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Abstract. Although the link prediction problem, where missing relation assertions are predicted, has been widely researched,
error detection did not receive as much attention. In this paper, we investigate the problem of error detection in relation assertions
of knowledge graphs, and we propose an error detection method which relies on path and type features used by a classifier for
every relation in the graph exploiting local feature selection. Furthermore, we propose an approach for automatically correcting
detected errors originated from confusions between entities. Moreover, we present an approach that translates decision trees
trained for relation assertion error detection into SHACL-SPARQL relation constraints. We perform an extensive evaluation on
a variety of datasets comparing our error detection approach with state-of-the-art error detection and knowledge completion
methods, backed by a manual evaluation on DBpedia and NELL. We evaluate our error correction approach results on DBpedia
and NELL and show that the relation constraint induction approach benefits from the higher expressiveness of SHACL and can
detect errors which could not be found by automatically learned OWL constraints.
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1. Introduction

Many of the knowledge graphs published as Linked
Open Data have been created from semi-structured or
unstructured sources. The sheer size of many of such
knowledge graphs, e.g.: DBpedia, NELL, Wikidata,
YAGO, do not allow for manual curation, and, instead,
require the use of heuristics. Such heuristics, in turn,
allow for the automatic or semi-automatic creation of
large-scale knowledge graphs, but do not guarantee
that the resulting knowledge graphs are free from er-
rors. In addition, Wikipedia, which serves as source
for DBpedia and YAGO, is estimated to have 2.8%
of its statements wrong [68], which add up to the
error caused by the extraction heuristics. Therefore,
automatic approaches to detect wrong statements are
an important tool for the improvement of knowledge
graph quality.

Incompleteness is another major problem of most
knowledge graphs. Automatic knowledge graph com-
pletion has been widely researched [45], with a vari-

ety of methods proposed, including embedding mod-
els. Although such methods can also be trivially em-
ployed for error detection, their performance has not
yet been extensively evaluated on the task.

Many existing large-scale error detection methods
rely exclusively on the types of subject and object
of a relation [13, 51, 52], and try to spot violations
of the underlying ontology and/or typical usage pat-
terns. In the example depicted in Fig. 1, the error
president(Colin Powell, Bush (Illinois)) could be
identified, since the entity Bush (Illinois) is of type
city, but the relation president does not allow for
cities in the object position (either by an explicit re-
striction in the ontology or by less formal conven-
tions).

While types can be a valuable feature, some knowl-
edge graphs lack this kind of information, have only in-
complete type information, or have types which are not
very informative. Moreover, some errors might con-
tain wrong instances of correct types. For example, the
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partyparty

            party

Fig. 1. Example excerpt from DBpedia. Two erroneous president re-
lations, indicated by brackets and dashed lines, have been inciden-
tally added.

fact president(Hillary Clinton, George W. Bush),
which is wrong, could not be detected with such an
approach, because the schema is not violated: the
president relation in this example expects persons
both in the subject and object position, which is re-
spected in this example.

In knowledge graph completion, paths in the graph
have been proven to be valuable features [18, 26]. In
the example depicted in Fig. 1, to predict whether a
person a is member of a party b (party(a,b)), one
important feature is whether the president a serves
for is a member of party b, i.e., president(a,X) →
party(X,b). Generalizing for any pair of entities in a
given relation, we can consider president → party
as a binary path feature to predict new edges in the
knowledge graph Typically, in knowledge graph com-
pletion, such paths are then exploited to predict miss-
ing relation assertions [17, 35]. For error detection,
these features can complement the type features. How-
ever, searching for interesting paths for all the relations
in a knowledge graph can be a challenging task, espe-
cially in datasets with many relations.

Once erroneous triples in a knowledge graph are de-
tected, there are various ways of how to proceed. The
simplest approach is to delete them, however, in some
cases the erroneous relation assertions can be corrected
instead. One common source of errors is the confusion
between instances of a similar names [48, 52], as in the
(artificial) example in Fig. 1, where George W. Bush
was confused with Bush (Illinois).1

By exploiting such cases, it is possible to also reduce
incompleteness while reducing noise. This also helps

1An actual example from DBpedia is the fact formerTeam(
Alan_Ricard, Buffalo_Bill), which originates from an error in
Wikipedia: instead of referring to the NFL team Buffalo_Bills,
the link in Wikipedia was erroneously pointing to the person
Buffalo_Bill.

reduce the search space of possible facts a knowledge
graph could be enriched with. The number of pos-
sible relation assertions grows quadratically with the
number of instances nc = n2i nr − n f , where ni is
the number of instances, nr the number of relations
and n f the number of existing facts in the graph. For
large datasets such as DBpedia, Wikidata and YAGO,
computing the confidence score of all these facts is
challenging. While pruning possible facts which vio-
late ontology constraints, especially domain and range
restrictions of relations, can significantly reduce the
search space, the problem is still very challenging.
To illustrate the size of the search space, in DBpedia
(2016-10) nc ≈ 4.4 × 1017 facts; when filtering those
triples which violate the domain and range restriction
the number is reduced to nc ≈ 2.8× 1017.

When correcting wrong facts originated from con-
fusions between entities, the search space is composed
by the entities which could have been confused with
the subject and the object. In many cases, the source
of such confusions are entities with the same or simi-
lar names. Hence, in order to find candidates entities,
we can e.g., exploit Wikipedia disambiguation links
(which identifies entities which are often confused
with each other), or use approximate string matching.

Another interesting field of research is the deriva-
tion of higher level patterns from the errors found in
a knowledge graph. There are two major motivations:
(1) for validating the results of error detection, a user
can inspect a small number of patterns instead of a
large number of individual mistakes [52]. Furthermore,
given that errors follow typical patterns, (2) a set of
higher level patterns can be directly deployed in the
knowledge graph creation process, or even for live up-
dates.

The problem of finding higher level patterns is ad-
dressed by ontology induction approaches, which nor-
mally represent relation constraints in the form of
RDFS domain and range restrictions. Since designing
a good ontology can be a challenging task, there has
been a lot of work on learning ontologies from data,
using methods such as inductive logic programming
(ILP) [8] or association rule mining [64] for automati-
cally learning ontology axioms.

One of the main problems with these methods is
the restricted expressiveness of the learned ontolo-
gies. Modern knowledge graphs are often complex,
and constraints may require the use of more expres-
sive axioms which cannot be learned by current state-
of-the-art methods. Furthermore, the intended and the
actual use of a property often diverge, leading to situ-
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ations where a single ontology can hardly describe the
different, often competing usages of a property.

One example for the latter case is the president
in DBpedia. The relation is originally conceived to
be used to define the person who presides an orga-
nization, hence in DBpedia’s ontology it has the do-
main Organisation and range Person. However, the
relation is also frequently used to define the president
which a member of the government served, as in Fig-
ure 1. In order to allow the co-existence of both usages,
the domain of the relation should be more flexible ac-
cepting Organisation or Person. One possible solu-
tion using RDFS domain and range axioms is to use
the most specific common parent of the two classes,
that is Agent, however, that also allows subjects to be
of the classes Deity, Family, which would be undesir-
able. Another possible solution is to specify the union
of Organisation and Person as the domain or range of
a relation, however, using such disjunctions can dras-
tically increase the reasoning complexity [21], which
can be a major design factor for the implementation on
large-scale knowlegde graphs [53], in particular in live
settings.

In the example above, path constraints can be use-
ful for describing the relation. In DBpedia, both mem-
bers of the government and presidents have successor
relation assertions indicating the person who occupied
their respective positions after them. We know that a
member of the government should have the same pres-
ident as its predecessor, or the successor of the presi-
dent of its predecessor. The former case happens when
a president has, e.g., different secretary of states dur-
ing its government, and the latter when the secretary
of state is the first nominated by a new president. This
can be represented with the disjunction of two graph
path constraints:2

president(a,b)→ (successor(c,a) ∧ president(c,b)) ∨
(successor(c,a) ∧ president(c,d) ∧
successor(d,b))

We assume that each variable only occurs once in
a path, i.e., the underlying patterns are acyclic. How-
ever, as in the example above, constraints may be for-
mulated using multiple paths, which allows also for
validating patterns of that kind.

2While disjunction can be problematic for the complexity of gen-
eral purpose OWL reasoners, data validation with disjunctive pat-
terns can be performed rather efficiently.

With the method we propose in this paper, we are
able to learn such complex logical expressions, which
subsume path patterns and simple domain and range
restrictions. The patterns are expressed in the language
SHACL, which is particularly designed for data vali-
dation.3

This paper addresses the following research ques-
tions:

RQ1: How can we efficiently detect wrong assertion
errors?

We propose a hybrid approach called PaTyBRED
(Paths and Types with Binary Relevance for Error De-
tection), which incorporates type and path features into
local relation classifiers which predict whether a pair
of subject and object belongs to a relation or not.

RQ2: How can we describe the error detection pro-
cess and integrate it into the knowledge graph?
We propose a method for translating a PaTyBRED

model learned with decision trees as classifiers into
SHACL relation constraints. SHACL4 (Shapes Con-
traint Language) is a versatile constraints language for
validating RDF graphs, with which we are able to gen-
erate expressive and flexible relation constraints and
better handle incomplete and noisy datasets.

RQ3: How can we automatically correct some errors
originated from confusions between entities?
We propose CoCKG, an automatic correction ap-

proach which identifies and resolves relation assertion
errors caused by confusion between instances. The ap-
proach relies on error detection methods as well as
type predictors to asses the confidence of the corrected
facts. It uses approximate string matching and exploits
both searching for entities with similar IRIs as well as
Wikipedia disambiguation pages (if available) to find
candidate instances for correcting the facts.

This paper is an extension of [37], which addresses
the detection of relation assertion errors problem, and
[36], which introduces the idea of correction of con-
fusions between entities. As part of the extension,
we propose the learning of SHACL relation con-
straints, and perform evaluations on additional knowl-
edge graphs.

3https://www.w3.org/TR/shacl/
4https://www.w3.org/TR/shacl/
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In the experiments, we perform an extensive com-
parison of our PaTyBRED with state-of-the-art error
detection and knowledge completion methods, and we
conduct a manual evaluation of our approach on DBpe-
dia and NELL, as well as evaluate the scalability using
synthetic knowledge graphs. Furthermore, we manu-
ally evaluate the suggestions made by CoCKG, and we
evaluate the generated SHACL relation constraints and
perform another manual evaluation comparing them
with domain and range restrictions induced with Sta-
tistical Schema Induction [64].

2. Problem Definition

We define a knowledge graphK = (T ,A), where T
is the T-box andA is the A-box containing relations as-
sertions AR, type assertions AC , and literal assertions
AL, where the latter are mentioned for the sake fo com-
pleteness, but not further considered in this course of
this work. We define NC as the set of concepts (types),
NR as the set of relations and NI as the set of indi-
viduals (entities which occur as subject or object in
relations). The set of relation assertions is defined as
AR = {r(s, o)|r ∈ NR ∧ s, o ∈ NI} and the set of type
assertions as AC = {C(s)|C ∈ NC ∧ s ∈ NI}. It is
important to note that on RDF data AR corresponds to
links between entities (i.e., owl:ObjectProperty), and
AC corresponds to rdf:type assertions.

The problem addressed by research question RQ1
is the detection of erroneous relation assertions in the
set AR. In practice, an approach for erroneous rela-
tion assertion detection is given a knowledge graph
containing errors, and creates a function AR → [0, 1],
which assigns a score to the model. Using those scores,
we reformulate the error detection as a ranking prob-
lem, i.e., erroneous relations should be ranked consis-
tently higher than correct ones. In order to make the
approach as versatile and applicable to as many knowl-
edge graphs as possible, we do not use any other infor-
mation, such as textual or numerical literals, or exter-
nal knowledge sources. The problem can be defined as
relation assertions error detection on internal features
according to [49].

The problem addressed by research question RQ2
is the induction of relation constraints from data. That
is, instead of trying to directly improve AR, the objec-
tive is to learn relation constraints in order to extend
the T-box T . A better quality T-box might be able to
more effectively detect inconsistencies in the A-box,
indirectly improving it at as a consequence, at the same

time providing reusable and human interpretable arti-
facts as a result.

The problem addressed by research question RQ3 is
the identification and correction of errors generated by
confusions between entities. In this paper, we assume
that errors originate from a confusion in either the sub-
ject or object entity. That is, an originally correct re-
lation assertion r(s, o) /∈ AR is not only missing in
the knowledge graph, but represented as an incorrect
fact r(s, o′) or (s′, o), such that s′ 6= s, o′ 6= o, and
s, o, s′, o′ ∈ NI . The goal is to identify such cases and
find the originally correct r(s, o) given the corrupted
triple r(s, o′) or r(s′, o) and the A-box, i.e.AR andAC .

3. Related Work

The works related to this paper can be divided into
two parts: detection and correction of relation assertion
errors (related to RQ1 and RQ3), which includes er-
ror detection and knowledge completion models, and
ontology learning, which includes works which induce
ontology axioms from data, more specifically relation
constraints (related to RQ2). In the next subsections
we discuss each part in more details.

3.1. Detection of Relation Assertion Errors

The problem of relation assertion error detection in
knowledge graphs has been intensively researched by
the Semantic Web community. As discussed in the in-
troduction, there are erroneous relation assertions that
are at the same time a violation to the ontology or T-
Box of the knowledge graph (e.g., referring to a city
instead of a sports team), while others are not (e.g., re-
ferring to one person instead of another). Apart from
synonyms, a lack of domain and range restrictions of
relations or too general restrictions is one of the main
causes of problems of the latter category. Most re-
cent methods proposed for cleansing large-scale LOD
knowledge graphs, such as DBpedia and NELL, there-
fore do not rely solely on the schema, but use char-
acteristics of the knowledge graph’s A-box to detect
erroneous assertions. A detailed survey including link
prediction and error detection methods for knowledge
graphs can be found in [49].

SDValidate [51] exploits statistical distributions of
types and relations, and [13] applies outlier detection
on type-based entity similarity measures to detect er-
roneous relation assertions. In more detail, SDValidate
computes a distribution of object types for a given
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Fig. 2. Example distribution of the object types of the DBpedia prop-
erty director

property. For a given relation assertion x p o, SDVal-
idate compares all the types of o to the distribution of
p, and computes a confidence score based on the de-
viation of those types from the distribution. An exam-
ple for such a distribution is shown in figure 2. A re-
lation assertion with property director and an ob-
ject which has Agent and Person as types would
receive a high confidence, whereas an assertion with
an object of a different types (e.g., a company, for ex-
ample a movie studio) would receive a lower score.
These methods can effectively detect errors on DBpe-
dia, however they require the existence of informative
type assertions. Moreover, more complex errors con-
taining wrong entities with correct types cannot be de-
tected.

Knowledge graph completion (KGC) is a field
highly related to error detection. Despite addressing
a different problem, many KGC methods can also be
used on the problem addressed in this paper. This kind
of methods can be divided into graph-based, which re-
lies on features which can be directly observed in the
graph, and embedding methods, which learn latent fea-
tures that represent entities and relations in an embed-
ding space.

The Path Ranking Algorithm (PRA) [26] has shown
that a logistic regression classifier using path features
generated with random walks can be used for learning
and inference in KGs and outperforms N-FOIL horn-
clause inference on NELL [27]. PRA learns HORN
clauses to predict relations, e.g., citizenO f (X,Y) ←
livesIn(X,Z), country(Z,Y). To scale to large knowl-
edge graphs, random walks are used to generate the
path features instead of attempting to fully enumerate
the search space.

In later works, the PRA approach has been improved
with Sub-graph Feature Extraction (SFE) [18], which
also simplifies aspects of PRA. For instance, while

PRA uses real valued features which correspond to the
probabilities to reach o from s with a given path, SFE
simply uses binary features which indicate if o can be
reached from s or not. SFE not only reduces runtime
by an order of magnitude when compared with PRA,
but it also improves the qualitative performance.

In the recent years, knowledge graph embedding
models, i.e., projections of knowledge graphs into
lower-dimensional, dense vector spaces, have received
a lot of attention [66]. Several different models have
been developed for the knowledge graph completion
problem and have brought improvements in perfor-
mance.

There is a plethora of different embeddings mod-
els for knowledge graphs. One of the earliest embed-
ding models is RESCAL [47], which performs ten-
sor factorization on the knowledge graph’s adjacency
tensor, with the resulting eigenvectors corresponding
to the entity embeddings and the core tensor the rela-
tions matrices. TRESCAL [10] extends RESCAL by
exploiting entity types as well as domain and range re-
strictions of relations to improve the data quality and
speed up the tensor factorization process. Neural Ten-
sor Model (NTN) [60] represents each relation as a bi-
linear tensor operator followed by a linear matrix op-
erator. Other early embedding models include Struc-
ture Embeddings (SE) [5], Semantic Matching Energy
(SME) [3] and Latent Factor Model (LFM) [24].

Translation-based embeddings represent relations
as translations between subject and object entities.
TransE [4] was the first translation-based model and
entities and relations share the same embeddings
space. In TransH [67] and TransR [32] the transla-
tions are performed in the relations space, which is dif-
ferent from the entities space, and require projection
matrices to map the entities onto the relations space.
TransG [69] and CTransR [32] incorporate multiple
relation semantics, where a relation may have multi-
ple meanings determined by the entities pair associ-
ated with the relation. PTransE [31] extends TransE by
considering relation paths as regular relations, which
makes the number of relations considered grow expo-
nentially.

Other approaches include DistMult [70], which uses
dot product instead of translations to compute the triple
scores. HolE [46] used circular correlation as an op-
erator to combine the subject and object embeddings,
Complex Embeddings [63] represents a triple score as
the hermitian dot product of the relation, subject and
object embeddings, which consist of real and imag-
inary vector components. ProjE [59] formulates the
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knowledge graph completion as a ranking problem,
and it optimizes the ranking of candidate entities col-
lectively. It is reportedly one of the best performing
KGC methods.

Some embedding models, such as RDF2Vec [57]
and Global RDF vectors [11], are not conceived for
the KGC task and cannot generate triple scores. Thus,
they cannot be directly used for error detection in the
same way the other models mentioned earlier can, but
in principle, they can serve as feature generation mech-
anisms for training relation scoring models.

Recently some works have raised doubts about the
performance of new KGC embeddings models. Most
of the experiments rely exclusively on two datasets
(WN18 and FB15k), which contain many inverse re-
lations [62]. Therefore some of the models may ex-
ploit this characteristic and not necessarily perform as
well on other KGs. It has also been shown that the
presence of relations between candidate pairs can be
an extremely strong signal in some cases [62]. More-
over, recent works showed that a hyperparameter tun-
ing has been overlooked and that a simple method,
such as DistMult, can achieve state-of-the-art perfor-
mance when well tuned [25].

3.2. Correction of Detected Errors

As mentioned in the previous subsection, there are
several different approaches for link prediction and
some for error detection. It is important to note that
none of those approaches mentioned address the prob-
lem of covering the candidate triples space (of size
nc as discussed in the introduction). Our approach, on
the other hand, exploits the assumption that erroneous
facts often have a corresponding correct fact in order
to reduce that space. Error detection approaches, such
as SDValidate and PaTyBRED, focus on the detect-
ing of already existing erroneous triples. It has been
shown that state-of-the-art embeddings perform worse
than PaTyBRED in the error detection task [37].

Rule-based systems, such as AMIE [17], cannot as-
sign scores to arbitrary triples. However, they could be
used to restrict the nc search space by identifying high
confidence soft rules and using the missing facts from
instances where the rule does not hold as candidates.
Combining them with previously mentioned KG mod-
els would be an interesting line of reasearch, however,
it is out of the scope of this paper.

Wang et al. [65] studied the problem of erroneous
links in Wikipedia, which is also the source of many
errors of DBpedia. They model the Wikipedia links as

a weighted directed mono-relational graph, and pro-
pose the LinkRank algorithm which similar to PageR-
ank, but instead of ranking the nodes (entities), it ranks
the links. They use LinkRank to generate candidates
for the link correction and use textual features from the
description of articles to learn a SVM classifier that
can detect errors and choose the best candidate for cor-
rection. While this is a closely related problem, which
can help mitigate the problem studied in this paper,
their method cannot be directly applied on arbitrary
knowledge graphs. Our approach takes advantage of
the multi-relational nature of KGs, entity types, onto-
logical information and the graph structure.

3.3. Ontology Learning

As discussed above, most works on detecting errors
in knowledge graphs address the level of individual
assertions, with the already mentioned shortcomings.
There are few works which attempt to derive reusable,
higher-level artifacts.

One such approach has been proposed in [61]. The
authors provide means of learning additional domain
and range restrictions for relations, which can then fa-
cilitate more fine-grained fact checking. The domain
and range axioms learned are a reusable artifact, but, as
discussed above, are not always suitable for the com-
plex scenarios induced by modern knowledge graphs.

In [52], we have introduced an approach that clus-
ters similar relation assertion errors. Those clusters can
be more easily inspected by experts (e.g., by present-
ing them one typical, prominent example as a proxy for
a class of errors), but the expert still needs to identify
the cause and come up with a suitable fix manually.

The work presented in [48] aims at closing that gap
by precisely pinpointing the cause of an error. For DB-
pedia, it is able to identify single axioms in the on-
tology or single mapping elements (i.e., the smallest
building blocks of the creation process) that are re-
sponsible for a class of errors. It is, however, tightly
tangled to the DBpedia creation process and cannot
be trivially transferred to other knowledge graphs built
with different methods.

Since we discuss the learning of constraints to be
used for validating a knowledge graph, we target a
problem which is similar to that of ontology learn-
ing or enrichment; a field in which quite a bit of
related work exists. Rudolph [58] uses a class of
OWL axioms that generalize domain and range re-
strictions, which support the conjunction of concepts.
Statistical schema induction (SSI) [64] uses associa-
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tion rule mining to learn OWL 2 EL axioms, such
as class and relation subsumptions, relation’s domain
and range restrictions, relation transitiveness. Büh-
mann and Lehmann [8] propose a method for enrich-
ing ontologies with OWL 2 axioms implemented in
the DL-Learner framework. Regarding relation asser-
tion constraints, domain and range restrictions relation
cardinalities [43] are the only kind of constraint which
can be learned by these methods. A brief introduc-
tion to ontology learning and overview of the main ap-
proaches can be found in [30].

Gayo et al. [20] use SHACL and ShEX to define
constraints to validate and describe linked data por-
tals. Arndt et al. [1] uses rule mining to learn RDF-
CV (RDF Constraints Vocabulary). Swift Linked Data
Miner (SLDM) [54] is the only system at the moment
which can automatically learn SHACL constraints.
However, it does not learn relation constraints, only
class expressions.

Rule learning approaches, such as AMIE [17] and
DL-Learner [29], could in principle have some of
their rules converted into SHACL constraints. Since
they were not originally conceived for learning rela-
tion constraints, these approaches would need to be ex-
tended in order to support it. As of now there are no
works in that direction.

4. Detection of Relation Assertion Errors

In this section, we describe PaTyBRED (Paths and
Types with Binary Relevance for Error Detection), a
method for detecting relation assertion errors which re-
lies both on path and type features. This method ad-
dresses research question RQ1.

4.1. PaTyBRED

Our proposed approach is inspired by the Path
Ranking Algorithm (PRA) [26] and SDValidate [51]. It
consists of a binary classifier for every relation which
predicts the existence of a given pair of subject and ob-
ject in the given relation. The set of classifiers can be
thought of as a single multilabel classifier with binary
relevance (i.e., each relation that can hold between a
pair of instances is a label), where one binary classifier
is learned for each class separately, and local feature
selection [38], with different classifiers being able to
work on different sets of specialized features.

We use two kinds of features. The first one are the
types of subject and objects. This kind of informa-

tion has been successfully used for error detection
in SDValidate [51]. By analyzing the types of sub-
ject and object in one given relation, one can eas-
ily spot a very common kind of error without relying
on the domain and range restrictions, which are of-
ten inexistent or too general. For example, in DBpe-
dia the triple recordedIn(I’m_a_Loser, Abbey_Road)
is wrong. I’m_a_Loser is a song by The Beatles from
the album Abbey_Road and the relation recordedIn
has domain MusicalWork and range PopulatedPlace.
A song being recorded in an Album is a clearly
wrong fact. At the same time, if the object were
Abbey_Road_Studio of the type Recording_Studio,
which is not a subclass of PopulatedPlace, the fact
would also be wrong according to a method relying
solely on types. If there are many facts where songs
are recorded in recording studios, statistical methods
such as SDValidate would be able to identify that
such a pattern is common, and therefore unlikely to
be wrong, despite the violation of range restriction,
while a song recorded in album is uncommon, there-
fore likely to be an error. Hence, statistical approaches
such as SDValidate respect the actual usage of the on-
tology, rather than its axiomatic design. Recent works
have been proposed that pinpoint such mismatches au-
tomatically [48].

The main problem with this kind of approach is that
it solely relies on type features. That means such ap-
proaches do not work on knowledge graphs with no
type assertions, and may have poor performance on
datasets with a shallow type hierarchy, with non in-
formative types, or with incomplete type assertions.
Moreover, solely using type features, it is impossible to
detect wrong facts with wrong entities of correct types,
for instance, when a person instance is confused with
another of same or similar name.

Alternatively, we can use path features similar to
those of PRA. However, solely relying on path fea-
tures also may lead to different problems. One of those
issues is that correct facts may be labeled as errors
because of incompleteness. For instance, if river in-
stances have the properties country (i.e., the coun-
tries a river passes through, typically multi-valued),
and mouthCountry (i.e., the country where the river’s
mouth is, typically single-valued), then the feature
country will be relevant for the relation mouthCountry
since the confidence of the rule mouthCountry(X,Y)⇒
country(X,Y) is close to 1. However, some rivers do
not have any assertions for country because of incom-
pleteness, thus their correct mouthCountry assertion is
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predicted to be wrong. That can lead to propagation of
incompleteness.

Another problem is that since country is a more rel-
evant feature to mouthCountry than vice versa, since
the latter is far less common than the former. Hence, if
an error occurs in the assertion of country for a river,
it might happen that a correct mouthCountry assertion
ends up being more likely to be detected as an error
than the wrong country assertion.

In order to make our approach more robust and rule
out issues caused by the two approaches, we combine
both type and path features.

Finding the relevant paths for each relation can be a
challenging task. Since several paths may be relevant
for different relations, we compute all possible paths
up to a given length, and for every relation’s local clas-
sifier, we perform local feature selection. The number
of possible paths grows exponentially with the number
of relations, therefore an exhaustive search can easily
become unfeasible. It is then crucial to have heuristics
to efficiently navigate the search space. In the follow-
ing subsection we propose and discuss such heuristic
measures.

4.2. Extracted Features

Our method includes the following parameters that
define the path selection: maximum path length, max-
imum number of paths per length, and path selection
heuristics. Following the approach described in [26],
we use the domain and range restrictions of relations
for pruning uninteresting paths, and we do not allow
a relation to be immediately followed by its inverse.
If the number of possible paths of a certain length ex-
ceeds the maximum number of paths per length, we
apply our path selection heuristics to prune the least
interesting paths and comply with the specified paths
upper limit.

We define a path P as a sequence of relations r1 →
... → ri → ... → rn. The sequence of relations is
connected by a chain of variables, with P(s, o) mean-
ing s and o can be connected by a path P(s, o) ⇐⇒
r1(s, x1)∧...∧ri(xi−1, xi)∧...∧rn(xn−1, o). The inverse
of a relation r is denoted as r−1 where r−1(s, o) =
r(o, s) can also be part of paths. A path of length
one P = (r) is equivalent to the relation itself, i.e.,
P(s, o) ≡ r(s, o). The length of a path is denoted
as |P|. We define the set of subjects of P as sP =
{s|P(s, o)} and set of objects as oP = {o|P(s, o)}.

PaTyBRED supports type and path features. The
features for learning the classifier for a relation r are

Feature Description Condition

C(s) type of subject ∃r.> v C

C(o) type of object ∃r−1.> v C

p(s, o) relations path subsumption r v p

p(X, s) ingoing path from subject ∃r.> v ∃p.>
p(s, X) outgoing path from subject ∃r.> v ∃p−1.>
p(X, o) ingoing path from object ∃r−1.> v ∃p.>
p(o, X) outgoing path from object ∃r−1.> v ∃p−1.>

Table 1
Kinds of binary features supported by PaTyBRED

shown in Table 1, where each instance is a pair of a
subject and an object entity (s, o), X is a variable which
can be any entity, and p = r1 → ...→ rn is a path of
length n ∈ {1, ...,mpl}, where mpl denotes the maxi-
mum path length.

Relations and paths can be represented as adjacency
matrices of size |NI | × |NI |.The adjacency matrix of
P can be computed by the dot product of its rela-
tions. However, computing the dot product of adja-
cency matrices can be an expensive operation, espe-
cially in large-scale knowledge graphs with millions
of entities and high number of relations. Therefore,
we need heuristic measures to prune the search space
and compute the dot product only for the most relevant
paths.

Let A and B be adjacency matrices – which can refer
to a single relation or a path – which we want to con-
catenate in order to form a new path A · B. Hence, we
require a heuristic measure which can estimate the rel-
evance of the path A·B without having to perform a po-
tentially expensive full matrix multiplication to com-
pute its adjacency matrix. Since the paths computed
are to be used by all relations, the proposed heuristic
measures should not be computed with respect to a tar-
get relation, but only consider the matrices A and B.

Paths with empty adjacency matrices (|A · B| = 0)
are useless and should be pruned. A simple way to
safely prune them is to calculate oA ∩ sB. The set of
objects oA contains the columns of A which have non-
zero elements, and the set of subjects sB contains the
rows of B which have non-zero elements. If the inter-
section is empty, then we know that |A · B| = 0. Note
that |sB| 6 |B| and |oA| 6 |A|, and the intersection
is cheaper to compute than dot product, therefore the
runtime for computing oA ∩ sB is shorter.

While paths with empty adjacency matrices can be
pruned safely without information loss, paths with
very sparse, yet non-empty adjacency matrices are less
likely to be informative for the classifier. Hence, we
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apply a less defensive pruning and define heuristics for
pruning paths with sparse adjacency matrices. Since
the size of the intersection oA ∩ sB can be a good indi-
cator of the number of nonzero elements in A · B, we
use it to define three measures for estimating the rel-
evance of a path A · B: We employ that characteristic
into three proposed relevance measures inter, m1 and
m2 (c.f Equations 1, 2 and 3).

inter(A, B) = |oA ∩ sB| (1)

m1(A, B) =
|oA ∩ sB|
|sA ∩ oB|+ 1

(2)

m2(A, B) = |oA ∩ sB| × |sA ∪ oB| (3)

For each length, a only a fixed number of paths is
kept, which is a parameter in our approach (mppl).
Hence, only the best scoring paths are used for cre-
ating longer paths, as well as for creating features to
be used by the classifier. By early pruning irrelevant
paths, time is saved not only by computing fewer ad-
jacency matrices, but also the number of features to be
considered is reduced (fewer columns in the features
table to be populated and less features to have the rel-
evance computed).

Once the relevant paths have been selected, we com-
pute their adjacency matrices and use them to populate
the features used to train the relation classifiers. One of
the problems of computing the whole adjacency ma-
trix of paths is that some can be very dense and require
a lot of memory. For example, the path birthPlace→
locatedIn-1 on DBpedia, which represents everything
which is located in a place where someone was born.
Its adjacency matrix contains around 100 million non-
zero elements and consumes more than 1GB of mem-
ory. As it is unlikely that all the entries in the matrix
will be used, it would be desirable to handle such cases
in a more efficient manner in order to restrict the mem-
ory consumption and speed up the paths adjacency ma-
trices computation process.

It is worth pointing out that the rdf:type relation
is not considered in the paths. Types are treated sepa-
rately and are used to generate the type features, which
consist of the set of asserted and subsumed types of an
instance (we materialize the subsumed types into the

assertions and ignore the subsumption relations). Inte-
grating types into the paths can be problematic. Firstly,
it would significantly increase the search space. Sec-
ondly, a path which begins with the property rdf:type
can only continue with rdf:type-1, because types can
only be objects in this relation (if we do not consider
OWL class axioms in paths), and as mentioned earlier,
we do not allow a relation to be immediately followed
by its inverse.

4.3. Learning the Model

Once the paths have been selected, and their adja-
cency matrices have been computed, we can use them
together with types as features to predict the exis-
tence of an entity pair (s, o) in a relation. The first
step is to build a training dataset containing all ex-
tracted features for each relation r. We use as posi-
tive examples the entity pairs Dpos = {(s, o)|r(s, o)},
i.e. all the non-zero cells in the relation’s adjacency
matrix. Following [4], we generate negative instances
Dneg = {γ(s, o)|(s, o) ∈ Dpos ∧ γ(s, o) /∈ Dpos} for
supervised training by corrupting entity pairs using a
function γ, which substitutes the subject or the object
with a random entity instance, ensuring the new pair
is not positive. In a preliminary experiment, we com-
pared this approach with that of [26], which is more ex-
pensive, and no significant difference in performance
was observed.

As label, we use information from r indicating the
existence of (s, o) in the relation. We extract path fea-
tures from AR and type features from AC . The path
features are boolean values indicating whether a path
connects s to o (P(s, o)|∀P ∈ P − (r)). The type fea-
tures consist of the types of s and o (including sub-
sumed types), i.e. {C|C(s)} and {C|C(o)}. Other pos-
sible path features include the existence of a path start-
ing or ending in s and p (P(s, X), P(X, s), P(o, X),
P(X, o)) as proposed in SFE [18], however the authors
found out that this kind of feature does not improve
performance. We conducted a preliminary experiment,
which confirmed their results, and therefore, we do not
consider this kind of features in our approach.

In order to clarify how the relation classifiers
are trained, Table 2 depicts provide a simple exam-
ple of training data for the relation livesIn, con-
taining six features. We assume the example data
contains instances of the types Person and Place,
and relations livesIn, bornIn, child, and spouse
(which is symmetric). For the last two relations we
have the following assertions: child(Trump, Ivanka),
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child(William, George), child(Kate, George),
spouse(Trump, Melania) and spouse(William,Kate).
There are in total six assertions for the relation livesIn,
therefore six positive examples in the training data.
We generate one negative example for every positive
(nneg = 1) by corrupting the subject or object by sub-
stituting either with a random entity.

Before we learn the local classifiers, we evaluate
the relevance of the features. Since different features
might be relevant for different relations, we perform
feature selection separately for every relation. This al-
lows the relation classifiers to work on a small set of lo-
cally relevant features, and, at the same time, removes
irrelevant features which might act as noise and re-
duce the classifier’s performance [38]. We use the filter
method, which simply select the top-k most relevant
features, with χ2 as relevance measure.

Algorithm 1 shows how PaTyBRED works. The
function RELEVANT_RELATIONS searches adds the in-
verse of non-symmetric relations and eliminates rela-
tions which do not satisfy the minimum support thresh-
old. After the paths of each length ` up to the max-
imum path length (mpl) are selected. First the func-
tion PATH_RELEVANCE gets the top-mppl most rel-
evant paths according to the selected path relevance
measure. Once the paths are selected their adjacency
matrices are computed and saved for later use.

Subsequently the relation classifiers need to be
trained. For every relation r the positive (s, o) pairs are
obtained with GET_POSITIVES, then a sample of size
f ssize is selected for feature selection and the nega-
tive examples are generated by corrupting the positives
sample with GENERATE_NEGATIVES. Then a features
table X f s and binary vector of labels y f s is generated
with CREATE_FEATS_LABELS, with which the set of
best features f eats[r] is selected. Finally a training
features and labels are generated for a different set of
sample of positives (of size tssize) and the classification
model cl f is trained with FIT_MODEL.

When comparing PaTyBRED with PRA and SFE,
our approach has the following advantages:

– By decoupling the feature extraction and the
learning step, we can use different popular clas-
sifiers to learn the relations, and we found indeed
that logistic regression, which is used in PRA and
SFE, is not the best performer.

– We introduce a local feature selection step prior to
training the relation classifiers, which can signifi-
cantly increase the computational performance.

Algorithm 1 The PaTyBRED algorithm

1: function LEARN_PATYBRED_MODEL(R, A, domains, ranges, mppl,
mpl, k, minsup, phsm, tssize, f ssize)

2: Rrel← RELEVANT_RELATIONS(R, minsup)
3: paths[0]← Rrel
4: `← 1
5: while ` < mpl do
6: rel←{}
7: for p ∈ paths[`] do
8: for r ∈ Rrel do
9: if p[−1] 6= r−1∧ range[p[−1]]∩domain[r] 6= ∅ then

10: pnew← (p, r)
11: rel[pnew]← PATH_RELEVANCE(A[p], A[r], phsm)
12: end if
13: end for
14: end for
15: pathsbest ← SELECT_BEST_PATHS(rel,mppl)
16: for p ∈ pathsbest do
17: A[p]← A[p[: −1]] · A[p[−1]
18: end for
19: paths[` + 1]← pathsbest
20: `← ` + 1
21: end while
22: models←{}
23: f eats←{}
24: for r ∈ R do
25: sopos← GET_POSITIVES(r, A)
26: so_ f spos← SAMPLE(sopos, f ssize)
27: so_ f sneg← GENERATE_NEGATIVES(so_ f spos, A[r])
28: X f s, y f s ← CREATE_FEATS_LABELS(so_ f spos, so_ f sneg,

paths ∪ stypes ∪ otypes, A)
29: f eats[r]← SELECT_FEATURES(X f s, y f s, k)
30: so_trainpos← SAMPLE(sopos, tssize)
31: so_trainneg← GENERATE_NEGATIVES(so_trainpos, A[r])
32: X, y ← CREATE_FEATS_LABELS(so_trainpos, so_trainneg,

f eats[r], A)
33: models[r]← FIT_MODEL(cl f , X, y)
34: end for
35: return models, f eats
36: end function

– We propose heuristic measures to explore the
paths search space, again for gaining computa-
tional peformance.

Moreover, negative evidence features, i.e. paths which
connect negative but no positive entity pairs of a re-
lation, are also considered. Since our approach is su-
pervised and includes negative examples in the train-
ing data, this kind of features is extremely important to
identify wrong facts.

5. Error Detection Experiments

In this section, we first briefly present datasets used
in the evaluations, then we present the experiments
conducted, which are split into two parts. In the first
part we perform an automatic evaluation to compare
PaTyBRED with SDValidate and state-of-the-art link
prediction methods, and in the second we conduct a
manual evaluation of PaTyBRED on three large-scale
datasets (DBpedia, NELL and YAGO) with actual er-
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Features Label
(s, o) Person(s) Place(s) Person(o) Place(o) spouse → livesIn child → bornIn livesIn
(Trump,DC) 1 0 0 1 1 1 1
(Melania,DC) 1 0 0 1 1 0 1
(Ivanka,DC) 1 0 0 1 0 0 1
(William,London) 1 0 0 1 1 1 1
(Kate,London) 1 0 0 1 1 1 1
(George,London) 1 0 0 1 0 0 1
(NY,DC) 0 1 0 1 0 0 0
(Melania,Paris) 1 0 0 1 0 0 0
(Ivanka,Obama) 1 0 1 0 0 0 0
(Bill,London) 1 0 0 1 0 0 0
(Kate,Tokyo) 1 0 0 1 0 0 0
(Xi,London) 1 0 0 1 0 0 0

Table 2
Example of training data instances for the relation livesIn

roneous relation assertions . The experiments are de-
signed to answer research question RQ1.

5.1. Datasets

In our experiments, we use a variety of knowledge
graphs, some of which are clean, and others noisy. In
the first part of our experiments we automatically eval-
uate the performance of the error detection algorithms.
In order to make the evaluation automatic, we use a
variety of datasets to which we add synthesized wrong
facts. We generate the erroneous facts by corrupting
the subject or object of true facts, i.e., replacing the
original entity with a randomly selected which results
in a fact which does not exist in the original data. For
our generation process, we corrupt 1% of the triples,
using two different kinds of errors:

– For type 1 errors, we corrupt the triple by substi-
tuting the object with any entity from the knowl-
edge graph (independent of its type).

– For type 2 errors, we corrupt the triple by substi-
tuting the object with any entity from the knowl-
edge graph which has the same type(s).

That means the errors of the second kind are, in prin-
ciple, more difficult to be detected than those of the
first kind, since the new entity is more likely to have
characteristics similar to those of the original one.

The datasets used are the following: As input knowl-
edge graphs, we use DBpedia (2015-10) [2], NELL
(08m-690) [9], and YAGO3 [34]. We use the follow-
ing smaller domain specific datasets: Semantic Bible5,
AIFB portal6, and Nobel Prize7. Furthermore, we se-

5http://www.semanticbible.com/
6http://www.aifb.kit.edu/web/Web_Science_und_

Wissensmanagement/Portal
7http://www.nobelprize.org/nobel_organizations/nobelmedia/

nobelprize_org/developer/manual-linkeddata/terms.html

lected four of the largest conference datasets from
the Semantic Web dog food corpus8, i.e., LREC2008,
WWW2012, ISWC2013, and ESWC2015. In addition,
WN18 and FB15k (WordNet 1.8 and a subset of Free-
base with 15 000 entities), which have been widely
used on link prediction experiments, are also used.

The Semantic Web dog food datasets are known to
be correct and locally complete, i.e. no errors or miss-
ing relations between contained entities, therefore, the
generated errors can be used as gold standard. We
could not find any evaluation the of quality of AIFB,
Semantic Bible, or Nobel Prize. Since we cannot guar-
antee the quality of the data, the synthesized errors can
be considered a silver standard.9 The silver standard
may contain both false positives (due to incomplete-
ness of the underlying knowledge graphs), as well as
false negatives (due to noise in the original knowledge
graphs).

The number of false positives is likely to be low
even for highly incomplete datasets, since in general,
the number of missing facts is significantly smaller
than the number of possible facts (|NR||NI |2 − |AR|)
from which the generated wrong facts are drawn.

In the second part of the experiments, we use DB-
pedia and NELL as large-scale real-world use cases.
These datasets are known to be noisy and incomplete,
with type assertion completeness estimated to be at
most 63.7% on DBpedia [51]. We do not synthesize
any erroneous facts, and rank all the facts by their con-
fidence values. Since we do not know the noisy facts

8http://data.semanticweb.org/dumps/conferences/
9We follow the notion that a gold standard is guaranteed to con-

tain only correct examples (i.e., in our case, the labels for correct
and incorrect triples are always accurate), whereas a silver standard
may also contain a small fraction of incorrect examples (i.e., in our
case, correct triples labeled as incorrect, or vice versa).
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or even the number of errors which exist in DBpedia,
we manually evaluate the top-100 results.

In our experiments, we evaluate the impact of dif-
ferent parameter settings in our approach, and com-
pare it with SDValidate and state-of-the-art knowledge
graph completion methods. We use ProjE10 as well as
the TransE and HolE implementations of scikit-kge11.
Those knowledge graph completion methods generally
assign a score to a non-existing triple (i.e., a combi-
nation of a subject, predicate, and object not present
in the knowledge graph), and for the completion task,
the top scoring triples are considered as useful com-
pletions for the knowledge graph. In order to use those
methods for error detection, we make use of the same
scoring mechanism, but apply it to existing triples.
Low-scoring triples are considered erroneous.

Furthermore, to analyze the benefits of combin-
ing path and type features, we also compare against
the variants of PaTyBRED using only path features
(PaBRED) and only type features (TyBRED). For that
reason, we omit a direct comparison our method with
SFE, since, by design, PaBRED performs at least as
good as SFE. The implementation of PaTyBRED, as
well as the SHACL constraint generation is available
on Github12.

The reported results from the embedding methods
were obtained by not considering the type assertions.
We tried adding the type assertions as an extra relation,
however, this did not improve the results. The embed-
ding methods suffer from the problem that the distri-
bution of scores over different relations is not uniform.
Often some relations have average triple scores lower
than others, and this can result in a bias when detecting
errors.

In order to address this problem, we use the follow-
ing strategy to normalize the scores across different re-
lations: in a first step, we run the isolation forest outlier
scoring algorithm [33] to detect outliers in the confi-
dence values of each relation separately. We then use
the outlier scores instead of the triple confidence val-
ues to rank the facts, since they share a common global
scale. Since unusually high confidence values are also
outliers and we are interested only in the outliers of
low scores, we do not consider as outlier any fact with
score greater than the relation’s average.

10https://github.com/nddsg/ProjE
11https://github.com/mnick/scikit-kge
12https://github.com/aolimelo/kged

Dataset 1 (5 instances) Dataset 2 (10 instances)

Appr. 1 Appr. 2 Appr. 1 Appr. 2

E E E E
E C E C
E E E C
C C E E
C E E C
– – C E
– – C E
– – C C
– – C E
– – C C

µR 2 3 3 5.4
MRR 0.61 0.51 0.45 0.33

fµR 1 2 1 3.4
fMRR 1 0.61, 1 0.4

Table 3
Example rankings of two error detection approaches on two datasets

5.2. Evaluation Metrics

For the error detection problem, we use ranking
measures to evaluate the performance of the error de-
tection algorithms, since we compute scores for ev-
ery triple in the graph and generate a ranking. More
specifically, we generate an error score for each triple,
and we rank the triples by that error score. With that
ranking, ideally all erroneous triples should be ranked
higher than the correct ones. We use the mean rank
(µR) and mean reciprocal rank (MRR):

µR =
1

|E|

|E|∑
i=1

ranki (4)

MRR =
1

|E|

|E|∑
i=1

1

ranki
(5)

One shortcoming of those metrics is that they are
not comparable across datasets.

Table 3 shows the rankings of two approaches on
two datasets. While approach 1 is perfect and ranks
all errors (E) higher than all correct relations (C), ap-
proach 2 makes some mistakes. As we can observe
in this example, the µR and MRR are not comparable
across datasets of different sizes: approach 2 has a the
same µR and a better MRR on dataset 1 than approach
1 on dataset 2, although the results are actually worse.
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hlTo make the results comparable, we use the fil-
tered variants fµR and fMRR (c.f. Equations 6 and 7),
which filter out correctly higher ranked predictions.:

f MRR =
1

|E|

|E|∑
i=1

1

ranki − i + 1
(6)

fµR =
1

|E|

|E|∑
i=1

ranki − i + 1 (7)

Subtracting i − 1 from the rank ensures that bet-
ter ranked true positives are filtered out. As we can
observe in the example, the best approaches always
score 1 for the fµR and the fMRR, with the inferior
approaches being consistently ranked worse. Hence,
those filterings can be used to make results compara-
ble across datasets of different sizes and with different
error rates.

5.3. Parameter Settings

First, we evaluate how the different PaTyBRED pa-
rameters affect its performance. The evaluated parame-
ters are the maximum path length (mpl), the maximum
number of paths per length (mppl), the path selection
heuristic measure (pshm), the number of locally se-
lected features (k), and the local classifier (cl f ).

As far as the maximum path length (mpl) is con-
cerned, the best results were achieved with mpl =
2, that is direct links and triangular patterns. Equiv-
alent, inverse, and subproperty relations, as well as
other kinds of associations can be exploited with di-
rect links, while more complex associations with com-
posed relations can be exploited with the triangular
patterns. Examples of direct link and triangular pattern
for the relation livesIn are respectively bornIn and
playedFor/locatedIn.

In none of the datasets used in our experiments, a
mpl > 2 achieved better results. It seems that paths
longer than two do not bring any information gain,
while it significantly increase the search space and
slows runtime.

In our experiments, we evaluate three different clas-
sifiers (cl f ): random forests (RF) [6], support vector
machines (SVM) [12] and logistic regression (LR). We
also try two different number of selected features k,
i.e., k = 10 and k = 25. These numbers are low be-
cause we observed that only a small number of path

Fig. 3. Critical distance diagram comparing path selection heuristics

and type features are relevant to the local relation clas-
sifiers. Table 4 shows how the different settings of
PaTyBRED clf

k on various datasets. The results show
that RF and SVM achieved the best results, while LR
– which is used in PRA and SFE – lagged behind.

The heuristic measures used for selecting relevant
adjacency matrices are those proposed in Section 4.2,
i.e., inter, m1 and m2. As a baseline, we use the
random selection of paths. In order to better evaluate
the quality of the paths selected we exclude the type
features and consider exclusively the selected paths.
We compared the heuristic measures on all the datasets
presented in Section 5.1, ranked the measures and av-
eraged them, as advised in [14]. In order to find out the
significance of the results we perform Nemenyi Test
with α = 0.05. Since the number of datasets is rather
small, the difference between inter and m2 is not sig-
nificant, however, they are significantly better than the
random approach (c.f. Figure 3).13 Given those results,
we set the maximum paths per length (mppl) to 1,000
and use m2 as a heuristic measure when the maximum
number of paths exceeds 1,000.

5.4. Comparison

Tables 5 and 6 report a comparison between PaTy-
BRED and the other state-of-the-art models. Table 5
refers to errors generated by replacing entities with en-
tities of arbitrary types (errors of kind 1) Table 6 refers
to errors where entities have been replaced by entities
with the same types as the original entity (errors of
kind 2). Table 6 does not contain results for WN18 and
FB15k because the original datasets do not contain en-
tity types, which prevents errors of kind 2 to be gen-
erated. For the same reason the results of SDValidate

13The diagram is to be read as follows: the x axis depicts the av-
erage rank of the different approaches across different datasets. A
higher ranked approach which is more than the critical distance (CD)
away from a lower ranked one outperforms the lower ranked one
statistically significantly. The black bars groups approaches whose
performance differences are not statistically significant. This means
that in this diagram: m2 and inter significantly outperform random,
while m1 does not. The difference between m1, m2, and inter is not
significant.
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f MRR fµR

sembib eswc iswc www lrec nobel aifb wn18 fb15k sembib eswc iswc www lrec nobel aifb wn18 fb15k

PaTyBRED LR
10 0.800 0.835 0.811 0.212 0.754 0.690 0.014 0.584 0.618 0.008 0.020 0.006 0.0023 0.011 0.076 0.041 0.00352 0.015

PaTyBRED RF
10 0.840 0.927 0.933 0.559 0.747 0.680 0.120 0.860 0.770 0.009 0.009 0.010 0.0003 0.006 0.080 0.031 0.00003 0.018

PaTyBRED SVM
10 0.838 0.906 0.980 0.414 0.844 0.673 0.070 0.820 0.713 0.011 0.012 0.008 0.0007 0.004 0.103 0.041 0.00003 0.014

PaTyBRED LR
25 0.745 0.907 0.862 0.707 0.786 0.788 0.068 0.584 0.524 0.005 0.022 0.003 0.0012 0.011 0.051 0.035 0.00349 0.014

PaTyBRED RF
25 0.881 0.928 0.964 0.795 0.653 0.782 0.213 0.795 0.545 0.003 0.028 0.010 0.0001 0.006 0.051 0.028 0.00004 0.020

PaTyBRED SVM
25 0.848 0.860 0.980 0.537 0.822 0.788 0.045 0.570 0.765 0.007 0.015 0.006 0.0003 0.005 0.063 0.028 0.00006 0.014

Table 4
Comparison of local classifiers and number of selected features on generated errors of kind 1

f MRR fµR

sembib eswc iswc www lrec nobel aifb wn18 fb15k sembib eswc iswc www lrec nobel aifb wn18 fb15k

PaTyBRED 0.848 0.928 0.980 0.795 0.844 0.788 0.213 0.860 0.770 0.003 0.009 0.003 0.0001 0.004 0.051 0.028 0.00003 0.014
TyBRED 0.463 0.782 0.315 0.744 0.693 0.758 0.205 — — 0.121 0.083 0.102 0.0740 0.113 0.084 0.085 — —
PaBRED 0.800 0.831 0.980 0.503 0.778 0.200 0.173 0.860 0.770 0.009 0.010 0.005 0.0008 0.004 0.227 0.056 0.00003 0.014
SDValidate 0.265 0.140 0.218 0.109 0.307 0.464 0.022 — — 0.355 0.397 0.326 0.3768 0.339 0.286 0.293 — —
ProjE 0.102 0.175 0.047 0.098 0.138 0.187 0.048 0.004 0.014 0.149 0.197 0.201 0.1796 0.179 0.177 0.252 0.18714 0.125
HolE 0.011 0.018 0.025 0.018 0.065 0.026 0.001 0.002 0.006 0.204 0.258 0.108 0.1170 0.108 0.213 0.235 0.17304 0.083
TransE 0.058 0.001 0.000 0.001 0.039 0.051 0.005 0.001 0.000 0.226 0.302 0.280 0.2381 0.163 0.320 0.329 0.26174 0.190

Table 5
Comparison of FMRR on generated errors of kind 1

f MRR fµR

sembib eswc iswc www lrec nobel aifb sembib eswc iswc www lrec nobel aifb

PaTyBRED 0.482 0.553 0.941 0.609 0.532 0.022 0.272 0.082 0.124 0.023 0.035 0.027 0.250 0.080
TyBRED 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.597 0.503 0.512 0.495 0.551 0.526 0.496
PaBRED 0.579 0.567 0.941 0.625 0.486 0.250 0.205 0.086 0.099 0.017 0.023 0.011 0.212 0.065
SDValidate 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.570 0.457 0.467 0.506 0.495 0.495 0.475
ProjE 0.064 0.026 0.015 0.026 0.007 0.067 0.018 0.215 0.362 0.223 0.245 0.254 0.274 0.269
HolE 0.022 0.015 0.043 0.049 0.059 0.053 0.004 0.240 0.324 0.192 0.190 0.192 0.294 0.246
TransE 0.092 0.004 0.012 0.000 0.012 0.001 0.003 0.247 0.308 0.239 0.337 0.148 0.413 0.339

Table 6
Comparison of FMRR on generated errors of kind 2

and TyBRED in Table 5 are not reported for WN18 and
FB15k. We report values for f MRR and fµR. To make
the results on knowledge graphs of different sizes more
comparable, the fµR are values divided by the total
number of facts in the KG.

It is noticeable that the results for AIFB are signifi-
cantly worse than other datasets. One of the reasons is
the fact that it has no inverse relations, which can be
extremely helpful on the error detection. Another rea-
son is the fact that in AIFB the author is defined by
27 author_n relations, with n indicating the position in
the authors list. That means it is necessary to not only
model the author relation, but also all the nth-author
relations.

We can observe some larger variations in and be-
tween the datasets. The smaller sets, like nobel or aifb,
do not have enough training information for some ap-
proaches, which work better on the larger wn18 and
fb15k datasets. The same holds for SDValidate, which
is relying on larger datasets to create stable statis-
tical distributions – in fact, SDValidate even has a
hard coded switch that prevents it from reporting er-
rors based on small distributions and little evidence to
avoid false negatives. On the other hand, the classi-
fiers used in PaTyBRED and its variants can learn sta-
ble models also for smaller datasets. Moreover, the ap-
proaches TransE, HolE, and ProjE have been devel-
oped for link prediction, and tend to overfit when it
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comes to link validation, especially for smaller scale
datasets.

As discussed above, PaTyBRED, TyBRED and
PaBRED were run with 6 different configuration:
cl f ∈ {LR,RF,SVM} and k ∈ {10, 25}. For each
dataset, the results of the best performing configura-
tion are reported. The values reported for the embed-
dings methods were the best amongst number dimen-
sions d ∈ {5, 15, 50, 100, 200} and with the outlier
detection, as explained earlier.

It is worth mentioning that the score normalization
via outlier detection helped improve the performance
of embeddings’ fµR performance on average on 15%.
The best results for the embedding methods were ob-
tained with d = 15 or d = 50 depending on the
dataset. The results reported for the knowledge graph
completion in the original paper for ProjE on FB15k
were with d = 200. On error detection with the same
dataset the best performance was with d = 50, cutting
the fµR in half. Additionally, d = 5 and d = 15 also
had better performance than d = 200. This indicates
that when using embeddings for error detection, the di-
mensionality should be lower than for KGC. Since the
dataset contains wrong triples, which shouldn’t be fit
by the model, overfitting can severely affect the perfor-
mance (more than underfitting).

Our proposed method outperforms all the other
methods, with the embedding methods having a sur-
prisingly low performance. PaTyBRED performs best
when combining types and paths, with TyBRED (with
types only) and PaBRED (with paths only) being gen-
erally worse. To further understand the importance of
combining path type features, we analyze what kind of
features are selected on the local classifiers and report
the proportion of types and paths. Table 7 shows the
average proportion of selected features over all rela-
tion classifiers with k = 10. Overall more type features
are selected, but both kinds of features are relevant on
the evaluated datasets. WN18 and FB15k are absent
because they do not have type assertions, and therefore
have only path features.

Table 6, where the erroneous facts contain wrong in-
stances of correct types, shows how the performance of
methods which rely on types exclusively (SDValidate
and TyBRED) is similar to that of random ranking with
fµR around 0.5. It also shows how detecting errors of
kind 2 is more difficult than those of kind 1, and it re-
veals the importance of using path features for detect-
ing facts with wrong instances of correct types. We can
also observe that PaBRED has performance similar to
PaTyBRED and even better on some datasets for kind
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Fig. 4. Runtime comparison of the evaluated methods

2 errors, since type features are useless to detect those
errors, and not considering type features ensures that
these cannot potentially replace more useful path fea-
tures. The only exceptions are on LREC and AIFBpor-
tal, where PaTyBRED has better f MRR than PaBRED.
However, on the same datasets PaBRED performs bet-
ter in terms of fµR, meaning that it has better average
rank but less highly ranked instances.

In addition to evaluating the result quality, we also
conducted a scalability study of the evaluated methods.
The scalability test is performed on synthesized replica
of DBpedia with the M3 model [39] of sizes {0.01%,
0.1%, 1% and 10%} of the original size, that means
the number of triples varies from around 1.5k to 1.5M
triples. The results are shown in Figure 4.

We can observe that SDValidate has by far the low-
est runtimes, since it is a simpler model than the oth-
ers. Amongst the embedding methods, ProjE which
directly optimizes the rankings in the link predic-
tion task, has the steepest runtime growth. HolE and
TransE have similar scalability being more scalable
than ProjE. PaTyBRED, due to the aggressive local
feature selection and sampling, has the least steep of
the curves, and, together with SDValidate, was the only
approach to handle the larger knowledge graphs in less
than 24 hours. This indicates the appropriateness of
PaTyBRED for handling large datasets.

5.5. Manual Evaluation

In this section, we perform a manual evaluation of
PaTyBRED on three large-scale knowledge graphs:
DBpedia, NELL, and YAGO. We have a deeper look
at the top-100 results and classify the triples as cor-
rect, wrong and other errors, i.e., correct triples with
related errors, e.g., wrong or missing types of subject
or object.
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sembib eswc iswc www lrec nobel aifb nell dbpedia yago

Paths 0.432 0.412 0.415 0.358 0.479 0.222 0.182 0.032 0.060 0.142
Types 0.568 0.588 0.585 0.642 0.521 0.778 0.818 0.968 0.940 0.858

Table 7
Proportion of path and type features selected

dbp10 dbp25 nell10 nell25 yago10 yago25
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Fig. 5. Manual evaluation on DBpedia, NELL, and YAGO

The results are shown in Figure 5 with PaTy-
BRED RF

10 and PaTyBRED RF
25 on DBpedia (dbp10,

dbp25), NELL (nell10, nell25) and YAGO (yago10,
yago25). PaTyBRED seems to perform better on DB-
pedia and YAGO with less local features (10), and with
more on NELL (25). Most of the other error cases oc-
curred because of type assertion incompleteness, with
the subject or object often having no types at all. Delet-
ing these triples would lead to propagation of incom-
pleteness. These cases could be automatically detected
(i.e., by checking whether types are present for the
subject and object), and some of them fixed if the type
completion methods [40, 50] are combined with er-
ror detection. The quality of predicted types can be
asserted by the improvement of the scores of triples
containing the entities with predicted types.

Some of the errors come from mistakes when link-
ing Wikipedia pages with very similar names. Such
problems could potentially be evaluated with CoCKG.
Section 6 presents the approach in more details and
evaluates its performance on DBpedia and NELL.

Entities in DBpedia are described in much more de-
tail than in NELL [56]. Around 20% of NELL’s in-
stances are untyped, while in DBpedia, only 1% of
them have no types other than owl:Thing. Further-
more, in NELL, reasoning is already used in the con-
struction process for error detection, which means that
very obvious errors and violations of the underlying
ontology are already removed. This may explain why
NELL performs better with more locally selected fea-
tures, as opposed to DBpedia. By increasing the num-
ber of features the number of correct facts with un-

typed subject or object in the top-100 was reduced
from 48 to 9, and the number of actual errors increased
from 45 to 86.

Amongst the five correct facts from DBpedia which
were wrongly predicted to be errors, two were from the
relation seeAlso. That is understandable since the re-
lation has very wide semantics, and any pair of vaguely
related entities can be correct, therefore, learning a
model for such a relation may be very difficult. An-
other error detected was location(Alan_Turing_Institute,
British_Library), which is a correct fact, but the
unique case of an organization which is located in a
library. The last case is with the foundedBy relation,
with two cases of newspapers found by political par-
ties, not persons.

For YAGO, the results are considerably worse than
for DBpedia and NELL. There are various reasons
here: first, the schema of YAGO is very different, with
only 77 relations, but 488,469 classes [34]. Hence,
compared to DBpedia with 1,105 relations and 760
classes, the search space for path and type features is
completely different – we cannot construct too many
interesting paths, and many of the types are too spe-
cific to be meaningful for error detection. Second, the
global error rate of YAGO is lower [15], with more so-
phisticated checking in place already during YAGO’s
construction process, which makes the error detection
task inherently more difficult.

6. Correction of Errors Approach

Once erroneous relation assertions have been iden-
tified at a high level of confidence, they may be re-
moved from the knowledge graph. In case a suitable
replacement for the relation can be found, they may be
also be corrected instead of removed. In this section,
we discuss the CoCKG (Correction of Confusions in
Knowledge Graphs) approach for finding suitable re-
placements for an erroneous relation assertion. The ap-
proach is designed to address research question RQ3.

The approach consists of first running an error de-
tection algorithm (PaTyBRED in the case of this pa-
per), selecting the top-k facts most likely to be wrong.
In the next step, the error is heuristically verified to
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Algorithm 2 Knowledge base correction process
1: function CORRECT_TRIPLES(T, Terr , ed, tp,mc,mcg)
2: Tcorr ←∅
3: for t, scoret ∈ Terr do
4: s, p, o← t
5: stp← PREDICT_TYPES(tp, s)
6: otp← PREDICT_TYPES(tp, o)
7: if ¬(CONF_NT(ed, t, s, stp) ∨ CONF_NT(ed, t, o, otp)) then
8: scand ← GET_CANDIDATES(s)
9: ocand ← GET_CANDIDATES(o)

10: Tcand ←{(si, p, o)|si ∈ scand} ∪ {(s, p, oi)|oi ∈ ocand}
11: Tcand ← Tcand − T
12: cbest ,maxcon f ← nil, con f
13: for c ∈ Tcand do
14: if s ∈ domain(p) ∧ o ∈ range(p) then
15: scorec← CONF(ed, c)
16: if scorec > mc ∧ scorec/scoret > mcg then
17: cbest ,maxcon f ← c, scorec
18: end if
19: end if
20: end for
21: if cbest 6= nil then
22: Tcorr ← Tcorr ∪ {(cbest , t)}
23: end if
24: end if
25: end for
26: return Tcorr
27: end function

be an actual relation assertion error and not caused by
missing or wrong type assertions in the object or sub-
ject with a type predictor tp. In the final step, candi-
date entities are retrieved, and if any of the candidates
significantly improves the likelihood of the triple being
right, we replace it by that candidate. This idea is sim-
ilar to using a relation prediction algorithm for scoring
the candidates at hand. In both cases, the likelihood of
a triple being correct is estimated and used to decide
whether or not to perform the substitution.

The function CORRECT_TRIPLE in Algorithm 2
gives an overview of how CoCKG works. The param-
eter T is the set of all triples in the knowledge graph,
Terr is the set of triple and confidence pairs generated
by the error detection model (ed), tp is the type predic-
tor, mc is the minimum confidence threshold, and mcg
the minimum confidence gain threshold, i.e. the ratio
of the new and old triple scores. In the next subsections
we discuss the other parts in more details.

6.1. Type Prediction

After selecting the k triples most likely to be wrong,
we first check if their confidence is low because of
missing or wrong instance types (subject or object). In
order to do that, we run a type predictor tp on the sub-
ject and object instances. In this paper, we use as tp a
multilabel random forest classifier based on qualified
links (i.e. ingoing links paired with subject type and
outgoing links paired with object type), as described in

[40]. If the set of predicted types of the subject are dif-
ferent from the actual types, we change the type fea-
tures used by ed and compute a new confidence for the
triple (c.f. CONF_NT). If the new score satisfies mc and
mcg, then we conclude that the error was in the subject
type assertions. The same is done for the object.

If in neither case (i.e., after recomputing the confi-
dence with changed types for the subject and the ob-
ject) the confidence thresholds are satisfied, we assume
that the triple is actually wrong (i.e., a true negative),
and not identified as erroneous by mistake (i.e., a false
negative). In that case, we proceed to the next part
where we try to substitute the subject and object with
their respective lists of candidates.

Combining the type prediction process with the er-
ror detection also has the advantage that the newly pre-
dicted types can be validated on triples containing the
instance whose types were predicted. This can help
support, or contradict the type predictor, possibly de-
tecting types which are wrongly predicted by identi-
fying triples where the score is lowered with the new
types.

6.2. Retrieving Candidates

As discussed above, we assume that one common
source of erroneous assertions is the confusion of en-
tities with similar names. Hence, a simple way to
find candidate entities to resolve entity confusions
is to use disambiguation pages in Wikipedia. How-
ever, since disambiguation pages are only available
for Wikipedia-based knowledge graphs, and further-
more are not available for each entity (e.g. Ronaldo
has no disambiguation page), and in some cases the
disambiguation pages miss important entities (e.g. the
page Bluebird_(disambiguation) misses the entity
Bluebird_(horse), hence, we cannot correct the fact
grandisre(Miss_Potential,Bluebird)), we require
an additional source of candidates.

Since in our experiments we consider DBpedia and
NELL, which have informative IRIs (in the case of
DBpedia extracted from the correspondent Wikipedia’s
page), we search for candidate entities which have
similar IRIs. Alternatively, for knowledge graphs with
non-informative IRIs (e.g., Wikidata or Freebase), we
could pursue the same approach and search for entities
with similar labels. In this paper, we refer to the infor-
mative part of an IRI as the “name” of the entity, and
note that there might be other sources of a name, such
as an entity label.
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Retrieving all the instances of similar names can be
a time consuming task. This kind of problem is known
as approximate string matching, and it has been widely
researched [44, 71]. For our method, we use an approx-
imate string matching approach based on [42]. First,
we remove the IRI’s prefix and work with the suffix
as the entity’s name. We then tokenize the names and
construct a deletions dictionary with all tokens being
added with all possible deletions up to a maximum
edit distance dmax threshold. This dictionary contains
strings as keys and lists with all tokens which can turn
into the key string with up to dmax deletions as val-
ues. Only pairs of tokens which share a common dele-
tion string can have an edit distance less or equal than
dmax. We also have a tokens dictionary which has to-
kens as keys and lists of entities which contain a given
token as values. With that, given a token and a dmax,
we can efficiently obtain all the entities which contain
that a string approximately similar to that token up to
the maximum edit distance.

When searching for entities similar to a given en-
tity, we perform queries for every token of the en-
tity’s name and we require that all tokens are matched.
That is, for a certain entity to be considered similar, it
has to contain tokens similar to all the tokens of the
queried entity. A retrieved entity may have more to-
kens than the queried entity, but not less. The idea is
that in general, when referring to an entity, it is com-
mon to underspecify the entity, but highly unlikely to
overspecify it. E.g., it is more likely that Ronaldo is
wrongly used instead of Cristiano_Ronaldo than the
other way around. Furthermore, it reduces the number
of matched entities.

We also perform especial treatment on DBpedia and
NELL entity names because of peculiarities in their
IRI structures. In DBpedia it is common to have be-
tween parentheses information to help disambiguate
entities, which we consider unnecessary since the en-
tity types are used in the error detection method. In
NELL the first token is always the type of the entity,
therefore, for similar reasons, we ignore it.

6.3. Correcting Wrong facts

At this point, for each assertion identified as erro-
neous, we have a list of candidate entities for replac-
ing the subject and the objects, gathered, e.g., by ex-
ploiting disambiguation pages and approximate string
matching. We then compute a custom similarity mea-
sure s(e1, e2) between an entity e1 and a candidate e2.
Each entity ei consists of a set of its tokens. The mea-

sure we propose consists of two components. The first
is the sum of Levenshtein (dL) distance of all matched
tokens, and the second considers the number of un-
matched tokens to capture a difference in specificity.
The set of approximately matched token pairs is rep-
resented by µ(e1, e2) and the constant c is the weight
of the second component. This measure is used to sort
the retrieved candidates, to prune them in case there
are too many, and to break ties when deciding which
of the top-scoring candidates should be chosen.

s(e1, e2) =
∑

(t1 ,t2)∈µ(e1 ,e2)

dL(t1, t2)+c
|e1| − |µ(e1, e2)|

|e1|

(8)

In case the relation has domain or range restrictions,
we remove the candidates which violate these restric-
tions. Later, for each of the candidates, we generate
triples by substituting the subject and object by each of
the instances in its candidates lists (first substitute sub-
ject only, then object only). That is, the total number
of candidate triples is the sum of the size of the sub-
ject and object candidates list. We do not create can-
didate triples by substituting both the subject and ob-
ject at the same time because, although possible, we
assume the simultaneous confusion of both instances
to be highly unlikely.14 This restriction also limits the
number of possible candidate triples to a linear instead
of a quadratic number.

From the set of candidate triples, we remove those
triples which are already existent in the KG. We com-
pute the confidence of the remaining candidate triples
and select that with highest confidence, given that mc
and mcg are satisfied. As a result, CoCKG outputs a
set of erroneous triples with a suggested replacement.

7. Correction of Errors Experiments

To validate the performance of error correction, and
to answer research question RQ3, we conduct a man-

14For that to happen in the case of DBpedia, a Wikipedia user
would have to go to the wrong article page and insert a wrong link in
the infobox. In NELL, an extraction would have to extract a relation
by misinterpreting both involved entities at the same time, which,
since reasoning, among other plausibliity checks, is involved in the
creation of NELL, would require a plausible triple with a subject and
object with a similar name and a compatible type, e.g., two football
players and two football clubs with a similar name.
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ual evaluation on DBpedia (2016-10) and NELL (08m-
690). For each knowledge graph, we have run PaTy-
BRED, and presented the top-1% most likely to be er-
rors to CoCKG. We inspected the resulting corrections
and classified them into four different categories:

1. WC: wrong fact turned into correct
2. WW: wrong fact turned into another wrong fact
3. CW: correct fact turned into wrong fact
4. CC: correct fact turned into another correct fact

Note that while WC is the only class that actually im-
proves the knowledge graph, it does not mean that the
other classes actually make it worse. In fact, only CW
reduces the quality of the underlying knowledge graph,
while WW and CC do not alter the amount of correct
and wrong axioms in the knowledge graph.

Our approach was run with mc = 0.75,mcg = 2
and entity similarity measure with c = 1.5.15 That re-
sulted in 24,973 corrections on DBpedia and 616 cor-
rection on NELL. It also detected that 873 (569) errors
were caused by wrong types in DBpedia (NELL). The
relation of suggestions corrections between DBpedia
and NELL, although the numbers are very different,
reflects the relation of the overall number of axioms
in both knowledge graphs [56], the relation of wrong
types is not. One possible reason is that while types in
DBpedia are often incomplete, they are rarely incorrect
[50].

For the evaluation, since manually evaluating all
these corrections would be impossible, we randomly
select 100 suggestied corrections on each knowledge
graph to perform the evaluation.

The results of our manual evaluation are shown in
Figure 6. The proportion of facts successfully cor-
rected (WC) was rather low. However, the majority of
suggested replacements is WW (which does not alter
the quality the of the knowledge graph), and only a
small fraction (8% and 12%, respectively) are of the
problematic category CW. These results show that the
approach is at least capable of making meaningful sug-
gestions, and can be used by experts to maintain the
quality of a knowledge graph, although maybe not in a
fully automatic setting.

When evaluating some relations individually, we no-
tice that some of them achieve good results. E.g., the
relations sire, damsire, grandsire and subsequentWork
reaching more than 90% of successful corrections
(case 1). The approach works well for these relations

15The parameter values were selected based on heuristics and may
not be optimal
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Fig. 6. Manual evaluation on DBpedia and NELL respectively

because horses are often named after other entities,
and artists often have albums named after themselves,
which makes confusions likely, but also fairly easy to
detect.

One of the problems of our approach is that since it
relies on PaTyBRED, which cannot find many relevant
path features on DBpedia and NELL [37], it is difficult
to distinguish between candidate entities of same type.
For example, in NELL, the entity person_paul as ob-
ject of book_writer relation is always corrected with
writer_paul_feval.

The decision to generate candidate triples by cor-
rupting either the subject or object seemed to have
worked well for DBpedia, where we could not find a
triple where both subject and object were wrong. On
the other hand, in NELL such case was observed a
few times, e.g. ismultipleof(musicinstrument_herd
, musicinstrument_buffalo) whose object was cor-
rected to mammal_buffalo but the subject remained
wrong.

Also, our assumption that confusions tend to use a
more general IRI instead of a more specific, requiring
all tokens of the queried to be matched, does not al-
ways hold. One example in DBpedia which contradicts
this assumption is language(Paadatha_Thenikkal ,
Tamil_cinema), whose corrected object would be
Tamil_language and could not be retrieved by our ap-
proach. While this can be a problem, dropping this as-
sumption also means that more candidates entities will
be retrieved, increasing the number of unrelated candi-
dates, resulting in more candidate triples which need to
be tested and possibly more wrong replacements. Fur-
ther experiments would have to be conducted in order
to evaluate the effects of such change.

8. Learning SHACL Relation Constraints

In this section we present our approach for trans-
lating models for the correctness of relation asser-
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tions learned with PaTyBRED into SHACL relation
constraints. This approach is designed to address re-
search question RQ2. It is important to note that we
focus on the creation of constraints for relations be-
tween entities, i.e. owl:ObjectProperty. Constraints
for owl:DataProperty relations containing, e.g. nu-
merical, textual or geographical data, are out of the
scope of this paper.

Learning such constraints has an important advan-
tage when comparing to opaque relation assertion error
detection methods, such as embeddings. The SHACL
constraints are human-readable and can be directly
evaluated and improved by specialists without requir-
ing the manual evaluation of its output. Furthermore,
once learned, they can be deployed in the knowledge
graph creation process and evaluated more efficiently.

8.1. SHACL

Shapes Constraint Language (SHACL) is a lan-
guage for validating RDF graphs against a set of con-
ditions, which are provided as shapes expressed in the
form of an RDF graph called shapes graph. The RDF
graphs that are validated against a shapes graph are
called data graphs. The shape graphs conditions may
be used for a variety of purposes beside validation, in-
cluding user interface building, code generation and
data integration. SHACL was created as an extension
of ShEX (Shape Expressions).16

The SHACL specification is divided into SHACL
Core and SHACL-SPARQL.17 SHACL Core consists
of frequently needed features for the representation of
shapes, constraints and targets. The SHACL Core lan-
guage defines shapes about the focus node itself (node
shapes) and shapes about the values of a particular
property or path for the focus node (property shapes).

SHACL-SPARQL consists of all features of SHACL
Core plus the advanced features of SPARQL-based
constraints and an extension mechanism to declare
new constraint components. Constraint can be written
as SPARQL ASK or SELECT queries. These queries
are interpreted against each shape focus node. If an
ASK query does not evaluate to true for a given node,
then the constraint is violated. Constraints described
using a SELECT query must return an empty result set
when conforming with the constraint and non-empty
set when violated.

16https://www.w3.org/2001/sw/wiki/ShEx
17https://www.w3.org/TR/shacl/

SHACL also supports three different constraint
severity levels: Info, Warning and Violation. The dif-
ferent levels have no impact on the validation, but may
be used by to categorize validation results. It is up to
the user to define how the different severity levels are
handled.

8.2. Generation Process

To generate SHACL constraints, we follow the idea
of generating rules from decision trees. Hence, we first
run PaTyBRED with a tree learner to generate a de-
cision tree for classifying assertions into correct and
erroneous ones, and extract rules for erroneous state-
ments. Those rules are then expressed as SHACL con-
straints. Following [55], the trees are not optimized or
pruned during learning, but we apply a specific prun-
ing procedure later in the process.

To create the constraints, we consider the subtrees
whose leave nodes state that the example should be
classified as erroneous. The subtree is then converted
it into a logical expression, whose negation is used as
a constraint for the relation. The idea is that we used as
constraints the negation of the expression that defines
the examples which are predicted by PaTyBRED to be
highly erroneous. In the rest of this section we describe
in details how the generation of the constraints is done.

Firstly we identify the nodes which contain only –
or mostly – erroneous relation assertions. For a node
not to be pruned it needs to satisfy minimum support
and confidence thresholds, or be an ancestor of a node
which satisfies the thresholds. If a non-leaf node sat-
isfies both thresholds, all its ancestors can be pruned
(to avoid redundancies). This pruned tree can then
be directly converted into a logical expression which
will translate the conditions into a single SHACL con-
straint. Each literal Li, j is a variable which may be
negated or not. This can be directly translated to node
conditions in the tree which are satisfied (right branch)
or not (left branch).

Figure 7 shows an example of how the pruning pro-
cess works. The decision tree is learned on the exam-
ple relation relation from the introductory example.
Leaves which contain only negative examples (like the
upper right leaf) or have an impure distribution (like
the lower right leaf) are pruned. From the remaining
paths in the tree, logic expressions for valid relation
assertions are generated.

A confidence value of 1 means that only pure nodes
containing exclusively negative examples can be se-
lected. It also means that if the learned constraints are
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Person(s)

Organisation(o)

[264,3] Person(o)

successor−1 → president

[49,1] successor−1 → president→ successor

[25,1] [10,10]

[2,40]

[0,305]

Person(s) ∧ Organisation(o)

∨ Person(s) ∧ Person(o) ∧ (successor−1 ◦ president)(s, o)

∨ Person(s) ∧ Person(o) ∧ (successor−1 ◦ president ◦ successor)(s, o)

Fig. 7. Deriving constraints from a learned decision tree. First, leaves are pruned (marked as struck through). Then, logical constraints are derived
from the remaining paths in the tree (lower part).

to be applied on the original data, no existing errors
can be detected. In order to enable detection of preex-
isting errors, the confidence threshold of less than 1 is
necessary. We can use different confidence thresholds
to define different SHACL constraints with different
severity levels. Constraints with lower confidence may
be used as warnings, while higher confidence values
close to 1 maybe used as violations.

Since PaTyBRED relies on path and type features,
all conditions in the decision tree nodes will be of the
following kinds: subject type, object type and path.

The decision tree’s logical expression can be di-
rectly translated to SHACL Core using sh:and, sh:or
and sh:not. A shape for a relation :r can be de-
fined with :rShape a sh:NodeShape. We define the
target nodes of the shape as subjects of the target re-
lation with sh:targetSubjectsOf. Subject type fea-
tures test if the subject of the relation assertion is of
a certain class :C. This can be done in SHACL with
:rShape sh:class :C. Moreover, the object can be re-
stricted to a type :C with the following expression
:rShape sh:property [sh:path :r; sh:class :C].

The main problem with SHACL Core is when trans-
lating path features. In the decision trees we con-
sider pairs of subject and object as examples, however
SHACL validation is performed on single nodes basis.
Its vocabulary provides the components for property

pair constraints sh:equals and sh:disjoint. The first
requires that for all focus nodes the set of nodes reach
by both properties (or property paths) should be identi-
cal, while the second requires that the sets are disjoint.
The problem is that what we need to represent is the
subsumption relation between a pairs of paths.

This can be illustrated with Example 1. If we want
to validate the relation :playedFor we need to con-
sider the subject-object pairs (:Anelka, :Chelsea) and
(:Anelka, :Arsenal). Assuming every (s, o) pair is re-
quired to also be connected by the path :livedIn/
:ˆlocatedIn in order to be correct, then both as-
sertions should be valid. However, since the set of
objects reached from :Anelka with :playedFor is
{:Chelsea, :Arsenal} and with :livedIn/:ˆlocatedIn
is {:Chelsea, :Arsenal, :Westham}, an error on the
focus node :Anelka would be detected if we use
sh:equals to represent the path pattern.

Example 1:

:Anelka :playedFor :Chelsea .
:Anelka :playedFor :Arsenal .
:Anelka :livedIn :London .
:Chelsea :locatedIn :London .
:Arsenal :locatedIn :London .
:Westham :locatedIn :London .

Example 2:
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:Anelka :playedFor :Chelsea .
:Anelka :playedFor :Arsenal_ARG .
:Anelka :livedIn :London .
:Chelsea :locatedIn :London .
:Arsenal_ARG :locatedIn :Sarandi .
:Westham :locatedIn :London .

A similar problem happens if we try to use the nega-
tion of sh:disjoint. In Example 2 the pair (:Anelka,
:Chelsea) is correct, while (:Anelka, :Arsenal_Sarandi)
is incorrect, since the pair is not connected with
:livedIn/:ˆlocatedIn because :Anelka did not live
in :Sarandi. If we validate the data using the negation
of sh:disjoint, the sets of objects reached with the
two paths are not disjoint because both have :Chelsea,
therefore the validator would assume that for the fo-
cus node :Anelka there is no assertion error with rela-
tion :playedFor. This would only work if the relation
:playedFor were functional. For that reason, we can-
not correctly translate the PaTyBRED decision trees
into SHACL Core.

In SHACL-SPARQL path features can be cor-
rectly translated in a more intuitive way, since it is
possible to work directly with subject-object pairs.
Moreover, it has the advantage of using a well-
established and widely used language instead of re-
quiring the learning of a whole new vocabulary. The
template for a SHACL-SPARQL relation constraint is
shown below. The SPARQL constraint is defined with
the sh:SPARQLConstraint component. The variable
$this indicate the focus node and ?o its correspondent
objects in the target relation.

:relSHACLShape a sh:NodeShape ;
sh:targetSubjectsOf :rel ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o
WHERE {
$this :rel ?o .
FILTER(!(E))

}
""" ;

] .

The relation constraints expression is represented
by E, which is negated because during validation
the select query needs to return an empty set if
$this satisfies the constraint. Table 8 shows how the
PaTyBRED features can be converted into SHACL-
SPARQL and Core. The path :p represents a property
chain :r1/.../:rn in SHACL-SPARQL, with the ˆ
character before a relation indicating the inverse of the
relation.

For the earlier president relation example from
DBpedia, which corresponds to the decision tree
shown in Fig. 7, the expression E could defined as
shown below. Every variable in the logical formula is
expressed as a different EXISTS clause. Negated liter-
als can be represented by simply negating a single vari-
able EXISTS clause. Alternatively, disjunctions and
conjunctions can be represented in a single EXISTS
clause using “UNION” and “.” respectively, however
expressing negations would be complicated.

EXISTS {?o a :Person} &&
(EXISTS {$this a :Organisation} ||
(EXISTS {$this a :Person} &&
(EXISTS {
$this ^:successor/:president ?o
}
||
EXISTS {
$this ^:successor/:president/:successor ?o
}
)
)
)

It is important to note that the number of variables
and the length of the expression will depend on the
number of features selected defined by PaTyBRED.
It also depends on the decision tree settings, such as
the maximum depth, maximum number of leaf nodes,
minimum samples on leaf and on split.

9. Relation Constraint Experiments

To evaluate the learning of relation constraints, we
compare the constraints learned with our approach
with domain and range restriction axioms learned with
statistical schema induction (SSI). We conduct experi-
ments on two large-scale knowledge graphs, i.e., DB-
pedia and YAGO. These experiments address research
question RQ2.

As discussed above, approaches learning explicit in-
terpretable and executable models for identifying er-
rors in knowledge graphs are scarce, since most ap-
proaches are rather focused towards scoring individ-
ual triples. However, a feasible way of combining er-
ror detection in knowledge graph with learning ex-
plicit models is first to enrich the underlying schema
or ontology by additional axioms, and then to use the
axioms to detect errors in the knowledge graph [61].
We use an approach called Statistical Schema Induc-
tion (SSI) first introduced in [64], which uses associ-
ation rule mining to learn domain and range restric-
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Feature SHACL-SPARQL SHACL Core

C(s) {$this a :C} _:b sh:class :C .

C(o) {?o a :C} _:b sh:property [sh:path :r; sh:class :C] .

p(s, o) {$this :p ?o} N/A
p(X, s) {?X :p $this} _:b sh:property [sh:path [sh:inversePath :p]] .

p(s, X) {$this :p ?X} _:b sh:property [sh:path :p] .

p(X, o) {?X :p ?o} N/A
p(o, X) {?o :p ?X} N/A

Table 8
PaTyBRED features translation into SHACL

tions in a schema. SSI [64] uses association rule min-
ing to induce domain and range restrictions the data.
In order to learn such restrictions, it generates trans-
action tables where transactions correspond to relation
assertions and items correspond to relation and sub-
ject types, for domain learning, or relation and ob-
ject types, for range learning. Then rules of the forms
∃r.> v C and ∃r−1.> v C (i.e., domain and range
axioms respectively) are learned with association rule
mining. To compare these domain and range restric-
tions to our SHACL constraints, we converted them to
explicit tests, flagging axioms with a given property
but the subject or object missing the type defined as
domain or range, respectively.

The reasons why we choose SSI as a comparison
is two-fold: first, it scales well to an entire knowledge
graph such as DBpedia. Second, our approach can,
as discussed in the introduction, learn more complex
patterns for errors which go beyond simple domain
and range restrictions. Hence, the comparison will also
reveal whether this theoretical capability is also ex-
ploited in practice, or whether our approach falls back
to learn simple domain and range restrictions, which
are only expressed is more complex SHACL con-
straints.

We run both methods with minimum confidence of
0.95 and minimum support of 50 instances. For SSI,
we use the most specific domain and range axioms that
satisfy the minimum confidence and support thresh-
olds. Every constraint and axiom preserves its original
confidence value, and for every fact violating the con-
straints we assign the confidence of its original axiom.

We rank the detected errors by the scores, and select
the top-10000 (top-10k) errors with each method (less
than 1% of the total amount of relation assertions).
Since many of triples are in the top-10k of both meth-
ods, we manually evaluate only those triples which are
selected by one method and not the other.

We decided to evaluate the compared approaches
based on their ability to detect existing errors. Evalu-
ating the quality of the generated constraints by them-
selves, without considering their ability to detect er-
rors, would be subjective. Since both methods induce
the constraints from the ABox and the detection of er-
rors is their main application, we think it is fair to eval-
uate the approaches by how accurately they can detect
errors in an incorrect dataset like DBpedia.

The learned SHACL constraints are translated from
PaTyBRED decision trees learned with mpl = 2,
mppl = 5000, k = 10 and nneg = 1. Out of 646
owl:ObjectProperty relations from DBpedia 2015-10
considered, we learned 440 SHACL constraints. Out of
those 122 were simple domain and range restrictions,
224 were combinations of subject and object types and
94 had path features (from which 43 had length 2).
The relevance of triangular path features in DBpedia
is rather small, contributing to only 6% of the features
selected (c.f. Table 1).

Figure 8 shows the results of our manual evaluation
on DBpedia18. Since there is some overlap in the top-
10k triples detected with each method (380 triples in
DBpedia and 5963 in YAGO), we also present the re-
sults of the evaluation on the differences between the
two methods in Figure 9. We call SHACL-SSI the set
of triples selected by the SHACL constraints and not
by SSI, and SSI-SHACL the set of those selected by
SSI and not SHACL. We then select random samples
of 100 errors from SHACL-SSI and SSI-SHACL and
manually evaluate them.

In the manual evaluation we classify the triples de-
tected as errors into four categories.

– WT-CC: wrong triple with correct types
– WT-WC: wrong triple with wrong types

18The manual annotations can be accessed in http://data.dws.
informatik.uni-mannheim.de/hmctp/shacl-eval/
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Fig. 8. Manual evaluation on DBpedia and YAGO

Fig. 9. Manual evaluation of the differences between SHACL and
SSS on DBpedia and YAGO

– CT-WC: correct triple with wrong types
– CT-CC: correct triple with correct types

We consider a fact to have wrong type (WC), if ei-
ther the subject or the object in the triple has wrong
or missing triple assertions. That includes instances
which are untyped, has too general types, or has wrong
type assertions. A relation assertion is considered cor-
rect (CT) if the pair of subject and object entities is
correct, independent of their types.

The results from Figure 5 show that the SHACL
constraints are better at detecting wrong triples, with
a higher number of wrong triples with correct types
(WT-CC), which are more difficult to detect. Also, the
number of correct triples with wrong types (CT-WC) is
reduced, showing that the more flexible SHACL con-
straints are better at modeling noisy and incomplete re-
lations. We suppose that on datasets where path fea-
tures are more relevant, our learned SPARQL con-
straints would have a greater advantage when com-
pared to SSI, since the latter only exploits subject and
object types.

We illustrate the results obtained with our method
showing two examples of SHACL constraints learned
on DBpedia learned for the relations parent and
kingdom, as well as the relation isCitizenOf learned
on YAGO. The :parentShape constraint uses exclu-
sively path features, and it exploits the fact that gener-
ally people have children with their spouses and that
it is the inverse of the child relations. In the DBpedia
ontology child and parent are not the inverse of each
other, with the two relations having different number
of assertions. By considering the two path features, the
constraint is more flexible requiring that neither paths
connect subject and object for a relation assertion to
violate the constraint. Such flexibility is particularly
important on incomplete datasets, such as DBpedia.

:parentShape a sh:NodeShape ;
sh:targetSubjectsOf :parent ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o WHERE {
$this :parent ?o .
FILTER(
!EXISTS {$this :parent/:spouse ?o}
&&
!EXISTS {$this ^:child ?o}
)}

""" ;
] .

:kingdomShape a sh:NodeShape ;
sh:targetSubjectsOf :kingdom ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o WHERE {
$this :kingdom ?o .
FILTER(
!EXISTS {$this :family/:kingdom ?o}
&&
!EXISTS {$this :phylum/:kingdom ?o}
&&
!EXISTS {$this :genus/:kingdom ?o}
)}

""" ;
] .

:isCitizenOfShape a sh:NodeShape ;
sh:targetSubjectsOf :isCitizenOf ;
sh:sparql [
a sh:SPARQLConstraint;
sh:select """
SELECT $this ?o WHERE {
$this :isCitizenOf ?o .
FILTER(
!EXISTS {?o a :Country} ||
(!EXISTS
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{$this :wasBornIn/:isLocatedIn ?o}
&&

!EXISTS
{$this :graduatedFrom/:isLocatedIn ?o}

))}
""" ;

] .

The :isCitizenOfShape constraint learned on YAGO3
requires that the object of the relation is of the type
:Country and that the subject was born in a place lo-
cated in the country or graduated from an institution
located in the country. Although the constraint is not
entirely correct, since people who were not born in or
did not graduate in a country can still be citizen of a
country, however, it reveals interesting patterns in the
data. Moreover, by varying the minimum confidence
threshold one can obtain more aggressive constraints,
such as the one shown above, or more conservative
ones which do not require the paths conditions to be
fulfilled.

The :kingdomShape exploits the fact that for ev-
ery level of the life taxonomy below kingdom (from
species to phylum), most instances have assertions
of the kingdom relation. The constraint requires that
for every pair of subject-object at least one of fol-
lowing three paths should exist: :family/:kingdom,
:phylum/:kingdom ?o and :genus/:kingdom. The prob-
lem is that while this holds for the majority of the
:kingdom assertions, those which have a phylum as
subject cannot have one of the three aforementioned
paths because phylum is the level directly kingdom.
Statistical methods – including our approach – identi-
fies such case as outlier, since the proportion of sub-
jects which are phyla is very small. This happens be-
cause there are orders of magnitude more species, gen-
era, families, orders and classes than phyla.

This case illustrate the importance of having read-
able constraints, which can be understood and im-
proved by specialists. The constraint could be easily
fixed by adding the path ˆ:phylum/:kingdom to the
expression, which would include the cases where the
subject is a phylum into the definition.

9.1. Limitations

One of the limitations of our approach is the cost
of considering paths of length mpl > 2 on datasets
with many relations. In order to enable PaTyBRED to
be used on large-scale datasets, such as DBpedia and
NELL, conservative values for mpl and mppl need to
be selected. This reduces the number of paths whose

adjacency matrix needs to be computed and the num-
ber of features considered in the relations’ training
data. This improves the scalability, however, it also
means that possibly relevant paths can be left out.

Another limitation is that in its current implementa-
tion, PaTyBRED generates negative examples by sub-
stituting the subject or object by a randomly selected
entity. Since the distribution of instances over classes
on most KGs is highly skewed, with some classes be-
ing much more likely to be sampled than others. That
means the generation of potentially relevant negative
examples with instances of infrequent classes is un-
likely, which may make it difficult to learn constraints
with such infrequent classes.

In order to compensate for this effect, we would
need to introduce a bias to selection of entities on the
generation of negative examples. A possible solution
is to make it more likely to generate instances of the
same or sibling classes, making it more likely to select
entities of classes that are more closely related to the
class of the original entity. That is an interesting prob-
lem, however it requires extensive research in order to
verify its effectiveness on mitigating the issue.

10. Conclusion and Future Work

In this paper, we have investigated three research
questions: error detection in knowledge graphs (RQ1),
developing a method for sustaining the results of error
detection and abstract from individual errors detected
to patterns of such errors (RQ2), and automatic correc-
tion of such errors (RQ3).

We have shown that although the error detection
problem is similar to knowledge completion, methods
which perform well in knowledge completion might
not necessarily be appropriate for error detection. To
address RQ1, we have proposed PaTyBRED, a robust
supervised error detection method which relies on type
and path features, and compare it with state-of-the-
art error detection and knowledge graph completion
methods. We demonstrate the importance of combin-
ing those path and type features together, and we also
perform a manual evaluation of our approach on DB-
pedia and NELL.

To address RQ3, we have presented CoCKG, an ap-
proach for correcting erroneous facts originated from
entity confusions in knowledge graphs. The exper-
iments show that CoCKG is capable of correcting
wrong triples with confused instances, with estimated
precision of 21% of the produced corrections in DB-
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pedia and 14% in NELL. The low precision values ob-
tained do not allow this process, as of now, to be used
for fully automatic KG enrichment. Nevertheless, it
works as a proof of concept and can be useful, e.g.,
as suggestions from which a user would ultimately de-
cide whether to execute. Moreover, fusing multiple ex-
ternal signals (e.g., confidence scores of link predic-
tion approaches, external evidence from texts [22, 23],
other knowledge graphs [7] or fact validation engines
[28]) to achieve better scores for the substitution can-
didates might be a way to improve the performance of
CoCKG.

We have observed that there are quite a few char-
acteristic patterns of confusion in knowledge graphs
(e.g., artists and albums with the same name, a city and
a sports club located in that city, etc.). Similar to learn-
ing patterns for typical shapes in a knowledge graph,
it might be interesting to learn typical shapes for con-
fusions. Those may serve as good starting points for
semi-automatically curating editing guidelines with
common mistakes and how to avoid them.

To address RQ2, we have furthermore proposed a
method for learning SHACL-SPARQL constraints for
relations which is based on the relation assertion error
detection method PaTyBRED. We compare the learned
SHACL constraints with RDFS domain and range re-
striction learned with statistical schema induction. We
performed a manual comparison of the two approaches
on DBpedia, and we show that our SHACL constraints
are better at detecting wrong relation assertions while
being more robust when handling noise and incom-
pleteness of subject and object type assertions. The
SHACL constraints learned are available online19 and
could be deployed directly for error detection on DB-
pedia. These results show that, if using symbolic learn-
ing for error detection in knowledge graphs, it is pos-
sible to generate an executable model for error detec-
tion in knowledge graphs. Such an approach has two
advantages: (1) manual validation with a human in the
loop becomes easier when only a small number of con-
straints has to be reviewed instead of a large number
of flagged triples, and (2) there are tools to validate
RDF graphs using SHACL [19], which are used in the
pipelines of building large-scale knowledge graphs.
Hence, the results of error detection can be made avail-
able in a reusable way and built into the knowledge
graph construction process.

19https://github.com/aolimelo/kged

In the future we plan to investigate the creation of
SHACL constraints for numerical and textual data.
For numerical data constraints we can extend previous
works [16, 41] on the area to derive intervals which
can be used as constraints. It would also be interest-
ing to adapt CoCKG to support active learning. Since
guaranteeing the quality of the newly generated facts is
crucial, having input from the user to clarify borderline
cases and improve the overall results would be highly
valuable. Furthermore, using an ensemble of different
KG models with different characteristics, e.g. KG em-
beddings, instead of a single model may potentially in-
crease the robustness of the system. Finally, it would
be worth adding textual features from entities descrip-
tions to help determine if a pair of entities is related or
not.
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