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Abstract. Matching entities between datasets is a crucial step for combining multiple datasets on the semantic web. A rich
literature exists on different approaches to this entity resolution problem. However, much less work has been done on how to
assess the quality of such entity links once they have been generated. Evaluation methods for link quality are typically limited
to either comparison with a ground truth dataset (which is often not available), manual work (which is cumbersome and prone
to error), or crowd sourcing (which is not always feasible, especially if expert knowledge is required). Furthermore, the problem
of link evaluation is greatly exacerbated for links between more than two datasets, because the number of possible links grows
rapidly with the number of datasets.

In this paper, we propose a method to estimate the quality of entity links between multiple datasets. We exploit the fact that
the links between entities from multiple datasets form a network, and we show how simple metrics on this network can reliably
predict their quality. We verify our results in a large experimental study using six datasets from the domain of science, technology
and innovation studies, for which we created a gold standard. This gold standard, available online, is an additional contribution
of this paper. In addition, we evaluate our metric on a recently published gold standard to confirm our findings.

Keywords: entity resolution, data integration, network metrics

1. Introduction

Matching entities between datasets (known as en-
tity resolution) is a crucial step for the use of multi-
ple datasets on the semantic web. There exists a fair
amount of entity resolution tools for generating links
between pairs of resources: AGDISTIS[2], LIMES[3]
Linkage Query Writer [4, 5], SILK [6], etc. However,
much fewer methods exist for validating the links pro-
duced by these methods. Currently, only three vali-
dation options are available for such validation: (1)
ground truth, which is often not available; (2) man-
ual work, which is a cumbersome task prone to error;
(3) crowd sourcing, which is not always feasible es-

1This is an extended version, by invitation, of a paper accepted
at the 21st International Conference on Knowledge Engineering and
Knowledge Management (EKAW 2018) [1]

*Corresponding author. E-mail: o.a.k.idrissou@vu.nl.

pecially if specialist knowledge is required. Further-
more, the problem of link evaluation is greatly exac-
erbated for entity resolution between more than two
datasets, because the number of possible links grows
rapidly with the number of datasets. Therefore, it is
important to investigate the accurate automated eval-
uation of discovered links. Any answer to this ques-
tion should generalise beyond the setting of just two
datasets, and be applicable to the general setting of
links between multiple datasets. In such a multi-dataset
scenario, linked resources cluster in small groups that
we call Identity Link Networks (ILNs). The goal of this
paper is not to propose any new method for entity res-
olution but instead to provide a method to estimate the
quality of an identity link network, and consequently
validate a set of discovered links. To do so, we hypoth-
esise that the structure of an identity link network
correlates with its quality.
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We test our hypothesis in two experiments where
we show that the proposed metrics indeed reliably es-
timates the quality of an identity network. We also
test our hypothesis on recently published experimental
data from ESWC 2018 (see Section 8). Here too, the
results confirm that our quality metric reliably predicts
human assessment of entity links.

In summary, our contributions is a method that esti-
mates the quality of an identity network of size three
or bigger. It is tested against human judgement in three
large experiments and correctly classifies large amount
of ILNs made available online.2

This paper begins with a short motivation in Sec-
tion 2. Section 3 discusses the related work and sec-
tion 4 describes the proposed metric. In Section 5 we
describe the datasets involved in our experiments. Sec-
tions 6, 7 and 8 describe our three experiments. While
Section 9 presents possible refinement of the proposed
metric, Section 10 evaluates them. Section 11 con-
cludes.

2. Identity Link Networks

We assume the well known setting of a real-world
entity that has one or more digital representations in
multiple datasets. The task of entity resolution is to
discover which entity (or entities) in each dataset de-
notes the same real world entity. An Identity Link Net-
work (ILN) is a network of links between entities from
a number of datasets that are found by one or more
entity resolution algorithms to represent the same real
world entity. An ILN can be derived directly from en-
tity resolution results (Sections 6 and 7), or it may
be generated by sophisticated clustering methods as in
our experiment in Section 8. In this work we do not
propose any new entity resolution algorithm. Instead,
we propose a method to automatically evaluate discov-
ered links, particularly when they involve more than
two datasets. Unfortunately, gold standards in initia-
tives such as OAEI3 do not go beyond two datasets.

Fig. 1 shows two examples of such ILNs that have
been generated by an entity resolution algorithm be-
tween entities from six datasets taken from the field
of Science, Technology and Innovation studies (STI)
(more details in section 5). Fig. ?? shows the ILN for the
real world entity University of Trier, Fig. 1b shows the
same for the National Chung Cheng University. In this

2https://github.com/alkoudouss/Identity-Link-Network-Metric
3http://oaei.ontologymatching.org/

paper, we hypothesise that the structure of these ILNs is
a reliable indicator for the correctness of the links in
the network they form.

(a) The university of Trier in an ILN across six datasets.
The more an ILN resembles a fully connected graph, the more evidence

is available to support its identity links.

(b) Potentially wrong representation of the National Chung
Cheng University.

Fig. 1. Two real life examples of Identity Link Networks (ILNs);
dotted lines indicate links with a low confidence.

Simple Clustering Algorithm. Our aim is not clus-
tering, it is instead the quality approximation of ILNs.
So, for reproducibility purposes we present here the
straight forward simple clustering algorithm (see algo-
rithm 1) implemented for clustering candidate linked
resources. For the purpose of cluster quality estima-
tion, the algorithm also documents the discovered links
and their respective strength(s). All basic operations
such as SEARCH (search for the cluster to with a node
belongs to), INSERTION (add a node to the set of nodes
of a particular cluster, add a link to the set of links of a
particular cluster, add a strength to the mapping link→
strength of a particular cluster), and DELETION (deleting

https://github.com/alkoudouss/Identity-Link-Network-Metric
http://oaei.ontologymatching.org/
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a cluster, reassign a cluster to a node) are supported by
hash tables (O(1)) and therefore minimising to algo-
rithm time complexity (O(m) where m is the size of
the input or the number of links to be more precise).

Algorithm 1: Simple resource clustering algorithm & net-
work documentation. All search, insertion and deletion within
a cluster is supported with hash tables which allows for a com-
plexity O(1) leading the algorithm to be of O(m) where m is
the input size.

input : L, set of tuples 〈(n1, n2), s〉 representing the mapping

N × N → R where ni ∈ N and links (n1, n2) have a strength

s ∈ R
output: Γ ⊂ P(N), set of cluster-sets C where for each

ni, n j ∈ C, ni =Π n j given a set of criteria Π

begin
Γ← ∅

for 〈(n1, n2), s〉 ∈ L do /* O(m) */

if n1, n2 /∈ Ci for all Ci ∈ Γ then
C.(nodes, links, strengths)

←
(
{n1, n2}, {(n1, n2)}, {

(
(n1, n2), [s]

)
}
)

Γ.add(C)

else if n1 ∈ C1 ∈ Γ and n2 /∈ Ci for all Ci ∈ Γ then
C1.add(({n2}, {(n1, n2)}, {

(
(n1, n2), [s]

)
}))

else if n2 ∈ C2 ∈ Γ and n1 /∈ Ci for all Ci ∈ Γ then
C2.add(({n1}, {(n1, n2)}, {

(
(n1, n2), [s]

)
}))

else if n1 ∈ C1 ∈ Γ and n2 ∈ C2 ∈ Γ then

if C1 6= C2 then /* they belongs to

different clusters */
Cs ← smallest of C1 and C2

Cb ← biggest of C1 and C2

Cb.add(Cs.items())

Γ.delete(Cs)

Cb.links.add((n1, n2))

Cb.strength.add(
(
(n1, n2), [s]

)
)

else /* they belong to the same

cluster */

if (n1, n2) ∈ C1.links then
C1.strengths[(n1, n2)].add(s)

else
C1.links.add((n1, n2))

C1.strength.add(
(
(n1, n2), [s]

)
)

return Γ

3. Related work

We briefly discuss a number of related areas from
the literature, and indicate how our work differs from
these in aim and scope.

Schema matching. Much work in the literature fo-
cuses on ontology matching, especially schema match-
ing [7]. Some rely on concept distance or an extended
version of it [8–10]. Some rely on alignment similar-
ities [11], others relies on formal logical conflicts be-
tween ontologies to detect and possibly repair map-
pings at a schema-level [12]. The current paper does
not aim to match ontologies, nor does it critically rely
on using ontological or schema information. We only
assume the existence of external entity resolution algo-
rithms for suggesting links between entities. Such al-
gorithms may or may not exploit ontological informa-
tion, but this does not affect our central hypothesis.

Information gain. The work in [13] also uses net-
work structure to evaluate link quality, but in a very
different way. The main intuition there is that an indi-
vidual link in an ILN is more reliable when it leads to a
greater information gain. The paper does not consider
the structure of the ILN as a whole, as we do in this
paper.

Entity clustering. Part of the literature also uses
clustering of the digital representations of the same
real world entity in one or multiple sources. While
their data sources are mainly unstructured [14, 15], our
interest lies in clusters derived from the mappings of
entities exclusively across knowledge-bases. In addi-
tion, they also do not consider the structure of the ILN

as a whole. Another part of the literature specifically
focuses on clustering algorithms. The FAMER [16]
framework for example provides and compares seven
different link-based entity clustering approaches. The
aim of our work is different from all of these. Whereas
these works use clustering algorithms to construct en-
tity resolutions, we show how a cluster-based metric
can be used to assess the quality of a network of entity
links, irrespective of how these links were generated.

Network metrics. The work by Guéret et al. [17] is
one of the few papers to our knowledge that uses net-
work metrics to assess the quality of links. The key
point that separates this work from ours is that it uses
local network features, i.e. only the direct neighbours
of a single node, while we employ global network fea-
tures. [18] also addresses the same challenge. It eval-
uates a given cluster G by comparing it to a reference
cluster R based on the number of splits and merges re-
quired to go from G to R. Our proposed metric does
not need such a reference cluster, and is hence more
easily applicable.
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4. Network Properties & Quality of a
Link-Network

Figure 2 illustrates a set of six simple network
topologies over the same number of nodes. Our pro-
posed metric is based on the intuition that multiple
links provide corroborating evidence for each other,
suggesting that in the case of an ILN, the ideal topol-
ogy is a fully connected network. It illustrates a total
agreement between all resources (not the case for any
other topology), and it does not require any intermedi-
ate resource to establish an identity-link between two
resources (again, not the case for any other topology).
Hence, intuitively, the amount of redundancy between
paths in an ILN is an indicator for the quality of the
links in the ILN. We will capture these and similar intu-
itions using three different global graph features over
ILNs: Bridge, Diameter and Closure.

Fig. 2. Example of network topologies.
Source: https://en.wikipedia.org/wiki/Network_topology

We will now first define and explain the rationale
behind each metric, then normalise each metric to val-
ues4 between 0 and 1, and finally average the sum of
all metrics to obtain the metric which we will use for
estimating the quality of the ILN.

Bridge Metric. A bridge (also known as an isthmus
or a cut-edge) in a graph is an edge whose removal
increases the number of connected components of the
graph, or equivalently, an edge that does not belong
to any cycle. The intuition for this measure is that a
bridge in an ILN suggests a potentially problematic link
which is not corroborated by any other links. As a
graph with n nodes contains at most n−1 bridges (e.g.
in a Line network), the bridge value is normalised as
nb = B

n−1 , where B is the number of bridges. An ideal
link network would have no bridge (nb = 0). As nb is

4The metric value indicates the negative impact of one or more missing
links in an ILN.

sensitive to the total number of nodes in the graph (it
decreases for large graphs, even when the number of
bridges is constant), we “soften” the value of nb with
a sigmoid function: n′b = max(nb, sigmoid(B)), where
the function sigmoid(x) = x

|x|+1.6 helps stabilising the
impact of the size of the graph by providing a minimal
value for n′b. The value 1.6 is a hyper-parameter that
has been determined empirically.

Diameter Metric. The diameter D of a graph with n
nodes is the maximum number of edges (distance) in
a shortest path between any pair of vertices (i.e. the
longest shortest path). In an ideal scenario, if three re-
sources A, B and C are representations of the same real
world object, there would be no need for an interme-
diate resource for confirming the identity of any of the
resource in the network. In a fully connected graph of
n nodes, the diameter D = 1. The longest diameter is
observed in a Line network structure, with D = n− 1
for a line network of n nodes. To scale to the [0,1] inter-
val, the diameter is normalised as nd = D−1

(n−1)−1 . Like
the bridge, because the diameter is also sensitive to the
number of nodes, the normalised diameter is calculated
as n′d = max(nd, sigmoid(D− 1)).

Closure Metric. In a connected graph of n nodes,
the closure is the ratio of the number of arcs A in the
graph over the total number of possible arcs 1

2 n(n−1).
In a complete graph, this ratio has value 1. Hence, to
evaluate how far the observed graph is from the ideal
(complete) one, we normalise the closure metric as
nc = 1− A

1
2 n(n−1)

. The minimum number of connec-
tions is n − 1, as observed in Line and Star network
structures.

Estimated Quality Metric. All of these metrics cap-
ture the same intuition: the more an ILN resembles a
fully connected graph, the higher the quality of the
links in the ILN. Of course, these three metrics are not
independent: nc = 0 or n′d = 0 implies n′b = 0. How-
ever, using only nc or n′d would be too uninformative
since the converse of the implication does not hold. Ta-
ble 1 shows that each of nc, n′d and n′b capture differ-
ent (though related) amounts of redundancy in the ILN

and that each metric by itself fails to properly discrim-
inate between the seven ILNs depicted in Figure 2. For
example, nc and n′c treat a Tree, Star and Line as qual-
itatively equal but disagree on whether a Full Mesh is
as good as a Ring. Consequently, to compute an over-
all estimated quality eQ of an identity link network, we
combine the three separate metrics by taking their av-

https://en.wikipedia.org/wiki/Network_topology
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Link-Network Quality Estimation

ILN Bridge Diameter Closure Est. Quality
Ring B = 0 nb = 0.00 D = 3 nd = 0.56 C = 0.40 nc = 0.60 eQ = 0.61

Mesh B = 1 nb = 0.38 D = 3 nd = 0.56 C = 0.47 nc = 0.53 eQ = 0.51

Star B = 5 nb = 1.00 D = 2 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.32

Full
Mesh

B = 0 nb = 0.00 D = 3 nd = 0.00 C = 1.00 nc = 0.00 eQ = 1.00

Line B = 5 nb = 1.00 D = 1 nd = 1.00 C = 0.33 nc = 0.67 eQ = 0.11

Tree B = 5 nb = 1.00 D = 4 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.34

Table 1
Metrics values for each of the topologies from Fig. 2.

erage, and invert them so that the value 1 indicates the
highest quality:

eQ = 1− n′b + n′d + nc

3
.

Discrete Intervals. The eQ metric scores all ILNs on a
continuous value in the [0,1] interval. To automatically
discriminate potentially good networks from bad ones,
we divide this interval into three segments: ILNs with
values 0.9 6 eQ 6 1 will be rated as good, with values
0.75 < eQ < 0.9 as undecided, and with values 0 6
eQ 6 0.75 as bad. These boundaries are empirically
determined, and can be adjusted depending on the use-
case. The specific values of these boundaries does not
affect the essence of our hypothesis.

Hypothesis. We can now state our hypothesis more
formally: “The eQ intervals defined above are predic-
tive of the quality of the links in an entity link network
between multiple datasets”.

Example. By way of illustration, Table 1 gives the
value of our eQ metric for the six networks from Fig-
ure 2, and shows that the metric does indeed capture
redundancy in a network.

In the following sections, we will test this hypothe-
sis against human evaluation on hundreds of ILNs con-
taining thousands of links in three experiments using
between three to six datasets.

5. Datasets

We considered using datasets and gold standards
from the OAEI initiative, but none of these go beyond
links between two datasets. We therefore created our
own gold standard on realistic datasets taken from the

domain of social science, more specifically from the
field of Science, Technology and Innovation studies.
We consider this to be an important contribution of this
paper. All datasets and our gold standard are available
online at the locations given in later paragraphs.

Entities of interest to the STI domain of study are
(among others) universities and other research-related
organisations, such as R&D companies and funding
agencies. Our six datasets are widely used in the field,
and describe organisations and their properties such as
name, location, type, size and other features.5

Grid6 describes 80248 organisations across 221 coun-
tries using 12308 relationships. All organisations are
assigned an address, while 96% of them have an or-
ganisation type, and only 78% have geographic coor-
dinates.

OrgRef7 collates data about the most important world-
wide academic and research organisations (31000) from
two main sources: Wikipedia and ISNI.

The Leiden Ranking dataset8 offers scientific per-
formance indicators of more than 900 major universi-
ties. These universities are only included when they are
above the threshold of 1000 fractionally counted Web
of Science indexed core publications. This explains its
coverage across only 54 worldwide countries.

Eter9 is a database on European Higher Education In-
stitutions that not only includes research universities,

5The information provided here about the datasets was collected in January
2018. The datasets themselves are of earlier dates: Grid: 2017.07.12; Orgref:
2017.07.03; OpenAire: 2018.08.16; OrgReg: 2017.07.18; Eter: 2014; Leiden
Ranking 2015: 2017.6.16; and Cordis-H2020: 2016.12.22. All these datasets
are available on the RISIS platform at http://datasets.risis.eu/.

6https://www.grid.ac
7http://www.orgref.org
8http://www.leidenranking.com/
9https://www.eter-project.com/

https://www.grid.ac
http://www.orgref.org
http://www.leidenranking.com/
https://www.eter-project.com/
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but also colleges and a large number of specialized
schools. The dataset covered 35 countries in 2015.

OrgReg10 is based on Eter but adds to the about 2700
HE institutions some 500 public research organiza-
tions and university hospitals. Collected between 2000
and 2016, its organisations are distributed across 36
countries.

The European Organisations’ Projects H2020
database11 documents the Horizon 2020 participating
organisations.

6. eQ Put to the Test

We test our hypothesis on a real life case study that
revolves around the six datasets described in Section
5, with as goal to investigate the coverage of OrgReg
(coverage analysis of datasets is a typical question
asked by social scientists before including a dataset in
their studies). This is done by comparing the entities in
OrgReg to those in the other five datasets (Figure 3).

Fig. 3. Disambiguating OrgReg.
To evaluate eQ, all possible links are evaluated. So, the lack of one or more
links is considered a potential evidence for suggesting the corresponding enti-
ties being different.

6.1. Experiment Design

Organizations are linked across or within datasets
using an approximate string matching on their names
with minimal similarity threshold 0.8. Based on this,
we generate links between each pair of datasets, result-
ing in 21 sets of links (including linking a dataset to it-
self in order to detect duplicate entities in the dataset).
We then take the union of all 21 sets of links, result-

10http://risis.eu/orgreg/
11http://www.gaeu.com/sv/item/horizon-2020

ing in a collection of ILN’s of varying size (see figure
Figure 4).

Now that we have constructed a large collection of
multi-dataset ILNs, we will compute the eQ value for all
of them. Then, the machine-predicted good/bad cate-
gories (using eQ) will be checked against the ground
truth by a non-domain expert (the first author of this
paper) and further verified by a domain expert (the
third author). This ground truth is available online.12

Notice that we have deliberately used a very weak
entity resolution algorithm in this experiment (approx-
imate string matching). This produces links of both
very high and rather low quality, providing a genuine
test for our eQ metric to distinguish between them.

6.2. Results of first evaluation (non expert)

Ideally, we would find only ILNs of size 6 if each Or-
gReg entity were linked with one and only one entity
in each of the five other datasets. With less than 100%
coverage of OrgReg, we also expect to find ILNs of size
smaller than 6. Figure 4 shows that we also find a sub-
stantial number of ILNs of size bigger than 6. This is
due to (a) duplicates occurring in a single dataset, re-
sulting in links in the ILN between two items from the
same dataset, and (b) an imperfect matching algorithm
(in our case approximate name matching), resulting in
incorrect links in the ILN.

3 4 5 6 7 8 9 10 11 12 13
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Fig. 4. Overview of the generated Identity Link Networks.

Due to the high number of ILNs generated13, we eval-
uate only the 846 ILNs of size 5 to 10, with the follow-
ing frequencies: 391 (size 5), 224 (6), 96 (7), 66 (8),
45 (9) and 24 (10). We predict a ‘good’ or ‘bad’ score
based on the eQ interval values for each of the 846 ILNs,
and then compare the scores against those of a human

12https://github.com/alkoudouss/Identity-Link-Network-Metric
13On a 6th Gen IntelÂő CoreâĎć i7 notebook with 8GB RAM, it takes

about 1:40 minutes to automatically evaluate all 4398 clusters of size three
and above (see Figure 4).

http://risis.eu/orgreg/
http://www.gaeu.com/sv/item/horizon-2020
https://github.com/alkoudouss/Identity-Link-Network-Metric
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Majority Class Classifier (Baseline) vs Network Metric (eQ)
Ma jorityClassClassi f ier

NetworkMetrics

GTP = Ground Truth Positive GTN = Ground Truth Negative

Size GTP|GTN F1 ACC NPV GTP|GTN F1 ACC NPV

3 56 | 8 0.933
0.931

0.875
0.875

−
0.5

4 19 | 5 0.884
0.878

0.792
0.792

−
0.5

5 272 | 119 0.821
0.824

0.696
0.747

−
0.598 14 | 1 0.966

0.929
0.933
0.867

−
0

6 139 | 85 0.766
0.817

0.621
0.768

−
0.709 14 | 5 0.848

0.848
0.737
0.737

−
−

7 50 | 56 0.685
0.808

0.521
0.792

−
0.810 10 | 2 0.909

1.0
0.833

1.0
−
1.0

8 35 | 31 0.693
0.806

0.530
0.803

−
0.765 4 | 0 1.0

1.0
1.0
1.0

−
−

9 21 | 24 −
0.894

0.533
0.889

0.533
1 8 | 1 0.941

1.0
0.889

1.0
−
1.0

10 8 | 16 −
0.933

0.667
0.958

0.667
0.941 1 | 0 1.0

1.0
1.0
1.0

−
−

Table 2
Network-metric (eQ) results compared to the MCC baseline using non expert Ground Truth (left), and Expert sampled Ground Truth (right).

expert, resulting in F1 scores. In red, Figure 4 displays
the F1 value for each ILN size. Overall, our eQ met-
ric resulted in high F1 values (0.806 6 F1 6 0.933).
We also pitched our eQ metric against a Majority Class
Classifier. Table 2 shows that our eQ metric outper-
forms the Classifier on F1 measure, Accuracy (ACC)
and Negative Predicted Value (NPC) for ILNs of all
sizes.

All of these findings show the very strong predictive
power of our eQ metric for the quality of ILNs when
compared to human judgement.

6.3. Results of second evaluation (expert)

For a further evaluation by a Dutch domain expert from
the field of STI (the third author of this paper), we
selected 148 ILNs (ranging from size 3 to 10 as de-
picted in Table 2) in which at least one entity is lo-
cated in the Netherlands. The expert deviated from the
first evaluation in only 12 out of 148 cases. Although
the changes slightly affect the ground truth for each
ILN size, the F1 values computed here are even higher
(0.848 6 F1 6 1) as compared to the previous ex-
periment. This shows that the non-expert nature of the
first human judgement was not detrimental to our re-
sults. 14 This second experiment confirms our finding
in the first experiment that eQ is a reliable predictor of
ILN quality.

14However, the very imbalanced character of the ground truth
makes it hard to always outperform the baseline as illustrated in Ta-
ble 2

6.4. Analysis

Both of the evaluations of eQ above resulted in very
high F1 average values of 0.847 and 0.961 respec-
tively. Furthermore, eQ outperformed a majority-class
classifier in the first experiment (not in the second be-
cause of the highly imbalanced distribution). All this
supports our hypothesis that our eQ measure is strongly
predictive of the quality of the links between the enti-
ties in an Identity Link Network.

7. eQ Estimations in Noisy Settings

The previous experiment created links between en-
tities using a rather weak entity resolution heuristic.
This was an interesting setting because such weak
matching strategies are a fact of daily life on the se-
mantic web (and in data integration in general). In
the next experiment, we will use eQ to evaluate ILN’s
that have been constructed using a more sophisticated
matching heuristic, where we can control the amount
of incorrect links in the ILNs. We will see that also in
this case, eQ is strongly predictive of human judged
link quality.

The stronger matching heuristic that we use in this
second experiment combines organisation names with
the geo-location of the organisation. The experiment
is run over Eter, Grid and OrgReg as they are the
only datasets at our disposal that contain such geo-
coordinates for organisations. To test the performance
of the eQ metric at various levels of noise, we imple-
ment three sub-experiments where noise (the number
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of false positive links) is introduced by decreasing the
name similarity threshold from 0.8 (experiment 1) to
0.7 and by increasing the geographic proximity dis-
tance threshold as described in the next sub-section.

7.1. Experiment Design

This subsection describes in three phases how the
experiment is conducted.

Phase-1: Create links. The first phase links organiza-
tions across the three datasets whenever they are lo-
cated within a radius of 50 meters, 500 meters and 2
kilometres. This creates nine sets of links (three for
each radius).

Phase-2: Refine links. Each set of links is then refined
by applying an approximate name comparison over the
linked resources with a threshold of 0.7.

By now, we have geo-only (without name compar-
ison) and geo+names sets of links, organised in three
subgroups (50m, 500m and 2km) each.

Phase-3: Combine links. To generate the final ILNs, the
sets of links within each subgroup are combined us-
ing the union operator. The goal of this is to compare,
within a specified distance, ILNs that where generated
without name matching to those generated with name
matching.

7.2. Strict vs. Liberal Clustering

To understand how link-networks are formed as we
increase the geo-similarity distance, Figure 5 illus-
trates how ILNs may evolve as we move from strict
constraints (scenario 1) to liberal constraints (scenario
3). First, in scenario 1, four ILNs are derived from the
six links: c1 = {{a1}, {b3}}, c2 = {{a3}, {b1}},
c3 = {{a4}, {b4}} and c4 = {{a5}, {b6, b8, b9}}.
Then, the new link between a3 and b3 in scenario 2
forces c1 and c2 to merge. We now have a total of three
ILNs: c1 = {{a1, a3}, {b1, b3}}, c3 = {{a4}, {b4}}
and c4 = {{a5}, {b6, b8, b9}}. Finally, in scenario 3,
two new links appear. The first link between a4 and b6

causes the merging of c3 and c4 while the second link
connecting a6 to b2 causes the creation of a new ILN.
Thereby, the total number of ILNs remains 3.

These scenarios show that, as the ILN constraints
become more liberal, the number of links discovered
increases while the number of ILNs may increase, re-
main equal, or even decrease. In other words, when the
matching conditions become liberal or less strict, two
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Fig. 5. Decrease/Increase of ILNs

types of event may happen: (1) formation of new ILNs

and/or (2) merging of ILNs. Table 3, shows that, in ex-
periment 2, phenomenon (1) overtakes (2), which ex-
plains the increase in the number of ILNs as the near-by
distance increases.

7.3. Result and Analysis

Overall, as illustrated in Table 3, the number of
ILNs generated in this experiment increases with the in-
crease of the geo-similarity radius. Within a radius of
50 meters, a total of 230 ILNs are generated based on
geo-distance only. This number reached 841 ILNs at a
2 kilometres radius. After performing name matching,
many links are pruned. Depending on the matching ra-
dius, the number of ILNs then varies from 36 to 371.

Statistics on ILNs of size > 2

50 meters 500 meters 2 kilometres

Size geo
only

geo+
names

geo
only

geo+
names

geo
only

geo+
names

> 3 230 36 738 168 841 371

Table 3
link-network overview.

Due to manpower limitations we restrict our evalua-
tion efforts to networks of size 3. These ILNs cover 86%
of the overall ILNs within 50m radius and 92% within
500m and 2k radius. Table 4 shows the results of pitch-
ing our eQ metric against the human evaluation of the
ILNs under both the geo-only and the geo+names con-
ditions.

As an example, the values F1 = 0.803 and F1 =
0.912 depicted in the confusion matrices in Table 5 and
Table 6 detail the machine quality judgements versus
human evaluations of the networks generated within
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50 meters 500 meters 2 kilometres

Size geo-only geo+names geo-only geo+names geo-only geo+names
= 3 92 31 249 155 198 342

Machine statistics on ILN’s of size 3

Machine Mgood : 45
Mmaybe: 0
Mbad : 47

Mgood : 19
Mmaybe: 12
Mbad : 0

Mgood : 115
Mmaybe: 0
Mbad : 134

Mgood : 127
Mmaybe: 0
Mbad : 28

Mgood : 81
Mmaybe: 0
Mbad : 117

Mgood : 279
Mmaybe: 0
Mbad : 63

Human evaluation on ILN’s of size 3

Human Hgood : 31
Hmaybe:4
Hbad : 57

Hgood : 27
Hmaybe:1
Hbad : 3

Hgood : 64
Hmaybe:7
Hbad : 176

Hgood : 148
Hmaybe:1
Hbad : 6

Hgood : 61
Hmaybe:3
Hbad : 134

Hgood : 322
Hmaybe:8
Hbad : 12

F1 measures

F1 = 0.693 F1 = 0.826 F1 = 0.682 F1 = 0.909 F1 = 0.803 F1 = 0.912

Table 4
Automated flagging versus human evaluation.

198 GROUND TRUTHS

GT. Pos. GT. neg.
61 137

POSITIVE True Pos. False Pos. Precision False Discovery Rate
81 57 24 0.704 0.296

NEGATIVE False Neg. True Neg. F. Omission Rate Neg. Predictive Value

PR
E

D
IC

T

117 4 113 0.034 0.966
Recall Fall-out Positive L. Ratio F1 score | Accuracy
0.934 0.175 4.021 0.803 | 0.859

Table 5
Confusion matrix for IDLINEs of size 3, 2km, geo-only.

342 GROUND TRUTHS

GT. Pos. GT. neg.
322 20

POSITIVE True Pos. False Pos. Precision False Discovery Rate
279 274 5 0.982 0.018

NEGATIVE False Neg. True Neg. F. Omission Rate Neg. Predictive Value

PR
E

D
IC

T

63 48 15 0.762 0.238
Recall Fall-out Positive. L. Ratio F1 score | Accuracy
0.851 0.25 3.928 0.912 | 0.845

Table 6
Confusion matrix for ILNs of size 3, 2km, geo+names

2 kilometres radius under respectively geo-only and
geo+names conditions.15

Analysis. In this experiment, we test the behaviour of
the proposed eQ metric in both noisy (proximity only)
and noise-less (proximity plus name) scenarios. The
proposed eQ metric is in general able to exclude poor
networks in noisy environments and to include good
networks in noise-less environments. In addition, on
the one hand, the relatively low F1 measures displayed

15All confusion matrices supporting the analysis can be found on the RISIS
project website at http://sms.risis.eu/assets/pdf/metrics-link-network.pdf

in Table 7 in noisy scenarios, highlight that for the data
at hand, proximity alone is not a good enough crite-
rion for identity. On the other hand, the relatively high
F1 measures in noise-less scenarios is an indication of
stability and consistency that is in line with results out-
lined in experiment 1.

The results depicted in Table 7 show an uneven dis-
tribution of the candidate-sets. In a relatively balanced
candidate-set scenario, our approach works well as can
be seen in the first experiment and in the proximity
only scenario. However, even though in extreme cases
(proximity plus name) the Majority Class Classifier

http://sms.risis.eu/assets/pdf/metrics-link-network.pdf
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Majority Class Classifier (Baseline) vs Network Metrics (eQ)
Ma jorityClassClassi f ier

NetworkMetrics

GT = Ground Truth GTP = Ground Truth Positive GTN = Ground Truth Negative

50m geo-only GT=92 GTP=30 GTN =62 F1 : −0.693 ACC: 0.674
0.75 NPV: 0.674

0.915

500m geo-only GT=249 GTP=66 GTN =183 F1 : −0.682 ACC: 0.735
0.779 NPV: 0.735

0.978

2km geo-only GT=198 GTP=61 GTN =137 F1 : −0.803 ACC: 0.692
0.859 NPV: 0.692

0.966

50m geo+names GT=31 GTP=27 GTN =4 F1 : 0.931
0.826 ACC: 0.871

0.742 NPV: −0.333

500m geo+names GT=155 GTP=148 GTN =7 F1 : 0.977
0.909 ACC: 0.955

0.839 NPV: −0.179

2km geo+names GT=342 GTP=322 GTN =20 F1 : 0.97
0.912 ACC: 0.942

0.845 NPV: −0.238

Table 7
Network-metric (eQ) result versus the MCC baseline.

takes the lead, the network metric does not fall far be-
hind.

As in the first experiment, for further evaluation, we
extracted a sample based on ILNs in which at least one
organisation originates from the Netherlands. Out of
the 107 sampled ILNs, the domain expert deviated from
the first evaluation in only 1 case.

8. eQ Put to a Ranking Test

The authors of the recently published paper [16]
compared seven algorithms for clustering entities from
multiple sources at different string similarity thresh-
olds. They evaluated the quality of the clusters that
these algorithms generated on three gold standard
datasets16, one manually built (referred here as GT1),
and two syntactically generated. We take the evalua-
tion results from [16] on GT1, and then test if our eQ
score is able to correctly predict the ranking of the al-
gorithms as found in the reported evaluation. In con-
trast to the earlier experiments (where we use eQ to
assess the quality of clusters), we are now testing if
eQ can be used to correctly rank different clustering
algorithms across datasets.

A slightly complicating factor is that the evaluation
in [16] relies on F1 values computed on true pairs of
entities found. Since eQ evaluates entire clusters (i.e.
sets of pairs of entities) of size greater than 2 (S > 2),
we recompute the F1 values based on true clusters
found (S > 2) and plot these performance measures
for each algorithm in Figure 6 as Baseline. The result-
ing plot is comparable to the original one in [16]. We
then ran the eQ metric over the outputs of each algo-
rithm at the same thresholds, displayed in Figure 6 as
eQ Evaluation.

16https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer

The results show that the ranking of the algorithms
by eQ (eQ Evaluation) does not significantly devi-
ate from the recomputed ranking of the algorithms as
found in [16] (Baseline). To quantitatively support our
findings, we have computed the F1-based rankings er-
ror difference between the baseline and the four eQ
metrics and display it in Figure 7. Zoomed in, Figure 7
shows a deviation of ±0.96 depending on the thresh-
old (x axis) under which the clustering algorithms are
evaluated. As illustrated, Figure 7 shows that, over-
all, the ranking error increases with the increase of
the threshold, indicating that it becomes harder to dis-
criminate between algorithms as the string similarity
is set to tolerate less errors. Overall, the result illus-
trates the usefulness of the eQ metric as it demonstrates
its potential to rank (clearly dissociate) clustering al-
gorithms whenever they show significant performance
differences.

9. Refinements of eQ Using Link Confidence
Scores Produced by Entity Resolution
Algorithms

Given that all links have been searched for, the ab-
sence of a link in an ILN network is shown to cripple the
ideal structure of the network as it increases the chance
for a longer diameter and the appearance of bridges,
and it reduces the density of the network. These char-
acteristics are thereby used by the eQ metric as a po-
tential evidence for tagging as GOOD or BAD the net-
work as a whole. Furthermore, the metric assumes a
link correctness confidence score of 1 for all links in
the network although it is not the case in the realm of
entity matching unless a perfect match is found. Entity
matching algorithms often produce pairwise matched
entities with a confidence score in the interval [0, 1] as
a quantitative justification for the pair to be the same.

https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer
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Fig. 6. Evaluation of eQ on the ranking from [16]
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Fig. 7. Ranking deviations

So far, we strictly estimate the quality of an iden-
tity network based on the cost of its missing links and
thereby its structure. Now, the wonder lies in how to
capture the toll of an existing link on estimating the
quality of the network given that the link has a confi-
dence score below one? In other words, is the strength
of a identity link relevant in estimating the quality of
the network using its structure?

To understand the importance of the strength of
links in estimating the quality of an identity network
using its structure, we propose three new network qual-
ity estimation metrics (eQmin , eQavg and eQw ) that in their
respective ways combine structure and link strength
for network quality estimations. We evaluate these al-
ternative metrics on the same ground truths used in
sections 6 to 8, and compare each one of them to the
original eQ metric based on their respective F1 scores
in these various scenarios.

Before diving into the intricacies of link strength in-
tegration, we first start with the formalism that pave
the way for understanding it.

A weighted, undirected, connected (WUC) graph17 is
defined as G = (V, L, w) where V is the set of nodes, L is
the set of links or edges, and w : L 7→ R+ is a function
mapping edges ei = (vi−1, vi) ∈ L where vi ∈ V f or i ∈ [1, k],
unordered pair of vertices, to their decimal values w(ei)

in the interval [0, 1]. The weight of sub-graph H ⊂ G is
w(H) =

∑
e∈L(H)

w(e) where L(H) are the edges of H.

For two vertices a and b ∈ V, a path between a and b is
a sequence π = (e1, e2, ..., ek) where ei = {vi−1, vi} ∈ L and
vi ∈ V for i ∈ {1, ..., k} = [1, k], with vo = a and vk = b. Π(a, b)

denotes the set of all paths from a to b. The geodesic
distance and weighted geodesic distance between a and
b are respectively given by eqs. (1) and (2).

dist(a, b) = |min(π ∈ Π(a, b))| (1)

distw(a, b) = min
π∈Π(a,b)

∑
e∈π

w(e) (2)

17We interchangeably refer to the undirected identity graph as network or
cluster.
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and the diameter and weighted diameter of G are given
by eqs. (3) and (4)

diam(G) = max{dist(a, b), a, b ∈ V} (3)

diamw(G) = max{distw(a, b), a, b ∈ V} (4)

We now have the prerequisites in place for present-
ing three hybrid ways of integrating link strength into
the proposed network quality estimation metric.

9.1. Weakest Link

In this approach, we define eQmin as the metric to esti-
mate the quality of an identity network G based on both
the structure of G and the strength of the links compos-
ing G. eQmin is computed as the product of the original
eQ score and the weakest link strength in the network
as given by eq. (5).

eQmin = eQ × min
e∈L(G)

w(e) (5)

9.2. Link Average

Compared to the first weight integration approach,
here, we simply replace the weakest link strength of G

by the average of all strengths in G to obtain eQavg as
provided in eq. (6).

eQavg = eQ ×

∑
e∈L(G)

we(ei)

|L(G)|
(6)

9.3. Rooted Link

As opposed to the first two approaches where we in-
tegrate the link strength without modifying the initial
eQ computation, here, we do the opposite. We use the
link confidence score for computing each sub-metric
score (bridge - diameter and closure). Doing so, the
link confidence score is now more rooted into the ini-
tial eQ formulation, leading to its equation adjustment.
The detail on how the eQ formula is adjusted for in-
tegrating the link’s strength leading to Equation 10 is
provided in the next paragraphs.

Weighted Bridge Metric. Given an identity graph G
with n nodes, the idea here is to capture the soften-
ing of the bridge metric measure as the strength of the
edges composing the set of bridges in G weaken. This

is formulated in Equation 7: the weaker the strength of
a bridge gets, the less it negatively affects the quality
of an identity network.

n′bw
(G) = max(nbw(G), sigmoid(w(B))) (7)

where B is defined as sub-graph(s) of G whose edges are

the bridges in G and nbw (G) =
w(B)

n− 1
=

∑
e∈L(B)

w(e)

n− 1

Weighted Diameter Metric. Defined in Equation 8, the
weighted diameter metric includes strength by elon-
gating the unweighted geodesic distance of G as the
edges composing it weaken in strength. In other words,
the smaller the strength, the longer the diameter gets.
This allows us to predict the decrease of the qual-
ity of an identity network whenever its diameter in-
creases. It furthermore allows to increase the decrease
of the quality of the identity network with respect to
the weakening of the strength of each edge composing
the network’s diameter.

n′dw
(G) = max(ndw(G),

sigmoid(eDiam(G)− 1))
(8)

where eDiam(G) = 2diam(G)− diamw(G)− 1

and ndw (G) =

1 if eDiam(G) > n− 2

eDiam(G)
(n−1)−1

For a better understanding of this measure, let as-
sume two networks A and B with three edges. A with
3 nodes is a complete network and B with 4 nodes is
a star network. For each network, the edges’ strength
are respectively w(e1) = 0.9, w(e3) = 0.5 and w(e3) = 0.3.
Regardless of the strength in each network, the un-
weighted diameter metric of A and B are respectively
nd(A) = 1−1

3−2 = 0 and nd(B) = 2−1
4−2 = 0.5 while their weighted

diameter metrics are ndw (A) = 2−0.3−1
3−2 = 0.7

1 = 0.7 and
ndw (B) =

4−(0.3+0.5)−1
4−2 = 2.2

2 = 1. This example illustrates
that the weaker the edges of a diameter, the longer the
weighted diameter.

Weighted Closure Metric. is computed by normalizing
of the sum of the weighted edges of G as provided in
Equation 9.

ncw(G) = 1− w(G)
1
2 n(n− 1)

= 1−

∑
e∈L

w(e)

1
2 n(n− 1)

(9)
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We are now able to compute a weighted eQ as defined
in Equation 10. Observe that each of the three met-
rics outputs a score in the interval [0,1]. Therefore, the
overall measure is also in the interval [0,1].

eQw(G) = 1−
n′bw

(G) + n′dw
(G) + ncw(G)

3
(10)

10. Weighted Metrics to the Test

Evaluation in noiseless settings. We now re-run the
experiments conducted in section 6 using all metrics,
namely eQ, eQmin , eQavg and eQw for estimating the qual-
ity of clusters of varying sizes: (a) size 5 to 10 for
non expert ground truth and (b) size 3 to 10 for Dutch
expert in Figure 8. The goal of these experiments is
to find out which of the metrics performs well overall
given the range of cluster sizes. This is done by com-
paring the metrics respective performances on the ba-
sis of their F1 measures.
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Fig. 8. Comparative evaluation in noiseless settings by a non expert
(8.a) and Dutch domain expert (8.b)

Although in the expert evaluation, eQmin and eQavg

performed equally bad at least once, the observations
show that, for both experiments, two main conclusions
can be drawn: (1) eQmin seams unreliable while (2) the
rest of the metrics appear to perform alike, giving no
solid indication on whether to combine structure and
link confidence score.

Evaluation in noisy settings. Again here, we re-run
the same experiments conducted in section 7 only now
using all metrics. This, with the goal of comparing
the metrics against each-other for further understand-
ing the effect(s) of incorporating the link strength in
the structure-based eQ metric. Figure 9 again shows
no solid evidence for being in favour of structure-
based metric or “hybrid-based metrics” (structure +
strength). The figure also shows that, whenever the
identity network is composed of links with only confi-
dence score of 1 (geo-similarity only), all approaches
produce the same estimation score.
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Fig. 9. Comparative evaluation by a domain expert in noisy settings

Evaluation for ranking clustering algorithms. Us-
ing data from [16], we show in Figure 10 the results of
an experiment where we compare the ranking poten-
tial of each approach (eQ, eQmin , eQavg and eQw ) for es-
timating the quality of an identity network against the
algorithm rankings computed by Saeedi et al. (base-
line). Bare in mind that here, we not only look at the
performance in terms of F1 measure but also in terms
of ranking capability.

At first, the results show that all approaches appear
to rank the algorithm almost equally. However, the de-
viation in terms of F1 score for the eQmin metric appears
quite off compared to the baseline as it shifted consid-
erably below the target’s measures. With eQavg , the pre-
vious F1 measures move up but not yet close enough
to those of the target. In the last option, which imple-
ments eQw (Equation 10), the result is comparable to
the target ranking and to the eQ ranking as well, lead-
ing to a first judgement that the last two approaches
perform better than the other two. According to the vi-
sualisation provided by Figure 10, eQ and eQw appear
to be qualitatively comparable in performance with re-
spect to the F1 measures.

With a quantitative comparison provided by Table 8,
the eQw metric, followed by eQ, appear to deviate from
the baseline far less on average than the remaining ap-
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Fig. 10. Evaluation of eQ on the ranking from [16]

proaches. This later observation shyly helps breaking
the tie between the two metrics and indicates that eQw

is indeed the way to go as it provides an additional
flavor that increases its information gain and thereby
brings the measure closer to expressing “how a net-
work structure can be accurately translated into esti-
mated quality”.

Discussion. Although our last experiment seams in
favour of the eQw metric, truth is, we need more exper-
iments for making a convincing case on whether one
of the hybrids methods is worth the extra computation
compared to the original metric, or whether a specific
hybrid method works best in some particular settings.
For example, we suspect that in settings where match-
ing algorithms are rather permissive, there should be
compelling reasons for the link strength to be included.
Perhaps, in this situation where link confidence could
be assigned a score in the range [0.3, 1] for example,
even eQmin could turn up stable. This, because, in our
scenarios, we filter the potentially good links prior to
estimating the quality of the network they form. Now,
what if this task is given to the metric?

11. Conclusion and Future Work

11.1. Conclusion

Entity resolution is an essential step in the use of
multiple datasets on the semantic web. Since entity res-

olution algorithms are far from being perfect, the links
they discover must often be human validated. Because
this is both a costly and an error-prone process, it is
desirable to have computer support that can accurately
estimate the quality of links between entities.

In this paper, we have proposed a metric for pre-
cisely this purpose: it estimates the quality of links be-
tween entities from multiple datasets, using a combina-
tion of graph metrics over the network (> 2) formed by
these links. Our metric captures the intuition that high
redundancy in such a linking-network correlates with
high quality. Furthermore, we have proposed hybrid-
metrics that combine structure and link confidence
score for the same purpose of estimating the quality of
links between entities. The intuition here is an incre-
mental improvement of the original metric by evaluat-
ing the integration or not of link strength in its estima-
tion computation.

We have tested our metric in three different sce-
narios. Using a collection of six widely used social
science datasets in the first two experimental set-
tings, we compared the predictions of link quality by
our metric against human judgements on hundreds of
networks involving thousands of links. In both eval-
uations, our metric correlated strongly with human
judgement (0.806 6 F1 6 1), and it consistently beats
the Majority Class Classifier baseline (except in cases
where this is numerically near impossible because of a
highly skewed class distribution). In the experimental
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THRESHOLD 0.75 0.80 0 .85 0.90 AVERAGE

CLIP BASELINE 0.961 0.949 0.920 0.722 0.888

eQ 0.011 0.017 0.031 0.096 0.039

eQmin 0.256 0.248 0.224 0.096 0.206

eQavg 0.032 0.028 0.033 0.096 0.047

eQw 0.013 0.016 0.031 0.096 0.039

CCPIVOT BASELINE 0.754 0.836 0.833 0.624 0.762

eQ -0.039 -0.017 -0.002 0.03 -0.007

eQmin 0.159 0.192 0.181 0.03 0.141

eQavg -0.029 -0.007 -0.001 0.03 -0.002

eQw -0.041 -0.019 -0.002 0.03 -0.008

CENTER BASELINE 0.859 0.846 0.801 0.55 0.765

eQ 0.007 0.016 0.02 0.033 0.019

eQmin 0.25 0.24 0.21 0.033 0.183

eQavg 0.023 0.02 0.021 0.033 0.024

eQw 0.008 0.012 0.02 0.033 0.018

CONCOM BASELINE 0.671 0.802 0.847 0.696 0.754

eQ -0.023 -0.022 0.01 0.086 0.013

eQmin 0.171 0.188 0.198 0.086 0.161

eQavg -0.01 -0.011 0.012 0.086 0.019

eQw -0.023 -0.022 0.01 0.086 0.013

MCENTER BASELINE 0.738 0.827 0.847 0.64 0.763

eQ -0.022 -0.017 0.006 0.047 0.004

eQmin 0.181 0.193 0.192 0.047 0.153

eQavg -0.008 -0.023 -0.053 0.047 -0.009

eQw -0.023 -0.017 0.006 0.047 0.003

STAR1 BASELINE 0.722 0.84 0.864 0.702 0.782

eQ -0.008 0.003 0.024 0.09 0.027

eQmin 0.186 0.214 0.209 0.09 0.175

eQavg 0.006 0.014 0.026 0.09 0.034

eQw -0.009 0.002 0.024 0.09 0.027

STAR2 BASELINE 0.846 0.877 0.857 0.625 0.801

eQ 0.003 0.007 0.008 0.013 0.008

eQmin 0.211 0.222 0.2 0.013 0.162

eQavg 0.021 0.018 0.009 0.013 0.015

eQw 0.002 0.006 0.008 0.013 0.007

Table 8
Comparing the ranking capability of each of the eQ approaches.
For each algorithm, we compare the baseline F1 scores to those of an eQ

approach, and only report the difference. Then, for each approach, we compute
by how much the eQ metric scores under scrutiny deviate on average from
those of the baseline. Using the later average, we compare the eQ approaches
against each other.

condition where we deliberately constructed noisy and
non-noisy link-networks, we showed that our metric
is in general able to exclude poor networks in noisy

environments and to include good networks in noise-
less environments. With the last experiment, we also
show that our metric is able to rank entity resolution
algorithms on their quality, using an externally pro-
duced dataset and corresponding ground truth. All this
amounts to testing the eQ metric on a dozen different
algorithms and parameter settings.

After showing that, across these different exper-
imental conditions, our quality metric consistently
agrees with human judgement, we re-run all experi-
ments on both the eQ and hybrid metrics. The results
suggest that the hybrid methods seam to have an effect
on estimating the quality of an identity network, only it
is yet unclear in what specific condition(s) these met-
rics bear fruit (do significantly well as opposed to eQ).
This yells for more experiments on the matter.

To encourage replication studies and extensions to
our work, all the datasets used in these experiments are
available online.

11.2. Future work

Networks of size two. The presented metrics are
shown to work well in clusters of size bigger than two.
Finding ways in which networks of size two can be
validated using the eQ metrics would be an added value
as the amount of clusters of such size is not negligible.

Dynamic link adjustment. The current work ideally
takes clustered ILNs networks as input. However, when
such networks are not provided, it simply takes the
output of an entity resolution algorithm as given, ap-
plies a simple clustering algorithm (section 2) and tries
to estimate the quality of that output. A closer cou-
pling between our metric and an entity resolution al-
gorithm would allow the algorithm to dynamically ad-
just its output based on the eQ quality estimates. Sim-
ilarly, embedded in a user-interface, the score of our
metric could help the user to give the final judgement
to accept or reject an ILN.

Parameter tuning. In this work, we empirically de-
termined the 1.6 sigmoid hyper-parameter, the discrete
eQ intervals and the string similarity thresholds. Exper-
imenting on fine-tuning these parameters using the cur-
rent ground truths and data from other domains would
help understanding how and when different choices
could lead to an increase or a decrease of the metrics’
predictive power.
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