
Undefined 1 (2019) 1–5 1
IOS Press

RDF Graph Partitioning: Techniques and
Empirical Evaluation
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Adnan Akhter a,∗, Muhammad Saleem a and Axel-Cyrille Ngonga Ngomo b

a AKSW, Leipzig, Germany
E-mail: {lastname}@informatik.uni-leipzig.de
b University of Paderborn, Germany
E-mail: axel.ngonga@upb.de

Abstract.
Over the past few years, we have witnessed that the RDF data sources, both in numbers and volume have grown enormously. As

the RDF datasets gets bigger, system’s storage capacity becomes vulnerable and the need to improve the scalability of RDF storage
and querying solutions arises. Partitioning of the dataset is one solution to this problem. There are various graph partitioning
techniques exist. However, it is difficult to choose the most suitable (in terms of query performance) partitioning for a given RDF
graph and application. To the best of our knowledge, there is no detailed empirical evaluation exists to evaluate the performance of
these techniques. This paper presents an empirical evaluation of RDF graph partitioning techniques by using real-world datasets
and real-world benchmark queries selected using the FEASIBLE benchmark generation framework. We evaluate the selected
RDF graph partitioning techniques in terms of query runtime performances, partitioning time and partitioning imbalance. In
addition, we also compare their performance with centralized storage solutions, i.e., no-partitioning at all. Our results show that
the centralized storage of the complete datasets (no-partitioning) generally lead to better query runtime performance as compared
to their partitioning. However, for specific cases the performance is improved with partitioning as compared to centralized solution.
Hence, the general graph partitioning techniques may not lead to better performance when implied to RDF graphs. Therefore,
clustered RDF storage solutions should take into account the properties of RDF and Linked Data as well as the expressive features
of SPARQL queries when partitioning the given dataset among multiple data nodes.

Keywords: RDF Data, Graph Partitioning, Query Runtime Performance, Partitioning Imbalance, Partitioning Time

1. Introduction

Over the past few years, the Web of Data has in-
creased significantly. Currently, the Linking Open Data
(LOD)1 cloud comprises around 150 billion triples from
more than 2973 datasets. This includes several big
datasets such as UniProt2(over 10 billion triples) and

*Corresponding author. E-mail: akhter@informatik.uni-leipzig.de
1LOD: http://stats.lod2.eu/
2UniProt: http://www.uniprot.org/statistics/

Linked TCGA3 (around 20 billion triples). To store and
query such datasets efficiently has motivated a consid-
erable amount of work on designing clustered triple-
stores [6,7,10,11,12,13,19,21,22,27,28,33], i.e., solu-
tions where data is partitioned among several data
nodes. Data partitioning, by definition, is a process of
logically and/or physically dividing a larger dataset into
many smaller sub-datasets to facilitate better mainte-
nance and access by improving system’s availability,

3TCGA: http://tcga.deri.ie/

0000-0000/19/$00.00 © 2019 – IOS Press and the authors. All rights reserved

http://stats.lod2.eu/
http://www.uniprot.org/statistics/
http://tcga.deri.ie/

2 RDF Graph Partitioning: Techniques and Empirical Evaluation

query processing times and load balancing. There are
many graph-data partitioning techniques employed by
current clustered triplestores [28]. According to [14], a
partitioning technique greatly affects the query runtime
performance of data storage solutions. This leads to
the research question of how to find the best suitable
partitioning technique for a given use case. However,
to the best of our knowledge, no detailed evaluation of
different RDF graph partitioning techniques has been
undertaken that would evaluate efficiencies of differ-
ent partitioning techniques in terms of query runtime
performance, partitioning imbalance and scalability.

Our previous work [2] has addressed this research
question by presenting an evaluation of seven different
graph partitioning techniques implied to RDF graphs.
We compare these partitioning techniques in terms of
query runtime performance, partitioning time and bal-
anced load generation. In this paper we present an ex-
tended version of this work. We provide a more detailed
explanation of the results. In particular, we wanted to
investigate whether the general graph partitioning tech-
niques can lead to better performance with implied to
RDF graphs. To this end, we compared the performance
of the selected seven partitioning techniques with no-
partitioning solution.

Our overall contributions are as follows:

1. We present a comparison of seven – Predicate-
Based, Subject-Based, Hierarchical, Horizon-
tal, Total Communication Volume Minimiza-
tion (TCV-Min), Min-Edgecut and Recursive-
Bisection – RDF graph partitioning techniques
with no-partitioning centralised storage solution
in two different evaluation setups. :4 (1) clustered
RDF storage solutions in which data is distributed
among different data nodes within the same ma-
chine, and (2) purely federated solutions in which
data is distributed among several physically sepa-
rated machines and a federation engine is used to
do the query processing task.

2. To make our comparison more realistic, we make
use of two real-world datasets (i.e., Semantic Web
Dog Food and DBpedia), and real-world users’
queries log which are generated by FEASIBLE 5

[25].
3. We used different performance measures such as

query runtime performance, total partitioning time,
size variations of the partitions, and number of

4Explained in detailed in Section 4.1.2
5A SPARQL benchmark generation framework from queries log

sources selected. In addition, we performed T-Test
to show significant differences in the runtime per-
formances achieved by the selected solutions.

4. Our evaluation results revealed interesting insights
such as: the performance was degraded (in gen-
eral) by partitioning the data as compared to the
centralized storage solution without any partition-
ing, the query runtime performances are greatly
affected by the underlying partitioning technique,
the widely used subject/Predicate-Based partition-
ing may not be the best candidates in all situa-
tions, and the partitioning technique that leads to
the smaller number of sources selected usually
leads to the better runtime performances in purely
federated environment etc.

All of the data, source code, and results presented
in this evaluation are available at https://github.
com/dice-group/rdf-partitioning.

The rest of the paper is organized as follows: Section
2 defines the key concepts necessary to understand this
work. Section 3 explains graph partitioning techniques
used in this work. Section 4 shows complete evalua-
tion setup followed by the evaluation results. Section 5
covers some of the previous work related to the graph
partitioning. Finally, section 6 presents our conclusion.

2. Preliminaries

In this section, we define the key concepts neces-
sary to understand the subsequent sections of this work.
Some of the definitions are adopted from [16,26].

Definition 1. RDF Triple: Assuming there are pair-
wise disjoint infinite sets I, B, and L (IRIs, Blank nodes,
and Literals, respectively), a triple (s, p, o) ∈ (I ∪ B) ×
I × (I ∪ B ∪ L) is called an RDF triple. In this triple, s
is the subject, p the predicate, and o the object.

Definition 2 (RDF Graph). An RDF graph G is a
set of RDF triples and can be modelled as a labelled
graph (V,E,λ), where V =

{
v|∃s, p, o : (v, p, o) ∈

G ∨ (s, p, v) ∈ G
}

is the set of vertices, E ⊆
{(s, o)|(s, p, o) ∈ G} is the set of edges between the
vertices and λ(s, o) = p if (s, p, o) ∈ G is the edge
labeling function of G.

Definition 3 (RDF Graph Partitioning Problem). Given
an RDF graphG = (V,E), divideG into n sub-graphs

G1, . . . Gn such that G = (V,E) =
n⋃

i=1

Gi, where V

is the set of all vertices and E is the set of all edges in
the graph.

https://github.com/dice-group/rdf-partitioning
https://github.com/dice-group/rdf-partitioning

RDF Graph Partitioning: Techniques and Empirical Evaluation 3

Now we define the overall rank score (ref. Figure
7) and the partitioning imbalance (ref. Figure 8) we
used as performance metrics to compare the selected
partitioning techniques.

Definition 4 (Rank Score). Let t be the total number
of partitioning techniques and b be the total number
of benchmark executions used in the evaluation. Let
1 ≤ r ≤ t denote the rank number and Op(r) denote
the occurrences of a partitioning technique p placed at
rank r. The rank score of the partitioning technique p
is defined as follows:

s :=

t∑
r=1

Op(r)× (t− r)
b(t− 1)

, 0 ≤ s ≤ 1

In our evaluation, we have a total of seven partition-
ing techniques (i.e., t = 7) and 10 benchmarks execu-
tions (b = 10, 4 benchmarks by FedX, 4 benchmarks by
SemaGrow, and 2 benchmarks by Koral).

Definition 5 (Partitioning Imbalance). Let n be the to-
tal number of partitions generated by a partitioning
technique and P1, P2, . . . Pn be the set of these parti-
tions, ordered according to the increasing size of num-
ber of triples. The imbalance in partitions is defined as
Gini coefficient:

b :=

2
n∑

i=1

(i× |Pi|))

(n− 1)×
n∑

j=1

|Pj |
− n+ 1

n− 1
, 0 ≤ b ≤ 1

The remaining of the definitions are related to the
SPARQL queries used for benchmarking (see Table 1).
We assume that the reader is familiar with the basic
concepts of SPARQL, including the notions of a triple
pattern and basic graph pattern (BGP).6

We represent any basic graph pattern (BGP) of
a given SPARQL query as a directed hypergraph
(DH) [26], a generalization of a directed graph in which
a hyperedge can join any number of vertices. In our
specific case, every hyperedge captures a triple pattern.
The subject of the triple becomes the source vertex of
a hyperedge and the predicate and object of the triple
pattern become the target vertices. For instance, the
query (Figure 1) shows the hypergraph representation
of a SPARQL query. Unlike a common SPARQL rep-

6See https://www.w3.org/TR/sparql11-query/ for
the corresponding definitions.

SELECT DISTINCT * WHERE {
?drug :description ?drugDesc .
?drug :drugType :smallMolecule .
?drug :keggCompoundId ?compound .
?enzyme :xSubstrate ?compound .
?chemReac :xEnzyme ?enzyme .
?chemReac :equation ?chemEq .
?chemReac :title ?reacTitle
}

Fig. 1.: Directed hypergraph representation of a
SPARQL query. Prefixes are ignored for simplicity. (Ex-
ample taken from [20]).

resentation where the subject and object of the triple
pattern are connected by an edge, our hypergraph-based
representation contains nodes for all three components
of the triple patterns. As a result, we can capture joins
that involve predicates of triple patterns. Formally, our
hypergraph representation is defined as follows [26]:

Definition 6 (Directed Hypergraph of a BGP). The
hypergraph representation of a BGP B is a directed
hypergraph HG = (V,E) whose vertices are all
the components of all triple patterns in B, i.e., V =⋃

(s,p,o)∈B{s, p, o}, and that contains a hyperedge
(S, T) ∈ E for every triple pattern (s, p, o) ∈ B such
that S = {s} and T = (p, o).

The representation of a complete SPARQL query
as a DH is the union of the representations of the
query’s BGPs. Based on the DH representation of
SPARQL queries, we can define the following features
of SPARQL queries:

Definition 7 (Join Vertex). For every vertex v ∈ V
in such a hypergraph we write Ein(v) and Eout(v)
to denote the set of incoming and outgoing edges,
respectively; i.e., Ein(v) = {(S, T) ∈ E | v ∈ T}
and Eout(v) = {(S, T) ∈ E | v ∈ S}. If |Ein(v)| +
|Eout(v)| > 1, we call v a join vertex.

Definition 8 (Join Vertex Degree). Based on the DH
representation of the queries the join vertex degree of

https://www.w3.org/TR/sparql11-query/

4 RDF Graph Partitioning: Techniques and Empirical Evaluation

a vertex v is JVD(v) = |Ein(v)| + |Eout(v)|, where
Ein(v) resp. Eout(v) is the set of incoming resp. out-
going edges of v.

Definition 9 (Triple Pattern Selectivity). Let tpi be a
triple pattern of a SPARQL queryQ andD be a dataset.
Furthermore, let N be the total number of triples in
D and Card(tpi, D) be the cardinality of tpi w.r.t. D,
i.e., total number of triples in D that matches tpi, then
the selectivity of tpi w.r.t. D denoted by Sel(tpi, D) =
Card(tpi, D)/N .

3. RDF Graph Partitioning

In this section, we explain commonly used [16,18,
28,24] graph partitioning techniques by using a sample
RDF graph shown in figure 2.

3.1. Horizontal Partitioning:

This is perhaps the most simplest form of partitioning
which is adopted from [24] in which the whole dataset
is divided into n numbers of partitions of each size.
Imagine we have a dataset of 100 triples and we want
to split them in ten partitions, then, the first ten triples
will go to the first partitions, later two will go to the
second and so on till the last ten triples go to the final
partition.

Assume T be the set of all RDF triples in a dataset
and n be the required number of partitions and we want
to apply horizontal technique to this dataset. As ex-
plained before, the first |T |/n triples will go in partition
1, the next |T |/n triples will go in partition 2 and so on.
In the example given in figure 2, the triples 1-4 will be
assigned to the first partition (green), triples 5-8 will be
assigned to the second partition (red), and triples 9-11
will be assigned to the third partition (blue).

In order to determine whether horizontal partitioning
will increase overall performance of the system then we
need to examine the ways in which the input queries
access the dataset. If there is a significant access of a
group of rows together, then Horizontal partitioning
may make sense.

3.2. Subject-Based Partitioning

Subject-Based partitioning partitions a given dataset
based on their subject’s hash code. The idea is to group
all the triples with same subject and assign them into

one partition based on a hash value computed on their
subjects modulo [16]. However, due to modulo opera-
tion this technique may result in high partitioning im-
balance.

Consider our motivating examples given in figure 2.
Three triples i.e., 3, 10 and 11 are assigned to the red
partition due to the fact that these triples have same
subjects, triple 7 is assigned to the blue partition, and
the rest of the triples are assigned to partition green.
This shows the partitioning imbalance which is 3:1:7 in
our case.

In order to determine whether Subject-Based parti-
tioning will increase overall performance of the sys-
tem then again, we need to examine the ways in which
the input queries access the dataset. If there is a sig-
nificant access of the triples with same subjects, then
Subject-Based partitioning may make sense.

3.3. Predicate-Based Partitioning

Similar to Subject-Based, Predicate-Based partition-
ing partitions a given dataset based on their predicate’s
hash code. The idea is to group all the triples with same
predicate and assign them into one partition based on
a hash value computed on their subjects modulo. How-
ever, due to modulo operation this technique may also
result in high partitioning imbalance.

Consider our motivating examples given in figure
2. All the triples containing predicate p1 and p4 are
assigned to the red partition, triples with predicate p2
are assigned to the green partition, and all triples with
predicate p3 are assigned to the blue partition. Again,
we can see a clear partitioning imbalance 5:4:2 in our
case.

In order to determine whether Predicate-Based parti-
tioning will increase overall performance of the system
then again, we need to examine the ways in which the
input queries access the dataset. If there is a signifi-
cant access of the triples with same predicates, then
Predicate-Based partitioning may make sense.

3.4. Hierarchical Partitioning

This partitioning is inspired by the assumption that
IRIs have path hierarchy and IRIs with a common hier-
archy prefix are often queried together [16]. This parti-
tioning is based on extracting path hierarchy from the
IRIs and assigning triples having the same hierarchy
prefixes into one partition. For instance, the extracted
path hierarchy of “http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" is “org/w3/www/1999/02/22-rdf-

RDF Graph Partitioning: Techniques and Empirical Evaluation 5

@prefix hierarchy1: <http://first/r/> . @prefix hierarchy2: <http://second/r/> .
@prefix hierarchy3: <http://third/r/> . @prefix schema: <http://schema/> .
hierarchy1:s1 schema:p1 hierarchy2:s11 . #Triple 1
hierarchy1:s1 schema:p2 hierarchy2:s2 . #Triple 2
hierarchy2:s2 schema:p2 hierarchy2:s4 . #Triple 3
hierarchy1:s1 schema:p3 hierarchy3:s3 . #Triple 4
hierarchy3:s3 schema:p2 hierarchy1:s5 . #Triple 5
hierarchy3:s3 schema:p3 hierarchy2:s13 . #Triple 6
hierarchy2:s13 schema:p1 hierarchy2:s8 . #Triple 7
hierarchy1:s1 schema:p4 hierarchy3:s9 . #Triple 8
hierarchy3:s9 schema:p1 hierarchy2:s4 . #Triple 9
hierarchy2:s4 schema:p4 hierarchy2:s13 . #Triple 10
hierarchy2:s11 schema:p2 hierarchy1:s10 . #Triple 11

(a) An example RDF triples

1

9

3

4

2

8

5

13

11

10

p2

p2
p1

p1

p4

p4

p3

p1

p3

p2

p2

1

9

3

4

2

8

5

13

11

10

TCV-Min

Basic RDF Graph

1

9

3

4

2

8

5

13

Recursive-bisection

11

10

1

9

3

4

2

8

5

Hierarchical

13

11

10

1

9

3

4

2

8

5

Min-Edgecut

13

11

10

1

9

3

4

2

8

5

Subject-based

13

11

10

1

9

3

4

2

8

5

Predicate-based

13

11

10

1

9

3

4

2

8

5

Horizontal

13

11

10

(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Fig. 1: Partitioning an example RDF into three partitions using different parti-
tioning techniques. Partitions are highlighted in different colors.

modulo the number of required partitions. Thus, all triples with the same pred-
icate are assigned to the same partition. In our motivating example given in
Figure 1, all the triples with predicate p1 or p4 are assigned to the red partition,
triples with predicate p2 are assigned to the green partition, and all triples with
predicate p3 are assigned to the blue partition.

Hierarchical Partitioning: This partitioning is inspired by the assumption
that IRIs have path hierarchy and IRIs with a common hierarchy prefix are often
queried together [14]. This partitioning is based on extracting path hierarchy from
the IRIs and assigning triples having the same hierarchy prefixes into one partition.
For instance, the extracted path hierarchy of “http://www.w3.org/1999/02/22-
rdf-syntax-ns#type” is “org/w3/www/1999/02/22-rdf-syntax-ns/type”. Then,
for each level in the path hierarchy (e. g., “org”, “org/w3”, “org/w3/www”, ...)
it computes the percentage of triples sharing a hierarchy prefix. If the percentage
exceeds an empirically defined threshold and the number of prefixes is equal to
or greater than the number of required partitions at any hierarchy level, then
these prefixes are used for the hash-based partitioning on prefixes. In comparison
to the hash-based subject or predicate partition, this technique requires a higher
computational effort to determine the IRI prefixes on which the hash is computed.

Fig. 2.: Partitioning an example RDF into three partitions using different partitioning techniques. Partitions are
highlighted in different colors.

syntax-ns/type". Then, for each level in the path hi-
erarchy (e. g., “org", “org/w3", “org/w3/www", ...) it
computes the percentage of triples sharing a hierar-
chy prefix. If the percentage exceeds an empirically
defined threshold and the number of prefixes is equal
to or greater than the number of required partitions at
any hierarchy level, then these prefixes are used for
the hash-Based partitioning on prefixes. In comparison
to the hash-Based subject or predicate partition, this
technique requires a higher computational effort to de-
termine the IRI prefixes on which the hash is computed.
In our motivating example given in figure 2, all the
triples having hierarchy1 in subjects are assigned
to the green partition, triples having hierarchy2 in
subjects are assigned to the red partition, and triples
having hierarchy3 in subjects are assigned to the
blue partition.

3.5. k-way Partitioning

k-way Partitioning is a multilevel graph algorithm
as described in [18]. The structure of k-way algorithm
consists of three phases. The first phase is coarsening
where graph G = (V,E) is first coarsened down to a
few thousand vertices. The second phase is partitioning
where this much smaller graph is partitioned. The third
and final phase is uncoarsening where this partitioned
graph is projected back towards the original graph.

3.5.1. Coarsening Phase
The first phase is coarsening the graph, in which a

sequence of smaller graphsG1, G2, ..., Gm is generated
from the input Graph G0 = (V0, E0) in such a way that
|V0| > |V1| > |V2| > ... > |Vm|.

6 RDF Graph Partitioning: Techniques and Empirical Evaluation

3.5.2. Partitioning Phase
Here we are making use of three partitioning tech-

niques out of k-way algorithm

– Recursive-Bisection Partitioning: In Recursive-
Bisection, computation of a 2-way partition Pm

of the graph Gm takes place, such that Vm is split
into two parts and each part contains half of the
vertices.
In our motivating example given in figure 2, triples
(1,2,4,7,8) are assigned to the green partition,
triples (3,5,6,9,10) are assigned to the red partition,
and only triple 11 is assigned to the blue partition.

– TCV-Min Partitioning: The total communication
volume of a block Vi of a given graph Gm is
defined as

∑
i comm(Vi). TCV-Min partitioning

minimizes the total communication volume [4].
In our motivating example given in figure 2, triples
(1,2,4,5,6,8,9) are assigned to the green partition,
triples (3,7,10) are assigned to the red partition,
and only triple 11 is assigned to the blue partition.

– Min-Edgecut Partitioning: Unlike TCV-Min, the
objective of Min-Edgecut partitioning is to par-
tition the vertices in such a way that the num-
ber of edges connected to them are minimized. In
our motivating example given in figure 2, triples
(1,2,4,7,8) are assigned to the green partition,
triples (3,5,6,9,10) are assigned to the red partition,
and only triple 11 is assigned to the blue partition.

3.5.3. Uncoarsening Phase
The third and last phase is uncoarsening the parti-

tioned graph. In this phase the partition Pm of Gm is
projected back to G0 by passing through the intermedi-
ate partitions Pm−1, Pm−2, ..., P1, P0.

4. Evaluation and Results

This section consists of two parts. In the first part we
will present our evaluation setup including hardware
and software configurations. In the second part, we will
discuss evaluation results.

4.1. Evaluation Setup

4.1.1. Hardware and software configuration:
We used Ubuntu-based machine with intel Xeon 2.10

GHz, 64 cores and 512GB of RAM for our experiments.

We conducted our experiments on local copies of Virtu-
oso (version 7.1) SPARQL endpoints. To create TCV-
Min partitions, Min-Edgecut partitions and Recursive-
Bisection partitions, we used METIS 5.1.0.dfsg-2 7.
FedX and SemaGrow are used with default configu-
rations. We made only one change in Koral’s default
configuration (the number of slaves were changed from
2 to 10).

4.1.2. Partitioning Environments:
To evaluate the selected RDF graph partitioning tech-

niques, we used two distinct partitioning environments.

Clustered RDF Storage Environment: Figure 3
shows a very generic master-slave architecture used
in our clustered environment. In this environment, the
give RDF dataset is distributed among several slaves
(10 in our case) within the same machine as part of a
single RDF storage solution. The master is responsible
for task assignment. RDF storage and query processing
tasks are performed by the slaves. There are many RDF
storage solutions [6,7,10,11,12,13,19,21,22,27,28,33]
that employ this architecture. We chose Koral [16] in
our evaluation. The reason for choosing this platform
was because it is well-integrated with the famous RDF
partitioning system METIS [18], it is a state-of-the art
distributed RDF store, and it allows the data partitioning
strategy to be controlled.

E1

RDF

E2

RDF

E1

RDF

Federator

Triplestores with public SPARQL Endpoints

Optimizer

Source Selection

Parsing

Integrator

Federation
Engine

Query Results

S1

RDF

S2

RDF

S3

RDF

Master

Slaves

Clustered Triplestore

Fig. 3.: Clustered Architecture

Purely Federated Environment: In purely federated
environment, the given RDF data is distributed across
several machines, which are physically separated (10

7http://glaros.dtc.umn.edu/gkhome/metis/metis/download

RDF Graph Partitioning: Techniques and Empirical Evaluation 7

in our case). There is a federation engine which is re-
sponsible for query processing task. In figure 4, the
two main components (i.e., SPARQL endpoints and the
federation engine) of this architecture is shown. Figure
4 also shows the general steps involved in a SPARQL
query processing, in which, first a SPARQL query is be-
ing parsed to obtain the individual triple patterns in the
query. In the next step, sources are selected, for which
the goal is to identify the set of relevant data sources for
the query (endpoints in our case). Based on the informa-
tion obtained using the source selection, the federator
splits the input query into multiple sub-queries. Opti-
mizer generates an optimized sub-query execution plan
and the sub-queries are forwarded to the correspond-
ing data sources. Integrator integrates the results of the
sub-queries. Finally, the integrated results are returned
to the agent that issued the query. Many SPARQL end-
point federation engines [29,5,31,1,8] abide by this ar-
chitecture. We chose FedX [29] and SemaGrow [5] in
our evaluation. The main reason for choosing these
two federation engines is because they are different in
terms of query execution plans. SemaGrow is an cost-
based index-assisted federation engine, while FedX is
a heuristic-based index free SPARQL endpoint feder-
ation engine. Since, the query runtime performances
is greatly affected by the query execution plan, there-
fore in order to employ the different query planners we
chose two different federation engines.

E1

RDF

E2

RDF

E1

RDF

Federator

Triplestores with public SPARQL Endpoints

Optimizer

Source Selection

Parsing

Integrator

Federation
Engine

Query Results

S1

RDF

S2

RDF

S3

RDF

Master

Slaves

Clustered Triplestore

Fig. 4.: Physically Federated Architecture

4.1.3. Datasets:
We wanted to use real-world RDF datasets to eval-

uate our selected partitioning techniques. For this pur-

pose, we used two real-world datasets, Semantic Web
Dog Food (SWDF) and DBpedia 3.5.1. The reason for
choosing SWDF and DBpedia is that they are used
by the FEASIBLE [25], which is, a SPARQL bench-
mark generation framework to generate customized
SPARQL benchmarks from the queries log of the un-
derlying datasets. Another reason for picking these two
datasets, is their sizes which are massively different
in their high-level statistics: the DBpedia 3.5.1 con-
tains 232,536,510 triples, 18,425,128 distinct subjects,
39,672 distinct predicates, and 65,184,193 distinct ob-
jects while SWDF contains 304,583 triples, 36,879 dis-
tinct subjects, 185 distinct predicates, and 95,501 dis-
tinct objects.

4.1.4. Benchmark Queries:
The benchmark queries are generated using FEASI-

BLE: (1) SWDF BGP-only, it contains a total number
of 300 BGP-only SPARQL queries from the queries log
using the SWDF dataset. Each query contain only single
BGP, the other SPARQL features such as OPTIONAL,
ORDER BY, DISTINCT, UNION, FILTER, REGEX,
aggregate functions, SERVICE, property paths etc. are
not used, (2) SWDF fully-featured, it contains a to-
tal number of 300 queries from the queries log using
the SWDF dataset. These queries are not only single
BGPs, also they may include one or more SPARQL
query features (e.g., the above mentioned). (3) DB-
pedia BGP-only, it contains a total number of 300
BGP-only SPARQL queries from the queries log us-
ing the DBpedia dataset. Each query contain only sin-
gle BGP. The the above mentioned features are not in-
cluded. (4) DBpedia fully-featured, it contains a total
number of 300 queries from the queries log using the
SWDF dataset. These queries are not only single BGPs,
also they may include one or more SPARQL query
features (e.g., the above mentioned). In total, we used
1200 SPARQL queries for our evaluation selected from
two different datasets. Note that we only used BGP-
only benchmarks with Koral since it does not support
many of the SPARQL features used in the fully-featured
SPARQL benchmarks.

Table 1 shows detailed features of all aforemen-
tioned benchmark queries. Previous works [9,25,23,3]
on SPARQL benchmarking show that these are impor-
tant features to be considered in SPARQL querying
benchmarking. Thus, a SPARQL benchmark should
have sufficient diversity in these features across the dif-
ferent SPARQL queries included in the benchmark. Re-
cent benchmark analysis [20] shows that the benchmark

8 RDF Graph Partitioning: Techniques and Empirical Evaluation

generated by FEASIBLE (used in our evaluation) have
the highest diversity score.

4.1.5. Number of partitions:
Inspired by [24], we created 10 partitions for each

of the partitioning technique using both of the selected
datasets (10 partitions for SWDF and 10 partitions for
DBpedia). In Koral, we made 10 slaves each containing
one partition. Both in FedX and SemaGrow, we used
10 Linux-based Virtuoso 7.1 SPARQL endpoints, each
containing one partition.

4.1.6. Performance measures:
We used six performance measures to benchmark the

selected partitioning techniques – partition generation
time, query runtime performances, number of timeout
queries (180 seconds was selected as the timeout time
for each query execution [25]), overall ranking of parti-
tioning techniques, partitioning imbalance among the
generated partitions and number of sources selected for
the complete benchmark execution in a purely feder-
ated environment. Additionally, The Spearman’s rank
correlation coefficients is also measured to ascertain the
correlation between the sources selected and the query
runtime in a purely federated environment.

4.2. Evaluation Results

4.2.1. Partition Generation Time:
The total time taken to generate 10 partition by each

partitioning technique for both the datasets is shown in
figure 5.

1

10

100

1000

10000

100000

PB SB Hi Ho TC ME RB

P
ar

ti
ti

o
n

in
g

ti
m

e
 in

 s
e

c
(l

o
g

sc
al

e
)

SWDF DBpedia

Fig. 5.: Time taken for the creation of 10 partitions.(PB
= Predicate-Based, SB= Subject-Based, Hi= Hierar-
chical, Ho = Horizontal, TC = TCV-Min, ME = Min-
Edgecut, RB = Recursive Bisection).

The Horizontal partitioning technique requires the
smallest overall time followed by Subject-Based,
Predicate-Based, Hierarchical, TCV-Min, Recursive-
Bisection, and Min-Edgecut, respectively. The rea-
son for the three k-way techniques, i.e., TCV-Min,
Recursive-Bisection, and Min-Edgecut being the most
time consuming in terms of partitions generation is due
the their complexity in terms of the time required to
perform the three-phase operation (coarsening, parti-
tioning, and uncoarsening). After the k-way techniques,
Hierarchical partitioning took most time, this is due
to the extra time required to compute path hierarchies
before hash function is applied. Predicate-Based and
Subject-Based partitioning are the next in terms of most
time consuming techniques, since both techniques, i.e.,
Predicate-Based and Subject-Based partitioning simply
traverse each triple in the dataset and apply hash func-
tions on the subject or predicate of the triple, therefore
there is a very little difference in in total time taken
to generate the partitions. The reason for Horizontal
partitioning for being the least overall time consuming
technique, is due to it’s simplicity: it creates a range
of triples and assigns them to the desired partitions
without any further computations.

4.2.2. Query runtime performances:
Query runtime performances obtained by using all

of our selected partitioning techniques is one of the
most important result. To achieve this, we make use of
all 300 queries to get (a) benchmarks execution time
(including timeout queries) and (b) average query ex-
ecution times (excluding timeout queries) to encap-
sulate the runtime performances of our partitioning
techniques. Results of both, i.e., benchmarks execution
time and average query execution times are taken sep-
arately for all three partitioning environments (FedX,
SemaGrow and Koral). The former performance metric
is measured by executing all 300 queries from each
benchmark over the partitions created by the selected
partitioning techniques and calculated total time taken
to execute all 300 benchmark queries. An extra 180
seconds is added for each timeout query to the total
benchmark execution time. For the performance metric
of average query execution times, only those queries
which are successfully executed within the timeout limit
(180 seconds) are considered. In figure 6, the query
runtime performances obtained by our selected tech-
niques pertaining to the two aforementioned query ex-
ecution metrics are presented. In figure 6(a), total ex-
ecution time of complete benchmarks for the selected
partitioning techniques using FedX federation engine

RDF Graph Partitioning: Techniques and Empirical Evaluation 9

SWDF DBpedia

BGP-only Fully Featured BGP-only Fully Featured
#Queries 300 300 300 300

Fo
rm

s(
%

) SELECT 100 100 100 100
ASK 0 0 0 0

CONSTRUCT 0 0 0 0
DESCRIBE 0 0 0 0

C
la

us
es

(%
)

UNION 0 32.66 0 42
DISTINCT 0 59 0 49
ORDER BY 0 24.66 0 30.66

REGEX 0 3 0 17.66
LIMIT 0 40.66 0 36

OFFSET 0 19.33 0 11.66
OPTIONAL 0 34 0 35.66

FILTER 0 25.66 0 59.33
GROUP BY 0 25.33 0 0

R
es

ul
ts

Min 1 1 1 1
Max 10924 98732 1406396 1406396
Mean 114.52 984.99 74033.36 39512.08
S.D. 878.51 6421.84 186541.78 169502.32

B
G

Ps

Min 1 1 1 1
Max 1 14 1 14
Mean 1 2.88 1 4.04
S.D. 0 2.84 0 4.35

T
Ps

Min 1 1 1 1
Max 5 14 6 18
Mean 1.50 3.61 2.09 5.85
S.D. 0.53 2.62 1.18 4.70

JV

Min 0 0 0 0
Max 1 3 6 11
Mean 0.49 0.71 0.92 1.57
S.D. 0.50 0.81 1.13 2.76

M
JV

D

Min 0 0 0 0
Max 5 4 5 11
Mean 0.99 1.21 1.33 1.59
S.D. 1.02 1.13 1.34 1.82

M
T

PS

Min 0 0 0 1
Max 0.03 1 0.66 1
Mean 3.92E-4 0.22 0.05 0.03
S.D. 0.003 0.22 0.14 0.11

R
un

tim
e Min 3 3 1 2

Max 731 8008 56041 56041
Mean 21.29 255.10 3786.02 2015.98
S.D. 49.10 686.23 9364.26 7658.02

Table 1: Features of our benchmark queries BGP = Basic Graph Pattern, TPs = Triple Patterns, JV = Join Ver-
tices, MJVD = Mean Join Vertices Degree, MTPS = Mean Triple Pattern Selectivity, S.D. = Standard Deviation).
Runtime(ms)

10 RDF Graph Partitioning: Techniques and Empirical Evaluation

is shown. The combined benchmarks execution result
(all 4 benchmarks) shows that, No-Partitioning has
consumed the least time (3579.8 seconds), followed
by Horizontal (26538.7 seconds), Recursive-Bisection
(26962.6 seconds), Subject-Based (28629.3 seconds),
TCV-Min (28739.9 seconds), Hierarchical (28867.5 sec-
onds), Min-Edgecut (30482.8 seconds) and Predicate-
Based (33864.2 seconds), respectively. The total bench-
mark execution time of the individual benchmarks (i.e.,
two from SWDF and two from DBpedia3.51) can be
seen from the bar stacked graphs directly. In figure
6(b), average query execution times for the selected
partitioning techniques using FedX federation engine
is shown. The combined average query execution re-
sult (all 4 benchmarks) shows that, No-Partitioning has
the smallest average query runtime (2.99596), followed
by Recursive-Bisection (5.020557271 seconds), Min-
Edgecut (5.4330126 seconds), TCV-Min (5.4456308
seconds), Horizontal (5.4801338 seconds), Hierarchi-
cal (6.0390115 seconds), Subject-Based (6.5591146
seconds) and Predicate-Based (8.3071525 seconds), re-
spectively.

In figure 6(c), total execution time of complete
benchmarks for the selected partitioning techniques
using SemaGrow federation engine is shown. The com-
bined average query execution result (all 4 bench-
marks) shows that, No-Partitioning has consumed the
least time (3579.8 seconds), followed by Predicate-
Based (27227.9 seconds), TCV-Min (28772.8 sec-
onds), Hierarchical (28921.6 seconds), Recursive-
Bisection (29983.9 seconds), Subject-Based (30012.5
seconds), Min-Edgecut (30807.5 seconds) and Hori-
zontal (31145.9 seconds), respectively. In figure 6(d),
average query execution times for the selected partition-
ing techniques using SemaGrow federation engine is
shown. The combined average query execution result
(all 4 benchmarks) shows that, Predicate-Based has
the smallest average query runtime (2.857210203 sec-
onds) followed by No-Partitioning (2.99596 seconds),
Subject-Based (5.393390726 seconds), Hierarchical
(5.349322361 seconds), Horizontal (7.077052279 sec-
onds), TCV-Min (4.024567032 seconds), Min-Edgecut
(5.850084384 seconds) and Recursive-Bisection (5.535637211
seconds) respectively.

We now present the joint result of purely feder-
ated environment by combining the results of FedX
and SemaGrow (since they both represent purely
federated environment). The overall result of all
4 benchmarks using both, i.e., FedX and Sema-
Grow shows that, No-Partitioning has consumed the
least time (3579.8 seconds), followed by Recursive-

Bisection (28473.233 seconds), TCV-Min (28756.337
seconds), Horizontal (28842.264 seconds), Hierarchical
(28894.5275 seconds), Subject-Based (29320.9305 sec-
onds), Predicate-Based (30546.0905 seconds) and Min-
Edgecut (30645.1825 seconds), respectively. The com-
bined result of average query runtimes of all 4 bench-
marks using both, i.e., FedX and SemaGrow shows that,
No-Partitioning has the smallest average query run-
time (2.99596), followed by TCV-Min (5.278097241
seconds), Recursive-Bisection (5.278097241 seconds),
Predicate-Based (5.582181367 seconds), Min-Edgecut
(5.641548479 seconds), Hierarchical (5.694166918
seconds), Subject-Based (5.976252639 seconds) and
Horizontal (6.27859305 seconds), respectively.

In figure 6(e), total execution time of complete bench-
marks for the selected partitioning techniques using
Koral is shown. The combined average query execution
result (2 benchmarks) shows that, the Min-Edgecut con-
sumed the least time (16839 seconds), followed by No-
Partitioning (21800 seconds), Subject-Based (34643
seconds), TCV-Min (40110 seconds), Predicate-Based
(45170 seconds), Horizontal (45602 seconds), Hierar-
chical (53539 seconds) and Recursive-Bisection (55798
seconds), respectively.

In figure 6(f), average query execution times for the
selected partitioning techniques using Koral is shown.
The combined average query execution result (2 bench-
marks) shows that, Horizontal partitioning has the
smallest average query runtime (4.393116824 seconds),
followed by No-Partitioning (8.52610303 seconds),
Min-Edgecut (10.48653731 seconds), Subject-Based
(17.91570378 seconds), TCV-Min (25.26057554 sec-
onds), Predicate-Based (37.66883389 seconds), Hierar-
chical (40.43121192 seconds) and Recursive-Bisection
(554.618705 seconds), respectively.

4.2.3. Number of timeout queries:
Table 2 shows the overall number of timeout queries

for both of our datasets (SWDF and DBpedia) using
both benchmark queries (BGP-only and Fully-featured)
for each of the partitioning techniques using FedX,
SemaGrow and Koral. The overall result suggests that,
No-Partitioning has the smallest timeouts (0 queries)
followed by Min-Edgecut (total 344 queries), followed
by the Subject-Based (total 422 queries), TCV-Min (to-
tal 455 queries), Predicate-Based (total 485 queries),
Horizontal (total 498 queries), Hierarchical (total 544
queries), and Recursive-Bisection (total 556 queries),
respectively.

RDF Graph Partitioning: Techniques and Empirical Evaluation 11

3.4

82 51 51
148

49 50 5228.8

3815 4020 4041
3684

4029 4394 4236
2032.0

7315 8412 7835 8411 7779 8473 8390

1515.7

16017 17530 16995 18903 16916 17891 17307

1.0

10.0

100.0

1000.0

10000.0

100000.0

NP PB SB Hi Ho TC ME RB

B
e

n
ch

m
ar

k
ex

e
cu

ti
o

n
 t

im
e

 in
 s

e
c

(l
o

g
sc

al
e

)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

0.011
0.04 0.07 0.07 0.06 0.07 0.07 0.070.096

4.40 4.44 4.43 4.19 4.39 4.44 4.85
6.773

23.20 10.10 10.49 10.06 8.67 9.00 8.205.103

5.59
11.62 9.16 7.60 8.66 8.22 6.96

0.010

0.100

1.000

10.000

100.000

NP PB SB Hi Ho TC ME RB

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 in

 s
e

c
(l

o
g

sc
al

e
)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

(a) FedX benchmarks execution time (b) FedX average query runtimes

(c) SemaGrow benchmarks execution time (d) SemaGrow average query runtimes

3.4

82 51 51
148

49 50 5228.8

3815 4020 4041
3684

4029 4394 4236
2032.0

7315 8412 7835 8411 7779 8473 8390
1515.7

16017 17530 16995 18903 16916 17891 17307

1.0

10.0

100.0

1000.0

10000.0

100000.0

NP PB SB Hi Ho TC ME RBB
e

n
ch

m
ar

k
ex

e
cu

ti
o

n
 t

im
e

 in
 s

e
c

(l
o

g
sc

al
e

)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

0.01

0.27 0.17 0.17
0.49

0.16 0.17 0.170.10

0.77 1.50 1.57
0.94

1.53 1.56 1.63
6.77

3.83
7.97 7.10 8.61 6.89 8.85 7.89

5.10 6.56
11.93 12.56 18.26

7.51 12.83 12.45

0.01

0.10

1.00

10.00

100.00

NP PB SB Hi Ho TC ME RBA
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 in

 s
e

c
(l

o
g

sc
al

e
)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

188
1099 1057 1053 1041 1051 1053 1053

21613

44071 33586 52486 44562 39059
15787

54746

1

10

100

1000

10000

100000

NP PB SB Hi Ho TC ME RBB
e

n
ch

m
ar

k
ex

e
cu

ti
o

n
 t

im
e

 in
 s

e
c

(l
o

g
sc

al
e

)

SWDF BGP-only DBpedia BGP-only

0.6

3.7 3.5 3.5 3.5 3.5 3.5 3.5

16.4

71.7
32.3

77.4

5.3

47.0
17.5

1106

0.0

0.1

1.0

10.0

100.0

1000.0

NP PB SB Hi Ho TC ME RB

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 in

 s
e

c
(l

o
g

sc
al

e
)

SWDF BGP-only DBpedia BGP-only

(e) Koral benchmarks execution time (f) Koral average query runtimes

Fig. 6.: Total benchmarks (300 queries each) execution time including timeouts and average query runtimes excluding
timeouts. (NP = No-Partitioning, PB = Predicate-Based, SB= Subject-Based, Hi= Hierarchical, Ho = Horizontal,
TC = TCV-Min, ME = Min-Edgecut, RB = Recursive Bisection).

12 RDF Graph Partitioning: Techniques and Empirical Evaluation

FedX SemaGrow Koral

SWDF DBpedia SWDF DBpedia SWDF DBpedia

Partitioning BGP FF BGP FF BGP FF BGP FF BGP FF
No-Partitioning 0 0 0 0 0 0 0 0 0 0
Predicate-Based 0 35 32 73 0 20 35 81 0 209
Subject-Based 0 24 29 69 0 20 35 83 0 162
Hierarchical 0 28 28 70 0 20 33 79 0 286
Horizontal 0 12 31 73 0 19 34 83 0 246
TCV-Min 0 24 35 70 0 20 33 85 0 188
Min-Edgecut 0 30 35 74 0 22 34 84 0 65
Recursive-Bisection 0 19 32 70 0 21 35 81 0 298

Table 2: Timeout queries using FedX, SemaGrow and Koral. (FF = Fully Featured).

4.2.4. Overall Ranking of Partitioning Techniques:
Table 3 shows the overall rank-wise results of the

selected partitioning techniques based on the total
benchmark execution time using all 4 benchmarks. In
FedX, No-Partitioning ranked 1st in all 4 benchmarks
Predicate-Based partitioning ranked 2nd and 3rd once
each, and 8th twice, this shows that Predicate-based
either produces the best or worst query runtime per-
formances among the selected partitioning techniques.
Subject-Based partitioning occurred mostly in the mid-
dle ranks, this shows that this technique results average
runtime performances among the selected partitioning
techniques. Hierarchical partitioning occurred in all,
i.e., top, middle, and lower positions, this shows an
unpredictable runtime performances by this technique.
Horizontal partitioning has given the best results (twice
good and on the other two occasions it gave the av-
erage results). TCV-Min has been very consistent by
producing the third best result on three occasions. Min-
Edgecut runtime performance has been on the lower
side. Recursive-bisection occurred thrice at the best
side of the scale, however it ranked 6th once.

In SemaGrow, No-Partitioning is again ranked 1st in
all 4 benchmarks, most of the results using Predicate-
Based partitioning have been at the good side of the
scale. The query runtime performances of the Subject-
Based and Hierarchical partitioning techniques are ei-
ther average or at the lower sides. Horizontal partition-
ing has given best result only once and the lower results
on the rest of three occasions. TCV-Min performance
has mostly been on the high ranked side. The runtime
performance of Min-Edgecut is usually on the lower
side. Recursive-Bisection is also at the lower side.

In Koral, No-Partitioning ranked 1st and 2nd in two
occasions, Predicate-Based partitioning provided below
average query runtime performances. Subject-Based

ranked 3rd and 5th one time each. Hierarchical has
been on the lower side. Horizontal ranked 2nd and 6th

one time each. TCV-Min has produced good overall
results by ranking once at 3rd and once at 4th. Simi-
lar to TCV-Min, Min-Edgecut has also produced good
query runtime performances. Recursive-Bisection oc-
curred once at 4th and once at 8th. Please note that Ko-
ral ranking is based on a total of 2 (BGP-only) bench-
marks because it does not support most of fully featured
SPARQL queries.

4.2.5. Rank scores:
From table 3, it is difficult to find which partitioning

technique has generally ranked better. To compute the
rank scores (ref., definition 4) pertaining to each of the
partitioning techniques presented in figure 7, we used
table 3, in which, No-Partitioning results has resulted
highest rank score, followed by TCV-Min, Property-
based, Horizontal, Recursive-Bisection, Subject-Based,
Hierarchical, and Min-Edgecut respectively.

0

0.2

0.4

0.6

0.8

1

1.2

NP PB SB Hi Ho TC ME RB

R
an

k
Sc

o
re

Fig. 7.: Rank scores. (NP = No-Partitioning, PB =
Predicate-Based, SB= Subject-Based, Hi= Hierarchical,
Ho = Horizontal, TC = TCV-Min, ME = Min-Edgecut,
RB = Recursive Bisection).

RDF Graph Partitioning: Techniques and Empirical Evaluation 13

FedX SemaGrow Koral

PT 1st 2nd 3rd 4th 5th 6th 7th 8th 1st 2nd 3rd 4th 5th 6th 7th 8th 1st 2nd 3rd 4th 5th 6th 7th 8th
NP 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
PB 0 1 1 0 0 0 0 2 0 2 1 0 0 1 0 0 0 0 0 0 1 1 0 0
SB 0 0 1 1 1 0 1 0 0 0 0 2 0 1 1 0 0 0 1 0 1 0 0 0
Hi 0 1 0 0 2 1 0 0 0 0 0 3 0 1 0 0 0 0 0 1 0 0 1 0
Ho 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0
TC 0 0 0 3 0 1 0 0 0 1 2 0 1 0 0 0 0 0 1 1 0 0 0 0
Mi 0 0 0 1 0 0 2 1 0 0 1 0 0 0 1 2 1 0 0 1 0 0 0 0
Re 0 1 1 2 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 1 0 0 0 1

Table 3: Overall rank-wise ranking of partitioning techniques based on two benchmarks from SWDF and DBpedia
each. (NP = No-Partitioning, PB = Predicate-Based, SB= Subject-Based, Hi= Hierarchical, Ho = Horizontal, TC =
TCV-Min, ME = Min-Edgecut, RB = Recursive Bisection).

4.2.6. Partitioning imbalance:
Figure 8 shows the imbalance in (defined in defini-

tion 5) the values of the partitions generated by the
each partitioning techniques. In which, the Horizontal
portioning has resulted the least partitioning imbalance,
followed by Hierarchical, Subject-Based, Min-Edgecut,
Recursive-Bisection, TCV-Min and Predicate-Based
respectively.

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

PB SB Hi Ho TC ME RB PB SB Hi Ho TC ME RB

SWDF DBpedia

Im
b

al
an

ce
 in

 p
ar

ti
ti

o
n

 s
iz

e
s

(l
o

g
sc

al
e

)

Fig. 8.: Partitioning imbalance. (PB = Predicate-Based,
SB= Subject-Based, Hi= Hierarchical, Ho = Horizontal,
TC = TCV-Min, ME = Min-Edgecut, RB = Recursive
Bisection).

4.2.7. Number of sources selected:
According to [24], the number of sources selected

(in our case, SPARQL endpoints) to execute a given
SPARQL query by the federation engine is a key per-
formance. Figure 9 shows the total distinct sources se-
lected by FedX and SemaGrow. Note that the sources se-
lection algorithm of both FedX and SemaGrow selected
exactly the same sources. Generally (over 4 bench-
marks) sources selection evaluation. The overall result
suggests that Predicate-Based has selected the smallest
number of sources, followed by Min-Edgecut, TCV-

Min, Recursive-Bisection, Subject-Based, Hierarchical
and Horizontal, respectively.

4.2.8. Spearman’s rank correlation coefficients:
In order to show how the number of sources selected

affect the query execution time, we computed the Spear-
man’s rank correlation between the number of sources
selected and the query execution time. Table 4 shows
Spearman’s rank correlation coefficient values for the
four evaluation benchmarks (FedX and SemaGrow) for
the selected partitioning techniques. The overall results
shows that the number of sources selected, in general,
have a positive correlation with the query execution
times, i.e. the bigger the sources selected the bigger the
execution time and vice versa.

4.2.9. Significance of Runtime Performances:
Section 4.2.2 shows the runtime performance of the

selected partitioning techniques. In this section, we
want to measure if the runtime performance improve-
ment of on partitioning technique is significant while
comparing the runtime performance of another parti-
tioning technique. To do so, we perform the T-Test on
runtime values of the partitioning techniques. Table 5
shows T-Test results of all the partitioning techniques
using FedX, SemaGrow and Koral. We used the com-
bined runtimes of all benchmarks (1200 queries for
FedX and SemaGrow and 600 queries for Koral). We
compared the 1st ranked partitioning technique with
2nd ranked partitioning technique, which in turn is com-
pared with 3rd ranked partitioning techniques and so on.
We use a (*) if results are significant at 1% confidence
level, (**) if results are significant at 5% confidence
level, and (***) if results are significant at 10% con-
fidence level. Thus, the values inside table shows the
ranking of the partitioning techniques and number of
stars shows if this particular ranked is significant or not.

14 RDF Graph Partitioning: Techniques and Empirical Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

BGP-Only Fully Featured BGP-Only Fully Featured BGP-only Fully Featured

SWDF DBpedia Combined (600 queries) Overall (1200
queries)

To
ta

l n
u

m
b

e
r

o
f

so
u

rc
e

s
se

le
ct

e
d

Predicate-Based Subject-Based Hierarchical Horizontal TCV-Min Min-Edgecut Recursive-Bisection

Fig. 9.: Total distinct sources selected

Benchmark Pred Sub Hierar Horiz TCV Mincut Recur Average

Fe
dX

DBpedia BGP-only 0.22 0.30 0.30 0.28 0.26 0.27 0.29 0.27
DBpedia Fully-featured 0.14 0.11 0.11 0.16 0.17 0.12 0.17 0.14
SWDF BGP-only −0.10 0.57 0.57 0.10 0.57 0.57 0.57 0.41
SWDF Fully-featured 0.22 0.11 0.13 0.09 0.11 0.13 0.10 0.12

S-
G

ro
w DBpedia BGP-only −0.02 0.11 0.10 0.06 0.09 0.30 0.29 0.13

DBpedia Fully-featured 0.14 0.18 0.23 0.02 0.24 0.26 0.16 0.18
SWDF BGP-only 0.23 0.64 0.64 0.65 0.66 0.64 0.64 0.59
SWDF Fully-featured 0.07 −0.02 −0.02 −0.07 −0.02 −0.06 −0.01 −0.02
Average 0.11 0.25 0.26 0.16 0.26 0.28 0.28 0.23

Table 4: Spearman’s rank correlation coefficients between number of sources selected and query runtimes. Pred:
Predicate-Based, Sub: Subject-Based, Hierar: Hierarchical, Horiz: Horizontal, TCV: TCV-Min, Mincut: Min-Edgecut,
Recur: Recursive-Bisection, S-Grow: SemaGrow.
Correlations and colors: −0.00. . . − 0.19 very weak (-), 0.00. . .0.19 very weak (+), 0.20. . .0.39 weak (+),
0.40. . .0.59 moderate (+), 0.60. . .0.79 strong (+).

For FedX, the ranking and significance is as fol-
lows: No-partitioning ranked 1st (significant at 1% con-
fidence level), followed by Predicate-Based (significant
at 1% confidence level), Horizontal (significant at 10%
confidence level), Recursive-Bisection (significant at
10% confidence level), Subject-Based (significant at
1% confidence level), TCV-Min (significant at 1% con-
fidence level), Hierarchical (significant at 10% confi-
dence level), and Min-Edgecut, respectively.

For SemaGrow, the ranking and significance is as
follows: No-partitioning ranked 1st (significant at 1%
confidence level), followed by Predicate-Based (signifi-

cant at 1% confidence level), Recursive-Bisection (sig-
nificant at 10% confidence level), Min-Edgecut (signifi-
cant at 10% confidence level), Hierarchical (significant
at 10% confidence level), Subject-Based (significant
at 10% confidence level), TCV-Min (significant at 1%
confidence level), and Horizontal, respectively.

For Koral, the ranking and significance is as follows:
Min-Edgecut ranked 1st (significant at 1% confidence
level), followed by No-partitioning (significant at 1%
confidence level), Subject-Based (significant at 10%
confidence level), TCV-Min (significant at 1% confi-
dence level), Predicate-Based (significant at 10% confi-

RDF Graph Partitioning: Techniques and Empirical Evaluation 15

dence level), Horizontal (significant at 1% confidence
level), Hierarchical (significant at 5% confidence level),
and Recursive-Bisection, respectively.

Partitioning FedX SemaGrow Koral
Predicate-Based 2∗ 2∗ 5∗∗∗

Subject-Based 5∗∗∗ 6∗∗∗ 3∗

Hierarchical 7∗∗∗ 5∗∗∗ 7∗∗

Horizontal 3∗∗∗ 8 6∗

TCV-Min 6∗∗∗ 7∗ 4∗

Min-Edgecut 8 4∗∗∗ 1∗

Recursive-Bisection 4∗∗∗ 3∗∗∗ 8
No-Partition 1∗ 1∗ 2∗

Table 5: T-Test results of all the partitioning techniques
based on their runtime performance. ∗ p-value is greater
than 0 and smaller than 0.01, ∗∗ p-value is greater than
0.01 and smaller than 0.05, ∗∗∗ p-value is greater than
0.05 and smaller than 0.1

Overall, the results clearly suggest that the differ-
ences are significant (p âL’d’ 0.01) for majority of the
partitioning techniques. Which means that the type of
partitioning technique has a significant effect on the
overall query runtime performance of the distributed
storage solution.

5. Related Work

In previous works, such as, [6,7,10,11,12,13,19,21,
22,27,28,33], a plethora of clustered triplestores have
been designed. In this section we discuss only those
literature which use RDF graph partitioning. Koral [16]
a modularized distributed RDF store in which the inter-
dependencies between its components are reduced to
an extent that each component can be exchanged with
alternative implementations. It is an open source glass
box profiling system in which three RDF graph par-
titioning, i.e., Subject-Based, Hierarchical and Min-
Edgecut are used. The performance of the partitioning
techniques, in terms of query execution time, presented
in [16] and [17] is similar to our results where Subject-
Based has consumed least overall time followed by Hi-
erarchical and Min-Edgecut. Both [16] and [17] used
synthetic data using three aforementioned partitioning
techniques, in our work, we used not just real data out
of real queries but also we make use of four additional
partitioning techniques (Horizontal, Predicated-Based,
TCV-Min and Recursive-Bisection). in [32], a signa-
ture tree-based triple indexing scheme is proposed to

store the partitions of the RDF graph efficiently. [30]
provides a brief survey on RDF graph partitioning. [15]
suggests that, partitioning techniques based on hashing,
are more scaleable as hash values can be computed in
parallel,

To the best of our knowledge, there is no detailed
empirical evaluation exists to position the different RDF
graph partitioning techniques based on real data and
real queries in two different evaluation environments.

6. Conclusion and Future Work

In this paper, we presented an empirical evaluation
of seven different RDF-graph partitioning techniques
by using different environments and different systems
as well as different benchmarks. We performed T-Test8

analysis to shows significant differences in the runtime
performances achieved by different partitioning tech-
niques. Our overall results suggest that:

1. When it comes to query runtime performance
evaluation, No-partitioning leads to the smallest
query runtimes followed by TCV-Min, Property-
Based,Horizontal, Recursive-Bisection, Subject-
Based, Hierarchical, and Min-Edgecut, respec-
tively. However, for Koral the performance of Min-
Edgecut partitioning is better than no-partitioning,
suggesting only intelligent (according to RDF
SPARQL features) partitioning technique can lead
to performance improvement. Consequently, the
general graph partitioning techniques may not
lead to better performance when implied to RDF
graphs. Therefore, clustered RDF storage solu-
tions should take into account the properties of
RDF and Linked Data as well as the expressive
features of SPARQL queries when partitioning the
given dataset among multiple data nodes.

2. There is a direct relation between the number of
sources selected with query runtimes. This means
that a partitioning technique would generally lead
to better query runtime performances when it min-
imizes the total number of sources selected.

3. The partitioning techniques that implement the
k-way partitioning problem (TCV-Min, Min-
Edgecut, and Recursive-Bisection in our case) gen-
erally need longer time to generate the desired
partitions.

8Please see T-Test tab of the excel sheet goo.gl/fxa4cJ

16 RDF Graph Partitioning: Techniques and Empirical Evaluation

4. The different ranks achieved on FedX and Sema-
Grow suggest that the query runtime performances
of the partitioning technique are greatly dependent
upon the query planner used by the underlying
query processing engine.

In future, we will implement more clustered querying
engines. We will also test the scalability of our parti-
tioning techniques by using same datasets with differ-
ent sizes. We will also make use of some more Big
RDF datasets. When involving reasoning tasks or data
updates etc, the effects of partitioning pertaining to a
given use-case will also be focused.

7. Acknowledgements

This work has been supported by the project LIMBO
(no. 19F2029I) and OPAL (no. 19F2028A).

References

[1] maribel acosta, maria-esther vidal, tomas lampo, julio castillo,
and edna ruckhaus. anapsid: an adaptive query processing
engine for sparql endpoints. In international semantic web
conference, pages 18–34. springer, 2011.

[2] adnan akhter, axel-cyrille ngomo ngonga, and muhammad
saleem. an empirical evaluation of rdf graph partitioning tech-
niques. In european knowledge acquisition workshop, pages
3–18. springer, 2018.

[3] güneş aluç, olaf hartig, m tamer özsu, and khuzaima daudjee.
diversified stress testing of rdf data management systems. In in-
ternational semantic web conference, pages 197–212. springer,
2014.

[4] aydın buluç, henning meyerhenke, ilya safro, peter sanders, and
christian schulz. recent advances in graph partitioning. In
algorithm engineering, pages 117–158. springer, 2016.

[5] angelos charalambidis, antonis troumpoukis, and stasinos kon-
stantopoulos. semagrow: optimizing federated sparql queries.
In proceedings of the 11th international conference on semantic
systems, pages 121–128. acm, 2015.

[6] orri erling and ivan mikhailov. towards web scale rdf. proc.
ssws, 2008.

[7] luis galárraga, katja hose, and ralf schenkel. partout: a dis-
tributed engine for efficient rdf processing. In proceedings of
the 23rd international conference on world wide web, pages
267–268. acm, 2014.

[8] olaf görlitz and steffen staab. splendid: sparql endpoint federa-
tion exploiting void descriptions. In proceedings of the second
international conference on consuming linked data-volume 782,
pages 13–24. ceur-ws. org, 2011.

[9] olaf görlitz, matthias thimm, and steffen staab. splodge: sys-
tematic generation of sparql benchmark queries for linked open
data. In international semantic web conference, pages 116–132.
springer, 2012.

[10] sairam gurajada, stephan seufert, iris miliaraki, and martin
theobald. triad: a distributed shared-nothing rdf engine based
on asynchronous message passing. In proceedings of the 2014
acm sigmod international conference on management of data,
pages 289–300. acm, 2014.

[11] mohammad hammoud, dania abed rabbou, reza nouri, seyed-
mehdi-reza beheshti, and sherif sakr. dream: distributed rdf en-
gine with adaptive query planner and minimal communication.
proceedings of the vldb endowment, 8(6):654–665, 2015.

[12] steve harris, nick lamb, nigel shadbolt, et al. 4store: the design
and implementation of a clustered rdf store. In 5th international
workshop on scalable semantic web knowledge base systems
(ssws2009), pages 94–109, 2009.

[13] andreas harth, jürgen umbrich, aidan hogan, and stefan decker.
yars2: A federated repository for querying graph structured data
from the web. In the semantic web, pages 211–224. springer,
2007.

[14] herodotos herodotou, nedyalko borisov, and shivnath babu.
query optimization techniques for partitioned tables. In pro-
ceedings of the 2011 acm sigmod international conference on
management of data, pages 49–60. acm, 2011.

[15] jiewen huang, daniel j abadi, and kun ren. scalable sparql query-
ing of large rdf graphs. proceedings of the vldb endowment,
4(11):1123–1134, 2011.

[16] daniel janke, steffen staab, and matthias thimm. koral: a glass
box profiling system for individual components of distributed
rdf stores. In ceur workshop proceedings, 2017.

[17] daniel janke, steffen staab, and matthias thimm. impact analysis
of data placement strategies on query efforts in distributed rdf
stores. journal of seb semantics, 50:21–48, 2018.

[18] george karypis and vipin kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. siam journal on
scientific computing, 20(1):359–392, 1998.

[19] anurag khandelwal, zongheng yang, evan ye, rachit agarwal,
and ion stoica. zipg: A memory-efficient graph store for inter-
active queries. In proceedings of the 2017 acm international
conference on management of data, pages 1149–1164. acm,
2017.

[20] muhammad saleem, gábor Szárnyas, felix conrads, syed ah-
mad chan bukhari, qaiser mehmood, and axel-cyrille ngonga
ngomo. how representative is a sparql benchmark? an analysis
of rdf triplestore benchmarks. In the web conference (www),
san francisco, ca, usa, 2019 2019. acm, acm.

[21] thomas neumann and gerhard weikum. the rdf-3x engine for
scalable management of rdf data. The vldb journalâĂŤthe in-
ternational journal on very large data bases, 19(1):91–113,
2010.

[22] alisdair owens, andy seaborne, nick gibbins, et al. clustered tdb:
A clustered triple store for jena. 2008.

[23] muhammad saleem, ali hasnain, and axel-cyrille ngonga ngomo.
largerdfbench: a billion triples benchmark for sparql endpoint
federation. journal of web semantics, 48:85–125, 2018.

[24] muhammad saleem, yasar khan, ali hasnain, ivan ermilov, and
axel-cyrille ngonga ngomo. a fine-grained evaluation of sparql
endpoint federation systems. semantic web, 7(5):493–518,
2016.

[25] muhammad saleem, qaiser mehmood, and axel-cyrille ngonga
ngomo. feasible: A feature-based sparql benchmark generation
framework. In international semantic seb conference, pages
52–69. springer, 2015.

RDF Graph Partitioning: Techniques and Empirical Evaluation 17

[26] muhammad saleem, alexander potocki, tommaso soru, olaf har-
tig, and axel-cyrille ngonga ngomo. costfed: cost-based query
optimization for sparql endpoint federation. procedia computer
science, 137:163–174, 2018.

[27] alexander schätzle, martin przyjaciel zablocki, antony neu, and
georg lausen. sempala: interactive sparql query processing
on hadoop. In international semantic web conference, pages
164–179. springer, 2014.

[28] alexander schätzle, martin przyjaciel zablocki, simon skilevic,
and georg lausen. s2rdf: rdf querying with sparql on spark.
proceedings of the vldb endowment, 9(10):804–815, 2016.

[29] andreas schwarte, peter haase, katja hose, ralf schenkel, and
michael schmidt. fedx: optimization techniques for federated
query processing on linked data. In international semantic web
conference, pages 601–616. springer, 2011.

[30] dominik tomaszuk, łukasz skonieczny, and david wood. rdf
graph partitions: A brief survey. In international conference:
beyond databases, architectures and structures, pages 256–264.
springer, 2015.

[31] xin wang, thanassis tiropanis, and hugh c davis. lhd: optimising
linked data query processing using parallelisation. 2013.

[32] ying yan, chen wang, aoying zhou, weining qian, li ma, and yue
pan. efficient indices using graph partitioning in rdf triple stores.
In 2009 ieee 25th international conference on data engineering,
pages 1263–1266. ieee, 2009.

[33] kai zeng, jiacheng yang, haixun wang, bin shao, and zhongyuan
wang. a distributed graph engine for web scale rdf data. In
proceedings of the vldb endowment, volume 6, pages 265–276.
vldb endowment, 2013.

