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Abstract. The current hype of Artificial Intelligence (AI) mostly refers to the success of machine learning and its sub-domain of
deep learning. However AI is also about other areas such as knowledge representation and reasoning, or distributed AI i.e., areas
that need to be combined to reach the level of intelligence initially envisioned in the 1950s. Explainable AI (XAI) is now referring
to the core backup for industry to apply AI in products at scale, particularly for industries operating with critical systems. This
paper reviews XAI not only from a Machine Learning perspective, but also from the other AI research areas such as AI Planning
or Constraint Satisfaction and Search. We expose the XAI challenges of AI fields, their existing approaches, limitations and
opportunities for knowledge graphs and their underlying technologies.
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1. Introduction

Artificial Intelligence (AI), as a discipline aiming
at building intelligent machines mimicking "cogni-
tive" functions that humans associate with other human
minds, such as "learning" and "problem solving" [1],
is addressing intelligence for systems from a large va-
riety of facets. From machine learning (ML) to knowl-
edge representation and reasoning (KRR), game the-
ory, uncertainty in AI (UAI), robotics, multi-agent sys-
tems, constraint satisfaction and search (CSS), plan-
ning and scheduling, computer vision, natural lan-
guage processing, all are foundational pillars of the
AI as we know it today. All latter sub-fields of AI
have matured, specialized, and sometimes converged
together with the aim of accessing to general artificial
intelligence i.e., the holy grail of AI.

Many research questions have been vertical to all
sub-fields of AI such as decidability and complex-

ity from a theoretical perspective or scalability from
a more applicability dimension. However one is re-
maining current, even getting more traction than oth-
ers in the new world of industrialized AI: explainabil-
ity. Obtaining explainable AI systems consists in ad-
dressing the following question: “how to build intelli-
gent systems able to expose explanation in a human-
comprehensible way” for any of its AI decision. We
will use the well-adopted XAI term, standing for eX-
plainable AI, when referencing to the explanation
problem in AI. Answering this XAI question is far
from trivial, and has been studied for years in all sub-
fields of AI, with no exception. Such problem has
been tackled under different names, concepts, defini-
tions, with various requirements and objectives. For in-
stance interpretation and justification are terms coined
in KRR, diagnostics in UAI, debugging in robotics,
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constraints relaxation in CSS, features importance in
ML, or features attribution for Neural Networks [2, 3].

Despite a surge of innovation focusing on ML-based
AI systems such question of explainability has not
been deeply studied as much as in the other AI sub-
fields such as KRR. However answers to this question
of explainability and questions related to the respon-
sibility, validity (e.g., robustness), privacy-preserving
and more broadly trust of AI systems (Figure 1) will
be intrinsically connected to the adoption of AI in in-
dustry at scale, particularly in industries operating with
critical systems. Indeed explanation, which could be
used for debugging intelligent systems or deciding to
follow a recommendation in real-time, will increase
acceptance and user trust.

Trustable
AI

Valid
AI

Responsible
AI

Privacy-
preserving 

AI

Explainable 
AI

Human
Interpretable AI

Machine 
Interpretable AI

What is 
the 

rational?

Fig. 1. On the Combination of Valid, Responsible, Privacy-preserv-
ing and Explainable AI towards Trustable AI.

Unsurprisingly, the exact same research community,
from which emerged the most successful ML-based AI
systems [4, 5], is now trying to fill the gap between
black-box ML systems [6] to more white-box ML sys-
tems. Some approaches are most successful than oth-
ers, but still the AI community is far from having self-
explainable AI systems which automatically adapt to
any (i) data, (ii) ML algorithm, (iii) model, (iv) user,
or (v) application and (v) context. Even more surpris-
ingly, only a few work in KRR and its subfields of
Web and AI i.e., semantic Web [7], linked data [8],
and more recently knowledge graphs [9], engaged in
the endeavour of explaining the broader family of ML-
based systems. However KRR, the semantic Web to-
gether with knowledge graphs, aiming at represent-
ing and reasoning over structured information, should
be designed and armed to move XAI closer to human
comprehension.

This paper reviews XAI in the various fields of AI
i.e., by first describing the main research question, its
XAI challenge, existing approaches, their limitations

and opportunities for knowledge graphs and their un-
derlying technologies.

2. Knowledge Graph for XAI Methods

This section highlights the main research question in
major AI fields, their associated XAI challenge (Figure
2), together with existing approaches, their limitations
and opportunities for semantic Web and knowledge
graph technologies. AI areas are broken down follow-
ing the AAAI taxonomy for research paper submission
[10]. Although such a taxonomy has some limitations
e.g., arbitral limits, natural intersection of AI domains,
at least it benefits from a well-accepted list of fields in
AI, which are well-represented in major generalist AI
conferences such as IJCAI [11] and ECAI [12].

2.1. Machine Learning (except Neural Netwok)

• Research Question: ML algorithms [13] aim at elab-
orating a mathematical model based on sample data,
known as“training data", in order to make predictions
or decisions on unseen data, known as “test data" with-
out being explicitly programmed to perform the task.
Three main tasks of learning are studied: (i) super-
vised learning if data contains both input and labeled
data, (ii) unsupervised learning to derive some struc-
tures in data if labels are not exposed, and (iii) rein-
forcement learning if further information could be cap-
tured through interaction with the environment.
• XAI Challenge: All tasks of ML expose a mathemat-
ical models through an appropriate, but somehow ab-
stract representation of data. XAI in ML [14] is about
explanation of (i) models, known as global explana-
tion, and (ii) a prediction, known as local explanation.
• Approaches: Some models are naturally designed
to explicit their rational e.g., linear regression, deci-
sion trees, generalized linear (or additive), naive bayes
models. In case of more complex models, some of their
representative elements such as feature importance,
partial dependency plot or individual conditional ex-
pectation can be used for capturing high level represen-
tation of the ML model for global explanation. State-
of-the-art approaches [15, 16] go further by revisiting
feature importance for local explanation.
• Limitations: Most approaches limits explanation to
features involved in the data and model, or at best to
examples, prototypes [17] or counterfactuals [18]. Ex-
planation should go beyond correlation (which is what
features importance is about) and numerical similarity
(which is what local explanation is about).
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How to summarize the reasons (motivation, 
justification, understanding) for an AI system 

behavior, and explain the causes of their 
decisions?

Which complex features are 
responsible of classification?

Which actions are 
responsible of a plan?

Which entity is responsible 
for classification?

Which combination 
of features is optimal?

Which constraints can be relaxed?

Which features are 
responsible of classification?

Machine 
Learning

Computer
Vision

Search

Artificial 
Intelligence

Planning

KRR

Robotics

NLP
Game 
Theory

DAI

• Which agent strategy & plan ?
• Which player contributes most?
• Why such a conversational flow?

• Which axiom is responsible of  
inference (e.g., classification)?

• Abduction/Diagnostic: Find the 
right root causes (abduction)?

Which decisions, combination of 
multimodal decisions  lead to an  action?

UAI

Uncertainty as 
an alternative 
to explanation

Fig. 2. XAI Challenges in Major AI Fields. (DAI: Distributed AI, UAI: Uncertainty in AI, KRR: Knowledge Representation and Reasoning,
NLP: Natural Language Processing)

• Opportunity: Knowledge graphs do encode contexts,
expose connections and relations, and support infer-
ence and causation natively. Existing XAI approaches
in ML consider a flat representation of data, and con-
text is out of the loop of the explanation process.
Knowledge graphs could be used for encoding bet-
ter representation of data, structuring a ML model
in a more interpretable way, adopt semantic similar-
ity for local explanation. In addition we could envi-
sion approaches relying on knowledge graphs to com-
pact large trees in decisions trees or forrest. For in-
stance combinations of nodes could be captured as a
unique (probabilistic) concept or property in a knowl-
edge graph.

2.2. Artificial (Deep) Neural Network

• Research Question: Similarly to other ML ap-
proaches, Artificial Neural Network (ANN) aims at
learning representation. The main differentiator with
other approaches is its scalability and performance
with high number of features and instances, which fit
better images and texts.
• XAI Challenge: Both local and global explanations
are strong focus of the ANN community.
• Approaches: Contrary to other ML approaches, there
is no easy way around explanation of ANN models or
predictions. Existing techniques either encode feature

importance through attribution [2, 3], attention mech-
anism [19], or obtain a more interpretable approxima-
tion through surrogate models [20] such as decision
tree.

• Limitations: Explanations are artificially built, for
instance by forcing the network to focus on some
group of features or correlations at best. In addi-
tion they do not represent any logic of the learn-
ing task, making explanation a very difficult task to
achieve. The latter is due to the foundational theory
of ANN, which consists in deriving a mathematical
model through local optimizations.

• Opportunity: Novel ANN architectures needs to be
designed to natively encode explanation. Some re-
cent approaches which aims at capturing better model
hierarchical relationships [21], or causality mecha-
nism [22] are promising. However they could be pol-
ished further by (i) adding logic representation lay-
ers in ANN, such as [23] using network dissection ap-
proaches [24], (ii) encoding the semantics of inputs,
outputs and their properties cf. Figure ??. Knowledge
graphs could play a central roles in such a new de-
sign, particularly as novel architectures should embed
causation and feature reasoning. Such design could ad-
vance ANN further by supporting integration, discov-
ery, fragmentation, or composition.
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more complex 
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Knowledge GraphNeural Network

Fig. 3. On the Role of Knowledge Graphs for Explainable Artificial (Deep) Neural Network. (What is the causal relationship between the input
/ output / training data?)

2.3. Computer Vision

• Research Question: Computer vision is relying on
ANN architectures due to the nature and size of its
data. Tasks range from semantic segmentation, object
detection, scene reconstruction, visual question an-
swering.
• XAI Challenge: The main XAI task in computer vi-
sion is identification of pixels, or group of pixels re-
sponsible for triggering a shape detection, an uncer-
tainty or an error. Explanation is often referred as vi-
sual inspection due to the nature of data processed.
• Approaches: Saliency maps [25] are classic method-
ologies in computer vision. They include many vari-
ant of gradient modification for capturing representa-
tive features. Network dissection [24] is another ap-
proach segmenting ANN to derive interpretable units
and layers.
• Limitations: Although saliency map expose interest-
ing visualization artifacts, they do not capture any se-
mantics. At best those artifacts capture a disentangled
representation, which remains subject to human inter-
pretation. Knowledge graphs could expose the seman-
tics of such disentangled representation. However in-

tegrating semantics in ANN, hidden units of feature
space remain open challenges.
• Opportunity: Adding semantics could help answer-
ing other open questions1 such as: What is a disentan-
gled representation, and how can its factors be quanti-
fied and detected? Do interpretable hidden units reflect
a special alignment of feature space, or are interpre-
tations a chimera? What conditions in state-of-the-art
training lead to representations with greater or lesser
entanglement? What is the semantics of a group of hid-
den units in a neural network?

2.4. Constraint Satisfaction and Search

• Research Question: Constraint satisfaction and
Search aims at finding a solution to a set of constraints
that impose conditions that the variables must satisfy.
A solution is a set of values for the variables that satis-
fies all constraints. Constraints are defined on a finite
domain.
• XAI Challenge: The main challenge is to identify
which constraints to relax for conflict resolutions. Ex-

1http://netdissect.csail.mit.edu/
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planations are usually a subset of variables which sat-
isfies a set of constraints.
• Approaches: Constraint satisfaction problems on
finite domains are typically solved using a form of
search. Backtracking, constraint propagation, local
search are examples of such approaches. Even though
the problem is known to be a NP complete problem
with respect to the domain size, research has shown
a number of tractable sub-cases with promising ap-
proaches [26], [27].
• Limitations: Even though optimal structures and
search spaces have been largely introduced in the com-
munity, complexity remains one of the main limita-
tions.
• Opportunity: It has been demonstrated that any
structure in problem representation has largely bene-
fited search [28]. We could envision more knowledge-
driven structure, inspired from knowledge graphs,
which could dynamically adapt to variables, con-
straints, search space. Knowledge graphs could even
drive search through semantic and logical relations
among constraints, which could be modelled as enti-
ties in a graph.

2.5. Game Theory

• Research Question: Game theory [29] is the study of
mathematical models of strategic interaction between
rational decision-makers. Examples of games include
zero-sum games [30], in which one person’s gains re-
sult in losses for the other participants.
• XAI Challenge: Game theory has been dealing with
XAI from its inception as one of its main challenge
is to identify and to understand the underlying math-
ematical model as well as its properties. Game the-
ory is applied to a wide range of behavioural relations,
and is now an umbrella term for the science of logical
decision making in humans, animals, and computers,
in which explanation is the core question driving the
modelling.
• Approaches: The Shapley value [31] is a solution
concept in game theory, which inspired recent research
in Machine Learning to address the problem of expla-
nation [16]. The Shapley value is characterized by a
collection of desirable properties, and is used to cap-
ture the influence of a player in a game settings (or a
feature in a machine learning setting). Such properties
characterize the explanation.
• Limitations: Similarly to the domain of constraint
satisfaction and search, complexity is a challenge for

explainability in game theory. Only an approximate so-
lution is feasible, usually identified through some ran-
domization feature values coalition.
• Opportunity: As recently explored structured repre-
sentation of the models as its features [32] has shown
better scalability, while not necessarily improving ex-
plainability. Knowledge graphs could be considered
to better structure models, organize features, then re-
ducing the search space and potentially improve un-
derstanding and readability of explanation, particularly
when embedded in a structured set of connected enti-
ties.

2.6. Uncertainty in AI

• Research Question: The field of Uncertainty in AI is
at the frontier of various AI fields, namely knowledge
representation, learning and reasoning. Bayesian prob-
ability is one of the core fundamental, and Probabilis-
tic Graphical Models (PGMs) [33] are usually central
for representing and reasoning with uncertainty as they
encode probability distributions.
• XAI Challenge: Graphical models are often used to
model multivariate data, since they allow to represent
high-dimensional distributions compactly. The expla-
nations draw their attention on the compact distribu-
tions and their underlying data. Explanation is then
naturally embedded through those relationships, usu-
ally through interdependencies and decomposition in
data.
• Approaches:

[34] Some approaches are formulating PGMs as
weighted logical formulas [35] to tightly decouple the
constraints and dependencies from the probabilistic
parameters. Reasoning can then be performed on the
logic representations. Other approaches analyzes latent
spaces and its direct connections with the underlying
data [36]. The strength of existing approaches is the
underlying reasoning capabilities that PGMs and other
probabilistic and logic systems offer.
• Limitations: Even though PGMs are appropriate rep-
resentations to connect inter-dependable data, depen-
dencies remains probabilistic. Therefore humans are
required to remain in the loop to interpret any depen-
dencies. Even embedded in logical formulas there is
little gained as we are still embedded in the framework
of standard probability theory.
• Opportunity: Semantic representations and connec-
tions through knowledge graphs could be used to dis-
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ambiguate and force latent variables to represent inter-
pretable content.

2.7. Robotics

• Research Question: Robotics is an interdisciplinary
branch of engineering and AI science, which deals
with the design, construction, operation, and use of
robots, as well as computer systems for their control,
sensory feedback, and information processing. The un-
derlying technologies are used to develop machines
that can replicate human actions. They usually com-
bine and integrate many of the technologies in the AI
field.

• XAI Challenge: XAI is required in Robotics mainly
for debugging and resolving discrepancy between a so-
lution and an expected answer. Some of the XAI chal-
lenges are (1) the rational of coordination in multi-
robots Systems and swarms, (2) the fusion of expla-
nation coming from many underlying AI systems such
as planning, computer vision, or reasoning. They are
unique challenges for robotics with many interesting
opportunities as explanation is multi-modal, could be
complementary but also conflicting, is spatial and tem-
poral, is driven by goals but also initial conditions.

• Approaches: Narration of autonomous robot experi-
ence [37] together with approaches of summarization
[38] have been recently introduced as a succinct way
of presenting the decision process of robots. Various
levels of granularity in the decision process are pro-
vided.

• Limitations: Although the latter models extract in-
formation from a large poll of data, such systems do
not explain their actions and justify their decisions
[39]. Explanation is usually to fine-grained to be prop-
erly integrated by humans. Seamless integration of
multi-modal explanation is also not addressed in the
literature.

• Opportunity: The level of abstraction in explana-
tion together with its multi-modal fusion are net oppor-
tunities for knowledge graphs. Some semantics could
deeply support in exposing appropriate and person-
alized representations of explanations while fusing
explanation content in a compact and comprehensi-
ble representation. Knowledge graphs have been de-
signed to capture knowledge from heterogenous do-
mains, making them a great candidate to achieve ex-
planation per se in robotics.

2.8. Distributed AI

• Research Question: Distributed AI is the field of
AI dedicated to the development of distributed solu-
tions for problems. It is related to Multi-Agent Sys-
tems but also to any representation, structure, system
which could make AI scalable.
• XAI Challenge: Main XAI challenges are focusing
on explaining and resolving agent conflicts, based on
their intentions and beliefs [40]. State-of-the-art aims
at identifying the best strategy, through explanation,
to achieve a goal. More recent works focus on human
comprehension of agent behaviour, its strategy, and its
convergence in case of conflicting intentions and be-
liefs of agents [41, 42].
• Approaches: Approaches such as [43] determines
the motivation for a decision by recalling the situation
in which the decision was made, and replaying the de-
cision under variants of the original situation. In such
scenario they are able to discover what factors led to
the decisions, and what alternatives might have been
chosen had the situation been slightly different. Ap-
proaches tend to be very close to counterfactual [44]
and case-based reasoning [45].
• Limitations: Even though ontology is a core repre-
sentation layer for agents to communicate and nego-
tiate, it is rarely used for explaining agent behaviour,
its strategy and success. Lighter knowledge represen-
tations might be envisioned.
• Opportunity: The dynamics of agents interaction
should be captured more formally, and embedded with
broader common sense knowledge to identify human
interpretable explanation. Formalization does not need
to be complex. For instance some dedicated knowledge
graphs could be used to contextualize the agents envi-
ronment.

2.9. Automated Planning and Scheduling

• Research Question: Automated planning and schedul-
ing [46] is a branch of artificial intelligence that
is about the realization of strategies or action se-
quences, typically for execution by intelligent agents,
autonomous robots and unmanned vehicles. Unlike
classical control and classification problems, the so-
lutions are complex and must be discovered and opti-
mized in multidimensional space. It could be done in
real-time i.e., on-line, or at design-time i.e., off-line.
Solutions usually resort to iterative trial and error pro-
cesses.
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• XAI Challenge: XAI challenges in AI planning [47]
are as follows: explaining (i) causal relationships of
actions, (ii) why some actions are chosen in particu-
lar situations, (iii) why plans are better than some, (iv)
why plans could not be computed, (v) why replanning
might be required.
• Approaches: Past work on explanations primarily in-
volved the AI system explaining the correctness of its
plan and the rationale for its decision in terms of its
own model [48].
• Limitations: Existing approaches fail in exposing
human-understandable explanation, as rational is usu-
ally is limited to the planner’s domain e.g., in term of
actions and initial situation. This strongly limits the
comprehension to experts in the given tasks.
• Opportunity: Knowledge graph could be a way for-
ward to better contextualize complex terms, and even
better summarize complex actions in more succinct
and meaningful way.

2.10. Natural Language Processing

• Research Question: Natural Language Processing
is concerned with the interactions between comput-
ers and human (natural) languages, in particular how
to program computers to process and analyze large
amounts of natural language data. Research questions
includes (visual [49], multi-turn [50]) question answer-
ing [51], conversational agents with broader questions
related to speech recognition, natural language under-
standing and generation.
• XAI Challenge: Similarly to machine learning, iden-
tifying importance of feature or entity is critical, as it
aims at identifying which part of speech is driving the
most relevant information. Other core XAI tasks in-
clude: explaining the rational of questions sequencing
in dialogue, debugging a plan-based dialogue system
[52] or explaining the utterances which were intended
to achieve [53]
• Approaches: The problem of identifying the most
representative entities in a text classification task is ad-
dressed by [15] with many variants. Some works [54]
extract plan-based model to understand intention and
explain rational of the discourse.
• Limitations: On the one hand ML-based approaches,
which focus on important entities in text, suffer from
having statistics-based explanation only i.e., mainly
based on co-occurrence and correlation. On the other
hand plan-based models have not been deeply ex-

plored, and many research questions related to their
representation, rational in questions sequencing re-
main open.
• Opportunity: Semantics could support for repre-
sentation purpose. Knowledge graphs could provide
the semantic layer missing from brute-force machine
learning approaches on text. They could also drive or
at least guide sequencing of questions by refining, ab-
stracting or instantiating obscure terms in questions.

3. Conclusion

Despite a surge of innovation focusing on ML-based
AI systems, industry is facing the dilemma of apply-
ing in products at scale, particularly for industries op-
erating with critical systems. Trust, and trust in AI has
been revelled as the one term coining industry needs
to move to the next step. Trustable AI is about re-
sponsibility validity, privacy-preserving modelling and
also explainability. Explanation, which could be used
for debugging intelligent systems or deciding to fol-
low a recommendation in real-time, will increase ac-
ceptance and user trust. Explanation in AI has different
open questions, meaning, definitions and approaches,
depending of which AI fields is touching the question.
Although various solutions have been introduced, the
question remain open in all areas of AI. We presented
their challenges in more details, some of their exist-
ing approaches, their limitations and opportunities for
knowledge graphs to bring explainable AI to the right
level of semantics and interpretability. Indeed signifi-
cant progress in complex AI tasks such as explainable
AI could only be achieved through combinations with
semantic layers, empowering explanation of complex
AI systems.
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