the sequence S is the number of its occurrences in
S, or the percentage of its occurrences in the sequence
S [5].

The relevance of a chronicle is essentially based on
the value of its support.

To illustrate these basic definitions, we give an ex-
ample including a sequence and a chronicle extracted
from it. Assuming a sequence S contains three events
< A, B, C >, represented as follows:

A[2,5]B
A B B C C
0 1 2 3 4 5 6 7 8

Fig. 1. A sequence representing three events.

In Fig. 1, time constraints that describe the pattern
{A, B, C} are noted by A[2,5]B, B[1,5]C and A[6,7]C.
Here [2,5], [1,4] and [6,7] lower and upper bounds of
the time intervals among events.

After the generation of temporal constraints, these
events can be represented as a graphical way, as shown
in Fig. 2. In the figure, events are represented by the
circles, and temporal constraints are displayed through
arrows among events. The values above each arrow are
quantitative numerical bounds of temproal constraints.
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Fig. 2. Example of a chronicle

In the domain of predictive maintenance, frequent
chronicle mining has been used to detect machine
anomalies in advance. To combine frequent chronicle
mining and semantics for facilitating predictive main-
tenance tasks, a special type of chronicles, called fail-
ure chronicles is introduced [5].

Definition 6 (Failure chronicle). For a chronicle Cr =
(€,T), we say that Cr is a failure chronicle if and only
if the events that describe it are set according to their
order of occurrence in the sequence, and that the end
of the chronicle is the event that represents the failure,
ie forE = {e1--eye; <g eiy1,i € [1,n]}, e, is the
failure event.

In [5], a new algorithm called CPM has been intro-
duced to mine frequent failure chronicles. Based on
their work, in this paper, we propose a novel algorithm
to automatically generate SWRL rules from frequent
failure chronicles. The generated SWRL rules aim to
provide decision making for predictive maintenance in
industry. The algorithm is introduced in Section 4.

3.4. Semantic Web Rule Language

Semantic Web Rule Language (SWRL) is based on
a combination of its sublanguages OWL DL and OWL
Lite with the RuleMarkup Language. A SWRL rule is
in the form of an implication between an antecedent
(body) and consequent (head), which can be inter-
preted in a way that whenever the conditions speci-
fied in the antecedent hold, then the conditions speci-
fied in the consequent must also hold [14]. In SWRL, a
rule has the syntax: Antecedent — Consequent, where
both the antecedent (body) and consequent (head) con-
tains zero or more atoms. Atoms in SWRL rules can
be the form of C(x), P(x,y), where C(x) is an OWL
class, P is an OWL property, and x,y are either vari-
ables, OWL individuals or OWL data values [14].

In this work, the reason we choose SWRL rules is
two-fold. Firstly, SWRL provides model-theoretic se-

mantics and has the advantage of its close association
with OWL ontologies, which enables the definition of
complex rules for reasoning about individuals in on-
tologies. Secondly, the use of SWRL to write rules is
independent of rule implementation languages within
rule engines, which has the advantage of the flexible
selection of rule engines and inference platform.

To represent data mining results, especially chron-
icles, in a formal and structured way, we use ontolo-
gies as well as SWRL rules to propose predictive rules.
The proposed rules describe events and temporal con-
straints within chronicles, and predict a special type
of event (a machinery failure), with corresponding to
temporal information.

4. A Novel Hybrid Semantic Approach For
Predictive Maintenance

To propose the novel hybrid semantic approach
for predictive maintenance, we jointly use data min-
ing and semantic technologies, within which chroni-
cle mining is used to predict the future failures of the
monitored industrial machinery, and domain ontolo-
gies with their rule-based extension is used to predict
temporal constraints of failures and to represent the
predictive results formally. The procedure of the se-
mantic approach is shown in Fig. 3. Firstly, data pre-
processing is implemented on raw industry data sets
to obtain sequences in the form of pairs (event, time
stamp), where each sequence finishes with the failure
event. Secondly, frequent chronicle mining algorithms
mine the pre-processed data to discover frequent pat-
terns that indicate machinery failures. Thirdly, based
on the mined frequent patterns, semantic technologies
are used to automate the generation of SWRL-based
predictive rules. These rules enable ontological reason-
ing over individuals in ontologies, thus facilitating de-
cision making.

4.1. Domain Knowledge

Within an intelligent system, ontologies contain
the domain knowledge to operate. In this work, the
MPMO ontology is developed to describe the concepts
and relationships within chronicles. The definitions of
key concepts and relationships in the MPMO ontology
is based on the basic notions introduced in Section 3.
To illustrate the global architecture of the ontology, we
use a UML notation where boxes stand for ontology
classes, and arrows are object properties. Data prop-
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Preventive
Maintenance

Failure ‘ Ontological
Detection Reasoning

Knowledge

Data Mining
Frequent ;
Dataset 6 Pre-processing » Chronicle » Fegg:zrzetlitéirn
Mining

Failure Prediction

e T

Predictive Rule

Base Extraction

Construction

Fig. 3. The procedure of the semantic approach for predictive maintenance.

erties are indicated by class attributes. The global ar-
chitecture of this ontology is shown in Fig. 4. For the
purpose of clarity, only a subset of the whole classes
and relationships are presented.

To introduce the MPMO ontology, we give the ax-
ioms of the key classes. The axioms defining the main
classes of the MPMO ontology are presented below
using the description logic (DL) syntax [11].

— ManufacturingResource: This class describes the
resources that are used within manufacturing pro-
cesses. It consists three subclasses: FinancialRe-
source, HumanResource, and PhysicalResource.
Among the three subclasses, PhysicalResource
stands for a set of physical entities that the predic-
tive maintenance tasks are performed upon, such
as machine tools, workpieces, and final products.
The definition of this class is extended from the
class MASON: Resource, in the MASON ontol-
ogy [35]. The DL axioms for defining this class
and the PhysicalResource class are

ManufacturingResource = HumanResource |

PhysicalResource U FinancialResource,

and

ManufacturingResource = VY MakesU se—

Of~Y.ManufacturingProcess.

— ManufacturingProcess: It describes different types

of structured sets of operations that transform raw
materials or semi-finished product segments into

further completed product parts [32]. The DL ax-
ioms for defining this class are

ManufacturingProcess = AssemblyProcess ||
FinishingProcess |l FormingProces L

MachiningProcess || MouldingProcess,

and

ManufacturingProcess = 3MakesU seO f.Ma—
nufacturingResource N JhasProcessInput.W—
orkpiece M AProduces.Realized Part.

— Chronicle: Chronicles are a special type of tem-
poral patterns, in which temporal orders of events
are quantified with numerical bounds [6]. To in-
troduce this concept in the MPMO ontology, we
use the following axiom.

Chronicle = YhasEvent.Event 'l

(> 1 hasEvent.Event) M VhasTimelnterval. Ti—
melnterval N (> 1 hasTimelnterval Timelnte—
rval) M JisLearned From.Manu facturing Pro—
cess.

— Event: . In predictive maintenance tasks, an Event
is generally associated with a set of Observed-

Properties which indicate the correctness of the
operation of a piece of machinery. In this context,
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RealizedPart

-isProducedBy:ManufacturingProcess

¢——Produces

hasTimelnterval

Timelnterval

ManufacturingProcess

ManufacturingResource

-MakesUseOf: ManufacturingResource
-Produces:RealizedPart

-isUsedBy:ManufacturingProcess
———MakesUseOf—»|

isLearnedFrom

Chronicle

-isLearnedFrom:ManufacturingProcess
-hasSupport:Float
-hasIndex:Float

hasEvent

-hasProceedingEvent:Event
-hasSubsequentEvent:Event
-hasUpperBound:Float
-hasLowerBound:Float

hasProceedingEvent:

hasSul

> Event
-hasObservableProperty:ObservableProperty
-hasEventIndex:String
-hasMinimumTimeUntilFailure:Float

> -hasMaximum TimeUntilFailure:Float

quentEvent

TimeEntity

-hasTemporalDuration:Float
-hasTemporalUnit:String

Failure

-hasFailureSeverity:String
-hasFailureDescription: String

PropagatesInto

Error

-PropogatesInto:Failure

Indicates hasObservableProperty

ObservableProperty

-isObservedBy:Sensor
-hasValue:Float

Observes

Sensor

-Observes:ObservableProperty
-hasSensorDescription: String

Fig. 4. The global architecture of the MPMO ontology.

the DL axioms for defining this class is -

Event = YhasObservedProperty.Observed—

Property 1 (= 1 hasObserved.Property).

ObservedProperty: This is an attribute which rep-
resents some significant measurable characteristic

of a monitored ManufacturingProcess, Manufac-

turingResource or RealizedPart. The value of an
ObservedProperty is measured by sensors which

are located at different components of the mon-
itored entity. This class is also called Attribute.
The DL axioms for defining this class are

ObservedProperty = JhasObserved—

Property™t.Event 11 30bserves™1.S ensor.

Failure: This class represents the Failures that are
indicated by Events. A Failure is the inability of
an entity to perform one required function, and it
can be the result of a propagation of a machinery
error [1]. The following axiom is used to define
this class:

Failure C YPropagatesinto™*.Error.

Timelnterval: A temporal entity with an extent or
duration. The definition of this class is adopted
from the Time Ontology [17]. The axiom for de-
scribing this class is

Temporallnterval C 3hasProceeding—
Event.Event 1 JhasS ubsequentEvent.Event '

IhasTimelnterval ' .Chronicle.
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4.2. Rules

In the proposed semantic approach, different SWRL
rules are used for predicting machinery failures. The
launching of these rules allows reasoning over individ-
uals contained in the MPMO ontology. In this subsec-
tion, we first introduce SWRL rules which are used to
predict the time interval between a certain event and
a future failure, and then introduce the algorithm de-
veloped for transforming chronicles into SWRL rules.
The proposed rules and algorithm enable the semantic
approach for automatic failure prediction in the predic-
tive maintenance domain.

4.2.1. Failure Time Prediction Rules

Chronicles provide not only the order of occurrence
of events, but also the intervals of time they occur
in. As the mining of sequential data sets can generate
frequent failure chronicles, SWRL rules can be pro-
posed to reason about temporal information of machin-
ery failures. Therefore, when a new sequence of times-
tamped events arrive, SWRL rules can be launched to
predict the time intervals among different events and
future failures.

As stated in Section 4.1, an event within a chroni-
cle is determined by a set of observed properties (with
their associated values). Based on this definition, we
construct the antecedent of such a rule by describing
quantitative values of observed properties (attributes)
and the temporal constraints inside a chronicle. The
consequent of such a rule comprises the lower and up-
per bounds of the time intervals among certain events
and the failure. Fig. 5 gives an example failure chron-
icle within which the last event is a failure, which is
elicited from [5]. Inside the chronicle, A, B and C are
different events. The three events are identified by their
associated observed properties and quantitative values.
The observed properties and quantitative values are ob-
tained by a feature selection method, that determines
the most relevant attributes in predicting the future fail-
ures. The last event C indicates a failure, and the time
intervals among events A, B with event C gives the
temporal information of a future failure (event C).

Based on this chronicle, a SWRL rule can be
elicited. Fig. 6 demonstrates how the rule that de-
scribes different events and temporal constraints can
be constructed from the chronicle in Fig. 5. Within
the rule, Chronicle stands for the root class of all
the chronicle individuals in the ontology. hasEvent is
the object property that links individuals of the class
Chronicle and those under the class Event. hasAlV,

[53764, 63889]

_ Failure

Fig. 5. Example of a chronicle.

hasA2V, hasA3V, and hasA4V are data properties that
assign quantitative values of attributes to the two in-
dividuals A and B under the Event class. Timeln-
terval corresponds to the root class of all individu-
als of time intervals. There are two object proper-
ties that link Timelnterval with Event: hasSubEvent
and hasProEvent, among which hasSubEvent corre-
sponds to the subsequent event of a time interval, and
hasProEvent indicates the proceeding event of a time
interval. In this case, event A is the proceeding event of
the time interval between A and B, and event B is the
subsequent event of this time interval. By describing
the numerical values of different attributes and the time
interval with its proceeding and subsequent events,
temporal constraints among events A, B with the fail-
ure C are indicated. The temporal constraints comprise
the minimum time duration between an event with the
failure, described by the data property hasMinF, and
the maximum time duration between an event with the
failure, described by another data property hasMaxF.

4.2.2. Automatic Rule Generation Based on
Chronicles
To enable the automatic generation of a SWRL rule,
in this work we propose an algorithm to transform
chronicles into predictive SWRL rules. Algorithm 1
demonstrates the general idea of our rule transforma-
tion method. It runs in four major steps.

1. The function LastNonfailureEvent extracts the
last non-failure event within a chronicle.

2. For each temporal constraint in a chronicle,
the two functions ProceedingEvent and Subse-
quentEvent extract the proceeding and subse-
quent events of the time interval that is defined
in this temporal constraint. Then the two events
and this time interval forms different atoms in
the antecedent of the rule, and they are treated as
conjunctions.
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Chronicle(?c) * hasEvent(?c, Pel) » hasEvent(?c, Pe2) " hasA1V(?el, ?v1) * swrib:lessThan(?v1, 5)
A hasA2V(?el, ?v2) A swrib:lessThan(?v2, 4) A hasA3V(?e2, ?v3) A swrib:greaterThan(?v3, 2) A
hasA4V(?e2, ?v4) ~ swrlb:lessThan(?v4, 5) ~ Timelnterval(?t) * hasSubEvent(?t, ?e2)
hasProEvent(?t, ?el) A haslowerBound(?t, ?Ib) A 53764) A
hasUpperBound(?t, Pub) * swrlb:equal(?ub, 63889)

-> hasMinF(?el, 12117) » hasMaxF(7el, 63881) » hasMinF(?e2, 33075) * hasMaxF(?e2, 56921)

swrib:equal(?lb,

Fig. 6. Example of a SWRL-based predictive rule, based on the chronicle introduced in Fig. 5.

3. For each last non-failure event before the fail-
ure (there could be multiple last events before the
failure), extract the temporal constraint between
this event and the failure. The extracted temporal
constraint is treated as a conjunction with the last
event, to form the consequent of the rule.

4. At last, a rule is constructed as an implication
between the antecedent and the consequent.

A sequence can be described by one or multiple
chronicles. To improve the quality of failure predic-
tion, we only keep the most relevant chronicles for the
rule transformation. In this context, we take features
of chronicles such as Chronicle Support as a reference
measure, to select the most relevant chronicles.

5. Experiments

We validate our approach by conducting experimen-
tation on the SECOM data set [24], which contains
measurements of features of semi-conductor produc-
tions within a semi-conductor manufacturing process.
To evaluate the effectiveness of our approach, a soft-
ware prototype is developed based on Java 10.0.2,
Protégé 5.5.0 [15], OWL API [22] and SWRL API
[23]. Among them, the OWL API is used to build and
manipulate the MPMO ontology. Different types of
chronicles are created as individuals within the MPMO
ontology, and SWRL-based predictive rules are pro-
posed using the transformation algorithm introduced
in Section 4.2.2. To enable ontology reasoning, the
SWRL API, which includes a SWRL Rule Engine
API, is used to create the transformed rules and then
execute them. Within this process, the Drools rule en-
gine [19] is used for rule execution. At last, the inferred
knowledge is returned to the OWL API, and stored in
the new ontology. The running environment of the soft-
ware prototype is Microsoft Windows 10.

Algorithm 1 Algorithm to transform a chronicle into
a predictive SWRL rule.

Require: Cp: A chonicle model within which the last
event is a failure event, &: the episode of Cr which
contains different types of events in a chronicle.

Ensure: R

1. EL < LastNonfailureEvent(Cr, &)
2: > Extract the last non-failure event before the
failure within a chronicle.

c R+ 0,A—0,C < 0, Atom, + 0, Atom, < (.

. for each ¢;[t;, 5 ]e; € T do
pe < ProceedingEvent(eilt;;, t; le;)

> Extract the proceeding event of this time
interval
se < SubsequentEvent(e;[t;; , I;Hej)
> Extract the subsequent event of this time
interval
9: Atom, + [ti;,t;] A pe A se

10: A <« Atom, A ([t tjj'] A pe A se)

11: end for each

12: for each el € EL do

D AW

® 3

ij

13: ftc < FailureTimeConstraint(el, TI)

14: > Extract the time constraint between the last
event before the failure and the failure event.

15: Atom, < el A\ ftc

16: C + Atom, A (el N fic)
17: end for each

18: R+ (A= C)

19: return R

5.1. The SECOM Data Set

In the SECOM data set, 1567 recordings and 590 at-
tributes are collected, with each recording being char-
acterized by a time stamp referring to the time that
the data is recorded. Each recording is also associated
with a label, which is either 1 or -1. The label of every
recording explains the correctness of the event, with -1
corresponding to a non-failure event, and 1 refers to a
failure. However, the data contained in SECOM data
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set do not have the same types of attributes and values,
that some of the information contained in the data is
irrelevant to the failure prediction task thus is consid-
ered as noise. Moreover, due to the inter-dependency
among individual features and the complex behavior
of combined features, it is difficult to extract frequent
patterns and rules based on analysis of all the 590 at-
tributes. Thus, in this context, instead of going through
the entire data set and use all 590 attributes for failure
prediction, we use feature selection methods [13] to
identify and select the most relevant attributes in pre-
dicting the failures. The selected attributes are subse-
quently used to extract the key factors and patterns that
lead to machine failures. This reduces the data process-
ing time and memory consumption.

To obtain frequent failure chronicles, we use the fre-
quent chronicle mining approach introduced in [5]. In
[5], an industrial data pre-processing method is intro-
duced, including data discretization and sequentializa-
tion. Fig. 7 shows different steps within the data min-
ing, especially the frequent chronicle mining approach.
The steps presented in Fig. 7 elaborates the data min-
ing procedure which is described in Fig. 3. The ap-
proach starts with the aforementioned feature selec-
tion, after which a feature subset of the SECOM data
set is obtained while retaining a suitably high accuracy
in representing the original data set. As a result, 10
most relevant attributes are selected as the optimal sub-
set of all 590 attributes. After the feature selection, data
discretization [36] is employed to discretize continu-
ous values for obtaining nominal ones. Thereafter, data
sequentialization is used to transform the data into the
form of pairs (event, time stamp), where each sequence
finishes with a failure. With obtaining sequences that
contain failures, CloSpan algorithm [40] is applied to
the pre-processed data set, to extract frequent sequen-
tial patterns. Also, the frequent chronicle mining algo-
rithm introduced in [5] is used to extract the temporal
constraints among these sequential patterns. Up to this
step, we are able to obtain frequent failure chronicles
that will be transformed into predictive rules.

As introduced in Section 4, to improve the quality
of failure prediction, we take Chronicle Support as a
reference measure, to select the most relevant failure
chronicles for failure prediction. As a result, only a
subset of all frequent chronicles are used for predictive
rule transformation. Table 2 shows the failure chroni-
cles that have the 10 highest chronicle support. We use
these chronicles as examples to demonstrate the pre-
dictive rule generation approach. In Table 2, each fail-
ure chronicle is described by the number of events that

it contains, the number of time intervals among events,
all the observed properties (attributes) that character-
ize the failure chronicle, and the chronicle support. For
the ease of demonstration, we label the 590 attributes
as Al, AQ, A3...A590.

For an event within a failure chronicle, it is not only
identified by a set of attributes, but also the quantita-
tive values of them. To obtain the corresponding quan-
titative attribute values for describing each event, data
discretization has been applied to the SECOM data set.
After data discretization, the quantitative data has been
translated into qualitative data. Also, an association be-
tween each numerical value and a certain interval has
been created. Taking the failure chronicle Cr5 in Table
2 as an example, Fig. 8 shows the graphical view of
it, and the numerical intervals for describing the events
within this failure chronicle are shown in Table 3. The
temporal constraints in Fig. 8 are in the unit in mil-
lisecond.

[53764, 63889]

Fig. 8. The graphical view of failure chronicle Crs.

Based on the descriptions of the failure chroni-
cle Cps, we use the algorithm introduced in Section
4.2.2 to generate a SWRL-based predictive rule auto-
matically. The result of this rule generation is shown
in Fig. 9. In this rule, hasA58V, hasA63V, hasA64V,
hasA102V, hasA204V, hasA209V, hasA347V, hasA476V
are data properties in the MPMO ontology that link
individuals of the Event class with XML Schema
Datatype values. They correspond to the quantitative
values of the attributes A58, A63, A64, A102, A204, AQOQ,
Asz47, and A4z in the SECOM data set. To describe the
numerical intervals which are obtained by discretiza-
tion, SWRL Built-Ins are used to specify the upper and
lower numerical boundaries. The consequent of this
rule comprises the temporal constraints among Events
A, B and C. The minimum time duration between an
event with the failure is described by the data prop-
erty hasMinF, and the maximum time duration be-
tween an event with the failure is described by another
data property hasMaxF. By this way, the temporal con-
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Pre-processing

—

Dataset » Featu_re » Discretization » Sequentialization
Selection

\ / J

Failure Chronicle Mining

. Failure Time |
Failure . : Sequential
Detection <_ Chronicle (_ Constraints (- Pattern Mining
Generation Extraction
Fig. 7. Different steps used in the frequent failure chronicle mining approach, adapted from [5].
Table 2
Extracted failure chronicles that have the highest 10 chronicle support.
Failure Chronicle ~ Number of Events ~ Number of Time Intervals  Attributes Chronicle Support
Cr1 3 3 Ae3, Aea, A102, A204, A209, Ad7e 83.65%
Cr2 3 3 Ae3, As4, A102, A204, A209, A347, Ad76 82.69%
Cr3 3 3 Ass, Aga, A102, A204, A209, Ad76 82.69%
Cra 3 3 Ass, Ae3, A102, A204, A209, A347 81.73%
Crs 3 3 Ass, Ae3, Asa, A102, A204, A209, A3a7, Aa7e  81.73%
Cre 3 3 Ass, A102, A204, A209, A3a7, Aa76 80.77%
Cr7 3 3 Ass, A204, A209, A3ar, Adve 80.77%
Crs 4 4 Ag3, Aga, A102, A204, A209, A347, A476 78.84%
Cro 4 4 Ass, Ae3, A102, A204, A209, A347 78.84%
Cr1o 4 4 Ass, A204, A209, A3a7, Aaze 78.84%
Table 3
Attributes with their numerical intervals within the failure chronicle Crs.
Event Attribute Numerical Value Interval
A 63 [89.2564, 94.8757)
A 204 [4925.1678, 4999.2456)
A 209 [20.1884, 23.0750)
A 347 [6.4877, 6.9573)
A 476 [125.1988, 137.4435)
B 58 [4.5537, 4.8994)
B 63 [89.3158, 94.8757)
B 64 [90.0196, 94.3934)
B 102 [-0.1188, 0.5231)
B 347 [6.2446, 6.9574)
straints of a future failure is inferred by the launch- 5.2. Results Evaluation
ing of such a predictive SWRL rule. This rule is an To evaluate the usefulness and effectiveness of our

approach, we conduct results evaluation from two per-

instantiation of the generic rule introduced in Fig. 6. spectives: i) the evaluation of the MPMO ontology;
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Semi-conductorManufacturingProcess(?s) ~  Chronicle(?c) # isLearnedFrom(?’c, ?s) A
hasEvent(?c, ?el) » hasEvent(?c, ?e2) * hasA63V(?el, ?vl) » swrlb:lessThan (?v1, 94.8757) *
swrilb:greaterThanOrEqual{?v1, 89.2564) » hasA204V(?el, ?v2) ~ swrib:lessThan (?v2, 4999.2456)
A swrilb:greaterThanOrEqual(?v2, 4925.1678) * hasA209V(?el, ?v3) » swrlb:lessThan (?v3,
23.0750) ~ swrlb:greaterThanOrEqual(?v3, 20.1884) " hasA347V(?el, ?v4) ~ swrib:lessThan (?v4,
6.9573) ~ swrib:greaterThanOrEqual(?v4, 6.4877) " hasA476V(?el, Pv5) * swrlb:lessThan (?v5,
137.4435) A swrlb:greaterThanOrEqual(?v5,  125.1988) ~  hasA58V(?e2, ?v6) *
swrib:greaterThanOrEqual(?v6, 4.5337) » swrlb:lessThan (?v6, 4.8994) A hasA63V(?e2, ?v7) A
swrlb:greaterThanOrEqual(?v7, 89.3158) » swrib:lessThan (?v7, 94.8757) A hasA64V/(?e2, ?v8) »
swrib:lessThan(?v8, 94.3934) » swrib:greaterThanOrEqual(?v8, 90.0196) N hasA102V/(?e2, ?v9) »
swrib:lessThan(?v9, 0.5231) * swrlb:greaterThanOrEqual(?v9, -0.1188) * hasA347V(?e2, ?vi0) *
swrlb:lessThan (?v10, 6.9574) ~ swrlb:greaterThanOrEqual(?v10, 6.2446) » Timelnterval(?t) A
hasSubEvent(?t, 7e2) ~ hasProEvent(?t, ?el) ~ hasLowerBound(?t, ?Ib) * swrib:equal(?lb, 53764) »
hasUpperBound(?t, ?ub) * swrib:equal{?ub, 63889)

-> hasMinF(?el, 12117) » hasMaxF(?el, 63881) » hasMinF(?e2, 33075) ~ hasMaxF(?e2, 56921)

Fig. 9. The SWRL-based predictive rule transformed from the failure Chronicle Crs.

and ii) the evaluation of the SWRL rule-based failure
prediction results. It should be noted that for evalua-
tion we focus on the quality of semantic enrichment
to the chronicle mining results, and the evaluation of
the performance of the chronicle mining phase is out
of the scope of this paper.

5.2.1. Evaluation of the MPMO Ontology

Ontology evaluation enables users to assess the
quality of ontologies. It is essential for the wide adop-
tion of ontologies, since ontologies can be shared and
reused by different users, and the quality of ontologies
such as the consistency, completeness, and concise-
ness of taxonomies are key considerations when differ-
ent users reuse ontologies in specific contexts. In this
paper, to evaluate the quality of the proposed MPMO
ontology, we use OOPS!, which is an online ontology
evaluation tool [25]. The reason we choose this tool for
ontology evaluation is two-fold. Firstly, OOPS! allows
automatic detection of common pitfalls in ontologies,
and the detection of pitfalls can be executed indepen-
dently of the ontology development software and plat-
forms. Secondly, it enlarges the list of errors that can
be detected by most recent ontology evaluation tools,
thus providing a broader scope of anomaly detection
in ontologies [25].

In OOPS!, ontology pitfalls are classified into three
categories: structural, functional, and usability-profiling.
Under each category, fine-grained classification crite-
ria is provided to cope with specific types of anoma-

lies. In general, these three categories can be described
as follows [25]:

— Structural dimension: It focuses on anomaly de-
tection on syntax and formal semantics. Since
the MPMO ontology consists of logical axioms,
the syntax and logical consistency can be eval-
vated and validated through anomaly detection
within this category. To be more specific, This
category is composed of five criteria: i) modeling
decisions, which evaluates whether users use the
ontology implementation language in a correct
way; ii) real world modeling or common sense,
which evaluates the completeness of the domain
knowledge formalized by the MPMO ontology;
iii) no inference, which checks whether the de-
sired knowledge can be inferred through ontology
reasoning; iv) wrong inference, which refers to
the detection of inference that lead to erroneous
or invalid knowledge; and v) ontology language,
which assesses the correctness of the ontology de-
velopment language of the MPMO ontology.

— Functional dimension: It considers the intended
use and functionality of the MPMO ontology.
Under this category, two specific criteria are
used to evaluate the MPMO ontology: i) require-
ment completeness, which evaluates coverage of
the domain knowledge that is formalized by the
MPMO ontology; ii) application context, which
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evaluates the adequacy of the MPMO ontology
for a given use case or application.

— Usability-profiling dimension: It evaluates the
level of ease of communication when different
groups of users use the same ontology. Within
this category, two specific criteria are applied
for ontology evaluation: i) ontology understand-
ing, which evaluates the quality of information
or knowledge that is provided to users for eas-
ing the understanding of the ontology; ii) ontol-
ogy clarity, which assesses the quality of ontology
elements for being easily recognized and under-
stood by users. These criteria is commonly used
to check the quality of ontologies when users do
not have sufficient domain knowledge.

To evaluate the MPMO ontology according to the
aforementioned categories, we uploaded the ontology
code to the OOPS! online tool. After loading the ontol-
ogy code, the ontology pitfall scanner is used to check
the pitfalls that exist in the MPMO ontology. Fig. 10
shows the evaluation result. The result shows that our
ontology is free of bad practices in the structural, func-
tional, and usability-profiling dimensions of evalua-
tion. Moreover, the MPMO ontology is developed and
formalized using OWL, which is a widely used lan-
guage for knowledge representation and ontology de-
velopment. This eases the reuse of the MPMO ontol-
ogy in other contexts and also simplifies the integration
of the MPMO ontology with other knowledge compo-
nents that are developed with the same language.

5.2.2. Evaluation of the SWRL Rule-based Failure
Prediction Results

To evaluate the quality of the SWRL rule-based fail-
ure prediction results, we apply the SWRL rules on
the sequences in the SECOM data set, and three mea-
sures are used to assess the quality of these rules: the
True Positive Rate, the Precision of failure prediction,
and the F-measure. The equations for computing these
three measures are shown in Equation 1, 2 and 3.

TP

TP+ FN M
TP
TP+ FP @
+ FP
2TP
€)

2TP+ FP+ FN '’

Among them, the True Positive Rate aims to mea-
sure the percentage of positive sequences that have
been correctly classified. In Equation 1, TP (True Posi-
tive) is the true positive results standing for the number
of valid sequences that at least one SWRL rule could
predict the failures in these sequences, and FN (False
Negative) is the false negative results which stand for
the number of sequences that no SWRL rule could pre-
dict the failures in these sequences.

The Precision of failure prediction measures the
percentage of sequences based on which the SWRL
rules are constructed correctly. For a given sequence,
failure chronicles are extracted through chronicle min-
ing and SWRL rules are constructed for failure pre-
diction. After applying the SWRL rules, if the pre-
dicted failure temporal constraints are out of the range
of the failure occurrence time intervals in the sequence,
then it indicates that the SWRL rules could not pre-
dict the temporal constraints of the failure in this se-
quence. Thus, the failure is classified as False Positive.
In Equation 2, TP (True Positive) is the true positive
results standing for the number of valid sequences that
at least one SWRL rule could predict the failures in
these sequences, and F'P (False Positive) is the num-
ber of sequences for which the SWRL rules incorrectly
predict the temporal constraints of the future failures.

With obtaining the above two measures, we can
compute the F-measure according to the Equation 3.

Table 4 shows the experimental results of the three
measures. The three measures are computed accord-
ing to different frequency thresholds of sequences in
the data set. We use f7,,;,, to denote the minimum fre-
quency threshold of a sequence in the data set.

We can see from Table 4 that all computed values
for the three measures are above 80%, which shows the
results are encouraging. As the minimum frequency
threshold ft,,, values decreases, the values of three
measures show an increase tendency. This can be ex-
plained as follows: as ft1,,, increases, the number of
extracted chronicles decreases, which lead to the de-
crease of the number of transformed SWRL rules. For
this reason, each sequence for testing is less likely to
be validated by the transformed SWRL rules.

Since the SWRL rules are generated from chroni-
cle mining results, the quality of their prediction exclu-
sively depend on the mined frequent chronicles. In this
context, the 10-fold cross validation principle [26] is
used to evaluate the quality of failure prediction. To ap-
ply the 10-fold cross validation principle, the SECOM
data set is partitioned into two parts: the training set
and the test set. Firstly, chronicles are extracted from
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B8/ OntOlogy Pitfall Scanner!

0O0PS! (OntOlogy Pitfall Scanner!) helps you to detect some of the most common pitfalls appearing when developing ontologies.
To try it, enter a URI or paste an OWL document into the text field above. A list of pitfalls and the elements of your ontology where they appear will be displayed.

Scanner by URI:
Example: http://data.semanticweb.org/ns/swc/swc_2009-05-09.rdf

Scanner by URI

ins/3.3/temporal.owl"/>

Scanner by direct input:

</owl:Ontology>

rdf:resource="http://data.ordnancesurvey.co.uk/ontology/spatialrelations/"/> .
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-

<rdfs:comment>The MPMO ontology aims to model the knowledge related
to condition-based maintenance. The MPMO ontology provides the foundation to B by RDF
formally represent chronicle models with their numerical time constraints, (cannenoyniy

for the purpose of predictive maintenance.</rdfs:comment>

S

2

Uncheck this checkbox if you don't want us to keep a copy of your ontology.

Select Pitfalls for Evaluation

Go to simple evaluation

Select Category for Evaluation

Evaluation results

Congratulations!

Your ontology does not contain any bad practice detectable by OOPS! from the ones you have chosen|

Want to help?

= Suggest new pitfalls

Fig. 10. Screenshot of the ontology evaluation result using OOPS! online tool.

True Positive Rate, Precision and F-measure of Failure Prediction Based on SWRL Rules.

ftmin True Positive Rate Precision F-measure

1 83.63% +6.43% 84.62% +6.55% 86.55% +4.89%
0.9 85.45% +4.98% 87.49% +6.16% 88.54% +6.06%
0.8 87.27% +7.50% 84.58% +6.55% 85.71% £6.98%
0.7 89.09% +6.68% 86.22% +6.43% 87.52% +6.51%
0.6 90.90% +7.93% 88.71% +5.26% 89.21% +5.43%
0.5 90.90% +7.93% 86.83% +4.41% 87.88% +5.77%

the training sequences in the training set. Then, for the
test set, we check for each sequence, its membership in
at least one chronicle among those extracted. The num-
ber of sequences validated by the chronicles is com-
puted to estimate its percentage with respect to the se-
quence set. This procedure is repeated 10 times to val-
idate all the sequences of the database.

The launching of such a set of SWRL-based pre-
dictive rules enables the prediction of temporal con-
straints of future machinery failures. This allows users
to take further maintenance actions, such as the re-
placement of the machine tools used on the production
line. The performance of failure prediction could be
enhanced by considering a new set of rules that reason
about the severity levels of failures. We are currently
applying machine learning techniques to classify the
severity levels of failures, according to the temporal

constraints among the failures and other events.

6. Conclusion and Future Perspectives

This paper demonstrates a novel hybrid approach for
implementing predictive maintenance in industry. The
proposed hybrid approach is a combination of frequent
chronicle mining and semantics, within which chroni-
cle mining is used to extract frequent chronicles based
on industrial data sets, and a knowledge-based struc-
ture is used to automate the SWRL rule generation pro-
cess and to formalize the predictive maintenance re-
sults.

The contributions of this paper are three-fold. Firstly,
chronicles are formally represented with the use of on-
tologies, by which the main concepts and relationships
for describing chronicles are formalized, then easing
the knowledge representation and interpretation of fre-
quent chronicle mining results. Secondly, a novel al-
gorithm for transforming chronicles into SWRL-based
predictive rules is introduced. The novel algorithm al-
lows the automatic generation of SWRL rules based
on the mined frequent chronicles, thus enabling an au-
tomatic semantic approach for predictive maintenance.
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Thirdly, the reasoning about temporal constraints of
future machinery failures is enabled by the joint use
of data mining and semantics, which allows the im-
plementation of maintenance actions such as alarm
launching.

However, there are two major problems that need
to be solved. The first problem is the partition method
of numerical values. Since the rules we proposed in
Section 5 are based on crisp logic, when the numeric
values of attributes collected by sensors are consider-
ably close to partition thresholds, the rules proposed
in Section 5 may fail to partition these numeric val-
ues into correct categories. To deal with such kind of
uncertainty situations, the use of fuzzy logic should
be considered and a fuzzy semantic approach needs
to be implemented. This approach will use machine
learning techniques to automatically derive member-
ship functions and fuzzy if-then rules from data sets.
The fuzzy rules aim to enhance the representation of
imprecise severity level of machinery failures. For ex-
ample, an identification of failure will be associated
with a fuzzy index, indicating the grade of its member-
ship to a “low” or “high” level of failure. The fuzzy ap-
proach will be applied to tackle the challenge of sym-
bol anchoring problem [34].

The second problem is the evolution of the ontol-
ogy and the rule base. Since the manufacturing domain
is highly-dynamic, the predictive maintenance system
should be able to adapt itself to dynamic situations
over time, for example, the change of context. Also,
when the system fails to provide satisfactory results
through launching the rules, it is required to consult
domain experts for decisions about failure prediction
and maintenance. In this situation, the domain experts
use their expertise and experience to assess the current
state of the system and provide appropriate decisions.
For example, when the temperature measured by a sen-
sor located at a cutting tool exceeds its threshold and
no rule in the rule base is able to warn about his ab-
normal condition, domain experts can use their expe-
rience and expertise to identify this abnormal condi-
tion and provide possible solutions in order to avoid
the production line to produce unqualified products. In
this way, new rules which capitalize experts’ experi-
ence needs to be proposed to update the initial set of
rules in the rule base, in order to facilitate the qual-
ity of failure prediction. In this context, when the next
time a similar situation needs to be addressed, the rule
which capitalizes domain experts’ experience will be
launched together with the initial rules to identify po-
tential failures and to make predictions. This requires

the ontology and the rule base to be capable of coping
with the dynamic change of knowledge. To deal with
this issue, knowledge base evolution solutions should
be proposed: The ontology should be able to adapt it-
self efficiently to the changes with using ontology evo-
lution techniques, and the rule base should be updated
according to the change of context, by implementing
contextual reasoning.
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