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Abstract. In the context Semantic Web context regarded as a Web of Data, research efforts have been devoted to improving the
quality of the ontologies that are used as vocabularies to enable complex services based on automated reasoning. From various
surveys it emerges that many domains would require better ontologies that include nonnegligible constraints. In this respect,
disjointness axioms are representative of this general problem: these axioms are essential for making the negative knowledge
about the domain of interest explicit yet they are often overlooked during the modeling process (thus affecting the efficacy of the
reasoning services). To tackle this problem, automated methods for discovering these axioms can be used as a tool for supporting
knowledge engineers in the task of modeling new ontologies or evolving existing ones. The current solutions, either those based
on statistical correlations or those relying on external corpora, often do not fully exploit the terminology of the knowledge base.
Stemming from this consideration, we have been investigating on alternative methods to elicit disjointness axioms from existing
ontologies based on the induction of terminological cluster trees, which are logic trees in which each node stands for a cluster of
individuals which emerges as a sub-concept. The growth of such trees relies on a divide-and-conquer procedure that assigns, for
the cluster representing the root node, one of the concept descriptions generated via a refinement operator and selected according
to a heuristic based on the minimization of the risk of overlap between the candidate sub-clusters (quantified in terms of the
distance between two prototypical individuals). Preliminary works have showed some shortcomings that are tackled in this paper.
To tackle the task of disjointness axioms discovery we have extended the terminological cluster tree induction framework with
various contributions which can be summarized as follows: 1) the adoption of different distance measures for clustering the
individuals of a knowledge base; 2) the adoption of different heuristics for selecting the most promising concept descriptions;
3) a modified version of the refinement operator to prevent the introduction of inconsistency during the elicitation of the new
axioms; 4) the integration of frameworks for the distributed and efficient in-memory processing, namely Spark, for scaling up
the set of candidate concepts generated through the refinement operator. A wide empirical evaluation showed the feasibility of
the proposed extensions and the improvement with respect to alternative approaches.
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1. Introduction

In the perspective of the Semantic Web (SW) as
a Web of Data, a plethora of datasets are constantly
published and connected to others in the form of
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Linked Data, along a standard data model and based
on schemata formalized as Web ontologies [1].

In this scenario, many important services have been
devised and deployed for exploiting and enriching
these knowledge bases in a variety of tasks, such as
classification, query answering, population and en-
richment, reconciliation (instance matching), and con-
sistency checking.
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The effectiveness of the mentioned complex infer-
ence services that can be built upon them is strictly
dependent on the quality of the ontologies, namely
on how precisely (and exhaustively) their axioms con-
vey the intended semantics of the underlying do-
mains. As the ontologies are represented through stan-
dard languages ultimately based on Description Log-
ics (DLs) [2], an open-world semantics is generally
adopted as suitable for such a Web-scale scenario, op-
posed to the complete knowledge assumption back-
ing the semantics of other contexts (e.g. relational
databases and logic programs). Checking disjointness
is one of the key reasoning tasks for DL knowledge
bases together with satisfiability, subsumption, equiv-
alence tests (they can be reduced to one another). Rea-
soning under open-world semantics, with tasks involv-
ing individuals (e.g. instance checking and retrieval
queries) assertions cannot be proven to hold because
of the inherent incompleteness of the knowledge bases
(for technical details see [2], Ch. 2). This feature af-
fects also the other services mentioned above that are
built upon them. For example, in tasks aimed at en-
riching knowledge bases, detecting the possible intro-
duction of conflicting assertions (e.g. cases of incon-
sistency) is very important, as this might trigger further
repair-actions to reconcile the possible causes. Hence
disjointness axioms are essential to detect such cases.

To clarify this point, let us consider the case
of a simple corporate knowledge base fragment
(whose hierarchy is depicted in Fig. 1) with two
sibling subconcepts, namely Person and Robot.
Suppose also that the fragment includes an as-
sertion Robot(BotSmith), stating that the in-
dividual BotSmith is a robot (working in one
factory of the company, etc.), but later the noisy
assertion Person(BotSmith) may be added
by mistake (e.g. because lexically similar to
Person(BobSmith)) or it may be inferred from
the assumption of other (inaccurate) facts, e.g. an
assertion welded(BotSmith,Piece123) and a
flawed fact like domain(welded,Worker) given that
subClassOf(Worker,Person). Without an explicit
axiom stating that a robot is not a person, this incon-
sistency with respect to the intended interpretation
of the knowledge base cannot be detected. Note that
such an axiom would extend its effect to the whole
subconcepts hierarchies.

However, in the design of various popular ontolo-
gies currently in use the introduction of disjointness
axioms as required by concept modeling methodolo-
gies (see [2], Ch. 10) has been neglected. As a result,

Agent

Person

Employee Worker Freelance

Robot

SWBot HWBot

Fig. 1. A simple concept hierarchy modeling the agents in a corpo-
rate domain

they provide only a rather approximate representation
of the domains, failing to capture all of the underlying
constraints or making a complete knowledge assump-
tion that distorts the intended semantics by admitting
unintuitive cases. This lack of modeling accuracy was
testified by a survey [3] in which only 97 out of a
total of 1275 considered ontologies was found to in-
clude disjointness axioms. A possible reason for such
an issue may be the inexperience with the language
constructs, often leading users to overlook disjointness
during the definition of domain axiomatizations [4].
As a result, while a growing number of datasets have
been published joining the Linked Data cloud over the
years, this issue is still ignored: at the time of writing
this article, only 7 out of 9960 knowledge bases (0.7%)
include this kind of axioms1.

Another cause for this issue may lie in the context-
dependent nature of the notion of disjointness which
is consequently perceived in different ways [5]. For
instance, considering the previous case, it may be
assumed that the same individual cannot be both a
Worker and a Freelance within the same context
(but, of course, it may be possible to ascribe him/her
to either class in separate contexts). This means that
a clear understanding of the domain to be modeled
is crucial for its careful axiomatization in an ontol-
ogy. However, the manual introduction of disjointness
axioms may become a discouraging and, easily, also
error-prone activity with large ontologies. Neverthe-
less, the task can be (partially) accomplished ex post
with the support of statistical models emerging from
the data as the result of machine learning techniques.

Noticeably, various works have shown how to ex-
ploit association rule mining for statistical schema in-
duction [6,5]. The proposed methods often depend on
the availability of heterogeneous external resources
(corpora) for their elicitation for relying on lexical fea-
tures. Conversely, the interplay between extensional
and intensional knowledge (i.e. assertions regarding

1This can be checked at LODSTATS: http://stats.lod2.eu
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the individuals and terminological axioms) was only
marginally taken into account. Most of the current ap-
proaches move from the assumption that two (or more)
concepts may be mutually disjoint when the sets of
their known instances, which should be representative
for their extensions [2], do not overlap [7,4].

Moving from these considerations, a data-driven ap-
proach could be devised with the goal of finding parti-
tions of similar individuals of the knowledge base ac-
cording to a criterion that maximize the homogene-
ity of the individuals in each partition, i.e. emerging
concepts, while minimizing their mutual overlap. Ev-
idently, this boils down to a clustering problem [8]
which is a classic topic in machine learning. It has
also been taken into account in the context of ontology
learning as a preliminary step for concept induction [9]
or for automated solutions to concept drift or nov-
elty detection problems [10]. Such problems have been
tackled through extensions of basic clustering meth-
ods, such as or (fuzzy) K-MEDOIDS [11,12], adapted to
work on expressive knowledge bases.

An emerging approach to disjointness axioms dis-
covery, has proposed the employment of terminolog-
ical cluster trees (TCTs) [13,14]. Solving conceptual
clustering problems [15], finding natural partitions of
the individuals to induce intensional definitions of the
corresponding classes expressed in the standard rep-
resentation languages, this framework aims at deriv-
ing potential disjointness axioms, that may even in-
volve complex concept descriptions, by leveraging the
background knowledge of the underlying schema (the
axioms in the knowledge base). Unlike other meth-
ods, conceptual clustering produces partitions defined
intensionally, with concept descriptions to decide the
membership, rather than, extensionally, as a simple list
of their individuals.

A TCT (see an example in Fig. 2) is quite sim-
ilar to a terminological decision tree [16,17]: both
are grown through divide-and-conquer strategy and
can be thought to form concept hierarchies exploit-
ing refinement operators for DLs [18,9]. The latter are
essentially binary decision trees, induced by super-
vised methods exploiting information-based heuris-
tics; they are meant for the classification of the individ-
uals through the logical tests in their inner nodes and
classes associated with the leaves. The former (with
a similar structure except for the leaves) are induced
through unsupervised learning methods aimed at elic-
iting types from the partitions of similar individuals.
The concepts to be installed at inner nodes are defined
by progressively refining the one at the parent node (or

Person

Person u ∃worksIn.>

Person u ∃worksIn.Factory

...

Person u ∀worksIn.⊥
...

¬Person u Robot
...

Fig. 2. A fragment of a TCT.

its complement for right-children): possible specializa-
tions of such a concept are computed by a refinement
operator, and the best one is selected based on the qual-
ity of the (bi)partitions of individuals that would be
routed to either children. This quality is measured in
terms of their membership w.r.t. the candidate refine-
ment. Suitable specific metrics for the underlying rep-
resentation are required to derive a notion of cluster
prototype [10]. Noticeably, the method is able to detect
dense data regions in the underlying instance space,
hence the number of clusters – which has a strong im-
pact on the quality of the clustering structure – need
not to be required as a parameter. As in many parti-
tional clustering method [8] the cohesion of the clus-
ters (e.g. measured as the similarity of the members
w.r.t. the prototype) determines the stop condition: fur-
ther partitioning of coherent clusters should be pre-
vented to preserve the quality of the structure.

Once the TCT is grown, the concepts in the tree are
extracted to form candidate disjointness axioms. These
axioms are intended to be validated by a domain ex-
pert/ontology engineer and may be involved in a sub-
sequent debugging process for eliciting future cases of
inconsistency (i.e. newly available individuals found to
belong to disjoint concepts as shown in the previous
example).

Despite the potential benefits deriving from the in-
duction of TCTs, there are some issues, that were not
investigated in preliminary works [14], and whose so-
lution can further improve the framework.

Firstly, we tackle the issue of possible inconsistency
cases that may be introduced by some axioms (out of
a potentially large number of candidates) elicited by
the data-driven method. Due to the context-dependent
nature of disjointness, it may be hard to determine if
a case of inconsistency indicates a truly erroneous ax-
iom, or a special case for the domain represented by
the ontology. As an example, let us consider the con-
cepts USPresident and Actor, and two individuals
RONALD_REAGAN and DONALD_TRUMP. Let us suppose
that a candidate axiom proposes the disjointness of



4

these concepts. The actual inconsistency of the two
cases depends on the intended meaning of Actor: if it
is meant to denote anyone that participated in a movie,
then the case of DONALD_TRUMP (who has some ap-
pearance as himself credited for some movies) may
be considered as conflicting, whereas RONALD_REAGAN
may be assumed as an exception to a general rule. To
prevent the late evaluation of such cases after the in-
duction of entire TCTs, it is important to improve the
process of concept generation for the tree nodes. This
has been redesigned, anticipating the verification of
overlapping concepts.

Secondly, the best candidate partition of a given
cluster-node (and the corresponding concept descrip-
tions) was selected adopting the cluster medoid as the
prototype to measure the cohesion (separation) of the
resulting child-clusters [14]. This setting did not con-
sider the fact that there may be outliers or noisy indi-
viduals in one sub-cluster, that may be really close to
the sibling cluster (e.g. children nodes with common
parents in the TCT of Fig. 2). As a consequence, a
perfect homogeneity of each sub-cluster cannot be en-
sured.

Lastly, we also reconsidered the refinement oper-
ators used to generate the concept descriptions for
the clusters. They are exploited to traverse the vir-
tual space of refinements (specializations w.r.t. concept
subsumption) of a given concept. As this space is huge
(and redundant) most of the learning methods based on
such operators have to trade completeness [18,9] (the
ability of computing all the possible refinements) for
efficiency, resorting to a stochastic search. In the new
version of the method, the width of the beam of can-
didate refinements can be properly tuned so to enable
spanning larger regions of the search space.

Summarizing, we further extend our framework for
disjointness axiom discovery based on TCTs:

– a new version of the refinement operator is able
to prevent cases of inconsistency introduced by
concepts installed in the tree nodes;

– the adoption of different versions of the distance
measures between the individuals;

– a different heuristic aiming at maximizing the dis-
tances between the closest elements of two clus-
ters instead of their medoid;

– Big Data technologies have been adopted, as im-
plemented in the Spark2 framework, for paral-

2https://spark.apache.org/

lelizing and distributing the refinement genera-
tion workload on more threads/clusters.

Given such extensions, a new and more comprehen-
sive empirical evaluation was designed and carried out
aiming at assessing the effectiveness of the method
based on the TCTs also in comparison with other re-
lated methods.

The paper is organized as follows: in Sect. 2, the
disjointness axiom discovery problem is formalized in
terms of a clustering problem of individuals of an on-
tological knowledge base. In Sect. 3, the details of the
enhanced methods for inducing TDTs used for solving
the targeted problem are illustrated. The comparative
experimental evaluation of the new implementation on
a testbed of common ontologies is presented in Sect. 4.
In Sect. 5 related works are surveyed and discussed.
Finally, Sect. 6 concludes this work delineating further
research directions.

2. Disjointness Discovery as a Conceptual
Clustering Problem

In this section, we formalize the problem of dis-
covering concept disjointness axioms from ontological
knowledge bases in terms of a clustering task.

We will borrow notation and terminology from De-
scription Logics, being the theoretical foundation of
the standard representation languages for the SW.
Hence, we will use the terms concept (description) and
role as synonyms of class and property respectively.
DL constructors will be used for defining concept de-
scriptions. Logic entailment, subsumption and equiv-
alence for complex axioms will be denoted with the
usual symbols |=,v, and≡, respectively. A knowledge
base (KB) K = 〈T ,A〉 is made up of the TBox T ,
a set of terminological axioms regarding concepts and
roles) and the ABox A, a set of facts, i.e. concept/role
assertions, regarding the individuals. Ind(A) denotes
the set of individuals (resource names) occurring inA.

Before formalizing the problem of discovering con-
cept disjointness axioms, for the sake of completeness,
we recall some basics of the clustering methods.

Clustering is an unsupervised learning task aiming
at grouping a collection of objects into subsets, named
clusters, such that those within each cluster are more
closely related/similar to one another than the objects
assigned to different clusters [8]. In cluster analysis,
the quality of the clusters is assessed using indices that

https://spark.apache.org/
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take into account measures of cohesion, i.e. total re-
ciprocal similarity, among the objects within a clus-
ter, and of separation, i.e. total reciprocal dissimilar-
ity, among different clusters. In a general setting, an
object is usually described in terms of features from
a selected set F ; a measure of similarity between ob-
jects is expressed in terms of a metric; for example, in
the case of datasets of objects described by tuples of
numeric feature values, the Euclidean distance, Cosine
similarity or more complex metrics for vector spaces
are typically adopted.

A more complex clustering goal is pursued mov-
ing from flat to hierarchical structures. Another choice
among the various clustering models is related to the
form of membership of the objects with respect to the
clusters. In the simplest (crisp) case, e.g. K-MEANS,
cluster membership is exclusive: each object is as-
signed to one cluster. Extensions, such as FUZZY C-
MEANS or EM [8], admit overlapping clusters with ob-
jects exhibiting a graded membership (responsibility)
w.r.t. the clusters.

A further interesting class of methods is represented
by conceptual clustering approaches [15] which gener-
ate also an intensional description (defining the mem-
bership property) for each cluster (e.g. a conjunction
of propositional atoms). Beyond vectorial or, equiv-
alently, propositional representations, more expres-
sive richer logic languages may be adopted, such as
the mentioned DLs. Differently from other methods,
conceptual clustering algorithms for such representa-
tions may exploit available (schema-level) background
knowledge for building descriptions for each cluster,
i.e. axioms defining new concepts. Expressive repre-
sentations require the support of suitable metrics for
upgrading clustering methods.

A necessary condition for the disjointness of two (or
more) concepts to hold is that their extensions do not
overlap. Then the task of discovering disjointness ax-
ioms may be regarded as an unsupervised conceptual
clustering problem aimed at finding separate partitions
of individuals in the KB (such that each cluster consists
of similar individuals, according to a given criterion)
and producing intensional descriptions for them.

The problem is defined as follows:

Definition 1 (disjointness axiom discovery problem)

Given

– a knowledge base K = 〈T ,A〉
– a set of individuals I ⊆ Ind(A)

Find

– a partition Π of I in a set of pairwise disjoint
clusters Π = {C1, . . . ,C|Π|}

– for each i = 1, . . . , |Π|, a concept description
Di that describes Ci, so that:

* ∀a ∈ Ci : K |= Di(a) and
* ∀b ∈ C j, i 6= j : K |= ¬Di(b).

Hence ∀Di,D j, i 6= j : K |= D j v ¬Di.

It should be noted that, differently from other settings,
the number of clusters (say k = |Π|) is not a required
parameter.

Example 1 In the context of the corporate domain in-
troduced in Sect. 1, let us consider the agents in a com-
pany KB (humans and machines). A concept descrip-
tion should be assigned to each cluster of a partition
produced by a suitable method. As a result, a disjoint-
ness axiom may be discovered involving e.g. the clus-
ters corresponding to the concepts Worker and Robot,
namely Worker v ¬Robot, provided that the sets of
their instances do not overlap.

Note that the formalization reported in Def. 1 is
language-independent and it is aimed at a simple flat
partitioning structure, yet it can be generalized to tar-
get hierarchical structures. In the next section, a solu-
tion to such a more complex form of clustering is pre-
sented.

3. Induction of Terminological Cluster Trees for
Disjointness Axiom Discovery

The proposed approach is grounded on a two-step
process. In the first step, given a knowledge base, clus-
ters and the related concepts that describe them are dis-
covered and organized in a tree structure. In the second
step, the induced structure is exploited for learning a
set of candidate disjointness axioms.

The model is formally defined as follows:

Definition 2 (terminological cluster tree) Given a
knowledge base K, a terminological cluster tree (TCT)
is a binary logical tree [19] where:

– each node, which stands for a cluster C of individ-
uals, contains a concept description D (defined
over the signature of K)
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Person
|C1| = 100

1

Person u ∃worksIn.>
|C2| = 86

2

Person u ∃worksIn.Factory
|C4| = 22

4

...

Person u ∀worksIn.⊥
|C5| = 64

5

...

¬Person u Robot
|C3| = 14

3

...

Fig. 3. A fragment of TCT whose nodes are also decorated with the
size of the respective cluster of individuals Ci. Intuitively, the con-
cept descriptions Di in the various nodes could be roughly mapped
(CNi ≡ Di) to the following names, respectively: CN2 : Employee,
CN3 : Robot, CN4 : Worker, CN5 : Freelance.

– each edge departing from an internal node corre-
sponds to a partition of C in (two) sub-clusters3.

A tree-node is represented by a quadruple
〈D,C,Tleft,Tright〉 with the left and right subtrees
connected by either departing edge.

Fig. 3 illustrates an example of TCT resulting from
the fragment of the corporate KB introduced in pre-
vious examples. In this tree, each concept installed
into inner nodes is used to split a cluster of individ-
uals Ci in two sub-clusters. For instance, the cluster
C2 is split into 2 sub-clusters according to the mem-
bership of individuals in C2 w.r.t. the concept descrip-
tion Personu∃worksIn.> (roughly corresponding to
Employeet Worker or ¬Freelance) obtained as de-
scribed in the sequel.

Note that, similarly to the typical clustering meth-
ods [8], an optimal TCT is one that induces a hierar-
chical partition of the individuals that maximizes both
the cohesion within each cluster and the mutual separa-
tion between pairs of clusters. Obviously, finding such
a tree requires searching a very large space of all possi-
ble TCTs based on the various cluster structures result-
ing from the set of individuals (and all possible con-
cept descriptions used to split them). This turns out to
be computationally unfeasible, so a heuristic approach
has been advised.

The construction of a TCT combines elements of
logical decision trees induction [20,16] (recursive par-
titioning and refinement operators for specializing con-
cept descriptions) and of instance-based learning (a

3Noticeable difference with concept hierarchies: for each node in
the TCT, its cluster, composed by instances of the concept in the
parent node (ideally > for the root), is bi-partitioned according to
the membership w.r.t. the concept in the current node.

Algorithm 1 Main routine for growing TCTs and stop
condition test

1 function INDUCETCT(I,C,CS)
2 input I: set of individuals
3 C: concept description
4 output T : TCT
5 begin
6 T ← new TCT
7 if STOPCONDITION(I,C) then
8 T ← 〈null, I, null, null〉
9 CS← CS ∪ {C} {update the set of concepts}

10 else
11 S← SPECIALIZE(C, I,CS) {specializations}
12 E∗ ← SELECTBESTCONCEPT(S, I)
13 〈Ileft, Iright〉 ← SPLIT(I, E∗)
14 Tleft ← INDUCETCT(Ileft, E∗)
15 Tright ← INDUCETCT(Iright,¬E∗)
16 T ← 〈E∗, I, Tleft, Tright〉
17 return T
18 end
19

20 const ν, δ: stop thresholds {from the configuration}
21 function STOPCONDITION(I,C)
22 input I: set of individuals
23 C: concept description
24 output boolean
25 begin
26 if |I| ≤ δ then {test on the number of individuals}
27 return true
28 if C 6= > then {tested to avoid trivial trees}
29 〈P,N〉 ← SPLIT(I,C) {cluster partition w.r.t. C}
30 s← d (p(P), p(N)) {prototype separation}
31 if s ≤ ν then {cohesion test}
32 return true
33 else
34 return false
35 else
36 return false
37 end

distance measure over the instance space). The details
of the algorithms for (a) growing a TCT and (b) de-
riving intensional definitions of candidate disjoint con-
cept descriptions are reported in the sequel.

3.1. Growing Terminological Cluster Trees

A TCT is induced by a recursive strategy (see
Algo. 1), which follows the schema proposed for grow-
ing terminological decision trees (TDTs) [16,17] solv-
ing the instance classification problem. The ultimate
goal is to find a partition of pure clusters in terms of
cohesion.



7

The main routine INDUCETCT is to be invoked
passing I and > as parameters. In this recursive func-
tion, the base case tests the STOPCONDITION predi-
cate checking whether either the cluster I is too small
to be partitioned or its (measure of) cohesion exceeds
a given threshold ν (further details about the heuristics
and the stop condition are reported in Sect. 3.1.4). In
this case the algorithm updates a set of concepts CS
that is used by the refinement operator to prevent pro-
ducing specializations that overlap with concept de-
scriptions previously installed in other tree nodes.

In the inductive step, which occurs when the stop
condition does not hold, the current (parent) concept
description C has to be specialized using a refinement
operator (ρ) that spans over a search space of con-
cepts subsumed by C. A set of candidate specializa-
tions S ⊆ ρ(C) is obtained via SPECIALIZE(C, I,CS)
such that, for each of them at least a positive and a
negative instance can be found.

Then SELECTBESTCONCEPT evaluates each candi-
date specialization in S in terms of a measure of sep-
aration based on the distance (see Eqs. 1 and 2 dis-
cussed in the following) between the pairs of sub-
clusters P, made up of positive instances w.r.t. the
current candidate concept, and N, made up of nega-
tive instances w.r.t. the current candidate concept. The
membership tests are based on instance checking [2]).
Hence, SELECTBESTCONCEPT returns the best con-

cept description E∗ ∈ S, that is the one maximiz-
ing the mentioned heuristic grounded on the notion of
separation. Then E∗ is installed in the current node
and the individuals in I are partitioned by SPLIT to be
routed along the left or the right branch departing from
the current node, i.e. positive and negative instances
w.r.t. E∗.

This divide-and-conquer strategy is applied recur-
sively by the algorithm until no further branching is ad-
visable, as the sets of instances routed to the leaf-nodes
meet the stop condition. As mentioned before, differ-
ently from common clustering techniques, the number
of the clusters is not required as an input, it depends on
the number of branches grown: the algorithm is able to
determine it according to the data distribution.

3.1.1. Downward Refinement Operators
The proposed approach relies on a downward refine-

ment operator ρ [16,18] that must be able to generate
satisfiable concepts – in terms of the models of the KB
– performing a specialization process. It can be defined
by cases in terms of ancillary sub-functions. Given the
a concept description C (or its complement) to be spe-

cialized, the operator ρ computes specializations of C
in one of the following forms:

ρ1 by adding a concept atom (or its complement) as a
conjunct: C′ = C u (¬)A;

ρ2 by adding a general existential restriction (or its
complement) as a conjunct:
C′ = C u (¬)∃ R.>;

ρ3 by adding a general universal restriction (or its
complement) as a conjunct:
C′ = C u (¬)∀ R.>;

ρ4 by replacing a sub-description Ci in the scope of
an existential restriction in C with one of its refine-
ments: ∃R.C′i ∈ ρ(∃R.Ci) ∧C′i ∈ ρ(Ci);

ρ5 by replacing a sub-description Ci in the scope of
a universal restriction with one of its refinements:
∀R.C′i ∈ ρ(∀R.Ci) ∧C′i ∈ ρ(Ci).

Note that the cases of ρ4 and ρ5 are recursive.

Example 2 Given the TCT in Fig. 3, starting from
Person, the following refinements can be obtained:

– Personu∃worksIn.>, installed in the node 2, is
generated using ρ2;

– Person u ∃worksIn.Factory in node 4 is gen-
erated using ρ4.

The refinement operator ρ performs a sort of ran-
dom sampling over a DL concept space. It is to be re-
marked that it does not satisfy all of the properties re-
quired for ideality, i.e. finiteness (for any concept the
set of specializations is finite), completeness (for all
concepts C and D, such that D @ C, a concept E, such
that E ≡ D, can be computed chaining a number of
applications of ρ) and properness (for all concepts C
and D, if D ∈ ρ(C), D @ C) [18]. Specifically, con-
cerning the finiteness property, the refinement operator
does not satisfy it because no bounds are imposed to
the number of specializations to be generated through
the random process. However this problem can be eas-
ily solved controlling algorithmically the number of
specializations by imposing a finite beam dimension n
and/or to the depth of the recursive calls.

Also the completeness of the refinement operator
is not guaranteed because the constructors employed
are evidently limited to those available for the ALC
DL. Besides, the random process needed for generat-
ing each specialization may consider some concept de-
scriptions more times while others (potentially useful
for the learning problem) may be overlooked.

Lastly, even the properness is not ensured, due to the
equivalence axioms defined in the TBox. For instance,
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given a concept description (C1 u C2) to be refined,
the operator (via ρ1) may add a new concept name B
such that C1 ≡ B. Also this property can be enforced
by further checks on refinements to be output.

Instead of aiming at the definition of a theoretical
operator endowed with these properties, which would
be intended for a use with a generic generate-and-test
algorithm, we decided to devise a more complex yet
effective data-driven specialization procedure, capable
of leveraging on the situation of the tree under con-
struction. Algo. 2 illustrates the resulting procedure
SPECIALIZE, which embeds the refinement operator ρ.
Besides the concept description C to be refined, it re-
quires a set of individuals I and a set of concept de-
scription CS that are employed to drive the traversal
of the search space. Note that its behavior is also con-
trolled by the beam dimension n.

The specializations are generated through the fol-
lowing steps:

– generate the specialization D = C u E adding a
conjunct E (selected by ADDCONJUNCT);

– apply subroutine SIMPLIFY to reduce redundancy
and syntactic length4 of this D [21];

These steps are repeated to ensure that

– the resulting specialization D is satisfiable w.r.t.
K and if (both negative and positive) instances of
D are available in I;

– it does not overlap with the concepts D′ ∈ CS
of the control set (where the concept extensions
are approximated using the retrieval rK inference
service [2]).

The specializations D are produced by adding a
new (complex) description via the auxiliary function
ADDCONJUCT. The recursive procedure tests the value
of a random variable X ∼ U(0, 1) to decide which re-
finement case (ρ1 - ρ5) must be applied. In the base
case, a random concept name A is picked from those
in the signature of K to output a concept in one of the
possible forms: CuA (see ρ1) or Cu∃(∀)R.(DuA) (see
ρ4 - ρ5). The recursive calls produce sub-descriptions

4The length of a concept description C, len(C) is defined induc-
tively:

* len(A) = len(>) = len(⊥) = 1

* len(¬D) = len(D) + 1

* len(D u E) = len(D t E) = len(D) + len(E) + 1

* len(∃R.D) = len(∀R.D) + 1

Algorithm 2 The specialization routines employed for
inducing TCTs

1 const n: number of candidates {from the configuration}
2 function SPECIALIZE(C, I,CS)
3 input C: concept description {to be specialized}
4 I: set of individuals
5 CS: set of concept descriptions
6 output S: set of concept descriptions
7 begin
8 for i← 1 to n
9 E ← >

10 repeat
11 E ← ADDCONJUNCT()
12 D← SIMPLIFY(C u E) {reduce complexity}
13 until rK(D) ∩ I 6= ∅ and rK(¬D) ∩ I 6= ∅ and

¬OVERLAP(C,CS)
14 S← S ∪ {D}
15 return S
16 end
17

18 function ADDCONJUNCT()
19 output concept description
20 begin
21 〈CN,RN〉 ← Signature(K) {atomic concepts, roles}
22 X ∼ U (0, 1)
23 if X ≥ 3

4
then

24 A← RANDOMPICK(CN) {random concept}
25 return A
26 else
27 C ← ADDCONJUNCT()
28 if X ≥ 1

2
then

29 return ¬C
30 else
31 R← RANDOMPICK(RN) {random role}
32 if X ≤ 1

4
then

33 return ∃R.C
34 else
35 return ∀R.C
36 end

for the complement or the existential and universal re-
striction (w.r.t a randomly picked role) operators.

After ADDCONJUCT has produced a sub-description
E, SIMPLIFY is applied to possibly generate a shorter
concept equivalent to CuE. This is aimed at improving
the overall interpretability of the resulting TCTs. Es-
sentially, this function checks if E v C is entailed by
the knowledge base, returning the concept description
E as an output when this condition holds.

Example 3 Let us suppose that ADDCONJUNCT re-
fines the concept ∃worksIn.> by adding the conjunct
∃worksIn.Factory. In this case, ∃worksIn.Factory
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would be returned via SIMPLIFY rather than the redun-
dant description ∃worksIn.> u ∃worksIn.Factory.

As previously mentioned, the specializations re-
turned by ρ are required to be satisfiable. This does
not ensure that instances of such concepts are actu-
ally represented in the training sets. It is important
to avoid the generation of satisfiable concept descrip-
tions for which the training individuals exhibit a neu-
tral membership: installing one of these concepts in a
node would end up with all the individuals in the cur-
rent node to be sorted to a single branch, thus under-
mining the divisive value of the node tests and increas-
ing the complexity of the trees (in terms of number of
nodes) with no evident advantage. To avoid these re-
finements, the algorithm verifies if a non-null number
of positive and negative instances can be found for D,
i.e. both the intersection between I and the instances of
D (rK(D)) and the intersection between I and the com-
plement (rK(¬D)) are empty. Note that this constraint
may be too strict to be satisfied, due to the sparseness
of the assertional knowledge (in the ABox) for some
of the involved concepts. These situations, causing de-
lays (or even infinite loops) can be easily prevented by
adopting some timeout condition to stop the generation
of a new refinement (producing a leaf-node, instead).

A further aspect to be considered is the possible
overlap between the concept description D and those
installed in other clusters (they are supposed to be con-
tained in the control set CS, passed as an argument to
the procedure). It has been observed that, owing to this
overlap, the clustering procedure may install concept
descriptions that would introduce inconsistency once
the axioms derived from the TCT were added to the
KB [14]. Therefore, the refinement operator has been
extended to avoid the generation of such concepts: the
procedure will return a specialization only if it has no
common instances with those contained in CS (check
operated via OVERLAP).

Example 4 Let us Suppose that the function OVER-
LAP checks if the control set contains the concept
Personu∀worksIn.⊥ (used to describe the individu-
als in C5). The procedure implementing the refinement
operator should avoid the generation of the concept
Person u Freelance.

3.1.2. Distributed Implementation of the
Specialization Procedure

Efficiency and scalability are certainly among the
most challenging properties required for inductive

methods. In the case of TCT induction, the mentioned
incompleteness of the refinement operator adopted and
limitations on the size of beam of candidates imply that
the search algorithm may miss some important fea-
tures (concepts) that would describe the clusters op-
timally. Conversely, tuning the algorithm with a large
beam sizes makes the approach inefficient. To tackle
these issues, we illustrate an approach to reworking
the refinement operator benefiting from frameworks
for supporting distributed architectures, i.e. Spark.

Spark is a distributed processing framework in-
tended for large amounts of heterogeneous data. It pro-
vides an API for devising applications that are able
to process such kind of data by means a transparent
approach with respect to specific file systems and ar-
chitectures. Spark relies on the notion of resilient dis-
tributed datasets (RDDs), distributed memory abstrac-
tions that let programmers perform in-memory compu-
tations on large computer clusters. Essentially, an RDD
is a read-only, partitioned collection of records. RDDs
are created through operations called transformations
that take an RDD and return a new RDD as their out-
put, and actions that return a single value of a given
type rather than an RDD. Some examples of such oper-
ations are the well known map & reduce functions for
parallel processing: MAP provides a one-to-one pro-
cessing of each element contained in the input RDD)
and REDUCE processes a RDD containing values of a
given type to get a single new value (of the same type).

Algo. 3 reports a new version of the specialization
procedure described in Algo. 2 reworked for allowing
an implementation on a distributed processing frame-
work. Similarly to the original version, the procedure
SPECIALIZE takes as its arguments the concept de-
scription C to be refined, the set of individuals I, and
the control set CS of concept descriptions. The pro-
cedure creates an RDD S, which is initialized by the
transformation MAP. The high-order function requires
a function INITIALIZE5 as an argument. This func-
tion returns a new RDD containing the concept de-
scription C that will be refined. After the initialization,
the RDD S is physically distributed among the avail-
able processing units (of a cluster or, if running on a
single machine, of the various cores decomposed in
multiple threads) through the auxiliary procedure PAR-
ALLELIZE6. Once the initialization is parallelized, the
refinement process starts invoking again the function

5This is implemented in Java 8 as a lambda expression
6It can be transparently managed by the underlying framework

infrastructure.



10

Algorithm 3 Distributed specialization procedure for
Spark

1 const n: number of candidates {from the configuration}
2 function SPECIALIZE(C, I,CS)
3 input C: concept description
4 I: set of individuals
5 CS: set of concept descriptions
6 output S : set of concept descriptions
7 begin
8 S← RDD[n] {an RDD of n elements}
9 S← MAP(S, INITIALIZE(S,C)) {RDD init.}

10 PARALLELIZE(S)
11 S← MAP(S, GENERATEAREFINEMENT(S, I))
12 return S
13 end
14

15 function GENERATEAREFINEMENT(S,I)
16 input S: RDD
17 I: set of individuals
18 output S′: RDD
19 begin
20 S′ ← RDD[n]
21 for each C ∈ S do {RDD transformation}
22 repeat
23 D← C u ADDCONJUNCT()
24 D← SIMPLIFY(C u E) {reduce complexity}
25 until rK(D) ∩ I 6= ∅ and rK(¬D) ∩ I 6= ∅ and

¬OVERLAP(C,CS)
26 S′ ← S′ ∪ D
27 return S′

28 end

MAP. In this case, the algorithm passes the function
GENERATEAREFINEMENT, which generates for each
concept in S the (properly simplified) specializations
(similarly to Algo. 2).

3.1.3. Heuristics
The algorithms for growing TCTs and TDTs share a

common structure but differ on the criterion for select-
ing the test concepts to be installed in the nodes: while
the latter adopts a scoring function based on the classic
notion of information gain, the separation measure to
be maximized in the procedure for the TCTs relies on
a distance defined over the individuals occurring in the
knowledge base. Specifically, the heuristic for select-
ing the best refinement of the parent concept is defined
as follows:

E∗ = argmax
E∈ρ(C)

d(p(PE), p(NE)) (1)

where PE and NE are the sub-clusters output by SPLIT,
d(·, ·) is a distance measure between individuals in a

KB and p(·) is a function that maps a cluster of indi-
viduals to its prototype, such as the medoid of the clus-
ter.

However, it was observed that maximizing the dis-
tance between the medoids may not guarantee to avoid
the overlap between the sub-clusters PE and NE [14].
Indeed, we observed cases of boundary individuals in
one cluster which were on average closer to those in
the other cluster (including their medoid) than to the
others belonging to the same cluster. To tackle such
cases a more sophisticated heuristic can be adopted:

E∗ = argmax
E∈ρ(C)

min
b∈PE ,c∈NE

d(b, c) (2)

The score for each candidate E is determined quan-
tifying the risk of overlap between two clusters accord-
ing to the distance between the closest individuals be-
longing to PE and NE .

The heuristic resorts to a variation of a language-
independent dissimilarity measure proposed in previ-
ous works [10,22]. Given the knowledge base K, the
idea is to compare the behavior of the individuals w.r.t.
a set of concepts C = {F1, F2, . . . , Fm} that is dubbed
context or committee of features. For each Fi ∈ C, a
projection function πi : Ind(A)→ [0, 1] is defined as a
simple mapping:

∀a ∈ Ind(A) πi(a) =


1 if K |= Fi(a)

0 if K |= ¬Fi(a)

0.5 otherwise
(3)

where the third value (0.5) represents a case of maxi-
mal uncertainty on the membership.

As an alternative value, the estimate of the likeli-
hood of being an instance of Fi for a generic individual
a could be considered. Especially with densely popu-
lated ontologies (as those forming the Web of Data) the
probability value Pr[K |= F(a)] may be estimated by
|rK(F)|/|Ind(A)|, where rK() denotes the retrieval of
a concept w.r.t. K, i.e. the set of individuals of Ind(A)
that (can be proven to) belong to Fi [2]. Hence, a fam-
ily of distance measures {dCn }n∈N can be defined as fol-
lows:
dCn : Ind(A)× Ind(A)→ [0, 1] with

dCn (a, b) =

[
m∑

i=1

wi [1− πi(a)πi(b)]
n

]1/n

(4)

Non uniform values for the vector of weights ~w can
be considered to reflect the specific importance of each
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feature. For example it may be set according to an en-
tropic measure [10,22] based on the average informa-
tion brought by each concept:

∀i ∈ {1, . . . ,m} wi = −
∑

k∈{−1,0,+1}

µi(k) log µi(k) (5)

where, given a generic a ∈ Ind(A), the following
estimates can be used: µi(+1) ≈ Pr[K |= Fi(a)],
µi(−1) ≈ Pr[K |= ¬Fi(a)] and µi(0) = 1− µi(+1)−
µi(−1).

An alternative distance measure proposed in other
works [23] is the following:

dCn (a, b) =

[
m∑

i=1

wi [πi(a)− πi(b)]
n

]1/n

(6)

Note that the two distance measures reported above
exhibit different behaviors. Specifically, the former
reaches its maximum when, given two individuals a
and b and a feature concept Fi ∈ C, π(a) = 0 and
π(b) = 0 or π(a) = 0.5 and π(b) = 0.5 (assum-
ing wi = 1), i.e in the cases of negative and uncertain
membership. The latter reaches its maximum value,
when the individuals a and b have opposite definite
memberships for Fi (i.e. π(a) = 0 and π(a) = 1 and
vice-versa).

3.1.4. Stop Conditions
The growth of a TCT can be stopped if one of the

following conditions are satisfied (see Algo. 1):

– the set of individuals is too small to be parti-
tioned: this is made testing if |I| ≤ δ

– The concept C to be specialized is different from
>:in this case the algorithm finds the positive and
negative instances of C and exploits a threshold
ν ∈ [0, 1] for the value of d(·, ·). If the value is be-
low the threshold, the branch growth is stopped.

To avoid trivial clusters, the Boolean function STOP-
CONDITION is forced to return false when C = >.
Conversely, the growth of TCT would stop after the
first call, i.e. when the > and I are passed as input and
the specialization process would never occur.

3.2. Extraction of Disjointness Axioms from TCTs

The procedure for discovering/extracting disjoint-
ness axioms requires a TCT as its input. Its details are
reported in Algo. 4.

Algorithm 4 Derivation of disjointness axioms from
TCTs

1 const θ: threshold {from the configuration}
2

3 function DERIVECANDIDATEAXIOMS(T)
4 input T : TCT
5 output A: set of axioms collected
6 begin
7 A← ∅
8 CCD← COLLECT(>, T)
9 for each C ∈ CCD do

10 for each D ∈ CCD do
11 if (D v ¬C) /∈ A and |rK(C u D)| ≤ θ then
12 A← A ∪ {D v ¬C}
13 return A
14 end
15

16 function COLLECT(C, T)
17 input C: concept description
18 T : TCT
19 output CCD: set of collected concept descriptions
20 begin
21 let T = 〈D, I, Tleft, Tright〉
22 if Tleft = Tright = null then {leaf node}
23 return {C}
24 else
25 CCDleft ← COLLECT(C u D, Tleft)
26 CCDright ← COLLECT(¬C u ¬D, Tright)
27 return (CCDleft ∪ CCDright)
28 end

Function DERIVECANDIDATEAXIOMS can be em-
ployed to traverse the TCT passed as an argument to
collect the concept descriptions that are installed in the
parents of the leaf-nodes. In this phase, it generates a
set of concept descriptions CCD. Then, the function
considers all pairs of elements C and D in CCD and
checks if the number of instances of the concepts DuC
does not exceed the threshold θ (a parameter to be set
in the configuration).

The set of collected concept descriptions CCD is
obtained by traversing the TCT. The COLLECT func-
tion is invoked for gathering concepts descriptions for
which disjointness axioms may hold by exploring (re-
cursively) the various paths along the (sub)tree from
the root to the leaves.

Note that the hierarchical nature of the approach
may allow for a further generalization of this func-
tion, controlling with a further parameter the maxi-
mum depth of the inner nodes to be visited during the
traversal. This would likely produce fewer and more
general axioms with respect to the specification of the
function reported in Algo. 4.
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Example 5 Given the TCT in Fig. 3, the following set
of concepts can be built using the routine COLLECT:

CDD = { Person,¬Person u Robot,
Person u ∃worksIn.>,
Person u ∀worksIn.⊥,
Person u ∃worksIn.Factory}

The following candidates axioms can be derived:

A = { Person v ¬(¬Person u Robot),
Person u ∃worksIn.>

v ¬(¬Person u Robot),
Person u ∃worksIn.Factory

v ¬(¬Person u Robot),
Person u ∃worksIn.Factory

v ¬(Person u ∀worksIn.⊥)}

The algorithm to elicit candidate axioms from TCTs
provides an approximation of the missing axiom de-
scribed in Ex 1. Additionally, it was also able to gen-
erate axioms involving other concepts, e.g. Person u
∃worksIn.Factory v ¬(Person u ∀worksIn.⊥),
corresponding to the axiom Worker v ¬Freelance.

4. Experiments

In this section, the design and the outcomes of
a comparative empirical evaluation of the proposed
model and related methods are reported. The experi-
ments were aimed at assessing the performance of the
revised version7 of the method based on the TCTs, in
comparison with other state-of-the-art statistical meth-
ods for discovering disjointness axioms (to be further
discussed in the next Sect. 5). We first illustrate the
methodology with the experimental design and setup,
then we report and discuss the outcomes of the various
sessions.

4.1. Methodology

4.1.1. Ontologies
In the experiments, we considered a variety of freely

available Web ontologies describing various domains,
namely: BIOPAX, NEW TESTAMENT NAMES (NTN),
FINANCIAL, GEOSKILLS, MONETARY, and DBPE-
DIA3.9,MUTAGENESIS and VICODI. The principal

7Code and testbed of ontologies are publicly available at: https:
//github.com/Giuseppe-Rizzo/TCT-new

characteristics of the selected KBs are summarized in
Tab. 1.

BIOPAX is a translation into BioPax format of the
glycolysis pathway in the EcoCyc database. NTN de-
scribes the characters and places mentioned in the New
Testament. FINANCIAL was created for modeling the
domain of banking. GEOSKILLS comes from an ef-
fort aimed at encoding competencies, topics, and ed-
ucational levels of the mathematics curriculum stan-
dards throughout Europe. MONETARY is an ontology
that was intended for modeling information about cur-
rencies. DBPEDIA will denote a fragment extracted
from the DBPEDIA 3.9 ontology, employing a crawl-
ing procedure that traversed the RDF graph for re-
trieving instances and the related schema information.
The other ontologies are MUTAGENESIS, a porting of
a well known benchmark for relational learning meth-
ods, and VICODI, a part of a larger ontology that for-
malizes knowledge concerning historical events.

4.1.2. Tasks and Design of the Experiments
The experiments had two main goals:

– assessing the ability of the proposed approach to
(re-)discover target axioms originally defined as
the result of a knowledge engineering process;

– assessing the number and quality of the new ax-
ioms discovered preserving the KB consistency in
comparison with related methods.

In order to automate the test of the axioms produced
we decided to bypass the intervention of domain ex-
perts which is hardly available and may compromise
the repeatability of the experiments. To cope with
the lack of target disjointness axioms in the consid-
ered KBs which would offer a natural gold standard
(ground truth) for the tests, we considered modified
versions of the ontologies reported in Tab. 1, which
were produced through the artificial introduction of
new disjointness axioms involving sibling concepts in
the subsumption hierarchy, according to the SDA, yet
preserving the consistency of the ontologies. For each
ontology, a fraction f of disjointness axioms was ran-
domly removed. To have performance indices unbi-
ased by the specific selection of axioms, this procedure
was repeated 10 times per ontology and also increasing
f : 20%, 50%, 70%.

The effectiveness of the methods was evaluated in
terms of

– the average number of original axioms rediscov-
ered (the larger the better) that can be considered
as a sort of recall measure

https://github.com/Giuseppe-Rizzo/TCT-new
https://github.com/Giuseppe-Rizzo/TCT-new
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Table 1
Ontologies employed in the experiments

Ontology DL Language #Concepts #Roles #Individuals #Disj.Axioms
BIOPAX ALCIF(D) 74 70 323 85

NTN SHIF(D) 47 27 676 40
FINANCIAL ALCIF(D) 60 16 1000 113
GEOSKILLS ALCHOIN (D) 596 23 2567 378
MONETARY ALCHIF(D) 323 247 2466 236
DBPEDIA ALCHI(D) 251 132 16606 11

MUTAGENESIS AL(D) 86 5 14145 0
VICODI ALHI(D) 196 10 16942 0

– the average number of inconsistencies in the
knowledge base (the less the better) and the aver-
age number of axioms elicited, which is an indi-
cator of the precision of the tested methods.

4.1.3. Set-up of the Implemented Algorithms
In the evaluation we tested various configurations of

the overall discovery process based on the TCT learn-
ing algorithm that can be summarized as follows:

– v.1: first release of the TCT learning algo-
rithm [14] (with and without the new refinement
operator implemented on Spark) combined with
the heuristics (1) and (2) and the distance mea-
sures (4) and (6) (both entropic – denoted by e –
and uniform weights – denoted by u – have been
considered);

– v.2: new version of TCT learning algorithm ex-
ploiting the refinement operator implemented on
Spark, the heuristics (1) and (2) and the distance
measures (4) and (6) (with and without entropic
weights)

– v.3: same as v.2 but with the consistency check
described in Algo. 2 (and using the parallelized
refinement operator).

The distance measure dC2 was selected from the fam-
ily, with a context of features C made up of the atomic
concepts in the signature of each KB.

The beam width for controlling the number of spe-
cializations was set to 100. In addition, the distributed
version of the refinement operator required as a pa-
rameter the number of slices of the RDDs containing
the specializations which was set to 4. The timeout for
generating a refinement, useful in cases when positive
and negative instances were hard to find in the cluster,
was set to 300ms. In all cases but the first release, for
the axiom discovery procedure required the value of
threshold θ that was set to 10.

As previously mentioned we tested the various con-
figurations of the procedure based on TCTs against
other approaches proposed in the related literature (see
Sect. 5), in particular those based on Pearson’s cor-

relation coefficient (PCC) and negative association
rules (NAR) [5]. As for the latter, rules were mined us-
ing APRIORI, with the required parameters values set
as follows: minimum support rate 10, minimum con-
fidence rate 50%, and maximum rule length 3 (also in
consideration of the sparseness of the instance distri-
butions w.r.t. the concepts in the specific ontologies).

4.2. Experimental Results: Presentation and Analysis

For the sake of readability Tabs. 2–7 report some
outcomes of the empirical evaluation while the com-
plete results are listed in Appendix A. Preliminarily,
we have to note that as there was a variation in terms
of efficiency (discussed in Sect. 4.2.4) and no sensible
variation in terms of rediscovered axioms, number of
new axioms and number of inconsistency cases in the
experiments configured to use the original or the paral-
lel version of the refinement operator (see Sect. 3.1.1).
Thus, for the sake of brevity, the corresponding tables
will not be replicated.

4.2.1. Rediscovering Disjointness Axioms
Throughout the experiments, we noted that the algo-

rithm based on the TCTs was able to re-discover most
of the disjointness axioms that had been previously re-
moved to test this ability. The limited number of cases
where the algorithm did not manage to re-discover the
axioms depended on the choice for the threshold ν: the
lower its values the less recursive calls are required for
completing the induction of a TCT. Anticipating the
termination, along with the inherent incompleteness of
the refinement operator, may be one of the reasons for
not getting the exact concepts involved in the original
axioms. Further aspects that may have affected the out-
comes are the choice of the distance measure and the
heuristic adopted to select the concepts to be installed
in the nodes. As regards the former, we noted that,
adopting function (6), the rate of rediscovered axioms
was lower than the one obtained with function (4). The
resulting trees showed a less complex structure (less
nodes) using (6) instead of (4). Besides, higher val-
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Table 2
Average rates (and standard deviations) of original axioms re-discovered.
Configurations v.1 and v.2 – scoring function 1

Ontology
distance

f
TCT – standard mode

/ weights TCT 0.9 TCT 0.8 TCT 0.7

BIOPAX

(4) / u
20% 0.82± 0.08 0.82± 0.08 0.82± 0.08

50% 0.82± 0.09 0.82± 0.09 0.82± 0.09

70% 0.81± 0.10 0.81± 0.10 0.81± 0.10

(4) / e
20% 0.90± 0.12 0.76± 0.13 0.74± 0.13

50% 0.85± 0.13 0.74± 0.13 0.74± 0.13

70% 0.85± 0.13 0.74± 0.12 0.74± 0.14

(6) / u
20% 0.63± 0.23 0.67± 0.23 0.69± 0.29

50% 0.69± 0.23 0.69± 0.22 0.69± 0.22

70% 0.69± 0.23 0.69± 0.22 0.69± 0.22

(6) / e
20% 0.70± 0.12 0.73± 0.11 0.73± 0.12

50% 0.70± 0.12 0.73± 0.11 0.73± 0.12

70% 0.70± 0.12 0.73± 0.11 0.73± 0.12

MONETARY

(4) / u
20% 0.99± 0.08 1.00± 0.00 1.00± 0.00

50% 0.94± 0.13 1.00± 0.00 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

(4) / e
20% 0.99± 0.08 1.00± 0.00 1.00± 0.00

50% 0.94± 0.13 1.00± 0.00 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

(6) / u
20% 0.89± 0.14 0.76± 0.14 0.76± 0.13

50% 0.92± 0.16 0.90± 0.16 0.92± 0.16

70% 0.94± 0.13 0.94± 0.13 0.94± 0.12

(6) / e
20% 0.97± 0.15 0.97± 0.15 0.97± 0.15

50% 0.93± 0.11 0.93± 0.11 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

MUTAGEN.

(4) / u
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.76± 0.14 0.77± 0.14 0.77± 0.13

50% 0.82± 0.11 0.82± 0.11 0.81± 0.11

70% 0.84± 0.09 0.84± 0.08 0.83± 0.10

(6) / e
20% 0.95± 0.05 0.95± 0.05 0.95± 0.05

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

VICODI

(4) / u
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.95± 0.02 0.90± 0.08 0.90± 0.08

70% 0.95± 0.02 0.90± 0.08 0.90± 0.08

(4) / e
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.95± 0.02 0.90± 0.08 0.90± 0.08

70% 0.95± 0.02 0.90± 0.08 0.90± 0.08

(6) / u
20% 0.92± 0.05 0.89± 0.08 0.89± 0.08

50% 0.95± 0.04 0.93± 0.02 0.92± 0.04

70% 0.95± 0.04 0.93± 0.02 0.92± 0.04

(6) / e
20% 0.92± 0.05 0.89± 0.08 0.89± 0.08

50% 0.92± 0.05 0.89± 0.08 0.89± 0.08

70% 0.90± 0.05 0.87± 0.03 0.87± 0.03

ues were generally returned by the first measure. This
makes homogeneous clusters of individuals (that deter-
mine the stopping condition for the tree growth) harder
to find. In this perspective, also the choice of the vec-
tor of weights has had some influence: while the eas-
ier choice of uniform weights tended to flatten the dis-
tance measures, especially in the cases with large con-
texts of features, entropic weights resulted in a sort
of preliminary feature selection that tended to discard
many unrelated concepts of the context.

In this sense, the experiments with BIOPAX reported
in Tab. 2 and 3 are particularly illustrative about the
effectiveness of the weighting model for the resulting
measure: the average rate of discovered axioms notice-
ably improved when distance (4) was employed, span-
ning from 0.63 up to 0.85.

Similar improvements were observed in the exper-
iments with MUTAGENESIS and VICODI. In the ex-
periments with the other ontologies, i.e. NTN, FI-
NANCIAL, GEOSKILLS, MONETARY and DBPEDIA

(where a rate greater than 0.9 was often observed re-
gardless the specific configuration of TCT learning al-
gorithm), improvements were observed, although to a
lesser extent (see Appendix A).

In the evaluation, we also tested the effectiveness
of the alternative heuristic (2). In this case very small
or no changes were observed in the rate of rediscov-
ered axioms although different tree structures were
produced. Furthermore, in the experiments with TCT
v.3, we observed an evident decrease of the perfor-
mance (see the results with BIOPAX in Tab. 3). In such
cases, the constraint on consistency made the algo-
rithm based on TCTs more conservative than the other
versions. Indeed, introducing this condition as a con-
straint for generating specializations led to discard lots
of concept descriptions.

A further aspect to consider is the availability of in-
dividuals that are instances of the concepts involved
in disjointness axioms. For eliciting the target axioms,
the larger number of individuals, the more likely it is to
find sub-clusters whose distance is maximized. Specif-
ically, in the experiments we noted that it was hard to
rediscover axioms involving concepts with less than
10-15 available instances: in such cases, the limited
number of individuals in the clusters did not allow to
maximize the distance of the candidate sub-clusters.
Consequently, the scores computed via both heuris-
tics (1) and (2) were quite low and the concepts were
ignored. For instance, in the experiments on VICODI

a trivial disjointness axiom between the concept Ac-
tor and Artefact could not be discovered. These few
cases may be treated with specific configurations of the
thresholds.

4.2.2. Axiom Discovery and Consistency
As regards the overall number of discovered ax-

ioms (see Tabs. 5–7) generally it can be observed that
it decreased with larger fractions of axioms removed
since the resulting trees showed a less complex struc-
ture. Moreover, we noted that, in the case of small-
est ontologies (in terms of number of individuals),
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Table 3
Average rates (and standard deviations) of removed axioms re-
discovered using TCTs v.3 – scoring functions (1) and (2)

Ontology distance f
TCT – standard mode

/ weights TCT 0.9 TCT 0.8 TCT 0.7

BIOPAX

(4) / u
20% 0.85± 0.03 0.82± 0.07 0.82± 0.08

50% 0.86± 0.13 0.82± 0.13 0.83± 0.10

70% 0.87± 0.12 0.87± 0.12 0.87± 0.13

(4 / e
20% 0.90± 0.12 0.84± 0.13 0.81± 0.13

50% 0.92± 0.14 0.90± 0.11 0.90± 0.10

70% 0.93± 0.16 0.91± 0.11 0.90± 0.11

(6) / u
20% 0.66± 0.20 0.68± 0.22 0.67± 0.30

50% 0.68± 0.21 0.68± 0.21 0.68± 0.21

70% 0.73± 0.22 0.70± 0.21 0.71± 0.21

(6) / e
20% 0.76± 0.12 0.75± 0.08 0.74± 0.10

50% 0.78± 0.12 0.76± 0.14 0.72± 0.12

70% 0.78± 0.09 0.73± 0.11 0.73± 0.12

MUTAG.

(4) / u
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.84± 0.07 0.82± 0.14 0.77± 0.13

50% 0.82± 0.11 0.82± 0.11 0.81± 0.11

70% 0.84± 0.09 0.84± 0.08 0.83± 0.10

(6) / e
20% 0.95± 0.05 0.95± 0.05 0.95± 0.05

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

VICODI

(4) / u
20% 0.93± 0.05 0.92± 0.06 0.92± 0.06

50% 0.94± 0.01 0.89± 0.03 0.90± 0.03

70% 0.94± 0.01 0.89± 0.03 0.90± 0.03

(4) / e
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.98± 0.04 0.98± 0.04 0.98± 0.03

70% 0.98± 0.03 0.97± 0.05 0.97± 0.03

(6) / u
20% 0.96± 0.00 0.93± 0.10 0.92± 0.11

50% 0.96± 0.13 0.94± 0.13 0.94± 0.12

70% 0.96± 0.12 0.94± 0.14 0.93± 0.13

(6) / e
20% 0.97± 0.14 0.96± 0.14 0.96± 0.14

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

DBPEDIA

(4) / u
20% 0.90± 0.08 0.90± 0.08 0.90± 0.08

50% 0.96± 0.08 0.96± 0.07 0.96± 0.09

70% 0.96± 0.08 0.96± 0.07 0.96± 0.09

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.96± 0.03 0.96± 0.03 0.96± 0.03

50% 0.96± 0.04 0.96± 0.03 0.95± 0.06

70% 0.96± 0.04 0.96± 0.03 0.95± 0.06

(6) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 0.99± 0.03 0.98± 0.03 0.99± 0.03

there was a non-negligible impact on the effectiveness
coming from a proper tuning of the threshold ν. Con-
versely, the differences among the results are small
in the experiments with largest ontologies such as
GEOSKILLS, MONETARY, MUTAGENESIS, VICODI,
DBPEDIA. This suggests that, for these ontologies, the
variations of the numbers of axioms discovered were
likely due to the random sampling performed by the
refinement operators (both the original and the paral-
lelized versions).

Table 4
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) for PCC and NAR

Ontology f
PCC NAR

#inc. #ax’s #inc. #ax’s
BIOPAX 50% 257 280 352 2990

NTN 50% 32 957 376 3766

FINANCIAL 50% 124 1112 542 5366

GEOSKILLS 50% 456 13384 456 13299

MONETARY 50% 543 13384 423 13456

MUTAGENESIS 50% 20 2264 45 14832

VICODI 50% 475 15518 472 18721

DBPEDIA 50% 1243 30470 1243 30365

Concerning the distance measures used in the ex-
periments, we noted that this was an important fac-
tor for the number of the elicited disjointness axioms.
Plugging the distance measure (4) in the TCT-based
algorithm had as a consequence the induction of taller
trees with a larger number of nodes, owing to the se-
lection of concepts that required many splits of the
sub-clusters sorted to the (negative) right branches of
the trees. Moreover, in some cases, TCTs with clus-
ters containing few individuals were produced. This
was due to the distributions of the instances w.r.t. the
various concepts: for example concepts with few in-
stances are frequent in FINANCIAL while GEOSKILLS
is more densely populated (and the number of empty
clusters was more limited). Throughout the evaluation
with TCT-v2 and TCT-v3, cases of totally empty clus-
ters were also rarely observed: this result depended on
the timeout adopted to avoid time-consuming refine-
ment operations due to the hardness of finding candi-
date specializations featuring both positive and nega-
tive instances .

As regards the choice of the heuristic for select-
ing the most promising candidates, while this aspect
did not affect the ability to rediscover the target ax-
ioms, it influenced the ability to induce new axioms
avoiding the introduction of inconsistency: the scoring
function (2) allowed to select concepts that determined
sub-clusters whose distance was larger compared to
those produced adopting function (1). As expected,
this meant that the new heuristic was able to reduce the
problematic cases of individuals of a sub-cluster that
were close to those belonging to the sibling sub-cluster
(which the heuristic 1 is less sensitive to), improving
the homogeneity of the resulting sub-groups (and re-
ducing also the number of the induced axioms). In par-
ticular, we noted that no inconsistency cases were in-
troduced in the experiments with Eq. 1: for most can-
didate axioms involving concepts, say C and D, it sel-
dom occurred that the number of individuals that were
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instances of C u D exceeded the given threshold (10)
. This could yield to limit the use of the reasoner in
order to check the inconsistency in the phase of the
disjointness axiom elicitation. A similar number of ax-
ioms was also obtained by checking for inconsistency
during the specialization phase. However, anticipating
these checks in the generation of the refinements rather
than having them discarded through the heuristic (2)
made the approach more stable in terms of number of
axioms produced with respect to the fraction f of ax-
ioms removed.

Comparative Experiments. It is worthwhile to note
that throughout the experiments, the number of ax-
ioms induced through TCTs was larger than the num-
ber of axioms induced through the methods based on
PCC and NAR (see Tab. 4). This was due to the fact
the, via one of the refinement operators, the TCT-based
method performs a search in a larger space than the
one considered by the other methods as they focus on
the mere combination of concept names selected from
the KB signature.

The outcomes reported in Tabs. 4, 5, 6 and 7 show
that, in absolute terms, more axioms were generally
discovered using the proposed method (for all three
choices of threshold ν selected for the experiments)
compared with the two other methods and yet the num-
ber of inconsistencies introduced (in case of direct ad-
dition of the axioms to the KB) was quite limited in
proportion to the overall number of axioms produced:
for example, with MONETARY and VICODI this rate
on average was less than the 3.5% with almost 20,000
discovered axioms. Inspecting sampled TCTs to gain
a deeper insight into the outcomes, we could note that,
for ontologies with a small number of concepts, such
as BIOPAX and NTN, the refinement operator tended
to introduce the same concept in more branches. As a
consequence, the large number of axioms discovered
was likely due to the replication of some sub-trees.
This represented also one of the main causes for most
of the inconsistency cases. This result improved by us-
ing heuristic (2) which turned out to be more robust
than (1) (see Tabs. 6 and 7) at determining more suit-
able concepts describing non-overlapping sub-clusters.
However, with such a heuristic the number of cases
was lessened but the issue could not be completely
prevented: using more complex languages as a trade-
off would require equally complex and computation-
ally expensive ref. operators. To get rid of such cases,
anticipating the overlap test during the specialization
is crucial. Introducing this solution, it was possible to

Table 5
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (1)

Ontology distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

BIOPAX

(4) / u
20% 542 4235 576 4237 589 4237

50% 345 3773 357 3817 364 3876

70% 345 3773 357 3817 364 3876

(4) / e
20% 235 3859 357 4235 365 4256

50% 125 3576 357 4176 432 4115

70% 125 3432 235 3875 417 4154

(6) / u
20% 432 2567 446 2756 578 2757

50% 236 2578 237 2758 238 2876

70% 128 2587 128 2587 128 2578

(4) / e
20% 235 2346 357 2357 365 2458

50% 125 3576 357 4176 432 4115

70% 125 3432 235 3675 417 3875

NTN

(4) / u
20% 432 3347 432 3347 432 3347

50% 415 3256 415 3256 415 3256

70% 415 3256 415 3256 415 3256

(4) / e
20% 312 3128 343 3126 354 3124

50% 234 3023 234 3034 235 3034

70% 156 2987 176 2679 123 2675

(6) / u
20% 432 4579 478 4789 478 4783

50% 356 4321 356 4321 356 4321

70% 356 4321 356 4321 356 4321

(6) / e
20% 431 3083 431 3083 431 3083

50% 345 2987 345 2987 345 2987

70% 323 2996 324 2993 323 2996

MONETARY

(4) / u
20% 673 13765 673 13765 677 13767

50% 432 13567 432 13567 432 13567

70% 247 13127 231 13127 3127 13127

(4) / e
20% 535 13456 573 13453 623 13460

50% 315 13236 432 13236 532 13236

70% 247 13127 231 13127 312 13127

(6) / u
20% 756 12437 755 12438 847 12589

50% 643 11357 647 11362 647 11362

70% 536 10432 536 10432 536 10432

(6) / e
20% 756 12437 876 12442 876 12321

50% 643 11386 647 11373 647 11384

70% 540 10457 540 10458 540 10458

VICODI

(6) / u
20% 431 18231 485 18432 502 18432

50% 142 18231 345 18432 467 18431

70% 141 18231 345 18432 312 18432

(6) / e
20% 34 14753 43 14847 43 14978

50% 23 14753 31 14753 32 14978

70% 23 14753 32 14753 32 14978

(4) / u
20% 431 17176 485 17176 502 17176

50% 142 17176 142 17176 142 17176

70% 142 17176 345 17176 467 17176

(6) / e
20% 431 17176 485 17176 502 17176

50% 142 17176 142 17176 142 17176

70% 142 17176 345 171761 467 17176

drive the induction of TCTs towards other concept de-
scriptions thus limiting the aforementioned replication
problem.

As regards the performance of PCC and NAR, we
noted that they had a more stable behavior with respect
to the fractions of removed axioms f because, as pre-
viously mentioned, they could discover axioms involv-
ing exclusively named concepts of the KB signature
whose instances are more likely to be available. More-
over, a weak correlation between two concepts is un-
likely to depend on the presence of a disjointness ax-
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Table 6
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (2)

Ontology distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc./ #ax’s #inc. / #ax’s

BIOPAX

(4) / u
20% 2123 2124 2145

50% 0 2123 0 2124 0 2145

70% 2123 2123 2147

(4) / e
20% 2145 2145 2145

50% 0 2346 0 2346 0 2346

70% 2346 2346 2346

(6) / u
20% 2126 2126 2126

50% 0 2098 0 2098 0 2098

70% 1985 1985 1986

(6) / e
20% 2145 2145 2145

50% 0 2346 0 2346 0 2346

70% 2346 2346 2346

NTN

(4) / u
20% 4123 4123 4123

50% 0 4113 0 4123 0 4123

70% 4113 4114 4114

(4) / e
20% 3083 3083 3083

50% 0 2987 0 2987 0 2987

70% 2996 2993 2996

(6) / u
20% 4123 4123 4123

50% 0 4113 0 4123 0 4123

70% 4113 4114 4114

(6) / e
20% 3083 3083 3083

50% 0 2987 0 2987 0 2987

70% 2996 2993 2996

MONETARY

(4) / u
20% 10243 10256 10256

50% 0 10242 0 10257 0 10257

70% 10243 10258 10258

(4) / e
20% 10116 10116 10116

50% 0 10116 0 10117 0 10115

70% 10115 10116 10116

(6) / u
20% 10257 10245 10244

50% 0 10257 0 10245 0 10244

70% 10257 10242 10257

(6) / e
20% 10116 10116 10116

50% 0 10116 0 10116 0 10116

70% 10116 10116 10116

VICODI

(6) / u
20% 16432 16432 16432

50% 0 16239 0 16239 0 16239

70% 16345 16345 16345

(4) / e
20% 16456 16576 16579

50% 0 16453 0 16453 0 16453

70% 16453 16453 16453

(6) / u
20% 16432 16432 16432

50% 0 16239 0 16239 0 16239

70% 16345 16345 16345

(6) / e
20% 16456 16576 16579

50% 0 16453 0 16453 0 16453

70% 16453 16453 16453

iom involving them. This led them also not to intro-
duce further inconsistencies.

4.2.3. Examples of Discovered Disjointness Axioms
For a more complete evaluation covering also the

qualitative viewpoint, we report some examples of the
axioms that could be discovered through the various
methods. As previously mentioned, one of the advan-
tages deriving from the employment of the TCTs is
related to the kind of axioms that can be elicited.
Purely statistical methods focus on the KB signature

Table 7
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.3 – scoring function (2).

Ontology distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

BIOPAX

(4) / u 2123 2124 2145

(4) / e 50% 0 2346 0 2346 0 2346

(6) / u 2095 2100 2095

(6) / e 2344 2344 2345

NTN

(4) / u 4113 4123 4123

(4) / e 50% 0 2987 0 2987 0 2987

(6) / u 4113 4123 4123

6) / e 2987 2987 2987

MUTAGENESIS

(4) / u 12456 12326 12326

(4) / e 50% 0 12217 0 12216 0 12220

(6) / u 12456 12326 12326

(6) / e 12217 12217 12217

VICODI

(6) / u 16239 16239 16239

(4) / e 50% 0 16453 0 16453 0 16453

(6) / u 16239 16239 16239

(6) / e 16453 16453 16453

and merely make pairwise comparisons in order to dis-
cover the concepts that are weakly correlated. Con-
versely, the TCT-based algorithm performs a sort of
search that allows to elicit axioms that involve alterna-
tive versions of the targeted concepts, i.e. concept de-
scriptions that are candidate to be equivalent to those
considered in the target.

For instance, in the case of NTN, PCC
and NAR could discover simple axioms like
ReligiousOrganization v ¬Woman and
ReligiousOrganization v ¬Man, while the
new method allowed to elicit the target axioms
GroupofPeople v ¬Person and Man v ¬Woman.

An interesting (not previously exist-
ing) disjointness axiom elicited using the
TCTs involved more complex concepts like
(∃spouseOf(∃visitedPlace.(∀parentOf.>))) and
(∃nativePlaceOf.¬Serial).

In the experiments with FINANCIAL, PCC
and NAR produced the following target ax-
ioms: SouthMoravia v ¬WestBohemia , where
SouthMoravia and WestBohemia represents
two different geographical areas, and the ax-
iom Man v ¬Woman . In the case of TCTs,
a similar axiom to the target Man v ¬Woman
was found, i.e. ∃hasSexValue.MaleSex v
¬(∃hasSexValue.FemaleSex).

In the experiments with GEOSKILLS, both all meth-
ods were able to detect the original disjointness be-
tween the concepts Vertex and Volume. Finally, in
the case of DBPEDIA, one of the original axioms that
were also elicited by PCC and NAR involved the con-
cepts Mountain and Movie. Instead, the new method
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elicited disjointness axioms between a potentially re-
dundant concept description, i.e. ¬Filmu¬Personu
NaturalPlaceuMountain (where NaturalPlace w
Mountain) and Movie (where Movie ≡ Film).

4.2.4. Efficiency of the Refinement Operators
One of the extensions proposed in this work con-

cerns the use of a distributed version of the refinement
operator in order to speed up the specialization gen-
eration task which represents one of prominent bottle-
necks of the approach.

We carried out various tests aiming at determining
how the solution implemented on the Spark framework
could improve the efficiency of this task. To this pur-
pose, we considered both the procedure implement-
ing the new version of the refinement operator (hence-
forth Distributed Refinement Operator - DRO) and the
original version (Single-core Refinement Operator -
SRO) [14] also increasing the size of the beam of can-
didates: 100, 300, 400, 500, 600, 1000. Also, we ran
these procedures using the entire set of individuals in
each KB to test the stop condition in the procedures
(see Algo. 2 and Algo. 3). We repeated the experiments
considering both the original ontologies and the ver-
sions obtained applying the SDA.

Fig. 4 illustrates the outcomes (execution time) us-
ing the SDO and the DRO under SDA; similar trends
were observed in the experiments on the original
KBS.Throughout the experiments, we noted the DRO
was significantly faster than the SRO, with differ-
ences spanning from less than 500 ms to more than
2,000,000 ms. We noted that using the SRO in most
of the cases the time grew linearly w.r.t. the num-
ber of specializations, e.g. see the case of the exper-
iments with MONETARY. This depended on two fac-
tors: the complexity, in terms of syntactic length, of
the generated concept descriptions and the threshold
on the number of individuals used to stop the condi-
tion. In particular, the generation of the concepts was
biased towards the introduction of new concept names
as conjuncts rather than the existential and universal
restrictions. This means that there was a limited num-
ber of recursive calls of the refinement operator and
shorter concepts. As a consequence the stop condition
was satisfied earlier w.r.t. the case of concepts involv-
ing existential and universal restrictions. Indeed, in-
stances of concept descriptions obtained as a conjunc-
tion of concept names are generally easier to find than
for concepts involving universal and existential restric-
tions, due to the sparseness of assertional knowledge
concerning roles observed in the KBs. As previously

mentioned, the DRO was considerably more efficient:
the time required for generating refinements increased
less than linearly. In particular, with high dimensional
beams, the benefits in terms of efficiency obtained with
the distributed solution are noticeable whereas the use
of low dimensional beams limited this improvement,
due to the inherent overhead (e.g. for the transparent
management of the RDD distribution).

A noteworthy case was the one related to the ex-
periments with MUTAGENESIS: the time required by
the SRO grew less than linearly also in the experi-
ments with SRO. This was likely due to the effect of
the SDA used for the limited number of concepts and
their organization into a shallow hierarchy. As a conse-
quence, due to the large number of axioms introduced
in the KB, the refinement operator could rapidly check
which individuals were either positive or negative in-
stances w.r.t. a specialization, satisfying the stop con-
dition early.

A final remark concerns the line of experiments in
which the SDA was not made: they showed that the
two operators behave similarly to the cases in which
the SDA was made. Even if DRO (resp. SRO) showed
a less than linear (resp. linear) increase of the time as
larger beams were considered, the lack of disjointness
axioms of the original KBs makes hard to find individ-
uals with a definite membership for each specializa-
tion, thus delaying the satisfaction of the stop condi-
tion. However, it should be clarified that this problem
depends on the specific reasoner adopted to make the
inferences required by the algorithms.

5. Related Work

The problem of discovering the disjointness axioms
to enrich and improve the quality of ontological knowl-
edge bases has been receiving a growing attention. In
early works the mentioned strong disjointness assump-
tion [24], which states that the children of a common
parent in the subsumption hierarchy should be consid-
ered as disjoint, has been exploited in a pinpointing
algorithm for semantic clarification (i.e. the process
of automatically enriching ontologies with appropri-
ate disjointness statements [25]. Focusing on text and
successively on RDF datasets, an unsupervised method
for mining axioms, including disjointness axioms, has
been proposed [26,4]. The main limitation of this ap-
proach is the loose use of any form of background
knowledge which, on the contrary, can decisively help
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Fig. 4. Efficiency (ms) of the distributed refinement operator compared to the single-core implementation

to increase the number of discovered axioms while
preventing unnecessary/wrong axioms.

Moreover, both relational learning methods and
techniques based on formal concept analysis have been
proposed to the purpose [27,28], but no specific as-
sessment of the induced axioms quality is made. This
limit has been pointed out also by Volker et al. [6],
where an approach based on association rule min-

ing has been introduced. Additional approaches, rely-
ing on association rules have been proposed by Fleis-
chacker et al. [7] and Volker et al. [5]. The focus
of these works was studying the correlation between
classes comparatively. Specifically, association rules,
negative association rules and correlation coefficient
have been considered. Also in these cases, background
knowledge and reasoning was exploited in a limited



20

extent. Lehman et al. [27] proposed a tool for repair-
ing various types of ontology modeling errors: it uses
supervised methods from the DL-LEARNER frame-
work [29] to enrich ontologies with axioms elicited
from existing instances.

Our solution is based on an unsupervised approach,
deriving from previous works on concept learning and
inductive classification [16]. Specifically, we propose
a hierarchical conceptual clustering method that, in ad-
dition, is able to provide intensional cluster descrip-
tions, and that exploits a novel form of a family of
semi-distances over the individuals in an ontologi-
cal knowledge base [13] which can take into account
the available background knowledge. The method is
grounded on the notion of medoid as cluster proto-
types since clustering algorithms adopting medoids
have been introduced to overcome known limits such
as the lack of algebraical structure of the represen-
tation of the instance space [8]. The hierarchical ap-
proach proposed in this paper is related to classic clus-
tering algorithms such as COBWEB [30] with some
differences: 1) COBWEB produces directly n-ary clus-
ter hierarchies instead of the binary ones in the TCTs.
This allows for eliciting more intermediate concepts
with the latter model; 2) the intensional definitions as-
signed to the clusters adopt a less expressive propo-
sitional representation language w.r.t. DLs; 3) a prob-
abilistic cluster membership is modeled (like in the
fuzzy clustering approaches) rather than a definite one,
that is required to derive disjointness axioms. Related
approaches to partitive clustering applied to datasets
encoded in DL languages have been proposed, such
as the hierarchical BISECTING K-MEDOIDS [11] or the
partition around medoids, combined with evolutionary
programming [10]. They are able to form clusters of
individuals occurring in Web ontologies by exploiting
metrics that are similar to those adopted in this work.
However, these methods generally do not return any
intensional cluster description. The derivation of con-
cepts, i.e. intensional cluster definitions (conceptual
clustering [15]) requires the adoption of additional and
suitable concept learning algorithms.

Specifically, the method proposed in this paper re-
lies on logic tree models [20] which essentially adopt
a divide-and-conquer strategy to derive a hierarchical
structure. The learning method can work both in super-
vised and unsupervised mode, depending on the avail-
ability of information about the instance classification
to be exploited for separating sub-groups of instances.
Terminological decision trees were derived [16,17] in
the former case to classify individuals w.r.t. an un-

known target concept (assigning a class label at each
leaf node), while for the latter case, First-order logic
clustering trees [19] were proposed to induce concepts
for the clusters expressed in the context of clausal
logic theories. The C0.5 system, which is integrated
in the TILDE framework [20], is able to induce con-
cepts as conjunctions of literals (clause bodies) in-
stalled at inner nodes. Almost all these exiting meth-
ods are grounded on the exploitation of an heuristic
based on the information gain, employed in the super-
vised case, Differently, our approach tends to maxi-
mize the separation between cluster medoids accord-
ing to a semi-distance measure.

6. Conclusions

In this work, we have cast the task of discovering
disjointness axioms as a clustering problem that was
solved exploiting terminological cluster trees, an ex-
tension of terminological decision trees [16] (proposed
to solve supervised learning problems). Moving from
our previous work [14], we extended the framework
for inducing terminological cluster trees along various
directions to aim at improving both its effectiveness
and efficiency. Specifically, we aimed at improving the
quality of the resulting axioms using: 1) different dis-
tance measures; 2) different heuristic for selecting the
concepts to be installed into tree nodes; 3) a modified
version of the refinement operator to generate concepts
enabling the elicitation of axioms that do not introduce
inconsistency in the KB. Secondly, the efficiency of the
proposed solution has been improved integrating dis-
tributed computation technologies for processing Big
Data, such as the Spark framework.

In the empirical evaluation, various experiments
have been performed with the goal of assessing the
effectiveness of the new methodology. Compared to
related unsupervised approaches, ours proved to be
able to discover disjointness axioms involving com-
plex concept descriptions exploiting the underlying
ontology as a source of background knowledge, un-
like the other methods based on the statistical corre-
lation between instances. The evaluation showed also
that cases of inconsistency introduced in the KBs by
the elicited axioms can be drastically lessened resort-
ing to a different heuristic that selects promising con-
cepts according to the distance between the farthest el-
ements of a cluster w.r.t. the medoid the other cluster
resulting from the split of the individuals in the parent
cluster. Additionally, the aforementioned cases can be



21

totally avoided by checking the overlap between the
concept installed into the current node and those in-
stalled into the tree up to that moment. To assesses the
benefits deriving from employing Big Data technolo-
gies, we compared the Spark-based version of the re-
finement operator with the one used in he previous ver-
sion [14]. We noted that, while the time required by the
original version of the refinement operator increases
linearly w.r.t. the number of specializations, the time
required by the new version of the operator was almost
constant w.r.t. the number of returned concepts.

Various extensions may be envisaged for this work.
The TCT induction algorithm can be further improved
by introducing a post-pruning step for better tackling
the problem of empty clusters. Besides, it could be in-
teresting to compare the implementation of the refine-
ment operator on Spark to one made on similar frame-
works. New metrics for evaluating the performance
of such methods could also be proposed. Finally, it
may be interesting to integrate the methodology within
ontology engineering frameworks based on machine
learning, such as DL-LEARNER [29], as a service for
enriching the terminology of lightweight ontologies.
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Appendix

A. Detailed Results of the Experiments with TCTs

We report in the following further outcomes of the
experiments with the TCTs produced by the various
versions of the algorithm.

Table 8
Average rates (and standard deviations) of original axioms re-
discovered. Configurations v.1 and v.2 – scoring function 1

Ontology
distance

f
TCT – standard mode

/ weights TCT 0.9 TCT 0.8 TCT 0.7

BIOPAX

(4) / u
20% 0.82± 0.08 0.82± 0.08 0.82± 0.08

50% 0.82± 0.09 0.82± 0.09 0.82± 0.09

70% 0.81± 0.10 0.81± 0.10 0.81± 0.10

(4) / e
20% 0.90± 0.12 0.76± 0.13 0.74± 0.13

50% 0.85± 0.13 0.74± 0.13 0.74± 0.13

70% 0.85± 0.13 0.74± 0.12 0.74± 0.14

(6) / u
20% 0.63± 0.23 0.67± 0.23 0.69± 0.29

50% 0.69± 0.23 0.69± 0.22 0.69± 0.22

70% 0.69± 0.23 0.69± 0.22 0.69± 0.22

(6) / e
20% 0.70± 0.12 0.73± 0.11 0.73± 0.12

50% 0.70± 0.12 0.73± 0.11 0.73± 0.12

70% 0.70± 0.12 0.73± 0.11 0.73± 0.12

NTN

(4) / u
20% 0.95± 0.13 0.96± 0.12 0.96± 0.12

50% 0.92± 0.13 0.93± 0.10 0.93± 0.10

70% 0.90± 0.10 0.89± 0.11 0.89± 0.10

(4) / e
20% 0.99± 0.08 0.95± 0.06 0.95± 0.08

50% 0.97± 0.03 0.93± 0.10 0.93± 0.01

70% 0.90± 0.10 0.89± 0.11 0.89± 0.10

(6) / u
20% 0.83± 0.08 0.83± 0.08 0.83± 0.08

50% 0.87± 0.15 0.87± 0.15 0.87± 0.15

70% 0.88± 0.15 0.88± 0.15 0.88± 0.15

(6) / e
20% 0.95± 0.12 0.95± 0.12 0.95± 0.12

50% 0.93± 0.16 0.92± 0.10 0.92± 0.13

70% 0.90± 0.10 0.91± 0.13 0.91± 0.11

FINANCIAL

(4) / u
20% 0.95± 0.14 0.92± 0.15 0.92± 0.15

50% 0.95± 0.14 0.92± 0.15 0.92± 0.15

70% 0.95± 0.05 0.95± 0.05 0.95± 0.05

(4) / e
20% 0.99± 0.08 0.99± 0.08 0.99± 0.08

50% 0.97± 0.03 0.97± 0.03 0.97± 0.03

70% 0.95± 0.05 0.95± 0.05 0.95± 0.05

(6) / u
20% 0.79± 0.21 0.79± 0.21 0.79± 0.21

50% 0.68± 0.11 0.68± 0.11 0.68± 011

70% 0.68± 0.11 0.68± 0.11 0.68± 011

(6) / e
20% 0.82± 0.13 0.81± 0.13 0.81± 0.13

50% 0.80± 0.15 0.80± 0.15 0.79± 0.16

70% 0.80± 0.15 0.80± 0.15 0.79± 0.16

GEOSKILLS

(4) / u
20% 0.99± 0.08 0.99± 0.08 0.99± 0.08

50% 0.92± 0.10 1.00± 0.00 1.00± 0.00

70% 0.92± 0.10 0.92± 0.10 0.92± 0.10

(4) / e
20% 0.99± 0.08 0.99± 0.08 0.99± 0.08

50% 0.92± 0.10 1.00± 0.00 1.00± 0.00

70% 0.92± 0.10 0.92± 0.10 0.92± 0.10

(6) / u
20% 0.83± 0.23 0.83± 0.24 0.83± 0.24

50% 0.85± 0.24 0.85± 0.25 0.85± 0.25

70% 0.84± 0.25 0.84± 0.25 0.83± 0.24

(6) / e
20% 0.94± 0.14 0.93± 0.10 0.93± 0.15

50% 0.92± 0.11 0.92± 0.11 0.93± 0.10

70% 0.92± 0.11 0.92± 0.11 0.93± 0.10
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Table 9
Average rates (and standard deviations) of original axioms re-
discovered. Configurations v.1 and v.2 – scoring function 1

Ontology
distance

f
TCT – standard mode

/ weights TCT 0.9 TCT 0.8 TCT 0.7

MONETARY

(4) / u
20% 0.99± 0.08 1.00± 0.00 1.00± 0.00

50% 0.94± 0.13 1.00± 0.00 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

(4) / e
20% 0.99± 0.08 1.00± 0.00 1.00± 0.00

50% 0.94± 0.13 1.00± 0.00 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

(6) / u
20% 0.89± 0.14 0.76± 0.14 0.76± 0.13

50% 0.92± 0.16 0.90± 0.16 0.92± 0.16

70% 0.94± 0.13 0.94± 0.13 0.94± 0.12

(6) / e
20% 0.97± 0.15 0.97± 0.15 0.97± 0.15

50% 0.93± 0.11 0.93± 0.11 1.00± 0.00

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13

MUTAGEN.

(4) / u
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.76± 0.14 0.77± 0.14 0.77± 0.13

50% 0.82± 0.11 0.82± 0.11 0.81± 0.11

70% 0.84± 0.09 0.84± 0.08 0.83± 0.10

(6) / e
20% 0.95± 0.05 0.95± 0.05 0.95± 0.05

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

VICODI

(4) / u
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.95± 0.02 0.90± 0.08 0.90± 0.08

70% 0.95± 0.02 0.90± 0.08 0.90± 0.08

(4) / e
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.95± 0.02 0.90± 0.08 0.90± 0.08

70% 0.95± 0.02 0.90± 0.08 0.90± 0.08

(6) / u
20% 0.92± 0.05 0.89± 0.08 0.89± 0.08

50% 0.95± 0.04 0.93± 0.02 0.92± 0.04

70% 0.95± 0.04 0.93± 0.02 0.92± 0.04

(6) / e
20% 0.92± 0.05 0.89± 0.08 0.89± 0.08

50% 0.92± 0.05 0.89± 0.08 0.89± 0.08

70% 0.90± 0.05 0.87± 0.03 0.87± 0.03

DBPEDIA

(4) / u
20% 0.88± 0.15 0.88± 0.15 0.87± 0.16

50% 0.96± 0.08 0.93± 0.07 0.91± 0.09

70% 0.96± 0.08 0.90± 0.08 0.90± 0.08

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 0.96± 0.08 0.90± 0.08 0.90± 0.08

(6) / u
20% 0.96± 0.03 0.96± 0.03 0.96± 0.03

50% 0.94± 0.05 0.94± 0.05 0.94± 0.05

70% 0.96± 0.08 0.90± 0.08 0.90± 0.08

(6) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 0.96± 0.08 0.90± 0.08 0.90± 0.08

Table 10
Average rates (and standard deviations) of removed axioms re-
discovered using TCTs v.3 – scoring functions (1) and (2)

Ontology distance f
TCT – standard mode

/ weights TCT 0.9 TCT 0.8 TCT 0.7

BIOPAX

(4) / u
20% 0.85± 0.03 0.82± 0.07 0.82± 0.08

50% 0.86± 0.13 0.82± 0.13 0.83± 0.10

70% 0.87± 0.12 0.87± 0.12 0.87± 0.13

(4 / e
20% 0.90± 0.12 0.84± 0.13 0.81± 0.13

50% 0.92± 0.14 0.90± 0.11 0.90± 0.10

70% 0.93± 0.16 0.91± 0.11 0.90± 0.11

(6) / u
20% 0.66± 0.20 0.68± 0.22 0.67± 0.30

50% 0.68± 0.21 0.68± 0.21 0.68± 0.21

70% 0.73± 0.22 0.70± 0.21 0.71± 0.21

(6) / e
20% 0.76± 0.12 0.75± 0.08 0.74± 0.10

50% 0.78± 0.12 0.76± 0.14 0.72± 0.12

70% 0.78± 0.09 0.73± 0.11 0.73± 0.12

NTN

(4) / u
20% 0.93± 0.10 0.91± 0.11 0.90± 0.12

50% 0.92± 0.11 0.90± 0.10 0.88± 0.09

70% 0.90± 0.10 0.89± 0.11 0.89± 0.10

(4) / e
20% 0.99± 0.08 0.95± 0.06 0.95± 0.08

50% 0.98± 0.03 0.98± 0.10 0.96± 0.01

70% 0.98± 0.07 0.97± 0.07 0.97± 0.07

(6) / u
20% 0.90± 0.14 0.87± 0.13 0.86± 0.12

50% 0.90± 0.14 0.90± 0.16 0.90± 0.16

70% 0.90± 0.13 0.90± 0.13 0.89± 0.16

(6) / e
20% 0.95± 0.11 0.95± 0.13 0.95± 0.13

50% 0.94± 0.11 0.91± 0.13 0.89± 0.12

70% 0.96± 0.15 0.97± 0.14 0.96± 0.13

FINANCIAL

(4) / u
20% 0.97± 0.08 0.93± 0.23 0.93± 0.23

50% 0.97± 0.08 0.93± 0.12 0.92± 0.16

70% 0.95± 0.05 0.95± 0.05 0.95± 0.05

(4) / e
20% 0.99± 0.08 0.99± 0.08 0.99± 0.08

50% 0.97± 0.03 0.97± 0.03 0.97± 0.03

70% 0.95± 0.05 0.95± 0.05 0.95± 0.05

(6) / u
20% 0.83± 0.12 0.82± 0.11 0.82± 0.11

50% 0.84± 0.11 0.81± 0.15 0.81± 0.15

70% 0.85± 0.14 0.85± 0.14 0.83± 0.10

(6) / e
20% 0.87± 0.09 0.84± 0.08 0.82± 0.06

50% 0.87± 0.09 0.81± 0.14 0.80± 0.20

70% 0.91± 0.12 0.88± 0.23 0.88± 0.24

GEOSKILLS

(4) / u
20% 1.00± 0.00 0.94± 0.12 0.92± 0.15

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 0.93± 0.15 0.93± 0.16

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(4) / u
20% 0.81± 0.23 0.81± 0.24 0.81± 0.24

50% 0.84± 0.23 0.84± 0.23 0.84± 0.23

70% 0.85± 0.27 0.85± 0.27 0.85± 0.27

(6) / e
20% 0.96± 0.15 0.92± 0.130 0.92± 0.12

50% 0.97± 0.09 0.94± 0.09 0.94± 0.10

70% 0.92± 0.11 0.91± 0.11 0.90± 0.10
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Table 11
Average rates (and standard deviations) of removed axioms re-
discovered using TCTs v.3 – scoring function (1) and (2)

Ontology distance f
TCT

/ weights TCT 0.9 TCT 0.8 TCT 0.7

MONETARY

(4) / u
20% 0.99± 0.08 0.97± 0.05 0.97± 0.05

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 0.96± 0.04 0.96± 0.03

(4) / e
20% 0.99± 0.08 1.00± 0.00 1.00± 0.00

50% 0.99± 0.08 1.00± 0.00 1.00± 0.00

70% 0.99± 0.08 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.93± 0.15 0.87± 0.11 0.86± 0.14

50% 0.94± 0.09 0.91± 0.08 0.91± 0.08

70% 0.94± 0.09 0.91± 0.08 0.91± 0.08

(6) / e
20% 0.97± 0.08 0.96± 0.07 0.97± 0.06

50% 0.99± 0.03 0.97± 0.03 0.97± 0.03

70% 0.97± 0.04 0.97± 0.04 0.97± 0.04

MUTAG.

(4) / u
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.84± 0.07 0.82± 0.14 0.77± 0.13

50% 0.82± 0.11 0.82± 0.11 0.81± 0.11

70% 0.84± 0.09 0.84± 0.08 0.83± 0.10

(6) / e
20% 0.95± 0.05 0.95± 0.05 0.95± 0.05

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

VICODI

(4) / u
20% 0.93± 0.05 0.92± 0.06 0.92± 0.06

50% 0.94± 0.01 0.89± 0.03 0.90± 0.03

70% 0.94± 0.01 0.89± 0.03 0.90± 0.03

(4) / e
20% 0.95± 0.02 0.90± 0.08 0.90± 0.08

50% 0.98± 0.04 0.98± 0.04 0.98± 0.03

70% 0.98± 0.03 0.97± 0.05 0.97± 0.03

(6) / u
20% 0.96± 0.00 0.93± 0.10 0.92± 0.11

50% 0.96± 0.13 0.94± 0.13 0.94± 0.12

70% 0.96± 0.12 0.94± 0.14 0.93± 0.13

(6) / e
20% 0.97± 0.14 0.96± 0.14 0.96± 0.14

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

DBPEDIA

(4) / u
20% 0.90± 0.08 0.90± 0.08 0.90± 0.08

50% 0.96± 0.08 0.96± 0.07 0.96± 0.09

70% 0.96± 0.08 0.96± 0.07 0.96± 0.09

(4) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00

(6) / u
20% 0.96± 0.03 0.96± 0.03 0.96± 0.03

50% 0.96± 0.04 0.96± 0.03 0.95± 0.06

70% 0.96± 0.04 0.96± 0.03 0.95± 0.06

(6) / e
20% 1.00± 0.00 1.00± 0.00 1.00± 0.00

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00

70% 0.99± 0.03 0.98± 0.03 0.99± 0.03

Table 12
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (1)

Ontology Distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

BIOPAX

(4) / u
20% 542 4235 576 4237 589 4237

50% 345 3773 357 3817 364 3876

70% 345 3773 357 3817 364 3876

(4) / e
20% 235 3859 357 4235 365 4256

50% 125 3576 357 4176 432 4115

70% 125 3432 235 3875 417 4154

(6) / u
20% 432 2567 446 2756 578 2757

50% 236 2578 237 2758 238 2876

70% 128 2587 128 2587 128 2578

(4) / e
20% 235 2346 357 2357 365 2458

50% 125 3576 357 4176 432 4115

70% 125 3432 235 3675 417 3875

NTN

(4) / u
20% 432 3347 432 3347 432 3347

50% 415 3256 415 3256 415 3256

70% 415 3256 415 3256 415 3256

(4) / e
20% 312 3128 343 3126 354 3124

50% 234 3023 234 3034 235 3034

70% 156 2987 176 2679 123 2675

(6) / u
20% 432 4579 478 4789 478 4783

50% 356 4321 356 4321 356 4321

70% 356 4321 356 4321 356 4321

(6) / e
20% 431 3083 431 3083 431 3083

50% 345 2987 345 2987 345 2987

70% 323 2996 324 2993 323 2996

FINANCIAL

(4) / u
20% 76 165 87 325 96 276

50% 37 143 56 307 53 259

70% 33 143 43 276 40 221

(4) / e
20% 43 157 45 176 45 187

50% 32 126 32 126 32 126

70% 33 143 34 146 34 146

(6) / u
20% 87 165 123 256 145 243

50% 45 142 65 321 97 278

70% 45 146 78 356 103 278

(6) / e
20% 87 165 123 256 145 243

50% 45 142 65 321 97 278

70% 45 146 78 356 103 278

GEOSKILLS

(4) / u
20% 234 14289 357 14297 432 14345

50% 231 14123 356 14154 417 14256

70% 234 14122 358 14154 377 14187

(4) / e
20% 234 14345 234 14356 235 14367

50% 231 14234 356 14245 417 14256

70% 216 14122 222 14154 231 14156

(6) / u
20% 567 13126 568 13147 567 13187

50% 432 13121 432 13121 432 13121

70% 319 13098 319 13098 319 13098

(6) / e
20% 357 13789 357 13789 357 13457

50% 325 13456 356 13547 325 13456

70% 325 13246 314 13321 314 13321



25

Table 13
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (1)

Ontology Distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

MONETARY

(4) / u
20% 673 13765 673 13765 677 13767

50% 432 13567 432 13567 432 13567

70% 247 13127 231 13127 3127 13127

(4) / e
20% 535 13456 573 13453 623 13460

50% 315 13236 432 13236 532 13236

70% 247 13127 231 13127 312 13127

(6) / u
20% 756 12437 755 12438 847 12589

50% 643 11357 647 11362 647 11362

70% 536 10432 536 10432 536 10432

(6) / e
20% 756 12437 876 12442 876 12321

50% 643 11386 647 11373 647 11384

70% 540 10457 540 10458 540 10458

MUTAG.

(4) / u
20% 78 13234 78 13234 78 13234

50% 63 13121 63 13120 63 13117

70% 63 13121 63 13120 63 13117

(4) / e
20% 34 14753 43 14847 43 14978

50% 23 14753 31 14753 32 14978

70% 23 14753 32 14753 32 14978

(6) / u
20% 78 13234 78 13234 78 13234

50% 63 13121 63 13120 63 13117

70% 63 13121 63 13120 63 13117

(6) / e
20% 34 13432 43 13432 43 13432

50% 23 13432 31 13432 32 13432

70% 23 13432 32 13432 32 13432

VICODI

(6) / u
20% 431 18231 485 18432 502 18432

50% 142 18231 345 18432 467 18431

70% 141 18231 345 18432 312 18432

(6) / e
20% 34 14753 43 14847 43 14978

50% 23 14753 31 14753 32 14978

70% 23 14753 32 14753 32 14978

(4) / u
20% 431 17176 485 17176 502 17176

50% 142 17176 142 17176 142 17176

70% 142 17176 345 17176 467 17176

(6) / e
20% 431 17176 485 17176 502 17176

50% 142 17176 142 17176 142 17176

70% 142 17176 345 17176 467 17176

DBPEDIA

(4) / u
20% 1742 24275 1832 27967 1832 27968

50% 1643 24389 1598 26433 1598 26433

70% 1643 24389 1598 26433 1598 26433

(4) / e
20% 1345 29730 1432 30143 1432 30567

50% 1346 29730 1431 30143 1433 30567

70% 1343 19730 1432 30143 1432 30567

(6) / u
20% 1543 22275 1543 23879 1543 23890

50% 1543 22275 1543 23879 1543 23890

70% 1543 22275 1543 23879 1543 23890

(6) / e
20% 1568 23467 1568 23467 1568 23467

50% 1346 29730 1431 30143 1433 30567

70% 1234 28730 1245 29654 1357 30765

Table 14
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (2)

Ontology Distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc./ #ax’s #inc. / #ax’s

BIOPAX

(4) / u
20% 2123 2124 2145

50% 0 2123 0 2124 0 2145

70% 2123 2123 2147

(4) / e
20% 2145 2145 2145

50% 0 2346 0 2346 0 2346

70% 2346 2346 2346

(6) / u
20% 2126 2126 2126

50% 0 2098 0 2098 0 2098

70% 1985 1985 1986

(6) / e
20% 2145 2145 2145

50% 0 2346 0 2346 0 2346

70% 2346 2346 2346

NTN

(4) / u
20% 4123 4123 4123

50% 0 4113 0 4123 0 4123

70% 4113 4114 4114

(4) / e
20% 3083 3083 3083

50% 0 2987 0 2987 0 2987

70% 2996 2993 2996

(6) / u
20% 4123 4123 4123

50% 0 4113 0 4123 0 4123

70% 4113 4114 4114

(6) / e
20% 3083 3083 3083

50% 0 2987 0 2987 0 2987

70% 2996 2993 2996

FINANCIAL

(4) / u
20% 165 325 276

50% 0 143 0 307 0 259

70% 143 276 221

(4) / e
20% 157 176 187

50% 0 126 0 126 0 126

70% 143 146 146

(6) / u
20% 165 256 243

50% 0 142 0 321 0 278

70% 146 356 278

(6) / e
20% 165 256 243

50% 0 142 0 321 0 278

70% 146 356 278

GEOSKILLS

(4) / u
20% 12345 12345 12345

50% 0 12344 0 12346 0 12345

70% 12345 12345 12345

(4) / e
20% 11986 11986 11985

50% 0 11987 0 11987 0 11986

70% 11987 11985 11986

(6) / u
20% 12345 12345 12345

50% 0 12345 0 12345 0 12345

70% 12345 12345 12345

(6) / e
20% 12087 12087 12087

50% 0 12087 0 12087 0 12087

70% 12087 12087 12087
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Table 15
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.1 and v.2 – scoring function (2)

Ontology Distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

MONETARY

(4) / u
20% 10243 10256 10256

50% 0 10242 0 10257 0 10257

70% 10243 10258 10258

(4) / e
20% 10116 10116 10116

50% 0 10116 0 10117 0 10115

70% 10115 10116 10116

(6) / u
20% 10257 10245 10244

50% 0 10257 0 10245 0 10244

70% 10257 10242 10257

(6) / e
20% 10116 10116 10116

50% 0 10116 0 10116 0 10116

70% 10116 10116 10116

MUTAG.

(4) / u
20% 12456 12326 12326

50% 0 12456 0 12326 0 12326

70% 12456 12326 12326

(4) / e
20% 12217 12217 12217

50% 0 12217 0 12217 0 12217

70% 12217 12217 12217

(6) / u
20% 12456 12326 12326

50% 0 12456 0 12326 0 12326

70% 12456 12326 12326

(6) / e
20% 12217 12217 12217

50% 0 12217 0 12217 0 12217

70% 12217 12217 12217

VICODI

(6) / u
20% 16432 16432 16432

50% 0 16239 0 16239 0 16239

70% 16345 16345 16345

(4) / e
20% 16456 16576 16579

50% 0 16453 0 16453 0 16453

70% 16453 16453 16453

(6) / u
20% 16432 16432 16432

50% 0 16239 0 16239 0 16239

70% 16345 16345 16345

(6) / e
20% 16456 16576 16579

50% 0 16453 0 16453 0 16453

70% 16453 16453 16453

DBPEDIA

(4) / u
20% 18765 18765 18765

50% 0 18654 0 18654 0 18654

70% 18654 18654 18654

(4) / e
20% 21459 21459 21459

50% 0 21578 0 21578 0 21578

70% 21578 21578 21578

(6) / u
20% 18765 18765 18765

50% 0 18654 0 18654 0 18654

70% 18654 18654 18654

(6) / e
20% 21459 21459 21459

50% 0 21578 0 21578 0 21578

70% 21578 21578 21578

Table 16
Experimental comparison of the various approaches: average num-
bers of cases of inconsistency (#inc.) and total numbers of discov-
ered axioms (#ax’s) using TCT v.3 – scoring function (2).

Ontology Distance f
TCT 0.9 TCT 0.8 TCT 0.7

/ weights #inc. #ax’s #inc. #ax’s #inc. #ax’s

BIOPAX

(4) / u 2123 2124 2145

(4) / e 50% 0 2346 0 2346 0 2346

(6) / u 2095 2100 2095

(6) / e 2344 2344 2345

NTN

(4) / u 4113 4123 4123

(4) / e 50% 0 2987 0 2987 0 2987

(6) / u 4113 4123 4123

6) / e 2987 2987 2987

FINANCIAL

(4) / u 143 307 259

(4) / e 50% 0 126 0 126 0 126

(6) / u 142 321 278

(6) / e 142 321 278

GEOSKILLS

(4) / u 12345 12345 12345

(4) / e 50% 0 11986 0 11986 0 11986

(6) / u 12345 12345 12345

(6) / e 12087 12087 12087

MONETARY

(4) / u 10242 10257 10257

4 / e 50% 0 10116 0 10116 0 10116

6 / u 10257 10245 10244

(6) / e 10116 10116 10116

MUTAGENESIS

(4) / u 12456 12326 12326

(4) / e 50% 0 12217 0 12216 0 12220

(6) / u 12456 12326 12326

(6) / e 12217 12217 12217

VICODI

(6) / u 16239 16239 16239

(4) / e 50% 0 16453 0 16453 0 16453

(6) / u 16239 16239 16239

(6) / e 16453 16453 16453

DBPEDIA

(4) / u 18654 18654 18654

(4) / e 50% 0 21578 0 21578 0 21578

(6) / u 18654 18654 18654

(6) / e 21578 21578 21578


