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Abstract.

Many data are published on the Web using tabular data formats (e.g., spreadsheets). This is especially the case for the data
made available in open data portals, especially by public institutions. One of the main challenges for their effective (re)use is their
generalized lack of semantics: column names are not usually standardized, their meaning and their content are not always clear,
etc. Recently, knowledge graphs have started to be widely adopted by some data and service providers as a mean to publish large
amounts of structured data. They use graph-based formats (e.g., RDF, graph databases) and often make references to lightweight
ontologies. There is a common understanding that the reuse of such tabular data may be improved by annotating them with
the types used by the data available in knowledge graphs. In this paper, we present a novel approach to automatically type
tabular data columns with ontology classes referred to by existing knowledge graphs, for those columns whose cells represent
resources (and not just property values). In contrast with existing proposals in the state-of-the-art, our approach does not require
the use of external linguistic resources or annotated data sources for training, nor the building of a model of the knowledge
graph beforehand. In this work, we show that semantic annotation of entity columns can achieve good results compared to the
state-of-the-art using the knowledge graph as a training set without any context information, external resources or human in the
loop.

Keywords: Semantic Annotation, Knowledge Graph, Semantic Labeling

1. Introduction scheme of open data!), most of such data are still be-
ing published at most with 2 or 3 stars, that is, using
spreadsheets (CSVs or Excel files).

An enormous amount of data is currently available From a practical point of view, this means that such
on the Web. Efforts in the literature to crawl the web datasets are not semantically annotated”, making them
found around 150 million Web tables [1, 2]. And with more difficult to understand and use. Many reasons

the increased adoption of open data by public institu- may exist for this, but one generally-agreed on is that

tions worldwide, the amount of data on the Web is in-

creasing exponentially. Although many recommenda- "http://5stardata.info/en/

2Note, however, that according to the 5-star scheme, there is no
real need for semantic annotations, but only the usage of RDF and
be published to encourage more reuse (e.g., the 5-star the provision of links to other datasets

tions and best practices exist on how such data should
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data providers do not have sufficient tools to help them
in publishing data in a more understandable and usable
manner.

One possibility to overcome this situation is to cre-
ate the tools (or services) that are able to generate se-
mantic annotations for those data sources. This process
is normally coined as semantic labeling [3—6]. The
process of semantic labeling is also referred to as se-
mantic annotation in the literature [3, 5, 7]. The result-
ing data (once the semantic annotations are exploited)
may be available as virtual or materialized RDF data
sources [8].

The resulted semantic annotations may refer to any
existing ontologies. In our work, we focus on the (gen-
erally lightweight) ontologies that are being used for
structuring and annotating knowledge graphs. Knowl-
edge graphs are rich structured data sources that con-
tain data that are usually annotated with semantic
types’. An example of such knowledge graph is DB-
pedia [9], which contains knowledge extracted from
Wikipedia, by means of a crowdsourced set of map-
pings that are used to connect Wikipedia infobox tem-
plates to the user-generated DBpedia ontology.

The semantic annotation of tabular datasets is usu-
ally done manually (e.g., using Open Refine* and
its RDF plugin) or semi-automatically (e.g., using
Karma’). Manual annotation is tedious, error-prone,
and does not scale. Whilst semi-automatic annotation
requires a lot of manual annotation steps so that the
machine learning module is able to learn how to per-
form semantic annotation.

In this paper, we describe our approach for the au-
tomatic semantic annotation of tabular datasets, so as
to overcome the limitations from manual and semi-
automatic approaches, as well as to generate relation-
ships with existing knowledge-graph related ontolo-
gies. More specifically, we focus on the annotation of
those columns in existing tabular datasets that refer to
entities. That is, we refer to columns that contain po-
tential resources: the subject of matters that the source
is explaining (sometimes these columns are referred
to as subject columns[10]). In summary, we label en-

3 As far as we know, there is no definition that it widely used and
agreed upon in the literature. When we refer to the term knowledge
graph here, we are referring to the common understanding and usage
of the word in the semantic web community, which is (arguably)
analogous to the term knowledge base

“http://openrefine.org

Shttp://usc-isi-i2.github.io/karma/

tity columns® of the (input) tabular data sources with
types’ from a given knowledge graph.
The main contributions presented in this paper are:

1. A new approach to automatically label subject
columns in tabular datasets with semantic types,
given an existing knowledge graph and in the ab-
sence of context®.

2. A new set of scoring functions (to determine the
type applicable to a column), which consider the
trade-off between covering as many of the enti-
ties as possible while being as specific as possi-
ble.

Although our approach out-performs the state-of-
the-art, the primary goal in this paper is to show that
using the knowledge graph as the training set without
using any other context and external sources of infor-
mation we can semantically annotate entity columns
and obtain good results compared to the state-of-the-
art.

We validate our claim by testing our approach
against three predefined datasets. One that we have
gathered in the domain of the Olympic Games, which
we manually annotated. The second one is a collec-
tion of Web Tables that have been crawled from the
web and transformed into CSV files (referred to as
Web Data Commons). The third one is a newer version
of Web Data Commons, which is cleaner and slightly
bigger.

The rest of the paper is organized as follows. In Sec-
tion 2, we survey the most related research papers to
our approach. Then, explain our approach and the used
scoring functions in Section 3. We describe the exper-
iment and discuss the results in Section 4. Finally, we
conclude the paper and show future lines of work that
we would like to explore in the future (Section 5).

2. State of the art

Different approaches have been proposed so far to
perform semantic labeling, understood as the process
of assigning types from knowledge bases to values
from any data source. In this section we describe some

%Tn this paper, we use the terms “subject columns” and “entity
columns” interchangeably.

7We use the term type to refer to ontology classes, since this is a
term commonly used in the knowledge graph literature

8such as table caption, title, .. etc
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of the most relevant approaches focused on tabular
datasets.

Cafarella et al. [1] describe an approach for search-
ing and linking Web tables, which exploits an at-
tribute correlation statistics database (ACSDDb) that
contains the frequency of occurrences of schemas and
attributes. Their ranking algorithm uses a linear regres-
sion estimator with different features (hits on the ta-
ble header, leftmost column, table body, and a schema
coherency score about how two items are related).

Limaye et al. [11] use probabilistic graphical mod-
els for semantic labeling, entity detection and rela-
tion extraction using YAGO. They use column type,
entity, and the relation between two columns to con-
struct the features, which are based on cosine similar-
ity of the cell and column headers, compatibility of the
entity and semantic types, and the compatibility be-
tween different column types and entity pairs which
are weighted using SVM.

Syed et al. [12] use Wikitology, a knowledge base
that contains entity information from Wikipedia. They
query Wikitology for each string in the column (each
cell), apply a scoring function based on page rank and
entity rank (using Wikitology), and pick the most pre-
dicted types. They do the same for relation discovery
between columns.

Venetis et al. [13] semantically label Web tables us-
ing two databases: an iSA and a relation database. The
isA database is used to identify the class of each col-
umn. After that, they inspect the relation between two
columns using the relation database, which is in the
form of (a, R, b), where a is an instance of class A, b
is an instance of class B, and R is the relation between
a and b.

Goel et al. [14] semantically label source attributes
using Conditional Random Fields, exploiting the la-
tent (hidden) structure within the data. They tokenize
the values and apply features depending on the token
type (e.g., token length, value, the starting character,
whether it is capitalized, whether it is negative, starting
digits, unit). They consider the relationship between
neighboring labels, tokens and attribute labels.

Zhang et al. [10] match and semantically annotate
numeric time-varying attributes in Web tables after
splitting them into (n-1) tables, the entity column with
each of the other columns. They take into account their
headers and context (e.g., surrounding text, web page
title, table caption, etc.). They connect tables using
manually-added conversion rules (unit, scale).

Ritze et al. [15] present the T2K iterative matching
algorithm to match Web tables to knowledge bases.

Their approach performs entity linking and schema an-
notation, each influences (improve) the other. It iterates
over Candidate Selection from DBpedia and Value-
based Matching (using value-based similarities for the
attributes) adjusting and filtering until there is no more
change.

Ramnandan et al. [16] present an approach that as-
signs properties from an already aligned domain ontol-
ogy to the target data source relying on the data. Their
approach treats textual and numeric properties differ-
ently (anything that is not a number is treated as text).
For textual data they use cosine similarity using term
frequency (TF) and inverse document frequency (IDF).
For the numerical values, they compare the distribu-
tions using the Kolmogorov-Smirnov (KS) test.

Ermilov et al. [17] detect subject columns using
the number of relations between different columns as
an indicator (assuming binary relation). They rely on
AGDISTIS [18] for entity disambiguation and they use
DBpedia as the source of knowledge. For column an-
notation, they use the header to get potential properties
and then rank them according to their frequency in the
knowledge base.

Taheriyan et al. [3] build a semantic model that rep-
resents the relationship between dataset fields rather
than only annotating attributes as semantic types. Data
sources are semantically typed, the semantic labeling
with confidence intervals is used to construct the se-
mantic model, and a graph with links is built that cor-
responds to candidate types inferred by the ontology.

Pham et al. [19] propose a semantic labeling ap-
proach based on logistic regression. The features they
rely on are similarity measures using Jaccard similarity
and TF-IDF besides the attribute name (in the header),
Kolmogorov-Smirnov and Mann-Whitney tests. The
weight of each feature is calculated (which depends on
the training data) and is used afterwards for classifying
the datasets.

Neumaier et al. [4] aim to create a context for the
semantic labels instead of mapping properties only.
They represent that as a tree with each children being
a context and build a hierarchical background knowl-
edge graph using rdfs:subClassOf and property-object
pairs. For predicting new data sources, they use the
Kolmogorov-Smirnov test and nearest neighbors over
the background knowledge graph.

Quercini et al. [20] focus on entity linking of cells
using Bing search. They perform text classification on
the snippets of the resulted web pages. They train their
models with snippets from DBpedia and use SVM for
entity linking. Although their algorithm works auto-
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matically, the training for the types from DBpedia to
get the snippets for text training is performed manu-
ally They also use regular expressions to detect specific
types (e.g., phone numbers, emails) and TFG’s func-
tionality to narrow down the possible types (e.g., Lo-
cation, Date). They use spatial information to disam-
biguate the entity linking (utilizing “Google Geocod-
ing API ™).

Zhang [21] presents a way to perform semantic an-
notation for entity and literal columns in web tables
taking into account the headers, caption, surrounding
text in the webpage, and existing RDFa annotations.
The approach uses the digest of the search engine re-
sults for entity disambiguation. The author argues that
by annotating a subset of a column, the type of the col-
umn can be inferred. The idea is to start with an erro-
neous annotation, and then iteratively improve the an-
notation taking into account inter-column dependency.
It annotates every column that represents entities and
detects columns that correspond to properties in the
knowledge base. Some of the additions of this paper
compared to previous work [22] are: the detection of
entity (subject) column, column relation detection, and
annotation improvement.

Tonon et al. [23] present an approach to rank en-
tities based on their relevance in a textual context.
They use an inverted index for literals matched to their
URI in DBpedia using [24, 25] to perform entity link-
ing. They create a single type hierarchy with DBpedia,
YAGO, and schema.org using owl:equivalentClass,
PARIS [26] (which include mappings between DBpe-
dia and YAGO) with some manual tweaking from do-
main experts. They use an external RDF dataset [27] to
retrieve the types. They propose three approaches. The
first approach uses the relation between the entity and
other entities in the knowledge graph. The second ap-
proach considers the occurrence frequency of the en-
tity and its types with other entities in the same con-
text. The third approach relies on the type hierarchy
of the entities, favoring deeper types in the hierarchy.
They combine the three approaches and weight them
based on a decision tree.

Nuzzolese et al. [28] present a tool called Tipalo.
It extracts the definition of the entity from Wikipedia
uses FRED [29] to generate RDF of the entity defi-
nition and filter candidate types using graph-pattern-
based heuristics. Then, it disambiguates candidate
types using [30] and aligns them to OntolWordNet,
WordNet and DUL+DnS Ultralite.

Dong et al. [31] focus on the performance and adopt
a MapReduce-based approach. They explore common

similarity functions (e.g., Jaccard, Cosine) and con-
sider a cell value and an entity as similar if they share
a common signature. They organize the types into dis-
joint groups taking into account the type hierarchy and
use the hash method to compute the overlap similarity.
Then they pick the top-k candidate types for each col-
umn. They improve the performance using a partition
framework that prunes unnecessary entity type pairs
taking into account a bloom filter [32] to represent the
entities in the containing partition, which is improved
further with bloom filter hierarchy [33].

Hassanzadeh et al. [7] use a MapReduce approach
based on the work of [31] and an extension of [34].
They transform the input CSV files and the reference
knowledge graph into key-values. The keys are URIs
for the column in the case of CSV files and class URIs
for knowledge graphs. The values for column URIs are
cell values, and values for class URIs are instance la-
bels. They perform overlap similarity analysis between
the values of the input CSV and the instance labels.

Ritze et al. [35] present an extended version of their
previous work [15]. They use ensemble for different
matchings taking into account context features (e.g.,
Page title, URL) and in-table features (e.g., labels and
values). They perform three annotation tasks: row-
to-instance, attribute-to-property, and table-to-class.
Their approach shows that taking into account all fea-
tures with weights outperforms all other combinations
of the features.

From this initial analysis of the-state-of-the-art in
semantic annotation, we can summarize in the follow-
ing set of observations:

— Learning from the same set: using other tabu-
lar data (from the same or different dataset) to
match the tabular data rather than using a se-
mantic source of knowledge [1, 10]. In other
words, these approaches link similar data rather
than annotating them with semantic types. Such
an approach does not ensure the interoperabil-
ity and usability of such annotations. In our ap-
proach, we annotate datasets with semantic types
from a given knowledge graph, what makes it
much easier to exploit and integrate with other
datasets [4, 15].

— Relying on search engines: using Web search
engines to disambiguate entity linking, such as
Zhang [21, 22] and Quercini et al. [20], what
makes them dependent on and bound to the search
engine used (even if it is not complete reliance,
and other features are used as well).
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— Preprocessing and profiling beforehand: some
approaches require building a model before be-
ing able to annotate the input sources [4, 12],
and sometimes building an external index, such
as Tonon et al. [23]. They built an inverted in-
dex over the whole DBpedia to increase the per-
formance. This is usually expensive in terms of
storage, and time. Our approach creates the model
once the input file is provided, and such an ap-
proach is feasible as the model is so small that it
only contains semantic types related to the pro-
vided file.

— Depending on fixed data sources: the work by
Syed et al. [12] relies on Wikipedia and Wikitol-
ogy (even though this index may be rebuilt again
with other similar sources, it is a complex pro-
cess) while Nuzzolese et. [28] use the entity def-
inition in Wikipedia. Tonon et al. [23] relies on
PARIS [26] for the alignment of the type hierar-
chy. In our case, we use DBpedia as the learn-
ing source, but other sources can be used with-
out any major change in the code. Since our ap-
proach does not perform any preprocessing either,
changing to another knowledge graph is straight-
forward. Some approaches share the same advan-
tages as ours, using SPARQL endpoints as learn-
ing sources, such as YAGO in [11] and DBpedia
in [4, 15], what makes them flexible and applica-
ble to a wider range of training sets.

— Manual intervention: despite the fact that these
approaches may be automatic or semi-automatic’,
some of them actually require manual actions
(e.g., provide predefined conversion rules [10,
15], manually tweak the type hierarchy [23], on-
tology alignment [16], a black list of proper-
ties [4] to improve the accuracy, and abbrevia-
tions resolution [10, 15]). Our approach is com-
pletely automatic and does not contain such man-
ual crafting, what makes it more easily adoptable
to different datasets and knowledge graphs.

3. Approach
In this section, we explain our approach to anno-

tate columns in a given dataset with classes used in an
existing knowledge graph. We start with a simplified

9We are not referring here to the gold standards that are built man-
ually for evaluation purposes or the semantic models that are con-
structed by domain experts

working example, so as to illustrate the approach, and
continue with the description of the algorithm and the
scoring functions.

Working Example

Let us consider a tabular data file as shown in
Fig. la. The entity column that we are interested in
is the one with the “Player name" header. The first
step of our approach consists in annotating each cell
in the entity column, in our case “Facundo Cam-
pazzo". We query the knowledge graph for an entity
that has the name “Facundo Campazzo". In DBpedia,
the entity URI is http://dbpedia.org/resource/Facundo_
Campazzo. Then, we query the knowledge graph for
the classes to which “Facundo Campazzo" belongs and
assign these types to “Facundo Campazzo" (Fig. 1b).
We do the same for the other cells in the column. After
that, we build the class graph that contains all the types
of the entities linked to the cells. In our example, we
build the graph of the types of “Facundo Campazzo”
(Fig. 1c). Note that in that graph, we have smaller
circles that do not contain any text, these are just to
show that realistically, we may have other types (for
other cells) that are not ancestors of basketball player.
The last step is to score the class graph using Equa-
tion (1) and pick the type with the highest score, which
is basketball player.

Fig. 2 provides an alternative view of our approach.
We approach the problem by first performing entity
linking in the tabular datasets to the corresponding
ones in the knowledge graph i.e. each cell is typed if
possible. As in Fig. 2 (step 1), the first step takes the
input files (to be annotated) and a knowledge graph
to annotate the cells. The next step is to build a class
graph of the fypes gathered in the first step. It takes as
input the annotated cells and the knowledge graph to
build a class graph (hierarchy) from the fypes of the
cells (step 2 in Fig. 2). The last step is to score each
class in the class graph using the formulas in Section 3.
The class with the highest score is picked to be the type
of the entity column (step 3 in Fig 2).

Assumptions
We consider several assumptions in our work:

— There is a single entity column, and it is not
spread over two or more columns (e.g. a column
for first name and another column for last name).
This is not a major limitation though, and we will
consider it as part of our future work.

— The entity column may be identified by the user.
In any case, in our automatic process with large
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Player name WA TWS e —WA YW
Facundo Campazzo | |r===:

WA TV | WA [ e e e —n W
‘ WS T WS “*\N‘«“’W\‘ ------ ‘ “EWSTWS

(a) Example of an input file

Player name

Facundo Campazzo

. Ve S V. VN

7 Basketball

.Thing. Q@

player

Thing

/'\

Person

e N
Athlete/\

|

(Basketball
\_ player
G

(c) Example of type graph

(d) Example of type scoring

Fig. 1. Example of semantic annotation

corpora, we consider the first column to be the
entity column. Nonetheless, our approach works
without this assumption without any loss of gen-
erality i.e. it would work with entity columns
in the middle or at the end of the data source,
given that they are identified correctly. Further-
more, Cafarella and colleagues [1] found that the
second most heavily weighted features to search
for subject columns in Web Tables is the number
of hits in the left-most column.

The input tables are vertical where the header is
the first row (if there is one). Nonetheless, this
does not limit our approach as horizontal tables
can be transposed easily, it is just a matter of de-
tecting whether the table is vertical or horizontal.

— The knowledge graph is a SPARQL endpoint that
uses RDF, but this can be easily extended and
generalized.

Step 1: Type individual cells

For each cell in the entity column in the input data,
we assign a potential list of entities (in the form of
URIs). We get the list of entities by querying the
knowledge graph for entities having the cell’s value as
the object of some triple (Listing 1). In this paper, we
do exact matching to get entities for a given cell. This
may be extended in the future to other types of match-
ing. After that, for each entity matched to a cell, we get
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Cells typing
(1)

/

Knowledge Graph

/L AN (3)

' Class-graph
———— Construction
(2)

=

Annotated _

I & Types scoring

Scored

class-graph

Fig. 2. Semantic annotation workflow

the list of types for that entity (Listing 2) and the types
of a single cell are the types of that cell’s entities.

select distinct ?subject
where{ ?subject ?property "Facundo_
Campazzo"@en }

Listing 1: Get entities for a cell

prefix dbr:<http ://dbpedia.org/
resource/>

select distinct ?class

where{dbr: Facundo_Campazzo a ?class}

Listing 2: Get classes to which an entity belongs

Step 2: Build The Class Graph

At this point, we have assigned a list of classes to each
entity. Note that given our exact match restriction on
labels, we may not find classes for all. However, at this
stage this is not too relevant, since we can still obtain
good results independently of this.

We build the class graph by first gathering the list of
classes for each cell for each entity. We query each
class to get its parents (Listing 3). If a class has no
parents, then it is a root, otherwise, the parents will
also be queried for their parents if not already in the
graph and will be linked accordingly.

prefix dbo:<http ://dbpedia.org/
ontology/>
select distinct ?parent
where{ dbo:BasketballPlayer
rdfs :subClassOf ?parent. }

Listing 3: Get parent classes for an entity

Step 3: Score Graph Nodes

In choosing the most suitable class in the class graph,
there are two contradicting preferences: 1) prefer the
most specific types; 2) prefer types that cover the ma-
jority of instances. In terms of the class graph, the most
specific classes tend to be in the leaves while the nodes
(classes) that cover the most are in the top of the graph;
typically, the root covers all the instances. We propose
a formula to weight the two features and maximize the
sum over the nodes in the graph, Equation (1). The
coverage score of a fype (node) ¢ is denoted by f,.(¢)
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and the specificity score by f(¢). Alpha () is used to
weight the coverage score and the specificity score of
anode 7 (related proofs are in Appendix A). The speci-
ficity score indicates how specific a type ¢ is, while
the coverage score denotes how much a fype ¢ covers.
Equation (1) maximizes the score f by choosing the
type t that maximizes the sum of the specificity score
and the coverage score.

argmax f(1) = @ f(1) + (1 —a) * fs(r) (1)

Coverage

Coverage score indicates how many instances a type ¢
covers. The higher the coverage score f. is, the more
entities the type t covers. The basic idea is to have for
each cell a score of 1. This cell score will be shared
among the entities of that cell and will be divided
evenly. The score of each entity will also be divided
evenly among its fypes. This is shown in Equation (2),
where v is a text value in the entity column, Z returns
the entities of a given text value, e is an entity, and
Q returns the classes of a given entity. |Z(v)|| repre-
sents the number of entities from the knowledge graph
that are linked to v and ||Q(e)|| denotes the number
of classes for e that are returned from the knowledge
graph.

1
0= 2. 2 gt

Vv,e:e € Z(v)andr € Q(e)

2

For the coverage, we also want a type ¢ to include the
coverage of its children. We represent that in Equa-
tion (3), where u is the child of ¢. If t does not have any
child, its value will be 1.(1).

L(t) = L(t) + Y Le(u) 3)

Since the value of L. will increase as the number of
cells increase, we normalize the coverage score by di-
viding it by m, where m is the number of cells that are
matched to at least one entity.

£ = =W 4

m

Specificity

Specificity score indicates how specific/narrow a given
type t is. High specificity score means a very nar-
row/specific type. We follow the intuition that a very
narrow fype, has a fewer number of entities compared
to another type. For example, the number of physicists
is much less than the number of scientists and the num-
ber of scientists is much less than the number of hu-
mans. Saying that a person is a physicist is more spe-
cific than saying that this person is a scientist. An-
other way to look at that is if we picked a human ran-
domly, the probability of this person being a physicists
is lower than the probability of this person being a sci-
entist. In accordance with information theory, as the
probability decreases, the value of the corresponding
piece of information increases.

Therefore, we divide the number of entities of a fype ¢
which is ||R(#)|| by the number of entities of its parent
(IIR(p)|]), where p is the parent with the highest num-
ber of entities. Note that the number of entities here
is the number of entities returned from the knowledge
graph. In case the 7 does not have parents, the value of
I,(¢) will be 1.

_ IR0l
IR(p)]

The score I, is computed from the type ¢ to the root;
this is done by multiplying / for all, along the way for
each node. In the case of multiple paths, the lower L;
is chosen. In case a class ¢ has no parents, its L, value
will be set to 1.

L(1)

&)

Ly(1) = L(t) * Ly(p) (6)

More specific types yield lower L;. But we want to
maximize both, f. and f;. We need a scoring function
that increases as the value of L, decreases.

We present multiple formulas to compute the speci-
ficity of a given type ¢. All of them follow the intuition
we mentioned earlier. Relevant proofs are provided in
Appendix A and we also show how we obtain the dif-
ferent functions in Appendix B.

fsl(t) = (1 _LS(I)2) @)

fao(t) = —=Ly(1)* + 1 ®)
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va(t) = _Lx(t) +1 (9)
fua(t) =1 = V/Ly(1) (10)
fis(1) = (1 — V/Ly(1))? (11)

When we talk about the specificity function fj, it can
refer to any of the specificity functions we mentioned
above. In the evaluation section we test all of them
and eventually we will pick the best one the yields the
highest score.

After computing the coverage score f, and the speci-
ficity score f; for each fype, we compute the overall
score f for each class in the graph following Equa-
tion 1. Finally, the fypes are ordered in decreasing or-
der by the value of f, as the node with the highest score
represents the fype of the entity column; the other top
types in the list are picked if the first one is rejected by
the user (see Section 4.1)

Implementation

We have built a Web application [37] to semantically
annotate tabular datasets automatically using a knowl-
edge graph. Our application takes as an input the URL
of the SPARQL endpoint and the CSV files to be anno-
tated. It semantically annotates the entity columns and
shows the annotations as a list of classes ordered de-
scendingly from the highest score to the lowest score.

4. Evaluation

We prove the existence of a value «, i.e. Equation (1)
results in a correct type. A correct type ¢ will have the
highest score among the rest of the types for the enti-
ties linked to the cells in the entity column of a given
CSV file (see Section A.3 in the Appendix). We also
prove that the coverage score of a parent’s node has
a higher coverage score than any of its children (Sec-
tion A.l in the Appendix). The same way, we prove
that a child’s node (type) has a higher specificity score
than its parent (Section A.2 in the Appendix).

In this section, we focus on an experimental evalua-
tion where we aim at evaluating that our approach can

automatically assign semantic types to entity columns
given a knowledge graph without using other context
or external sources of information and yields good re-
sults in comparison to the state-of-the-art.

For that reason, we experiment with three different
datasets: Olympic Games [38], Web Data Commons
version 1 [39], and Web Data Commons version 2 [40].
We refer to Web Data Commons version 1 as T2Dvl
and T2Dv?2 for version 2. Thanks to those experiments,
we also show that our approach works with realistic
datasets. We explain below the details of the experi-
ment and discuss the results.

4.1. Experiments

We experiment with three different datasets. The first
one is composed of a collection of CSV files that we
gathered about Olympic Games 2020'°. The second
and third datasets are presented in the state-of-the-art
as Gold Standards to allow comparison of different an-
notation approaches. In all of our experiments, we use
the English DBpedia because T2Dv1 and T2Dv2 are
annotated with the DBpedia classes, so that we can
compare the results. We report scores for each dataset,
and we calculate the accuracy with different specificity
functions.

4.1.1. Olympic Games

We mentioned the details of how we built the dataset
in our previous work [5]. We have the data publicly
available to allow others to compare [38]. It is a small
dataset compared to the other ones; it contains 12 CSV
files. All of the subject columns are located in the left-
most (the first column from the left).

Preprocessing: We did a single data transformation,
which is merging the columns “FIRSTNAME” and
“SECONDNAME” as our approach does not work if
the entity column is separated into two columns. We
performed that on the files themselves (we updated the
files before feeding them to our application). Obvi-
ously, this may be easily automated in the future as an
additional feature of our implementation.

We apply the approach on each file, performing entity
linking and constructing the type graph hierarchy. We
compute the coverage and the specificity scores - try-
ing all the specificity functions. We compare the sug-
gested types with the correct one that we handpicked
and show the results in Table 1.

10https://en.wikipedia.org/wiki/2020_Summer_Olympics
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4.1.2. T2Dvl

It is a collection of Web Tables that have been crawled
from the Web. They have been manually annotated
with DBpedia classes. The dataset is composed of 233
Web Tables. They are not very clean as they were auto-
matically transformed into CSV files (we can see some
HTML tags and special characters that are not related
to the content of the Tables).

Although this dataset has the annotation of each sub-
ject column, we did not find the id of the subject col-
umn in the dataset. Since our application expects the id
of the subject column, we went through the 233 Tables
and manually identified the subject column for each
of them. We also eliminate (leave) classes that are not
classes of DBpedia (e.g., YAGO classes) as T2Dvl, is
annotated with DBpedia classes and we want to com-
pare the scores.

Preprocessing: Performing the test for the first time
resulted in a very low recall (less than 0.1). This was
due to the fact that the labels in the subject columns
were in lowercase. This made it difficult to find the
entities from the knowledge graph as we were using a
naive exact match. To overcome this, we changed the
values in the entity column to title case. This is not
done on the actual CSV files, but rather included in the
application and can be turned on or off by passing a
flag.

We ran the application on a MacBook Pro laptop with
2.8 GHz Intel Core i7 with 8 GB of RAM. The appli-
cation took around 7 hours to compute coverage and
the different specificity functions with different values
of a.

For a given file, if no annotation matches the one class
that is given in the gold standard, we consider it as
a wrong annotation, even though some of them looks
correct or acceptable to us (e.g., typically people do
not use dbo:AdministrativeRegion, but they use place
or city instead). We use a testing script to verify if the
annotation generated by our application is the same or
different than the one generated by T2Dvl. Since dif-
ferent tables can have different values of « that are op-
timal (which is also reported by Ritze et al. [35] that
a single set of weights might not be the best for all ta-
bles'!) the testing script tries with different values of
a2,

INote that our approach does not use the same features or
weights.

24 €10.45,0.4,0.35,0.3,0.25,0.2,0.1, 0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001, 0.00005, 0.00001]. This turns out to be a good set
of values for « to balance coverage and specificity.

Table 1

Semantic-labeling scores for Olympic Games with different speci-
ficity functions (and the same coverage function)

fs Precision Recall F1
fs1 1.0 1.0 1.0
fs2 1.0 1.0 1.0
fs3 1.0 1.0 1.0
Ssa 1.0 1.0 1.0
fs5 1.0 1.0 1.0
f=y /(1= L(1)?) " =1-/L1)
» fs5 = 1 —
fo = —Ly(1)2+1 (
f3 = —Ly(1) +1 VLs(1)?
4.1.3. T2Dv2

This dataset is similar to T2Dv1, but we notice that
it is cleaner (we did not see HTML tags in the ta-
bles). For this reason, we did not need to perform any
transformation for the labels in the subject column (as
they were not lowercased). Also, the subject column
ids are already provided, so we did not need any detec-
tion or to manually identify them. The dataset includes
237 files, slightly bigger than T2Dv1. This dataset has
been annotated with DBpedia classes, so in the test,
we eliminate any non-DBpedia classes (unless it is a
parent of a DBpedia class). The reason is that if we
eliminate non-DBpedia classes in the parent classes,
the graph will not have a single graph with owl:Thing
as the root class.

Preprocessing: The dataset is composed of JSON files
rather than CSV files, so we transformed them into
CSV files with only the subject columns. No further
preprocessing was required for T2Dv2.

The experiment was executed on the same machine
that we used for T2Dv1, and the time for the experi-
ment was similar (around 6 hours). We use the testing
script as the one used in the previous experiment with
T2Dvl.

4.2. Results and Discussion

In Table 1, we report the scores for semantic anno-
tation of the subject columns in the Olympic Games
dataset. We reach a perfect precision and recall. We
have a proof of the scoring functions that we use in
Appendix A. Our approach reach perfect score given
the fact that these data follow our intuition as we men-
tion in Appendix A and Section 3. Also, we do not ex-
pect to have many cases where an incorrect type t,, is
more prominent than the correct type ¢, given that the
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Table 2
T2Dv1 Precision and Recall
Approach Precision Recall F1
T2K 0.94 0.94 0.94
TADA-Entity (f51) 0.71 0.96 0.82
TADA-Entity (fs2) 0.78 0.96 0.86
TADA-Entity (f;3) 0.93 0.97 0.95
TADA-Entity (fs4) 0.88 0.97 0.92
TADA-Entity (fs5) 0.88 0.97 0.92

difference in the depth is close (if not, it can be ma-
nipulated with the « value to give more weight to the
coverage f, or specificity f). Since this is the case for
the Olympic Games dataset, achieving a perfect score
is not surprising.

4.2.1. Web Data Commons vI

We report the results of our experiment with the Web
Data Commons v1 dataset in Table 2. We see that the
highest precision that we reach using our approach
(TADA-Entity with f3) is 0.93, against T2K, which
reached 0.94, but we achieve a higher recall than T2K
in all the different specificity functions. This results in
our approach (with fi3) having a higher F1 score.

One of the main reasons that affect the precision score
is the wrong entity linking; which is due to the use of
naive entity linking.

For example, many companies are named after their
creator. An example of that is the famous Jewellery
company “Cartier,” which is named after its founder
Louis-Frangois Cartier. Another reason is missing data
from the knowledge graph. This was the case for lakes
labels, which are linked to boxers, sports teams, and
places that share the same name. For example, one of
them has the name “Molina,” which is linked to a city
in Chile, to a soccer club “CF Molina,” to a cyclist
“Juan Molina,” to an artist “Ralph Molina,” and not to
a Lake labeled “Molina”.We did not take into account
that famous labels are more prone to be wrongly an-
notated if only labels are taken into account. For ex-
ample, the label “Leon,” which is a city in France, also
has as candidate entities: a Japanese wrestler, a mu-
sic artist, and a scientist. It could be intuitive to take
into account what people think when the word “Leon”
is first introduced to them. However, that also means
that facts or labels not commonly known will be more
prone to be misclassified (given that a common fact
about an entity with the same label exists). This could
be settled using other kinds of insights like properties
in the tables. This also can be limited if the properties

Table 3
T2Dv2 Precision and Recall

Approach Precision Recall F1
T2K (Majority) 0.47 0.51 0.49
T2K (Majority + Frequency) 0.87 0.90 0.89
T2K (Page attributes) 0.97 0.37 0.53
T2K (Text) 0.75 0.34 0.46
Page aurias T | 090 | 086 | 088
T2K Extended 0.93 091 0.92
TADA-Entity (fs1) 0.68 0.96 0.79
TADA-Entity (f;2) 0.75 0.96 0.84
TADA-Entity (f;3) 0.91 0.97 0.94
TADA-Entity (fs4) 0.85 0.97 0.90
TADA-Entity (fs5) 0.84 0.97 0.90
f =4 /(1 = Ly(1)?) fs = —Lo(r) +1

fe= ~L(1)2 41 fa =1 Li(1)

fio = (1 = VL. ()

in the table do not exist in the knowledge graph. Our
approach scored 0.01 lower than T2K (in precision),
but still outperformed T2K with an F1 score of 0.95
(for the highest specificity function f3) and recall of
0.97.

4.2.2. Web Data Commons v2

This dataset is manually annotated with DBpedia
classes. We compare the annotations produced by our
approach with the annotations reported in T2Dv2. We
compare the performance of our approach with the re-
sults reported by Ritze et al. [35] (referred to as T2K
Extended). They also show different baselines: Major-
ity (how often the classes occur), Majority+ Frequency
(taking into account the specificity!?), Page attributes
(e.g., Page title, URL, ...), Text (abstracts belongs to
the classes), Majority+ Frequency + Page attributes +
Text'* . We report the results in Table 3.

We see that the best precision of our approach is 0.91
which is lower than the T2K Extended approach by
0.02.

The precision of T2K (Page attributes) is very high
(0.97), but covers only a small set as it has a low re-
call (0.37). The recall of our approach is 0.97, which
is higher than T2K (0.91) and all the other baselines

131t is different specificity function than the one we use in our
approach.

14For more details on the baselines refer to the original paper by
Ritze et al. [35].
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reported. The F1 of our approach (0.94) is higher than
all the T2K approaches.

Looking closer to the wrong annotations, they are sim-
ilar to the ones reported in T2Dv1. For example, there
is a table about “Cricketer,” the table is annotated more
as “OfficeHolder.” This is due to the fact that the entity
linking is more linked to Politicians than Cricketers be-
cause Politicians are more common in the knowledge
graph than Cricketers and also due to common names.
We observe that this problem is the most common one
in entity linking that are based on labels only. This also
agrees with [20], as they reported the confusion of an-
notating entities with the class Person.

5. Conclusion and Future Work

In this paper, we proposed a novel approach for the au-
tomatic semantic annotation of entity columns in tab-
ular datasets with classes from a knowledge graph.
We experimented with different datasets and used the
English DBpedia as our source knowledge graph. We
showed that without relying on external context or ta-
ble headers, we were able to semantically annotate
most of the subject columns and outperform the state-
of-the-art using a simpler approach with naive entity
linking. We also presented how less famous entities
can be mistaken for the famous ones. Nonetheless, an
open question remains about how to find the optimal
value for our parameter a.

For the future work, we plan to use advanced entity
linking and entity disambiguation (instead of naive
exact match), which may also improve accuracy. We
can also experiment including entity attributes to im-
prove accuracy. Another machine learning approach
may also be employed here by learning from the user’s
modifications of the annotations or domain-dependent
features.
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Appendix A. Scoring Functions

In this Appendix we prove that the coverage scoring
function of a descendant of a fype ¢ will never obtain
a coverage score higher than any of its ancestors and
that the specificity scoring function of a descendant of
a type t will never obtain a specificity score lower than
any of its ancestors.

A.l. Coverage
Lemma 1. Given two types t; and ts, where t1 is an

ancestor of to. The coverage score of t; is greater than
or equal to the coverage score of ta

fe(n) = [e(r2)

Proof. To prove it by contradiction, as assume that

fe(t2) > fo(tr)

Le(t2)/m > Le(t1)/m
Lc(l‘g) > Lc(ll)

Le(tz) > Ie(th) + Y Le(u)

since f; is a descendant of ¢, then o isin ), L.(u)
Lc(l‘g) > Ic(tl) + LC(IQ) + ...
since all the terms are positive, then this proposition is

false.
Hence, lemma is proved by contradiction O
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A.2. Specificity

Lemma 2. Given two types t; and to, where t, is an
ancestor of to. The specificity score fs1 of ta is greater
than the specificity fy1 of t1 Le. fy1(t2) > fa(t1).

Proof. To prove that by contradiction,
we assume that: fi;(f2) < fi1(f1)

¢1—g@g?<¢1—g002

1= Ly(12)® < 1= Ly(1)?
~Ly(12)* < ~Ly(1)’
L(12)" > Ly(n)?
Ly(t2) > Ly(t1)

IS(IQ) * L.k Ls(ll) > Ls(ll)
Since all the terms (the I;’s and the L;’s ) are smaller

than 1, this is impossible. Hence, it is proven by con-
tradiction O

Lemma 3. Given two types t; and to, where ty is an
ancestor of to. The specificity score fis of ta is greater
than the specificity fyo of t1 Le. fia(t2) > fe(t1).

Proof. Let us assume that: fio(f2) < fia(t1)

—L(12)> +1 < —Ly(t,)* + 1
—Ly(t2)* < —Ly(1n)*
Li(t2)* > Ly(11)?
Ly(t2) > Ly(11)
L(t2) % ... ¥ Ly(ty) > Ly(11)

Since all the terms are less than 1, this is impossible,
hence, this lemma is proved by contradiction. O

Lemma 4. Given two types t; and to, where t is an
ancestor of ta. The specificity score f3 of ta is greater
than the specificity fy3 of t1 i.e. fi3(t2) > fi3(f1)-

Proof. To prove this by contradiction, we assume that:

fia(t2) < fia(tr)

—Ly(ta) +1 < =Lg(t1) + 1

—LS(ZQ) < —Ls(ll)

Ls(l‘g) > Ls(tl)

I(t2) * ... % Ly(t1) > Lg(11)

Since all the terms is less than one, this cannot hold;
hence it is proven by contradiction O

Lemma 5. Given two types t; and ts, where ty is an
ancestor of ta. The specificity score fs4 of to is greater

than the specificity fyy of th i.e. fu(ta) > fia(t1).

Proof. To prove this lemma, let us assume that:

fia(t2) < fu(tr)
1-— \/Ls(t2) <1-— Ls(tl)

—v/Ls(t2) < =/ Ls(t1)

\/Ls(l‘g) > 4/ Ls(lj)

LS(IQ) > Ls(tl)

IS(IQ) * L.k Ls(tl) > Ls(tl)

O

Lemma 6. Given two types t; and ts, where t, is an
ancestor of ta. The specificity score fg5 of to is greater
than the specificity fy5 of t1 i.e. fi5(t2) > fi5(11).
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Proof. Let us assume that: fi5(t2) < fy5(f1) axfo(to)+(1—a)xfy(t2)—axf.(t1)— (1—a)*fi(t1) > 0

(1= VL) < (- VLn)

[a*ﬁ(@)—a*ﬁ.(u)}+[(1_01)%(@)—(1_a)*fs(¢1)] >0
1-— \/Ls(tg) <1-— L.y(tl)
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Since all the terms are less than 1, this is impossible,

—1/ LS(Z‘Q) < —\/Ls(l‘l)

v/ Ly(t2) > v/Ly(t1)

\/ Ls(lg) > 4/ L_Y(tl)

Ly(tz) > Ly(t1)

IS(IQ) * L.k

Ls(ll) > Ls(ll)

—axA+(1—a)*B>0

(1—a)*B>axA

and hence proved by contradiction 1—a) A
> —
a B
A.3. Optimal a
In this section, we explore the possibility of an optimal 1 a A
a for a class hierarchy with a single correct type. We -———=> 3
explore three cases: 1) 71 is an ancestor of #5 and #; is @ a
the correct type ;2) #; is an ancestor of 75 and #; is the
correct type; 3) #; and t» are not on the same path (none
of them is an ancestor of the other). 1 1> A
a B
Lemma 7. Given two types t1 and ts, where t1 is an
ancestor of to and ty is the correct type. There exists
a value a such that f(t2) > f(t1) (referred to as a 1 A
correct ). p > B +1
Proof. Given that #; is an ancestor of 5 then
12 fo(t1) > fe(t2) >0 = fo(t1)—fo(t2) =A: A€ (0,1) 1.4 B
a B B
1> fY(IQ) > f?(tl) >0 = f.v(t2)7fv(tl) =B:B¢ (0’ 1)
1 A+B
o' B
IfJa: f(t2) — f(t1) >0
B
a <

[Ck*fc(tg)+(].7w)*fv(l‘2)] — [a’*fc(tl)ﬁ*(l*a')*fv(tl)] >0

—arx |~ flt2) 4 £ol0) |+ (1= [ful12) = £ (1) | > 0
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Since A € (1,0) and B € (1,0) hence, exist at least
one value « that satisfies that.
O

Lemma 8. Given two types t1 and to, where t1 is an
ancestor of to and ty is the correct type . There exists
a value « such that f(t1) > f(t2) (referred to as a
correct ).

Proof.

fc(tl) > fc(IZ)

fe(tr) = fe(t2) = A

f&‘(t2) > fs(tl)

fs(t2) = fs(t1) = B

If 3o : f(r1) > f(t2)

f(t) = f(t2) >0

axfe(tr)+(1—a)xfi(t) —axfe(t2) = (1-a)fi(t2) > 0

{a*fc(tl)fa*fc(tg)yr{(1fa)>kfs(t1)f(lfcx)*fs(tg)} >0

@ [fultr) = fulta)| = (1= @) = [£ir2) = £(11)] > 0

axA—(1—a)*xB>0

B
(1—a) A

=
|

£

SRS

1 A+B

7<7
a B
B

> —
A+ B

since A € (0,1) and B € (0, 1), there exists an « that
satisfies that, hence this lemma is proved O

Lemma 9. Given two types t1 and t3, where non of
them is an ancestor of the other and t1 is the correct
type . There exists a value « such that f(t1) > f(t2).

Proof. Case 1: f.(r1) > f.(t2) and f(r1) > fi(f2)
to prove this, we need this to holds: f(#1) > f(2)

f(t1) — f(r2) >0
afe(ty) + (1 —a)fi(t1) —afe(tz) — (1 —a)f(t2) > 0
a|fln) = o) + (L= @[ £il) = £ilr2)] > 0

Ol[fc(h) - fc(t2):| +(1-a {fs(tl) - fs(lg)} >0

Which holds because f.(f1) — f.(t2) > 0 and f;(t1) —
fs(t2) >0
Case 2: f.(t1) > f.(t2) and f(r1) < f5(f2)

f(n) = f(r2) >0

afc(ti) + (1 —a)fs(t1) — afe(tz) — (1 —a)fs(t2) >0

a|£i(t) ~ £(t2)| + (1 = @[ £0) = £(1)] >0

a[feltr) = foltz)] + (1 = @) [ () = £i12)] > 0
Since f.(t1) — fe(t2) > 0 and fi(t1) — fs(t2) < 0, this

will hold for any value & > 0.5

Case 3: f.(t1) < fe(t2) and fi(11) > fi(f2)

f(t1) = f(ta) >0
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afe(tr) + (1 = a)fi(n) — afe(tz) = (1 = @) fi(12) > 0

a|£t) = £ilt2)| + (1= @) [ (1) = fila2)| > 0

a|£i(n) = filta)| + (1= @) [£i(1n) = fil12)| >0

Since f.(t1) — f.(t2) < 0and f;(#1) — f5(¢2) > 0, this
will hold for any value a < 0.5
Case 4: f.(11) < fe(t2) and fi(t1) < fs(f2)
Similar to case 1, this is impossible to hold for any
a such that 1 > alpha > 0 . This implies that #; is
probably not the correct type as there are more enti-
ties classified as 7 that are even more specific than 7;.
More specifically, it means that most cell annotations
are pointing towards fo; which is not due to a typical
mismatch, as typical mismatches do not converge to
high specificity type.

O

Appendix B. Constructing the Scoring Functions

In this section, we explain how we came up with each
of the scoring functions. The ultimate goal is to have
a type for the entity column. Our intuition is to choose
the type that is correct for all the cells in the target
column that we want to type. Each entity is anno-
tated with one or more types. Given these types, we
can construct the type hierarchy from the knowledge
graph. We thought of choosing the most common type
to cover all the cells. For example, given football play-
ers and basketball players, the most common thing is
that they all athletes. But in practice, it is challeng-
ing to link to the correct entities and to type them cor-
rectly from the cells [41, 42]. If we are using DBpedia
for example and we got one incorrect type for a cell,
we can easily end up in the root of the type hierarchy
(“owl:Thing” for DBpedia) as the common type.

We notice further that we need the type also to be as
specific as possible. For a column of scientists names,
it is more valuable for us to annotate them with the type
“scientist” than “person” or “thing.” It is also the case
that the probability of having a column to have a more
specific type (e.g., “scientist”) is lower than having the
type of the column to be of a more general type (e.g.,
“person”). Following the information theory, the value
of a piece of information increases as the probability
decreases.

Following the above intuitions, we aim to have a type
that covers most of the cells in the column and also
be as specific as possible. These two goals pull in dif-
ferent directions: to increase the coverage (to cover
as much cells as possible) pulls the type upwards (to-
wards the root) and the specificity (to be as specific as
possible in the types) pulls the type downwards (here
we are picturing the type hierarchy to have the root on
the top and the leaves on the bottom of the tree).

Our idea is to find a balance between the two to maxi-
mize the score. So, we have this simple function to bal-
ance the coverage with a and the specificity with 1 —a.
We formalized it here as follow:

max f (1) = ax fo(t) + (1 — ) * £i(1)

Where f, is the coverage function, and f; is the speci-
ficity function. We explain the details for the coverage
and specificity functions in the following sections.

B.1. Coverage

We are trying to construct a function that when max-
imized, picks the type that covers most of the cells.
The first thing that we might think of is to use the
type that is most common (often referred to as “ma-
jority”). But it only works if the types of each cell are
almost the same, for example, if the majority of the
cells has the type “footballPlayer”. It won’t work in the
case of mixed types (e.g., “footballPlayer” and “bas-
ketballPlayer”), which should result in the type “ath-
lete” instead.

Another way we thought of is to have all the types in
the path in the type hierarchy from the type of the cell
(e.g., “footballPlayer”) to the root (“Thing” in the case
of DBpedia). This way we have more general types
(e.g., “athlete”, “person”). We can have something like
the majority but for each type in the hierarchy of each
typed cell. In other words, the majority for each type
in the path to the root.

B.1.1. Uncertainty

Another intuition we can think of is related to uncer-
tainty. A cell can have multiple types due to common
names. An example of this is “Scott Arnold,” there are
multiple players with the same name. In such cases, we
assign lower confidence to the types of such cells. We
formulate it in a way such that the total value decreases
as the number of types increases. Actually, each cell
does not just get typed based on its value; we need to
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get the entities that have the name in the cell. For a
given cell, we fetch the entities and then get the types
for each of these entities. Each cell will have the types
for each entity linked to that cell. We formulate the
score as:

1

W)l

The number of aggregated types for the cell value v is
denoted as ||W(v)|].

B.1.2. Proportional Influence

But, this will not differentiate the influence of a type
of an entity if the number of types for that entities is
high or low. For example, if we have the polymath
“Bertrand Russell,” he will be annotated with multi-
ple types: logician, mathematician, historian, writer,
and Nobel prize Laureate. Having multiple types, we
have less confidence in the intended one for the con-
text. If the input data is about Nobel prize Laureates,
then this is the anticipated type. If the other people in
the input data are mathematicians, then probably the
type “mathematician” is the one that we are looking
for. Having multiple types reduces confidence, and we
reflect this on the formulation. We have this for each
entity proposed for each cell so that entities with fewer
types have higher confidence than the ones with more
types. To formulate this, we first divide the score of
a single cell for each entity. The intuition is that cells
with more candidate entities have lower confidence.
We will have m, and then for each entity e, we will
have Wle)“ where ||Z(v)|| is the number of entities
for the cell value v and ||Q(e)|| is the number of types
for the entity e. Combining these two, we present the
equation (E(v) are the entities for a given cell value v):

1
;mzl Ve € E(v)

We illustrate this in Figure 3. Since we want to choose
the type to maximize the coverage score, we aggregate
the coverage score for each type ¢ as follows:

1
L(t) = ZZ TZOTEEl Yv,e:t€ Qle),e € Z(e)

Note that the 7 in the equation is for the cells with a
value v that has an entity e that has a type 7. I.(¢) is the
coverage for a single type .

B.1.3. Inclusion

In the previous equation, we did not take into account
that a parent type (in the type hierarchy) actually cov-
ers all the cells its children cover. We include this in
the below recursive equation:

Lc(t) = Ic(t) + ZLC(M)

So, the L.(t) coverage of a type ¢ is the I.(¢) of ¢ plus
the coverage L. of its children.

The L.(t) coverage increases as the number of entities
increase. To overcome this, we normalize L.(¢) by di-
viding it by the number of cells m . This would make
the coverage insensitive to the number of cells in the
column. The final coverage score would be:

B.2. specificity

Besides, choosing a type that covers as much from
the cells as possible, we also want to be as specific
as possible. More specific types are more valuable, as
the probability decreases the value of the correspond-
ing piece of information increases. This also follows
our intuition that we are generally more interested in
knowing that a given entity is a basketball player than
it being an athlete or a person.

The first intuition that came to our mind is the level of
the type in the type hierarchy. The deeper the type node
is, the more specific it is. Even though the depth gives
us an idea of the specificity of the type, it treats all lev-
els the same way. Knowledge graphs may have more
levels (subclass relation) in some domains (in the same
knowledge graph) than others, which not necessarily
reflect the specificity. As an alternative, we thought of
using the number of instances. To know how specific
a type t is, we divide the number of instances of a
type ¢ (||R(¢)||) by the number of instances of its parent

(IR(P)ID:

_ IR0
IR(p)

I(1)
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Fig. 3. The coverage score break down for a single cell

We refer to I, as the instance specificity'.

This gives us satisfactory results, but it only takes into
account the type and its parent. Since the number of
entities of a type is less than or equal to the number
of entities of its parent, the results will be bounded by
0 and 1. To include the specificity of its parent, we
multiply the instance specificity of the type 7 (I,(¢)) by
the local specificity of its parent p (Ls(p)). The local
specificity is computed as:

Ls(t) = Is(t) * Ls(p)
Following the local specificity equation, the more spe-

cific the type t is, the lower its value becomes. We
are looking for a formula f; that increases as the lo-

note that instance specificity does not refer to the specificity of
an entity. It refers to the specificity of a single type # in relation with
its parent p

cal specificity decreases. The first thing that came
to our mind is an inverted version of the square
function, which is a curve. We can also experiment
with a straight line as well. Another aspect is that
we need is for the function to be bound by O and
1. We pick five functions that satisfies these condi-

tions: \/(1 — Ly(t)?), —Ly(t)* + 1, 1 — \/L(1), (1 —
/Ls(t))?, and —L(t) + 1 (Fig 4).

1
_ 0.75 — JAZLO
I 05 N e NN\ e L@
0251 O Tl TN\ e C—Ly(1) +1
0 S SRV ()
—~— (1 —+/Ly(0)?

Fig. 4. Different candidate specificity functions
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