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1. A Design Loop

After 20 years of Semantic Web, at least 60 years
of attempts to build computational models of meaning,
and 100 years from the publication of Ludwig Wittgen-
stein’s Tractatus Logico-Philosophicus [50], let alone
the previous footwork of philosophers, linguists, and
logicians, the situation with publicly shared, rigor-
ous representations of meaning is only partly satisfy-
ing. The deep learning turn in artificial intelligence is
adding new means for inductive inference and pattern
discovery, but not much to the general problem: what
are the basic bricks of meaning, if any, and their vi-
able computational representation? How to make them
converge (or diverge) according to the needs for local
efficacy and global interoperability?

In work presented in 2010 for the inaugural issue
of this journal [19], those building blocks were iden-
tified in Knowledge Patterns (KP) [6][13], a semantic
web generalisation of frames in cognitive science, lin-
guistics, and sociology literature, which have played
a substantial role in early knowledge representation.
The proposed approach was to empirically collect and
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use KPs for design, re-engineering and interoperability
across data, schemas, lexicons, and interaction.

While in 2010 the amount of known KPs was lim-
ited to certain well known ontology design patterns
[13][41] and informal linguistic frames, with examples
of how different data models and data structures could
be made interoperable through them, from that time
some advancements have been made, which are briefly
summarized in Sect. 3.

It is now time to assess where we are, and to take
another step towards an integration of scientific efforts
from superficially unrelated disciplines ranging from
cognitive neuroscience to knowledge representation.

2. KP as Multigrade Predicates

As Dedre Gentner [23] stated in a crystalline way:

the ability to perceive and use purely relational similarity
is a major contributor –arguably the major contributor– to
our species’ remarkable mental powers.

Gentner’s quotation gives us a starting point to propose
a dual nature for knowledge patterns and relations:
on one hand, they are intensional structures that char-
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acterise certain invariant features of the world, mak-
ing specific situations emerge out of the continuum of
reality as perceived, memorised, and publicly recog-
nised in human societies and individuals. On the other
hand, they are extensional relations with a precise ex-
tensional semantics. The orderly view of relations cor-
responds to the cognitively reified view of knowledge
patterns, and viceversa. Feature similarity helps detect-
ing a relation that has been already sensed in the past,
as well as recognising a pattern that has been already
stored in bodily, societal, and cultural memory.

The Semantic Web has started as a pragmatic way
to use the Web as a platform to spread human seman-
tics and human ability to process meaning. That plat-
form was supposed to be decentralised, and to (unin-
tentionally) realise the dream of a transparent negoti-
ation of meaning, where entities have a public iden-
tity, with publicly known features that are encoded in
public representations that can be dereferenced on the
Web.

Eventually, the Semantic Web has created the con-
ditions for web semantics to evolve: billions of multi-
domain Linked Data triples, the international accep-
tance of governmental linked open data, the FAIR
data movement, and the crucial asset development for
enterprise knowledge graphs, are all evidence for a
paradigm shift. Yet, where real semantic interoperabil-

Fig. 1.: The uncertain/incomplete mappings between
two simple schemas for accommodations from Rome
vs. Milan municipality data.

ity has succeeded, it has typically happened in a cen-
tralised way. Some examples are shown here:

– public administrations produce data with hetero-
geneous schemas, even for simple conceptuali-
sations such as accommodations in Rome and
Milan (Fig. 1): only centralised efforts to create

shared schemas, and complex refactoring proce-
dures after data ingestion, are able to alleviate the
problem;1

– web designers and content producers use their
own tags, and only something like schema.org has
enabled SEO and semantic search to take off;

– DBpedia has evolved a large schema for Wikipedia
data that is partly dependent on Wikipedia In-
foboxes, partly on collaborative design of classes
and properties, however, data needs cleaning, and
only a stronger semantics as shown in [38] is able
to detect the most severe problems emerging from
bulk reengineering practices;

– the decision making on sharing schemas is painful
and subject to conflicts, let alone the cases when
generic schemas, which are independent from
an organisation’s control, and do not necessar-
ily cover the same semantics, are nonetheless as-
sumed as standard. A proper practice may be in-
stead to analyse the requirements extracted from
scenarios or competency questions, as recom-
mended by state-of-the-art agile methods such as
eXtreme Design [42], and only later to align the
resulting ontology to existing ones;

– a large amount of knowledge needs to be ex-
tracted from natural language, but the integration
between natural language understanding, which
is progressing towards a shareable semantic rep-
resentation, AMR [3], and ontology design is not
yet widespread, despite the road has been opened
by knowledge extraction methods [?] and mas-
sive integration of linguistic and factual resources
[15].

Notwithstanding the long (10 years) activity of the
Ontology Design Patterns community, with the sub-
stantial work collected in repositories such as http:
//www.ontologydesignpatterns.org, or pub-
lished (cf. [27], let alone the general agreement on
reusing design patterns in ontology design for the Se-
mantic Web and Conceptual Modelling [11], ontolo-
gies usually do not include their design practices, and
modeling choices are scarcely documented, leading to
difficulties in integrating schemas and their data. Even
the FrameBase approach [43], which practically im-
plements interoperability based on FrameNet frames
as hubs for alternative schemas sharing a KP, does not

1Cf. the DAF platform supported by the OntoPiA ontology net-
work in Italy https://github.com/ontopia/ontopia
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yet look as a real game-changer, possibly due to its
limited coverage.

Clearly, there is a difficulty in abstracting from local
modeling choices, without a strong centralization, or
a push towards the reuse of a quasi-standard. The rea-
son probably lies in both the distance between domain
expertise and ontology design practices, which require
non-trivial logical competence, and in the existence of
alternative terminologies, design solutions, and local
alternatives, which make different but potentially over-
lapping schemas look farther than they actually are.

Semi-automated ways to design ontologies, to match
them, or to inject interoperability, are still on the aca-
demic side of things, probably because of their limited
friendliness or conceptual coverage.

The suggestion here is to take the bull by the horns,
which in this case means to start a widespread col-
lection of knowledge patterns where they actually are:
existing ontologies, data models, large natural lan-
guage corpora, linguistic resources, competency ques-
tions from formal and informal contexts, workflows,
how-to repositories, commonsense knowledge bases,
etc. The knowledge patterns emerging from this activ-
ity need to be intensional, and to be annotated with
their compositional paths. Here both deductive and in-
ductive techniques, jointly with usage of large multi-
lingual knowledge graphs, must help (cf. Sect. 5).

While KPs should preserve their intensional nature,
and avoid a strong commitment to specific logical
primitives, a minimal correspondence between inten-
sional and extensional axioms can be maintained by
using Framester semantics, described in the following.

2.1. Knowledge Patterns as Multigrade Predicates:
the Framester KP Semantics

In search for logical neutrality, we propose here an
abstract notion of relational representation across nat-
ural languages, logics, data structures, applications,
neuroscience. The first intuition came from so-called
multigrade predicates [37]. A multigrade predicate is
a polymorphic n-ary relation. It can have multiple ar-
ities (in neo-Davidsonian terms, cf. [7]), and can have
place labels that “overtype” a binary projection of
the predicate. The mapping from linguistic semantics
such as Tesnière’s stemmata [45] –which led to valen-
cies in dependency grammars– or Fillmore’s concep-
tual frames[2], to multigrade predicates, is straightfor-
ward. Relevant distinctions such as actantial vs. cir-
cumstantial complements (Tesnière), core vs. periph-
eral roles (Fillmore), etc., could be represented as (sets

of) places. Web formats: XML stylesheets, templates,

microdata, infoboxes, JSON objects, etc. can all be

represented by predicates and places.

Multigrade predicates and their places have a close

resemblance to an ontology design framework called

Descriptions and Situations (D&S) [17,14,20], which

was originally intended as a two-tier modelling of the

extensional and intensional semantics of predicates,

with a focus on events or situations. The motivating

use cases were in legal and medical ontologies, where

we need to talk both about the world (e.g. organic or

social facts), and about the way we observe or catego-

rize them (e.g. a clinical condition or a legal norm).

In the early times of the Semantic Web, separating

intensional and extensional modelling needed a dupli-

cation of constants in a vocabulary, e.g. ViralHepatitis

had to be represented with two different constants for

talking about its roles/places (its definition), and for

its occurrences (its instantiated situations). Later on,

OWL2 [31] punning mechanism enabled the usage of

a same constant for the two functions, and the resulting

ontologies are much simpler.

D&S has been applied in order to generalise any

kind of knowledge pattern into a formal two-tier se-

mantics, as in the Framester factual-linguistic knowl-

edge graph [15].
A KP is defined as a multigrade predicate φ(e, x1, ..., xn),

where φ is a first-order relation, e is a situation vari-
able described by a KP, and xi is a variable for any
argument place. Now, using D&S-style OWL2 pun-
ning, we introduce φ as a knowledge pattern from class
KP and a subclass of SIT (situations i.e. KP occur-
rences/observations, (1-2)), ρ as a binary or unary KP
projection of multiple types (semantic roles (3), co-
participation relations (4), or types (5), ι as individu-
als occurring in a situation (6), τ as binary tuples oc-
curring in (the projection of) a situation (7), and ω as
expressions from a class EXP denoting (“θsit”, (8)) an
occurrence of a KP φ in a KP composition Φ, assum-
ing that (in general) ω is capable of evoking (“θkp”,
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(9)) φ.

∀(φ)KP(φ) (1)

∀(s)φ(s)↔ SIT(s) (2)

∀(s, xi)ρrol(s, xi) −→ φ(s, x1, ..., xn) (3)

[i ≥ 1 ≤ n]

∀(s, xj , xk)ρcop(xj , xk) −→ φ(s, x1, ..., xn) (4)

[j ≥ 1 ≤ n, k ≥ 1 ≤ n]

∀(s, xm)ρtyp(xm) −→ φ(s, x1, ..., xn) (5)

[m ≥ 1 ≤ n]

∀(ι)ρtyp(ι) −→ φ(s, x1, ..., xn) (6)

[ι = x1 ∪ ... ∪ ι = xn]

∀(τ)(ρrol(τ) −→ ∃(s, xi)(ρrol(s, xi)) ∪ (7)

(ρcop(τ) −→ ∃(xj , xk)ρcop(xj , xk))

∀(ω)EXP(ω)↔ ∃(φ)θkp(ω, φ) (8)

∀(ω, s, φ,Ψ)θsit(ω, s, φ,Ψ) −→ (9)

θkp(ω, φ) ∧ φ(s)

[φ ∈ Ψ]

As detailed in formulas (1) to (9), Framester KP semantics is
a formalisation of meaning interpretation in context, which
bears from:

– multigrade predicates theory: φ is polymorphic and has
typed places;

– Fillmore’s frame semantics: symbols evoke frames,
which have semantic roles with values having a certain
type (types are used as selectional restrictions in certain
lexical semantic theories, such as VerbNet [29]);

– D&S: predicates have a two-tier intensional and exten-
sional semantics, encoded with the help of OWL2 pun-
ning

Framester KP semantics has also original features in:

– representing projections of a KP as roles of polymor-
phic relations, as co-participation relations, or as types,
which are also frames on their turn;

– distinguishing a-priori evocation: an expression evokes
a KP, vs. applied evocation: an expression is used in
context and evokes a situation, in which multiple KPs
could be evoked, and composed.

A shortened example of Framester KP semantics is pro-
vided here with a description logic representation of frames,
semantic roles, types, projections, individuals and tuples

evoked by the sentence: this jacket is made of cotton2.

Clothing ∈ KP (10)

Causation ∈ KP (11)

Substance ∈ KP (12)

Jacket.n.1 v Clothing (13)

Make_26010000 v Causation (14)

Cotton.n.1 v Substance (15)

Jacket.n.1 ∈ ρtyp (16)

Make_26010000.Theme.Material ∈ (17)

ρcop

Make_26010000, (18)

Make_26010000.Theme.Material ∈ ζ

Cotton.n.1 ∈ ρtyp (19)

a.jacket ∈ Jacket.n.1 (20)

a.make ∈ Make_26010000 (21)

a.cotton ∈ Cotton.n.1 (22)

(a.make, a.cotton) ∈ (23)

Material.make_26010000

(a.make, a.jacket) ∈ (24)

Theme.make_26010000

(a.jacket, a.cotton) ∈ (25)

Make_26010000.Theme.Material

jacket ∈ EXP (26)

made ∈ EXP (27)

cotton ∈ EXP (28)

(jacket, Jacket.n.1) ∈ θkp (29)

(made, Make_26010000) ∈ θkp (30)

(cotton, Cotton.n.1) ∈ θkp (31)

(jacket, Jacket.Make.Cotton) ∈ θsit (32)

Jacket.Make.Cotton v (33)

Clothing.Causation.Substance

Clothing.Causation.Substance ≡ (34)

(Clothing⊗ Causation⊗ Substance)

2For space reason, we do not include the OWL code with
namespaces, but the predicates used are all from the Framester
knowledge graph, which can be downloaded and queried from
https://github.com/framester/Framester



Gangemi et al. / Closing the Loop 5

The high amount of axioms for this example may seem
against Ockham’s razor, a venerable principle in knowl-
edge representation. But they are produced because of the
need to have a two-tier (extensional+intensional) represen-
tation: most of them can be generated automatically out of
a general intensional template for the three disambiguated
KPs (Jacket.n.1, Make_26010000, Cotton.n.1),
jointly with the knowledge from Framester, and the sup-
port of a semantic parser in the case of natural language
(e.g. FRED[22]3 produces knowledge graphs that are ready
to be extended with Framester semantics). The advantage
of this intensional generalisation is quite obvious: no spe-
cial knowledge representation language is required, but any
design choice for e.g. a make concept (an object property
from an ontology, a datatype property from a database refac-
toring, a class from another ontology or a JSON microfor-
mat, an individual from a linguistic ontology, etc.), can be
all aligned using both ontology and linguistic matching tech-
niques, once the intensional disambiguation has been per-
formed.

3. KP and Cognition

The term knowledge pattern was firstly introduced by de
Beaugrande [8]:4

the availability of global patterns of knowledge cuts
down on non-determinacy enough to offset idiosyncratic
bottom-up input that might otherwise be confusing.

However, the idea of recurrent, invariant units of knowledge
was already present in philosophy, psychology and sociology
as schemata, at least since [39]:

La logique égocentrique est plus intuitive, plus «syncré-
tique», que déductive ... Elle emploie des schémas person-
nels d’analogie, souvenirs du raisonnement antérieur, qui
dirigent le raisonnement ultérieur sans que cette influence
soit explicite.5

Notably, in the same period (1970-1980) more notions were
being introduced to characterize cognitive structures that
were supposed to abridge research in linguistics, artificial

3Use this API for an example: http://wit.istc.cnr.
it/stlab-tools/fred/demo

4A close usage of the term can be found earlier in a “creative
engineering” book [36]: “knowledge pattern ... by this is meant the
knowledge and experience applicable to the technique of synthesis ...
There are three important parts to the knowledge pattern as regards
creative work, (1) scientific knowledge, (2) design curiosity, and (3)
the ability to generalize experience.”

5“Egocentric logic is more intuitive, more “syncretic”, than de-
ductive ... It uses personal patterns of analogy, memories of previ-
ous reasoning, which direct the subsequent reasoning without this
influence being explicit.”

intelligence, knowledge representation, etc. These include
Frames in linguistics [12], later defined in FrameNet6 as:

a schematic representation of a situation involving vari-
ous participants, props [inanimate entities, ed.] and other
conceptual roles, each of which is a frame element

and in artificial intelligence [30], defined as:

a remembered framework to be adapted to fit reality by
changing details as necessary ... a frame is a data-structure
for representing a stereotyped situation.

Macrostructures [47], defined as:

higher-level semantic or conceptual structures that organ-
ise the ‘local’ microstructures of discourse, interaction,
and their cognitive processing.

Scripts [44], defined as:

a structured representation describing a stereotyped se-
quence of events in a particular context.

As de Beaugrande noticed about those different notions,
“These large-scale knowledge configurations supply top-
down input for a wide range of communicative and interac-
tive tasks.”. In fact, there seems to be a common intuition
concerning invariances shared by multiple situations, typi-
cally featuring an internal order, and being applied to multi-
ple reasoning and interaction activities.

Since something can be invariant only if it remains un-
changed under transformations7 that span through time,
space, observers, physical conditions, constituency, mea-
surement, procedural constraints, etc.,8 and since knowledge
patterns are representations of situations, they reflect that
those situations remain unchanged under some transforma-
tion of features that are not relevant for the pattern to be
applicable (they “offset idiosyncratic bottom-up input”).

For example, a red ball might still be a red ball after being
deflated, but a red ball to play volley cannot. Throwing paper
waste on the street may be the same action on any street, but
in a country the same action can be tolerated, in another not.
A slap is a slap, but it could be voluntary or not, an aggres-
sion or a joke, according to the intention of who’s slapping,
or to the observer’s perspective.

Knowledge patterns contain invariant features that make
them appropriate as abstract data structures to be remem-
bered/stored, and, as Minsky [30] noticed about frames, they
can be adapted to fit reality by changing details as nec-

6https://framenet.icsi.berkeley.edu/
fndrupal/glossary

7Cf. Paul Dirac [9]: “The important things in the world appear
as invariants ... of ... transformations”.

8Cf. [32] for a detailed study on invariance and objectivity,
and [24] for Gibson’s psychological theory of how invariances in
stimulus-energy pair permanent (“projectable”) properties in the en-
vironment (“affordances”).
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essary. Minsky’s intuition can be used to propose KP dy-
namics as a pendulum swinging between invariances (tend-
ing to universal patterns) and localities (tending to pattern
divergence, adaptation or blending). Cognition works with
patterns, but updates them to local observations, which are
unique, because of the richness and compositional interfer-
ence of actual (multi-modal) perceptions. This tension is re-
flected also in Barsalou’s simulation theory [4], which can
be summarised as the defense that concepts are grounded by
multi-modally-informed, situated simulations of the external
world. Barsalou [5] also proposes that concepts can be shared
thanks to a huge coordination activity aimed at establishing
a common ground for mutual understanding.

This is backed by neurological results. A recent fMRI
metastudy by David Wisniewski [49], starting from the fol-
lowing dilemma:

Some suggested that intentions representations in the
fronto-parietal cortex change flexibly when external de-
mands change (context-dependent coding). Others sug-
gested that these representations are encoded in an ab-
stract format that is not affected by changes in external
demands (context-invariant coding)

revisits the literature on goal-oriented action and context, and
finds that:

results to date are mixed, showing context-dependence in
some, but context-invariance in other cases ... depending
on characteristics of intentions as well as environment, in-
tentions can either be encoded in a context-dependent or
a context-invariant format ... to achieve both stability and
flexibility of behavior under constantly changing external
demands

Two questions emerge then for a computational treatment
of knowledge patterns: what features characterize a pattern?
how to be tolerant to pattern adaptation?

On one hand, since patterns have inherent invariances,
they are useful to make predictions, to create expectations,
to quickly judge something, to catch opportunities (affor-
dances), to avoid obstacles, to diagnose a medical condition,
to hypothesize a natural law, to establish a social norm, to
maintain a physical, social, or individual equilibrium, etc.
This massive importance make them key to interoperability
across multiple representations.

On the other hand, in many contexts a pattern can be
used analogically, approximately, partially, while still retain-
ing some of its explanatory power. In other words, patterns
retain their usefulness even when they do not fully corre-
spond to a situation.

An extreme case happens when a KP is used to denote the
special or unique quality of a situation, e.g. when a politician
has a lot in common with a sportsman, or a gangster (cf. the
cases described in a Wikipedia pattern exploration of knowl-
edge patterns emerging out of Wikipedia links [35]), or when
one recognizes the unique way of nodding by a friend, or

notices an original way of playing a saxophone, as in An-
thony Braxton’s deconstructionist interpretation of Charlie
Parker’s Ornithology:9 it a quite conservative jazz rhythm
section part, but there are unique features (sound, articula-
tion, timing, harmonic freedom) that make that track unique
(uniqueness prizes “idiosyncratic bottom-up input”).

In addition, due to their tolerance to modification, knowl-
edge patterns have a dynamics: they are adaptable (e.g. when
applying a Too Much frame to food consumption, sunlight,
or amusement), can be learned or discovered by a human or
a machine from a collection of examples (e.g. when learn-
ing the visual aspects of a saxophone, or the possible con-
figurations of a live jazz performance), can be extended or
mapped to other contexts (e.g. when using a climax script
as a metaphor for a musical performance).

As evident in the Too Much frame applied to the Food
Consumption vs. the Amusement scripts, knowledge
patterns have a peculiar compositionality, which requires
specific means for a computational treatment.

4. KP Compositionality

Knowledge Patterns, variously called schemas, frames,
scripts, scenes, modeling components, data modeling pat-
terns, etc., have been proposed as the core building blocks in
ontology design [19], providing cognitive relevance, explicit
situation boundaries, independence from a particular formal-
ism, under the assumption of direct associations to modeling
requirements. For example, in the classic blocks world ex-
ample of AI, a generic Over(o1, o2) frame involving a ver-
tical spatial relation between any two physical objects sat-
isfies a modeling requirement that only takes into account
the relative position of the objects. However, if the require-
ments include the knowledge whether the two objects touch
each other or not, a richer On/Above(o1, o2, c) frame that
requires a role for the contact situation will be needed. The
richer frame is actually the composition of Over(o1, o2)
with the Contact(o1, o2, c) frame.

A KP can be represented in a specific logical language,
but it should also preserve an intensional representation that
is invariant across logical languages. In their original presen-
tation of KPs in knowledge representation, Peter Clark and
colleagues [6] indicated category theory as the most adequate
abstraction for KP representation. More recently, Oliver Kutz
and colleagues [10] chose a close approach for the represen-
tation of conceptual blending. Our intention here has been to
start from a more traditional mathematical framework, close
to existing KR languages: a two-tier intensional/extensional
logic, which can use the same basic semantic web languages
in use today (cf. Sect. 2).

9https://www.youtube.com/watch?v=
PuoBeYB-O1M
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For example, a Playing Music KP (represented here
as a first-order multigrade predicate for brevity) (35),

PM(p, i, c, t, tim, loc) (35)

with role projections (ρrol) such as player, instrument, com-
position, tempo, time, location, etc. Selectional constraints
(ρtyp) [48] could be added to those roles, e.g. a player should
be a person, an instrument should be tempered, a composi-
tion should be in written form, a tempo should be in a cer-
tain range, etc. However, specific applications of Playing
Music might force roles to accept an untempered musical
instrument, an AI playing a part, a section that is not written,
but improvised, etc.
Playing Music could also be used to refer to a

metonymically related situation, e.g. when one plays music
on an audio system: in this case interpretation needs to re-
construct a composition of default music playing, its record-
ing, and its reproduction. We may want to treat this as two
separate Playing Music-1 and Playing Music-2
frames, but Playing Music-2 is the result of a compo-
sition depending on Playing Music-1.

Literature on compositionality is huge (cf. [26] for a re-
cent palette of positions), but the basic argument is about the
asymmetry between symbolic and semantic compositional-
ity: is the meaning of a structure entirely determined by the
meaning of its constituents? There are multiple reasons why
the answer is “not always”.

We can consider five classes of asymmetry, with exam-
ples from natural language texts: (1) anaphoric composition:
They got married. She is beautiful; (2) modal composition:
23-year-old man dies after fake doctor administered uniden-
tified treatment via injection; (3) hidden relations: this plaid
jacket with hood is made of cotton; (4) world structure: cut-
ting a cake vs. cutting the grass; (5) metaphoric composi-
tion: Breaking point: why the Kyrgyz lost their patience. In
all five cases, entailment, perspective, background or com-
monsense knowledge, or blending [10], [16], need to be sup-
plemented in order to finalise semantic composition.

In practice, all those cases are more or less easily com-
posed by people, despite their asymmetry: what is lacking
to computational semantics to approximate that ability? Our
hypothesis is that KP compositionality is lacking.

Currently, we have sophisticated logical compositionality
within ontologies: classes are associated with other classes
via properties or taxonomical relations, properties are asso-
ciated with other properties through chains, SWRL, or SPIN
rules, classes are associated to properties via domains and
ranges, or restrictions. We have an ontology compositional-
ity via ontology import. We even have vectorial composition-
ality in vector space models of semantics [46], now enriched
by embedding and deep learning techniques.

But we do not have any compositional machinery, let
alone an algebra, to compose knowledge patterns. The most
we can do is to represent KPs in ontology modules (or alter-

natively in named graphs), and import them in a new ontol-
ogy, or merging them in a graph.

Yet, the result of composing a KP with another is a third
KP, not an ontology. We need a language to talk about inten-
sional compositionality, jointly with a grounding into ontolo-
gies and off-the-shelf classes and properties. A beginning of
such a composition style has been sketchily demonstrated in
Sect. 2. We describe here in more detail how KP composi-
tionality provides a different view on well-known problems
in natural language semantics and ontology engineering.

4.1. Framality

Our assumption is that compositionality effects on formal
representations of meaning derive from framality: basically
the observation that KPs are one of the motivating forces for
contextual effects, as also reported with respect to frames
and their selectional restrictions in neuropsychological stud-
ies (e.g. [48]).

A notable example of framality can be given in adjectival
semantics [18]. It can be defined as the ability of an expres-
sion to evoke a KP from the joint evocation of KPs emerging
during interpretation. In the case of adjectives, a good ex-
ample is the following pair of terms: extroverted surgeon and
skillful surgeon. While we might represent the two terms as
a conjunction:

∀(x)ExtrovertedSurgeon(x)→ (36)

Extroverted(x) ∧ Surgeon(x)

∀(x)SkillfulSurgeon(x)
?−→ (37)

Skillful(x) ∧ Surgeon(x)

from (1), we can safely infer that all extroverted surgeons
are extroverted in general, but from (2) we are not safe at in-
ferring that all skillful surgeons are skillful in general. The
likely reason is that Being_skilled is a possible value
for the core aspects of the Medical_professionals
KP, while Being_extroverted is not, therefore this
tends to be interpreted as a frame composition. For compar-
ison, a similar treatment for extroverted comedian does not
allow a safe inference of being extroverted in general, while
alcoholic comedian does.

Another example of framality can be done with refer-
ence to certain meta-properties proposed by the OntoClean
methodology [25]. As an example, a property is tradition-
ally called rigid when it is true for an entity during the entire
course of its life. It is non-rigid otherwise. For example, the
Student property (in the sense of being enrolled at some
educational institution) can hardly be true during the entire
life of a person.

However, this distinction is usually understood without
taking into account locality conditions. For example, if an
ontology is not interested in representing properties of enti-
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ties in a forever-lasting perspective – as with a university en-
rolment ontology – what establishes rigidity is the temporal
perspective of e.g. Being_a_Student frame, rather than
the Being_a_Person frame. Within the university con-
text, it is a property like Enrolled_in_a_course that is
non-rigid, since the frame of that property has a shorter time
span compared to that of Being_a_Student.

In other words, the context of meta-level properties is
maximal, while framality requires contexts to be bound to
requirements or local conditions. Interoperability require-
ments may change this sanity assumption: if university data
are integrated with personal data, Being_a_Student
would become non-rigid. Anyway, this may also apply to
Being_a_Person if personal data are integrated with no-
tarial data, which may include actions of a person even after
death.10.

Similar observations can be made about other meta-
properties such as phasal, sortal, etc.

5. Where are we now?

What is the current state of the art in KP research? We
summarize some research questions in the following.

1. what KPs are known?
2. is KP coverage enough to approximate human knowl-

edge patterns?
3. how to extend, evolve, learn, or discover KPs?
4. how to enrich automated reasoning with an intensional

characterisation of KPs?
5. how to use intensional KPs to foster interoperability

independently from the local representation of an on-
tology or conceptual model? In other words, how to
employ KPs in ontology reengineering and ontology
matching?

6. what is the intensional difference between frames,
roles, and selectional constraints or types)?

7. how to formalize KP compositionality?
8. how to study higher levels of semantics, such as modal-

ities, opinion, emotions, metaphors, narratives, and
other macrostructures?

This is definitely an ambitious research programme, which
has been partly carried out in the last 10 years. In the next
section, a quick survey is provided, while in the following,
we present some proposals for a substantial growth.

Concerning known KPs and their coverage, some progress
has been made, for example the Framester [15] knowledge
graph is able to represent any linguistic or ontology predi-
cate as a KP, and to reconcile it to a foundational layer ini-
tially provided by FrameNet [28] frames, and now extended
to WordNet and other linguistic repositories. Hundreds of

10In that case, the legal validity of Being_a_Legal_Person
persists beyond the physical persistence of Being_a_Person.

thousands of KPs have been automatically extracted from
existing repositories [33],[15]. Many more KPs can be ex-
tracted from existing data [40], or informal graphs such as
Wikipedia links [34].

Still, the compositionality examples shown here, the va-
riety of situation types addressed by existing ontologies, let
alone the larger societal scenarios, prove that we are still far
from a systematization of KP collection, and the related abil-
ity to make use of them (FrameBase [43] has proved that in-
teroperability is possible using KPs, and can be swiftly im-
plemented). Another experiment has been described in [1]
about reconciling different but related knowledge graphs (ex-
tracted from text), by exploiting KP embeddings and combi-
natorial optimisation.

Concerning KP semantics, in Sect. 2 we have summa-
rized a long-standing investigation into the nuances of inten-
sional KP representation. How full-fledged reasoning with
KP compositionality might impact existing automated rea-
soning techniques, e.g. OWL2 reasoners? Could we reduce
the computational complexity of knowledge graphs and their
matching by counting on the schematic nature of KPs, and
automated translation into existing logical languages?

An example of using KPs inherent in the DOLCE founda-
tional ontology to clean up a knowledge graph is described
in [38].

Examples of using KPs for representing higher levels of
meaning are described in [21] about using two-tier seman-
tics for extracting knowledge graphs from text, and over-
describing them with opinion KPs that improve the state of
the art in aspect-based sentiment analysis. Another recent
example [16] is about representing conceptual metaphors as
KP mappings, and attempting to use the resulting knowledge
base for both detection and generation of metaphors.

Far from being complete, we have tried a check of the
state of play with knowledge patterns in the Semantic Web,
jointly with a review of why cognitive neuroscience can give
us directions to design, extract, and use data and ontologies
in the most efficient way when the problem is the computa-
tional treatment of meaning.
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