
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

EDR: A Generic Approach for the
Distribution of Rule-Based Reasoning in a
Cloud-Fog continuum
Nicolas Seydoux a,b, Khalil Drira b Nathalie Hernandez a,* and Thierry Monteil b

a MELODI, IRIT, Toulouse, France
email: {name.surname}@irit.fr
b SARA, LAAS-CNRS,
Université de Toulouse, CNRS, INSA, Toulouse, France
email: {name.surname}@laas.fr

Editors: Federica Cena, University of Turin, Italy; Armin Haller, Autralian National University, Australia; Maxime Lefrançois, École des
Mines de Saint-Étienne, France
Solicited reviews: Maxime Lefrançois, École des Mines de Saint-Étienne, France; Two anonymous reviewers

Abstract. The successful deployment of the Semantic Web of Things (SWoT) requires the adaptation of the Semantic Web
principles and technologies to the constraints of the IoT domain, which is the challenging research direction we address here.
In this context we promote distributed reasoning approaches in IoT systems by implementing a hybrid deployment of reasoning
rules relying on the complementarity of Cloud and Fog computing. Our solution benefits from the complementarity between
Cloud and Fog infrastructures. Indeed, remote powerful Cloud computation resources are essential to the deployment of scalable
IoT applications, and locally distributed constrained Fog resources, close to data producers, enable low-latency decision making.
Moreover, as IoT networks are open and evolutive, the computation should be dynamically distributed across Fog nodes accord-
ing to the transformation of the network topology. For this purpose, we propose the Emergent Distributed Reasoning (EDR)
approach, implementing a dynamic distributed deployment of reasoning rules in a Cloud-Fog IoT architecture. We elaborated
mechanisms enabling the genericity and the dynamicity of EDR. We evaluated its scalability and applicability in a simulated
smart factory use-case. The complementarity between Fog and Cloud in this context is assessed based on the experimentation
conducted.

Keywords: Distributed reasoning, SWoT, Semantic Fog computing, SHACL rules

1. Introduction

The maturity of Internet of Things (IoT) communi-
cation technologies is fostering a wide variety of in-
dustrial and societal applications, including home au-
tomation and industry 4.0 scenarios. However, the het-
erogeneity of IoT data and use cases raises interoper-
ability issues constituting hurdles for the development
of cross-domain IoT service platforms, leading to iso-

*Corresponding author. E-mail: {surname.name}@zwifi.eu.

lated application silos. The Semantic Web (SW) tech-
nologies and principles constitute an interoperability
enabler providing expressive vocabularies to describe
data and manipulate information. The domain at the
interface between the SW and the IoT is called the Se-
mantic Web Of Things (SWoT), and its emergence is
not trivial. Even though the SWoT was envisioned as
soon as the fundamental article of the SW [?] was
published, where smart agents interact with devices in
the user’s environment, practical SWoT achievements
were proposed in recent years only [?]. In particular, a

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:\protect \protect \T1\textbraceleft surname.name\protect \protect \T1\textbraceright @zwifi.eu

2 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

core challenge the SWoT is facing is the deployment of
SW technologies, which are resource-consuming, into
IoT networks, characterized by constrained devices.

The integration of the SW stack into an IoT ar-
chitecture is often centered on remote and powerful
machines as in [?] or [?]. IoT data is centralized
on such machines before being processed using SW
technologies, in a Cloud computing approach [?].
SWoT deployment architectures consider pervasively
distributed devices, with potentially limited compu-
tation and communication capabilities. Transporting
data from these local devices to remote Cloud servers
relies on multiple middle nodes. It introduces a delay
in data processing, and can degrade applications’ re-
sponsivity.

Distributing the SW stack among the multiple mid-
dle nodes between the Cloud servers and the IoT de-
vices allows the SWoT architecture to avoid the draw-
backs of a Cloud-centered processing. By doing so,
the architectures evolve towards the Fog computing
paradigm [?] that promotes data storage and process-
ing at the edge of the network [?]. However, Fog
computing is not introduced as a paradigm meant to
replace Cloud computing: its limited computing capa-
bilities, as well as the locality of the scale of its de-
ployments, are not suited to support Cloud computing
use cases. Cloud and Fog computing are two com-
plementary approaches that, when associated, enable
the deployment of complex SWoT applications [?].

In the scope on this paper, the purpose of semantic
processing is, thanks to knowledge captured in ontolo-
gies, to process data in order to produce meaningful
business information. One can suppose that knowl-
edge about the deployed IoT system and its environ-
ment is modelled beforehand by the system adminis-
trators. However, business-specific knowledge needs
may not have been identified when the IoT system is
designed and might need to be injected into to rea-
soning system at runtine. Business-specific knowledge
must therefore be modeled as self-contained bundles,
and inserted into the system at runtime when needed.
Moreover, when considering a distributed approach,
all of the business knowledge might not be relevant in
the context of all the nodes. If packaged into bundles
that can be moved from node to node, business knowl-
edge may be opportunistically distributed in the net-
work. Inspired by the application bursting approach in-
troduced in [?], we propose to consider modular ap-
plications to enable the distribution of some of their
modules. Rules are a common way to capture business-

level logic: a rule is a self-contained representation of
a logical process.

Following these considerations, we consider in this
paper rule-based reasoning: rules are used as repre-
sentation of business logic, applied in a Knowledge
base (KB) capturing the environment of the node. The
proposed contribution is a generic approach to the
dynamic distribution of rule-based reasoning into
a Cloud-Fog IoT architecture, called Emergent Dis-
tributed Reasoning (EDR). EDR aims at harnessing
scalability and latency issues by distributing reason-
ing rules among Fog nodes, while benefiting from the
Cloud stability and permanent availability. Strategies
for rule distribution are often application-dependent,
with a wide variety of requirements due to the hetero-
geneity of IoT application domains. That is why EDR
is a generic approach, that can be specialized depend-
ing on the desired rule distribution strategy. The work
presented in this paper completes and extends two con-
ference articles, [?] and [?], where some aspects of
EDR and its refinements have been introduced. Novel
work includes a more extensive presentation of related
work, the detailed presentation of the vocabulary en-
abling the genericity of EDR and the description of
the usage of the Linked Rules [?] principles. Com-
plementary evaluations regarding the impact of distri-
bution, and the impact of the execution of EDR on a
constrained hardware are included, leading to a discus-
sion analyzing the light shed by the obtained results on
Cloud-Fog complementarity. The scientific challenge
we faced considers three characteristics of the dis-
tributed reasoning system: scalability, responsiveness,
and dynamicity. These characteristics are presented in
detail in Section §2. In Section §3, existing work is
introduced, to identify the added value of the present
contribution. The core contribution is detailed in Sec-
tion §4 and Section §5, and it is evaluated in Section
§6. This paper is concluded in Section §7.

2. Desirable characteristics for the proposed
solution

In order to capture the main characteristics of the
contribution presented in §4 and §5, an illustrative in-
dustry 4.0 use case is introduced, that will drive the
evaluations in Section §6. Elements considered in the
use case are then generalized into the main desirable
characteristics for the proposed approach.

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Fog-enabled smart factory

2.1. Illustrative smart factory use case

Let us consider a production plant divided into two
floors, processing different kinds of products. These
floors are modular: the plant structure is subject to
change in order to adapt to new productions. Each
floor is equipped with conveyor belts carrying prod-
ucts from machine to machine for transformation. De-
vices are organized hierarchically: machines are con-
nected to conveyors that are connected to the floor
gateway that itself collects and delivers data to the fac-
tory datacenter. The factory is equipped with sensors
in order to ensure the safety of workers: each floor is
equipped with presence, luminosity, particle and tem-
perature sensors, and the workers are equipped with
wearables communicating with nearby conveyors. Ob-
servations from the different sensors are used in or-
der to identify potentially harmful situations, and then
notify the control center, where actions can be taken
remotely. Unsafe situations are described with deduc-
tion rules, based on the semantic description of ob-
servations and of the environment. For instance, “The
presence of a worker near an operating conveyor in
a low luminosity environment is a personal security
hazard” is a potential rule. Some rules are also ded-
icated to quality insurance: sensors available in the
factory, such as temperature sensors, or sensors inte-
grated to machines and to the conveyor, enable the
continuous control of production quality. Some opera-
tions are temperature-sensitive, and a quality insurance
rule is “The detection of a temperature above a cer-
tain threshold while machines are operating is a break
in the cold chain”. As safety and quality insurance are

time-sensitive applications, rule processing should be
as fast as possible. Moreover, the mobility of some sen-
sors (e.g., worker wearables), combined with the mod-
ularity of the factory floors, create a dynamic network
topology that evolves over time.

2.2. Scalability

Due to the modularity of the factory, the number
of devices in the environment is not bounded a priori.
In the specific industry 4.0 use case, this device count
is unlikely to increase by multiple orders of magni-
tude, contrary to application domains of the IoT such
as smart cities or connected vehicles, where large vol-
umes of devices are involved.

Therefore, scalability is an important characteristic
for a SWoT system, and the decentralization of rea-
soning is an enabler of such scalability [?]. However,
the difference of computing power between Cloud
and Fog nodes should not be neglected: the intrinsic
capabilities of Cloud architectures enable a resource
upscale impossible for Fog architectures. Moreover,
Cloud infrastructures provide a stability that is com-
plementary to the dynamic nature of Fog architectures.
We propose therefore to leverage both the distributed
nature of Fog computing and the permanent, powerful
nature of Cloud computing by adopting a mixed ap-
proach.

2.3. Responsivity

In the proposed use case, the rules deployed in the
system are used to detect potentially harmful situa-
tions, requiring the inferred notifications to be received
by the control center as soon as possible. The proposed
system should be able to reduce as much as possible
the time from the appearance of an undesirable situa-
tion, and the moment where the control center is no-
tified of such situation. Responsivity therefore is an-
other desirable characteristic for our contribution.

Fog-enabled architectures trade computational power
for proximity with data sources, which reduces the
number of hops between data production and data
processing. This reduces delays due to message de-
livery to distant Cloud nodes, and it is also interest-
ing for situations where increasing the proximity with
data sources decreases the complexity of reasoning.
When decentralizing processing, the individual com-
putational load is reduced for each node compared to
a centralized approach, which can yield better perfor-
mances [?]. Instead of funneling all the data towards

4 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the Cloud before inferring higher level information,
combining Fog computing and direct communication
between Fog nodes and applications should enable a
faster notification delivery.

2.4. Dynamicity

IoT systems are dynamic by nature: they are open
systems, where devices can appear and disappear, as
well as move from one point to the other. In the smart
factory use case we introduced, the modularity of the
factory floors might lead to changes in the network.
More frequently, failures might happen, disconnecting
a device. For energy saving purposes, not all the ma-
chines might also be powered permanently. Moreover,
some devices are attached to workers that are mobile:
they will be connected to different machines over time,
leading to a dynamic network topology.

As the placement of rules in the network should
adapt to the evolution of the topology, the last char-
acteristic that we want for EDR is dynamicity. De-
pending on the devices available at a given moment
on a given node of the network, not all the applicative
rules will necessarily be relevant to this node. If a rule
requires observations from a sensor that disconnects,
carrying on applying this rule is a waste of resources.
Applications consuming IoT data are also subject to
change, and adapting the rule distribution strategy de-
pending on the applications is also an aspect of dynam-
icity we consider.

3. Related work for rule deployment in SWoT
architectures

As the proposed approach sets out to deploy rea-
soning rules among Fog nodes to enable deduc-
ing application-dedicated information from IoT data,
state-of-the-art work dealing with logical rules for
the IoT, distributed reasoning and processing on con-
strained nodes is presented.

3.1. Rules for the SWoT

Rules are logical twofold elements, composed of
preconditions and postconditions. Preconditions repre-
sent a state of the world such that the rule should be
applied in order to generate its post conditions, which
represent a new state of the world. In our literature
search, we identified two main types of rules associ-
ated to the SWoT [?]:

– Production rules, or deduction rules, in which
preconditions are expressed as a logical expres-
sion, and postconditions are new knowledge
which is the logical consequence of the precondi-
tions.

– Event-Condition-Action (ECA) rules, in which
preconditions are the association of a logical ex-
pression and an event triggering its evaluation,
and the postconditions are actions to be executed
if the preconditions are matched. Such actions are
not limited to knowledge inference: they can be
instantiated by running a piece of code.

As production rules are explicit deduction represen-
tations, they have been considered in IoT networks to
express and share the correlation between sensor ob-
servations and high-level symptoms since early work
on the SWoT [?]. [?] lists numerous works using rules
for context-awareness in the IoT.

With the goal of facilitating rule reuse, Linked Rules
principles have been proposed [?]. They apply the ba-
sic principles of Linked Open Data and Linked Open
Vocabularies to rules: rules are designated by deref-
erencable International Resource Identifier (IRI)s, ex-
pressed in W3C-compliant standards, and they can be
linked to each other. Inspired from the Linked Rules,
the Sensor-based Linked Open Rules (S-LOR) [?]
is dedicated to rule re-usability for deductions based
on sensor observations. Production rules are a mecha-
nism similar to Complex Event Processing (CEP) ap-
proaches, used for instance in [?], but the rule repre-
sentation shifts from an ad-hoc rule format in CEP to
a unified format in the SWoT.

[?] proposes a classification of production rules
for the IoT, in order to identify recurring patterns.
The authors distinguish rules enabling deductions from
relations between nodes, and from relations between
events (i.e. changes of the environment). In our contri-
bution, we go further than this distinction by manipu-
lating hybrid rules: their preconditions may rely both
on conditions expressed on the nodes of the network,
or on their environment.

3.2. Centralizing rule processing on Cloud nodes

In most existing approaches, i.e. [?], [?] or [?], pro-
duction rules are handled by Cloud nodes. An exam-
ple of Industrial IoT (IIoT) use case enabled by Cloud-
based semantic rules processing is presented in [?].
This paper proposes a self-configuring smart factory:
conveyors and machines produce data which is pro-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

cessed on a Cloud node where user rules are used to
make reconfiguration decisions. Rules are expressed
in SWRL. The same formalism is used in [?], where
production rules are computed in a central Cloud node
in order to dynamically reconfigure the communica-
tion network topology between devices and the Cloud
node. The inferred deductions are converted into net-
work reconfiguration actions by ad-hoc agents. A sim-
ilar hybrid approach is used in [?]: rules are expressed
as production rules, but their postconditions may in-
clude ad-hoc properties dedicated to the triggering of
actions.

In [?], a multi-agent blackboard approach is cho-
sen to dynamically manage rules in a smart home. Ob-
servations are published to a central node, the Do-
motic Status Board (DSB), where they are checked
against rules in order to trigger inferences and reac-
tions: the rules considered combine properties of pro-
duction rules and ECA rules. Rules are expressed in
the Jena formalism1, and an interface also allows users
to control the system based on controlled grammar
sentences. In this system, rules may be injected or
deactivated at runtime. ECA rules are also used in a
smart home use case in [?]: the authors propose an
autonomic-like approach, where collected data is used
to trigger actions of the system based on rules. A dis-
tinction is made between two types of actions stored
in the KB: high-level actions, which are policies cho-
sen by the user, and low-level actions, which are the
actual implementations of the former, built by domain
experts to hide the complexity of the system to the end-
user. User preferences are expressed through a GUI,
and converted from the GUI to KB individuals. Dur-
ing this conversion, appropriate low-level actions are
selected to implement user-generated policies. The ac-
tual deployment topology is not presented, but the ab-
sence of any element indicating a distribution of the
underlying platform leads to the conclusion that it is
executed on a central node.

Production rules are used for context-awareness in a
smart user space in [?]. Location information is com-
bined to business knowledge, and to observations of
the state of the user’s environment, in order to make as-
sumptions on the context. For instance, the following
is a rule introduced by the authors: “IF the user is in
an airport lounge with a low luminosity and the drapes
closed THEN the user is sleeping”. Such deduction is
then used by context-aware services to adapt their be-

1https://jena.apache.org/documentation/inference/#rules

havior, materialized by ECA rules. Data required for
the deductions are gathered into a central hub before
being processed, and deductions are then sent to re-
mote nodes.

Rules are deported on Cloud nodes rather than ex-
ecuted in Fog nodes when used to achieve context-
awareness, such as in [?] or [?], in order to obtain a
global execution context. However, in [?] for instance,
some reconfiguration decisions could be taken consid-
ering only a local context. In this case, rules could be
executed directly on Fog nodes.

3.3. Distributing rule processing on Fog nodes

The centralized architecture of the previously de-
scribed papers raises issues such as the cost of seman-
tic reasoning that increases rapidly with the size of
the KB [?]. Fog computing offers a low-latency, re-
silient alternative for rule processing, even though the
constrained nature of Fog nodes (compared to Cloud
nodes) must be taken into account: processing power
or bandwidth are critical resources. Centralization also
requires all the content collected by IoT devices to
be processed in the same place, while Fog comput-
ing makes computing power available closer to IoT de-
vices. Fog computing enables contentto be processed
with rules where it is produced, rather than requiring
it to be transported to a remote node to be processed by
Cloud computing. Rule placement in Fog architectures
is thus a topic of interest for the SWoT

Most approaches for processing on constrained
nodes focus on optimizations enabling such process-
ing for a single node without considering the others.
When considering a distributed execution composed
of several Fog nodes, processing placement is not dy-
namic: all nodes execute the same rules, or each a pre-
defined rule set statically assigned. For instance, even
though it is not directly targeted at SWoT applications,
the RETE algorithm proposed in [?] is dedicated to
constrained nodes. RETE aims at reducing the mem-
ory requirements for production rule processing. This
is a very interesting optimization, but it is dedicated
to a single Fog node and does not consider distributed
processing. [?] shows how gateways are Fog nodes ca-
pable of enriching data: observations are initially pro-
duced by legacy devices in ad-hoc formats. It is the
gateway, communicating with devices using protocols
adapted to constrained environments, such as CoAP,
that enriches the data before forwarding it towards a
Cloud node. Observations are therefore enriched on
the edge of the network, and only the Fog nodes in di-

https://jena.apache.org/documentation/inference/#rules

6 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

rect contact with legacy devices have to perform data
enrichment. [?] or [?] propose to execute ECA in Fog
architectures, used to automate the response of the sys-
tem to a stimulus. However, both authors only consider
one gateway executing the rules, and the ad-hoc rule
format is not suited for rule exchange. The contribution
introduced in [?] uses ECA rules associated to SW
formalisms, namely SWRL and SPARQL. The authors
use the Wiselib RDF provider [?], as well as CoAP
and 6LowPan communication, in order to enable se-
mantic processing directly on constrained nodes. How
rules are distributed in the network is not discussed.

Regarding processing distribution in existing work,
the dynamic nature of IoT networks should be con-
sidered. The topology of a network evolves as devices
connect, disconnect, or move geographically. There-
fore, a viable distribution of rules at a given moment
is not guaranteed to remain optimal in the future, and
the distribution strategy should be adapted to the
evolution of the network topology. [?] does not de-
tail the mobility strategy used for its mobile nodes, and
each node applies all the rules regardless of their rele-
vance to the content it aggregates. In [?], rule place-
ment is static, in either Cloud or Fog nodes. [?] fo-
cuses on resource placement in a Fog-enabled IoT.
The authors compute optimal deployment of applica-
tion modules based on the representation of available
resources in the Fog architecture compared to require-
ments expressed by applications. Module positions are
static, and computed at the time of deployment. Rules
are deployed on gateways in an IIoT context in [?].
The rules themselves are not expressed using SW for-
malisms, but they are combined to a semantic engine
proposed in [?] in order to consume enriched data.
The placement of rules in the Fog architecture is not
dynamic, however ad-hoc mechanisms enable rule up-
date at runtime.

EDR differs from previous proposals by several as-
pects in order to comply with the requirements de-
scribed in Section §2:

– The locality of the knowledge involved in the rule
deployment: each node only considers its own KB
when propagating a rule.

– The dynamicity of rule deployment in the SWoT
system at runtime, constantly adapting to the state
of the topology in an event-driven behavior.

– The genericity of the approach, enabling its adap-
tation to various application-level strategies.

4. EDR, a generic approach to dynamically
distributed rule-based reasoning

In this section, EDR, a generic approach to dynami-
cally distributed rule-based reasoning supported by se-
mantic Fog computing, is introduced. EDR is based on
architectural assumptions that are presented in Section
§4.1. EDR’s functional overview is depicted in Sec-
tion §4.2, before presenting the vocabulary used to de-
scribe EDR core functionalities in Section §4.3. Mod-
ular rules are at the core of EDR, the formalisms used
to represent them and the roles of their modules is de-
scribed in Section §4.4.

4.1. Assumptions on the underlying architecture

EDR is based on the hypothesis of a hierarchi-
cal network topology: nodes are organized in a tree-
like structure, and only communicate with neighbor-
ing nodes, i.e. Cloud node and semantic-computing-
enabled Fog nodes. The neighbours of a node are ei-
ther its (unique) parent, or its children nodes. This as-
sumption is made because such topologies are frequent
in IoT networks, represented in studies such as [?], [?
], [?] (based on the oneM2M standard), [?], or [?].
Based on this hypothesis, it can be assumed that there
only is one path from any node to any of its ancestors,
which simplifies our approach.

Applications are not deployed on a Cloud node be-
longing to the IoT topology: they are executed re-
motely on personal devices such as smartphones or
laptops. Rules represent applicative needs: when de-
ductions from sensor observations are required by an
application, it injects the rule in the network in order
to be provided directly with the deductions, instead of
being forwarded raw data by the network and applying
the rules itself.

It is therefore assumed that Fog nodes can commu-
nicate with applications directly. Rules are initially
submitted by applications to the Cloud node, so it is the
only node they know a priori. The Cloud infrastruc-
ture provides a unique permanent interface to the net-
work, the dynamic Fog topology underneath is there-
fore transparent for applications.

We qualified the EDR as "dynamic", because nodes
constantly re-evaluate their past decisions (e.g rule
management or data propagation). Whenever an event
occurs that may impact the current distribution of the
rules in the network, each node locally recomputes the
decision algorithm shown on Fig. 4, and introduced in
the remainder of this section. However, the proposed

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

approach will adapt to the evolutions of the underlying
topology based on the assumption that all events im-
pacting the topology are considered by the appropriate
nodes. In particular, the failure of a node must be cap-
tured by its parent, which must then propagate the con-
sequences of this event on its own behavior to the rest
of the network. Therefore, we consider failure man-
agement to be handled in the middleware layer, and it
does not need to be explicitly handled in the scope of
the applicative layer proposed in this contribution.

4.2. Overview of the EDR approach

In order to ensure decentralization, the algorithm of
the EDR approach is executed in parallel on each node
able to perform reasoning in the topology. EDR con-
siders a neighbor-to-neighbor rule and data propaga-
tion, enabling a reduction the nodes’ knowledge of the
topology to a limited subset of the complete deploy-
ment. Thus, consistency of the knowledge only has to
be maintained with neighbors, which limits required
knowledge-related exchanges between nodes, and im-
proves scalability. Due to the potential mobility and
variable availability of Fog nodes, EDR is meant to
foster decision making in a local context for each
node, leading at a large scale to the dynamic emer-
gence of a desirable behavior.

A parent node propagates a rule to its child if the
parent considers that the child is empowered to apply
the rule. This decision is made by the parent based on a
deployment strategy embedded in the rule, as well as
on the knowledge it has of said child. The deployment
strategy captures the criteria required for a node to
process a rule, and therefore characterizes if a child
node is suitable to be forwarded said rule. In order to
enable rule deployment, nodes exchange messages de-
scribing their characteristics, e.g., their location, the
type of data they observe, or the type of data they are
interested in. To ensure the dynamicity of the rule de-
ployment with respect to the evolving network topol-
ogy, these messages are exchanged constantly, when-
ever nodes characteristics are modified. When a node
makes a new deduction based on a rule, it sends the re-
sult to all the nodes it knows to be interested, including
the application that submitted the rule.

The EDR approach itself is agnostic to the de-
ployment strategy, which is defined by the rule im-
plementer: that is why we qualify EDR as generic. The
present section §4 is dedicated to the EDR approach,
which defines the characteristics of a deployment strat-
egy without implementing them. Such implementation

is described with a refinement of EDR, EDRT , intro-
duced in Section §5.

A functional representation of an EDR node is pro-
vided in Fig. 2: each node has a local KB, where
knowledge necessary to the execution of EDR is
stored. This knowledge is used to drive the basic func-
tionalities of the node, and rules are used by the infer-
ence engine to update the KB.

Featured knowledge includes:

– the knowledge the node has of its own character-
istics,

– the knowledge it has about its neighbors,
– the knowledge it has about the static organization

of the environment such as the geographic or in-
door location, or the relationship between the sur-
rounding elements,

– the value of the last observations depicting the
current state of the dynamic features of the envi-
ronment,

– the rules that it has received from either applica-
tions or other nodes.

This knowledge is used to control the behavior of
the node, composed of simple functionalities. A node
is able to:

– Send a piece of data, typically a sensor observa-
tion, to a remote node,

– Propagate a rule to a remote node,
– Apply a rule on its knowledge base,
– Announce a description of its own characteristics

to a remote node,
– Deliver a deduction obtained by processing a rule

to a remote node,

How these node functionalities are related to the KB
in the core EDR mechanism to enable the propaga-
tion of observations and rules is described in Section
§4.3. The modular rule representation embedding the
deployment strategy, and the updates of the KB they
trigger, are detailed in Section §4.4. In this paper, the
focus is on the propagation of rules, and on their exe-
cution, which leads to the production of new informa-
tion. How this information may be used by the nodes
to trigger real-world actions is not in the scope of this
contribution. Using high-level deduction to trigger ac-
tions in an autonomic loop has been the topic of previ-
ous work [?].

4.3. A vocabulary driving the deployment mechanism

Node behavior is made quite simple on purpose, in
order to decorrelate the rule-specific deployment strat-

8 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. EDR node-centric functional overview

egy from the core algorithm on which EDR is based.
Rule deployment strategies are dedicated to a partic-
ular purpose, e.g., response time reduction or privacy
enforcement, while EDR is generic. In order to sup-
port the genericity of EDR with a knowledge-driven
method, node functionalities are based on a dedicated
vocabulary, used to describe knowledge in the node’s
KB.

For instance, this vocabulary captures the hierarchi-
cal nature of the topology. Let the set of children of
node n be referred to as Children(n), and the single-
ton containing n’s parent be noted Parent(n). The re-
lation between a node n and any nc ∈ Children(n)

is expressed with the triple <n,lmu:hasDownstream-
Node,nc>

2,3, based on a nomenclature presented in [?
]. The inverse relation exists, to express the connec-
tion between a node n and its parent np ∈ Parent(n):
<n,lmu:hasUpstreamNode,np>.

A description of all the functionalities of the nodes,
and of the vocabulary that drives them, is provided
in Section §4.3.1. Further details about the announce-
ment functionality are provided in Section §4.3.2, es-
pecially with regard to the consumption of data. Fi-
nally, the scope of the announcements is studied in
Section §4.3.3.

4.3.1. Basic node functionalities
Each functionality relies on dedicated triples, and a

node implements its behavior based on the description
held in its KB. How these triples are inferred from the
deployment strategy is described in the next section
§4.4. Before detailing how the strategy triggers nodes
functionalities, let us examine the vocabulary describ-
ing said node functionalities.

2Namespaces are available in Appendix A
3Individuals such as n and nc are identified with an IRI in the

triples

Announce self-description: When a node connects,
disconnects or changes characteristics, it notifies its
neighbors of its self-representation. Since a notifica-
tion is sent at each update of the node’s state, the per-
ception of a node by its neighbors remains consistent
with its evolution over time. Two mechanisms support
this announcement:

– a partial update, in which a node adds statements
to its description already held by the target

– a complete update, in which the representation of
the node is completely erased by the target before
being updated.

These mechanisms add information about a node by
exchanging light messages containing partial represen-
tations, while removing outdated statements with the
complete update. A particular node characteristic that
is declared in the announcement functionality is the
type of data in which a node is interested, captured
with the predicate edrt:isInterestedIn, which is used
in the data sending functionality. The announcement
functionality is extended by the mechanisms described
in Section §4.3.2 to control which characteristics of the
node are propagated, and the scope of this propagation
in Section §4.3.3.

Apply rules: When a node n receives a new obser-
vation, either from its own sensors or children, n exe-
cutes the rules r stored in its KB if the description of r
contains <r,edr:isRuleActive,true>.

Deliver deduction: If the processing of an observa-
tion with rule r by node n leads to a deduction δ, δ
is sent to each node belonging to

⋃
nconsumer where

<nconsumer,edr:consumesResult,r> is in the KB of n.
The application that submitted the rule r to the network
is known as the rule originator o, and is represented
by the triple <r,edr:ruleOriginatedFrom,o>. The orig-
inator of a rule is considered as a consumer of rule re-
sults, in order to enable deduction delivery to applica-
tions. The deduction delivery functionality is separated

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

from the interest notification part of the announcement
functionality for flexibility.

Send data: When node n receives an observation of
type ρt, if np ∈ Parent(n) has declared its interest for
this type, the observation is forwarded toward np. Ob-
servations are exchanged lazily: if a node n receives an
observation of type ρt, and knows no other node inter-
est in such type, the observation is not forwarded. Such
interest is represented in node n KB with the triple
<np,edr:isInterestedIn,ρt>. The notification of the in-
terest is considered as a characteristic of the node,
managed in the announcement functionality.

Propagate rule: A node sends a rule to one of its
neighbors if it considers that its target is capable of
applying the rule, such a consideration being part of
the rule deployment strategy. In the case where rule
r should be propagated towards node ntarget by n, the
triple <r,edr:transferableTo,ntarget> is present in n’s
KB.

4.3.2. Controlling node characteristics propagation
The EDR algorithm depends on the exchanges be-

tween neighboring nodes of their mutual descriptions,
enabled by the announcement functionality. However,
presupposing node characteristics relevant to any de-
ployment strategy that will be implemented to refine
EDR is not possible. In order to remain agnostic to the
deployment strategy, EDR relies on a dedicated vocab-
ulary used to describe which of each node’s character-
istics should be announced to its neighbors. A node has
two types of neighbors: its parent, and its children, and
since the parent is unique (according to our assump-
tions) while the children are potentially many, two ap-
proaches are devised.

Announcing characteristics to a node’s parent: Let
us consider a node n, with a characteristic represented
by a property hasCharacteristic and captured in its
knowledge base such that <n,hasCharacteristic,ν>,
with ν either a literal or an individual. When announc-
ing its characteristics to its parent, n searches in its KB
for all the triples where it is the subject, and the pred-
icate is typed as edr:ParentAnnouncedProperty. If the
property hasCharacteristic is such that <hasCharac-
teristic,rdf:type,edr:ParentAnnouncedProperty>, then
the triple <n,hasCharacteristic,ν> is part of the self
description sent by the node n to its parent because
hasCharacteristic is considered a relevant character-
istic of n.

Announcing characteristics to a node’s children: The
announcement mechanism from parent to children
is quite similar to the one from children to parent,
with the difference that children may be many. There-
fore, the class edr:ChildrenAnnouncedProperty has
two subclasses to distinguish two possible cases:

– edr:AllChildrenAnnouncedProperty denotes a char-
acteristic that is systematically announced to all
the node’s children.

– edr:SomeChildrenAnnouncedProperty denotes a
characteristic that should only be announced to a
subset of the node’s children.

This distinction is made to give flexibility to the de-
ployment strategy designers.

In the case of a characteristic captured by a pred-
icate of type edr:SomeChildrenAnnouncedProperty,
each child eligible to be proxied the new characteris-
tic must be represented explicitly with the predicate
edr:announceTo, which requires the reification of the
announced characteristic. In order to be announced to-
wards child node nc ∈ Children(n), the triple <n,has-
Charac,ν> is transformed into the following reified
statement: statement rd f :sub ject nc; rd f :predicate
hasCharac; rd f :ob ject ν; edr:announceTo nc. The
choice of the children to which the characteristic
should be announced is application-specific, and is
therefore part of the deployment strategy. As the rest
of the deployment strategy, it is embedded in rules as
described in Section §4.4.

The interest of a node for a type of data, denoted
by the predicate edr:isInterestedIn, is managed as a
node characteristic. Therefore, depending on the de-
ployment strategy, the interest of nodes is classified
as one of the subclasses of edr:ChildrenAnnounced-
Property. More details about this particular predicate
are provided in Section §5, with the instantiation of a
concrete deployment strategy.

4.3.3. Propagating knowledge beyond neighbors
EDR is designed for neighbor-to-neighbor rule and

data propagation: a node n only communicates with
n′ ∈ Parent(n) ∪ Children(n) (with the exception of
deduction delivery). However, such design may ham-
per the propagation of rules, by preventing the diffu-
sion of knowledge required by the deployment strat-
egy to make decisions as to where the rules should be
placed. We want to avoid the situation in which the
characteristics of a node nc ∈ Children(n) makes it ad-
equate to apply a rule which is held by np ∈ Parent(n),
but n cannot apply the rule, and therefore np does not

10 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

propagate the rule to n, preventing its eventual prop-
agation to nc. A complementary functionality is thus
described by the EDR vocabulary to enable such dif-
fusion of knowledge describing node characteristics:
proxying.

The proxying mechanism implemented in EDR is
inspired from [?], where reasoning nodes act as proxy
for the characteristics of legacy nodes unable to pro-
cess enriched data. In EDR, each reasoning-enabled
node has a similar role, and proxy characteristics of
its neighbors. Such proxying is bidirectional: the char-
acteristics of a node’s parent are proxied towards its
children, and vice versa. Specifically, node n proxy-
ing a characteristics of np ∈ Parent(n) towards any
nc ∈ Children(n) means that n announces such charac-
teristics to nc as if it were its own. An example of prox-
ied node characteristics, detailed in Section §5.2.2, is
the interest of a node for a data type, briefly introduced
here for the sake of illustration.

If a node n wants to be notified whenever a tem-
perature observation is available, it notifies its children
nc ∈ Children(n) of such interest. If any nc collects
temperature observations, it will forward such obser-
vations towards n. Moreover, each nc will in turn notify
that it is itself interested in temperature observations
to any node ncc ∈ Children(nc). Any node ncc collect-
ing a temperature observation will therefore send it to
nc, which will itself send such an observation to n. The
characteristic of the initial node n (here, the interest
in temperature) has indeed been proxied to ncc by nc:
ncc only has knowledge of nc, and communication is
kept strictly between direct neighbors. To support this
mechanism, two classes of properties are defined in
the EDR vocabulary: edr:ParentProxiedProperty, and
edr:ChildrenProxiedProperty.

Characteristics proxied from children to parent: Let
us assume that nc ∈ Children(n), and that nc has
a characteristic expressed by the triple <nc,hasCha-
racteristic,ν>, that should be proxied towards np ∈
Parent(n). Such information about the predicate ν

is materialized by the triple <hasCharacteristic,rdf:-
type,edr:ParentProxiedProperty>. When receiving the
description of nc, n checks for the presence of prop-
erties classified as edr:ParentProxiedProperty. Since
hasCharacteristic is such a property, the node n up-
dates its own representation towards np by sending the
triple <n,hasCharacteristic,ν>, therefore proxying the
capacity of nc.

Characteristics proxied from parent to children: The
proxying mechanism from parent to children is similar
to the one from children to parent. Contrary to the an-
nouncement functionality, the multiplicity of children
is not considered: all the children are proxied any re-
ceived parent characteristic. Such policy is made nec-
essary by the locality of decision-making enforced by
EDR. On the one hand, a node n receiving a character-
istic to proxy np ∈ Parent(n) does not have the con-
textual knowledge that leads np to announce this par-
ticular characteristic to n. On the other hand, the node
np does not have a detailed knowledge of the topology
below n, and therefore cannot make any assumptions
about to which children in particular n should proxy
the characteristic of np.

It is possible that the proxying mechanism and the
announcement mechanism lead to conflicting behav-
iors. In particular, a node may have chosen not to an-
nounce a characteristic of its own to some of its chil-
dren, but be required to proxy the same characteristic
instead of one of its ancestors. In this case, the proxy-
ing mechanism supersedes the announcement mecha-
nism, and any proxied characteristic is processed as a
edr:AllChildrenAnnouncedProperty. For instance, if a
node n did not announce its interest for a data type ρt

to nc ∈ Children(n), n will nonetheless announce such
interest to nc if np ∈ Parent(n) notifies n of its own
interest for ρt.

4.4. Rule representation and deployment

4.4.1. Rule modular structure
EDR rules are composed of several modules, as rep-

resented on Fig. 3. Each of these modules enables
some node functionalities:

– The Rule propagation module triggers the rule
forwarding functionality

– The Result delivery module triggers the result de-
livery functionality

– The Activation module triggers the rule applica-
tion, the data consumption and the result delivery
functionalities.

– The Rule core module contains the actual busi-
ness logic of the rule

The intelligence regarding rule deployment is lo-
cated in the rules, and not hard-coded into EDR or
statically attached to nodes. The behavior of the algo-
rithm at a global scale can thus be parameterized at
a fine granularity, for each rule. Rules are represented
in SHACL, and the modules are based on the SHACL

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Rule modules

ex:ruleEnvelope

ex:ruleTransferShape

ex:resultDeliveryShape

ex:activationShape

ex:deductionShape

ex:ruleTransferRule

ex:resultDeliveryRule

ex:activationRule

ex:deductionRule

edr:hasTransferShape

edr:hasDeliveryShape

edr:hasTransferShape

edr:hasDeductionShape

sh:condition

sh:condition

sh:condition

sh:condition

Rule propagation module

Result delivery module

Activation module

Rule core module

sh:NodeShape sh:SPARQLRule

rdf:type rdf:type

advanced functionality named “SHACL rules”. Each
module is composed of two parts: a SHACL rule, that
inserts deductions into the KB, and a SHACL shape
that determines whether the rule is applied or not. An
example rule, named r1, is provided online 4. In the re-
mainder of this section, a generic description of these
rule modules and their roles is given, each illustrated
in r1. An implementation is proposed in Section §5,
where specific behaviors dedicated to a particular strat-
egy are described.

In order to associate all the modules to a rule rep-
resented as a single individual in a node’s KB, we in-
troduce the notion of rule envelope as a reification
mechanism. The envelope of an EDR rule is an indi-
vidual subject of triples whose predicates are edr:has-
TransferShape, edr:hasApplyShape, edr:hasDelivery-
Shape and edr:hasDeductionShape. The rule envelope
is especially useful in the rule deployment process,
when all the modules of a given rule must be collected
for the rule to be propagated to a remote node.

4.4.2. Rule modules
Core module The operational part of the rule, con-
taining the application-dedicated inference, is referred
to as the rule core module. The core module is based
on a predicate logic rule used to deduce high-level in-
formation, similar to the rules introduced in the use
case in Section §2.1. Let rcore be such a rule core mod-
ule, noted as rcore : Γ1 ∧ ... ∧ Γn → ∆1 ∧ ... ∧ ∆m,
where Γ1 ∧ ... ∧ Γn, designated as the body of rcore, is
a conjunction of conditions and ∆1 ∧ ... ∧∆m, desig-
nated as the head of rcore, is a conjunction of deduc-
tions. The rule core module only encompasses applica-

4https://w3id.org/laas-iot/edr/iiot/r1.ttl

tive deduction logic: it is unrelated to the deployment
of the rule. rcore is only evaluated when the whole rule
r has been declared active on a node in the deployment
process, i.e. if the triple <r,edr:isRuleActive,true> is in
the node’s KB.

Rule transfer module The rule transfer module de-
termines on which remote nodes the rule may be de-
ployed, according to a rule-specific deployment strat-
egy. This condition is expressed as a SPARQL query
embedded in the SHACL rule being the conditional
part of the rule transfer module. The deduction part of
the module infers the triple <r,edr:transferableTo,n′>,
enabling the rule forwarding mechanism of the node
(c.f. Section §4.3.1). The transfer module of a rule r is
denoted rtrans f er.

Rule activation module The activation module de-
tects if the current node is suitable to apply the rule
itself. If the conditional part of rule r activation mod-
ule determines that the current node is suitable to ap-
ply r, the activation of rule r is made explicit by
the triple <r,edr:isRuleActive,true>. In the case where
some node characteristics are conditionally proxied
towards children (edr:SomeChildrenProxiedProperty),
the rule activation module may infer reified statements
as described in Section §4.3.3. This case is illustrated
in more detail in Section §5.3. The activation module
of a rule r is denoted ractivation.

Result delivery module The result transfer module
enables the forwarding of deductions to other nodes
that are not the originator of the rule, such as the par-
ent n′ of a node n if n′ applies a rule r′ that con-
sumes the deductions made by a rule r applied by n.
By default, the originator o of a rule r is assumed to
be interested in the results of r, denoted with <o,edr:-
consumesResult,r>. If a remote node n′ is interested in
the deductions made by rule r, the result transfer mod-
ule infers that <n′,edr:consumesResult,r>.

4.4.3. Dynamically managing modules activation
The rule core must be computed each time a new ob-

servation is received by the node, in order to check if
new deductions may be inferred. However, it is worth
noting that the other rule modules only need to be eval-
uated when the rule is received, or when the topology
evolves, e.g., with new productions by children, new
consumptions by parent, or nodes connecting/discon-
necting.

The SHACL standard is such that by default, when
reasoning on a KB containing SHACL shapes and

https://w3id.org/laas-iot/edr/iiot/r1.ttl

12 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

rules, all of them are considered5. In order to reduce
the computation load, and to only process rule mod-
ules when needed, a SHACL functionality is used: the
reasoner does not consider shapes or rules r such that
<r,sh:deactivated,true>. The modules of a rule r are
therefore only activated for a reasoning step when r is
received, or when the topology evolves.

The appropriate modules, i.e. all except the core
module, are classified as edr:NodeSensitiveComponent
(as opposed to what would be a “Content sensitive
component”). Therefore, a unique query activates or
deactivates rule modules related to deployment, for all
the rules stored in a node’s KB.

Deployment module management is represented on
Fig. 4, in an overview of the algorithm. When a rule is
initially received, all of its modules are active. No ac-
tivation is required when receiving a new rule, marker
(1) on Fig. 4. The rule deployment update, marker (3)
on Fig. 4, is performed by the reasoner. Since no other
rule deployment module has been activated since the
new rule has been received, and by default these mod-
ules are deactivated, only the deployment of the newly
received rule is computed.

In the case where the node receives information
about a topology update, such as the connection or
disconnection of a node or the change of characteris-
tics of a known node, it is possible that the rule de-
ployment should be updated accordingly. For this rea-
son, for all the rules stored in the node’s KB, the de-
ployment modules are activated upon the reception of
a topology update, as seen in marker (2) on Fig. 4.
The received change is then integrated in the KB, and
if necessary the new topology is propagated to par-
ent nodes, before performing a reasoning step comput-
ing the deployment rule modules. If the placement rule
needs to be updated due to the topology change, the
new deployment is enforced by activating or propagat-
ing rules in compliance with the deductions and the
EDR vocabulary, before deactivating the rule deploy-
ment modules, marker (4) on Fig. 4.

If the received message is an observation, no rule de-
ployment update is required. The only active rule mod-
ules are the core modules for rules that the node should
process, and they are used by the reasoner to test if new
inferences are possible. The marking and propagation
of deductions is discussed in Section §4.4.4.

5See Section §4.3 of the recommendation https://www.w3.org/
TR/shacl/#validation-definition

Fig. 4. EDR algorithmic overview
Message reception

Is the message
an observation ?

Is the mes-
sage a rule ?

All rules modules
activation (2)

Update topology
representation

Propagate
new topology

Update rule
deployment (3)

All rules modules
deactivation (4)

Reasoning

Mark data (5)

Data and deduc-
tion propagation

No

No (the message is a
topology update)

Yes (1)

Yes

4.4.4. Leveraging the unique identification of rules
EDR rules are compliant with the Linked Rules

principles [?], and in particular they are uniquely
identified by an IRI. The identification of rules being
shared among all nodes, provenance can be traced for
a given deduction. Two purposes have been identified
for this traceability: the avoidance of redundant com-
putation, and the update of rules at runtime.

Preventing redundant computation With the rules
being uniquely identified among all nodes, it is pos-
sible to mark observations when they have been pro-
cessed with a rule, successfully leading to a deduc-
tion or not. After an observation o has been in-
volved in a reasoning step with rule r, a new triple
is added to the observation description: <o,edr:used-
ForDeductionBy,r>. This marking prevents an obser-
vation being processed multiple times with the same
rule when it is propagated from one node to another.
Considering this marking or not is up to the rule im-
plementers: for instance, the strategy presented in Sec-
tion §5 takes it into account, so that each observation
is at most processed once by each rule for performance
issues. Depending on the propagation strategy, it may
be necessary to process the same piece of data with
the same rule in multiple contexts, in which case the
marking may be ignored. The marking of observations
with the edr:usedForDeductionBy property is shown
on Fig. 4, marker (5).

If a rule is submitted by multiple applications to the
topology, the uniqueness of the identifier also avoids
redundant processing. In a node’s KB, each rule can

https://www.w3.org/TR/shacl/#validation-definition
https://www.w3.org/TR/shacl/#validation-definition

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

be associated to several originators, indicating that
the deduction should be sent to several applications.
Expressed in an application-specific namespace, two
identical rules would be applied twice, leading to a
waste of resources.

Updating rules at runtime The use of a unique deref-
erencable identifier also incrementally modifies rules
at runtime, so that the operation of the monitored sys-
tem is not interrupted. Modifying rules allow applica-
tions to fine-tune their behavior according to a feed-
back loop that considers either previous responses to
inputs, or external factors (e.g., seasonal change, or
regulation evolution). When a rule r is received by a
node n, if r’s IRI is already known by n, all the triples
describing the rule are compared to the triples stored
in the node’s KB.

If the newly received version of the rule is different
from the version held by the node, then the rule rep-
resentation is updated in the KB, and the rule is pro-
cessed as if it were a new rule. All the modules of the
rule are evaluated, and changed characteristics of the
node, if there are any, are propagated to its neighbors
as in any topology change. However, it is possible that
the new representation of the rule is no longer appli-
cable by children of the current node (or by their de-
scendant in the case of proxying), to which the former
version of the rule had been previously propagated. In
the regular EDR algorithm, the rule would not be for-
warded to such children, but in this case this is an is-
sue: two different mutually exclusive versions of the
rule are executed in the topology.

To tackle this issue, an object property is used: when
a node n transfers a rule r to nc ∈ Children(n), it adds
the triple <r,edr:transferredTo,nc> to the rule descrip-
tion stored in its KB. When n updates r, it transfers
the new version of r towards any nc ∈ Children(n) if
nc received the former version of r by searching for
this predicate. If it is no longer relevant, i.e. if the new
version of r is not transferable to nc (according to its
transfer module), the triple <r,edr:transferredTo,nc> is
removed from n’s KB. Even if nc is not able to apply
the new version of r (as determined by the applica-
tion module of the rule), updating its KB enforces the
consistency of the representation of r across the net-
work. The same process is carried on recursively in or-
der to ensure that all the nodes of the topology eventu-
ally have an up-to-date representation of the rule. If n
had transferred r to nc because nc was proxying some
characteristics of its descendants, two situations are
possible. Either nc directly applied r without transfer-

ring it, in which case once nc receives the updated ver-
sion of r the propagation stops, or nc transferred r to
any ncc ∈ Children(nc). In this case, nc’s KB contains
the triple <r,edr:transferredTo,ncc>, and r’s update is
propagated towards ncc thanks to this triple, and so on.

This approach however leaves a consistency issue
unsolved: during the propagation of the new rule ver-
sion, the two mutually exclusive versions of the same
rule are both active. There is no guarantee that the lat-
est version of the rule has been propagated success-
fully at any point in time after its injection in the net-
work. A way to solve this issue is to attach a version
number to the rule with the owl:versioninfo annotation
property. This version information is then attached to
deductions made with the rule, so that applications are
aware of the version of the rule that leads to any de-
duction.

5. Refining EDR with EDRT

As has been said in Section §4, EDR is a generic
approach to rule deployment among semantic-enabled
Fog nodes, agnostic to the criteria according to which
rules are propagated in the topology. In order to
demonstrate the applicability of EDR, the present sec-
tion is dedicated to EDRT , an approach refining
EDR by implementing a deployment strategy.

After introducing the EDRT core principle in Sec-
tion §5.1, the knowledge required by nodes executing
EDRT is described in Section §5.2. How EDRT is im-
plemented in rule modules is discussed in Section §5.3.
The behavior of nodes executing EDRT is detailed in
Section §5.4, in order to capture the complete deploy-
ment process.

5.1. Implementing a deployment strategy based on
property types with EDRT

The purpose of EDRT is to bring rules as deep as
possible in the topology, in order for them to be pro-
cessed as soon as possible, while limiting unnecessary
message exchanges. EDRT is meant to reduce the de-
lay between the moment observations able to trigger a
deduction by a rule are produced by devices, and the
moment said deduction is received by the rule origina-
tor. Due to the assumed hierarchical nature of the net-
work, the deeper a node is in the topology, the fewer
descendants it has. A node processing a rule deeper
in the hierarchy will thus apply said rule less often,
on a smaller KB, since it should receive fewer updates

14 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

from its descendants. Since reasoning on a smaller KB
yields better performances [?], propagating rules as
deep as possible among reasoning nodes reduces com-
puting complexity. Therefore, in EDRT , a node receiv-
ing a rule propagates said rule to any of its children
able to process it.

EDRT implements a deployment strategy driven by
the types of properties produced by nodes. These
properties can be either environmental properties cap-
tured by sensor observations (e.g., luminosity) or
higher level properties deduced by other rules (e.g.,
comfort). Nodes characteristics capturing these pro-
ductions are exchanged between neighbors in order
to identify the lowest possible node able to process
the rule. These characteristics are captured in the rule
modules to enable the deployment process. The con-
ditional shape of rule modules is based on both prop-
erty types consumed by the rule and property types
produced by neighboring nodes to infer the node be-
havior.

To manipulate these property types in the follow-
ing sections, the body and head notations introduced in
Section §4.4.2 are extended. We introduce bodyt(rx) =
{γ1, ..., γn′} and headt(rx) = {δ1, ..., δm′} where γi

designates the property type of Γi, and δ j the property
type of the deduction ∆ j. It should be noted that not
all Γi or ∆ j used in the rule are relevant to the EDRT
approach.

Let us consider RVisibility and RColdChain, illustrative
rules provided in natural language in Section §2.1. A
translation of RVisibility in based on description logic is:
Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True ∧ Lu-
minosity(?l, ?o2)∧?o2 < 300L ∧ Machine(?m) ∧ Ac-
tivity(?m, ?o3)∧?o3 = True ∧ locatedIn(?m, ?l) →
LowMachineVisibility(?m). For this rule, the de-
fined predicates behave as follows: for the conditions,
bodyt(RVisibility) = {Presence, Luminosity, Activity},
and for the deductions, headt(RVisibility) = {LowMa-
chineVisibility}. Location is a property type that is not
considered by the deployment strategy implemented
by EDRT . For RColdChain, represented in description
logic in Section §6.3, bodyt(RColdChain) = {Tempe-
rature, Activity}, and headt(Rconveyor) = {ColdChain-
Broken}.

The deployment of RVisibility and RColdChain by EDRT
in an extract of the simulation topology is shown on
Fig. 5. Both rules are submitted by the control center
application to the Cloud node, and are deployed among
Fog nodes. Nodes applying the rules (e.g., machines
M111 and M112 for RVisibility) directly provide the con-

Fig. 5. Example of EDRT deployments

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

RV : RVisibility

RC : RColdChain

: Applies rule

: Propagates rule

: Propagates data

Control
center

Registers RV , RC

RV , RC

RV
RV ,RC

RV RVRV RV

RV ,RC

, ,

trol center with deductions, which is not represented
on the figure for the sake of legibility.

5.2. Node characteristics at stake in EDRT

5.2.1. Node knowledge on itself
A node n has in its KB information about the prop-

erty types of the data it produces, denoted by the pred-
icate own_productions(n). Data produced by node n
is either collected by sensors to which n is directly
connected, or obtained as deductions when n applies a
rule. When a reasoning-enabled node is connected to
a sensor, it enriches the raw observation, and propa-
gates the enriched observation on the network, which
ensures that the observation is only enriched once. In
the topology displayed on Fig. 5, node M111 is con-
nected to three sensors: own_productions(M111) =
{Presence, Luminosity, Activity}. The production of
observations by node n for a property type ρt is denoted
<n,edr:producesDataOn,ρt>.

5.2.2. Node knowledge on the topology
A node n knows its parent in the network tree-

like hierarchy. On Fig. 5, Children(C110) = {M111,
M112}, and Parent(C110) = {F100}. The node com-
municates its characteristics to these neighbors to sup-
port the deployment strategy implemented by EDRT .
Such characteristics include the types of the data pro-
duced by the node, as well as the types of data con-
sumed.

Announcing productions: The transmission of rules
among nodes organized by EDRT is driven by the
knowledge each node has on the network around it-
self. Productions are propagated from children to par-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ent, denoted by the triple <edr:producesDataOn,rdf:-
type,edr:ParentAnnouncedProperty>.

In order to enable the propagation of rules towards
nodes that are not direct neighbors, the proxying mech-
anism introduced in Section §4.3.3 is implemented
for property types productions: <edr:producesData-
On,rdf:type,edr:ParentProxiedProperty>.

To illustrate the proxying in more detail, let us de-
fine productions(n) = own_productions(n)∪
productions(Children(n)). Node n announces itself
to np ∈ Parent(n) as a producer of ρi

t,∀ρi
t ∈

productions(n). For instance, on Fig. 5, produc-
tions(C120) = {Activity, Temperature}, with
own_productions(C120) = {Temperature}. If np

was not a producer of the property type ρt, it includes a
new triple in its KB <np,edr:producesDataOn,ρt>, and
forwards this triple to npp ∈ Parent(np). If node np

was already a producer for ρt, its characteristics remain
unchanged, and the information propagation stops.

Announcing consumptions: As it has been discussed
in Section §4.3.1, in order to limit unnecessary ex-
changes, data is exchanged lazily based on the node
consumption announcement functionality. A node n
has to explicitly advertise its interest for a prop-
erty type ρt to each nc ∈ Children(n) in order to
be notified when new observations are received or
new deductions are made. In particular, a node is
interested in a property type ρt when it applies a
rule r such that ρt ∈ bodyt(r). The interest of a
node n for a property type ρt is represented by the
triple <n,edr:isInterestedIn,ρt>, and <edr:isInterested-
In,rdf:type,edr:SomeChildrenAnnouncedProperty>.

The interest of n for ρt is only announced to nc ∈
Children(n) such that <nc,edr:producesDataOn,ρt>.
Moreover, if some nodes ni

c ∈ Children(n) are able to
apply the rule r themselves, node n will forward r to ni

c,
rather than notifying ni

c of its interest for ρt. The details
of the rule deployment strategy are provided in Section
§5.3. In Fig. 5, M121 announced to C120 that it pro-
duced Activity, and C120 notified M121 of its interest
for Activity in order to receive future observations.

5.2.3. Exploiting the contextual locality of IoT data
The rule deployment strategy supported by EDRT is

based on the assumption that the correlation between
pieces of data is embedded in the network topology.
IoT data is strongly bound to a spatio-temporal con-
text [?], and the distribution of Fog nodes reflects the
distribution of features observed by sensors. From this
hypothesis, it can be inferred that the context of a node
is a subset of the context of its parent. To illustrate this

Fig. 6. Illustration of observations spatio-temporal context

M111 context
M112 context

M121 context M122 context

C120 context

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

claim with RColdChain previously introduced, it means
that if it is possible to apply RColdChain with activity and
temperature observations collected by the same gate-
way, it is not necessary to compare the same activity
observations with temperature observations collected
elsewhere. As IoT data are highly contextual, applica-
tions do not necessarily need to reason over a com-
plete KB to obtain relevant results. EDR is therefore
suitable for rules exploiting this context by correlating
data sharing an identical context, e.g., the correlation
of temperature and luminosity in the context of a single
room for RColdChain.

The relation between the spatio-temporal context
and the topology is represented in Fig. 6, where each
gray area represents the context of a Fog node. Our as-
sumption is that, since both M111 and M112 contexts
contain enough information to process rule RVisibility,
the luminosity from M111 context and the temperature
from M112 context will never be processed together
by RVisibility.

In the case of the C120 context, since neither M121
nor M122 produce the information necessary to pro-
cess RColdChain or RVisibility, both nodes send their ob-
servations to C120. The fact that C120 is the parent of
both M121 and M122 is considered a hint that the con-
text of M122 is closer to the context of M121 than, for
instance, to that of M112. The proximity of context is
associated to the distance of the closest common an-
cestor: M121 and M122 share a parent, while the clos-
est common ancestor to M121 and M112 is F100, at a
distance of 2 hops from both nodes. Since M121 and
M122 are closer to each other than M122 and M112,
there is a higher chance for the luminosity observation
from M122 to lead to a deduction based on RVisibility

16 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

when processed with presence from M121 rather than
M112.

As for context proximity, context inclusion is im-
pacted by the hierarchy. A context A is considered in-
cluded in a context B if the elements of context A are
also available in context B. On Fig. 6, the C120 con-
text includes the M121 and M122 contexts, since ac-
tivity, presence and luminosity values are propagated
to C120. Since C120 applies RColdChain, M121 and
M122 provide it with activity observations, which it
processes with its own temperature value observations.

If, as in our case, the scope of rules is not broader
than the context in which they are applied, applying
rules deeper in the hierarchy does not impact the com-
pleteness of the result. However, if the rules are not
adapted to the topology in which they are deployed
with EDRT , some deductions will be inferred in a cen-
tralized approach that would be missed when data is
processed in a decentralized manner. For instance, let
us consider two sensors producing respectively obser-
vations of types ρ1 and ρ2, connected to the same node
n, and a rule r consuming ρ1 and ρ2. EDRT will even-
tually deploy r on n, and none of the observations of
type ρ1 and ρ2 produced by n will be processed by r
outside of the context of n. This is the intended be-
havior of EDRT , but it limits its applications to some
types of rules, such as rules performing the aggrega-
tion of several values of the same type. For instance,
a rule that sums electrical consumptions and compares
the total to a fixed value cannot be executed success-
fully by EDRT , because its scope will be larger than
the contexts in which it will be distributed, that is any
node producing electrical consumption observations.

This behavior is adapted to rules supporting deduc-
tions for time-sensitive applications, which is the fo-
cus of the present contribution, and cannot be applied
to aggregation rules, where time series or multiple in-
stances of the same property types are considered. This
choice is motivated by the assumption that aggregation
rules are more likely to be used in applications support-
ing long-term reporting and decision support, where
the time constraint is not strong, and thus outside the
scope of this contribution. The EDR approach and its
refinements (such as EDRT) do not aim at replacing
semantic Cloud computing, but seek to complement
its capabilities with semantic Fog computing. This is a
second reason not to support aggregation rules.

To ensure decidability, only DL-safe rules are con-
sidered, and EDR is only suitable for stratified rule
sets. Cyclic dependencies between rules are not re-
solved. When a node applies rule r, it is considered

Listing 1: rtrans f er
ColdChain shape

SELECT $this WHERE {
FILTER NOT EXISTS {
$this a lmu:Node ;
edr:producesDataOn adr:Temperature,
adr:MachineState ;

lmu:hasUpstreamNode [a lmu:HostNode;].
FILTER NOT EXISTS {
{ex:coldChainRule
edr:transferredTo $this.}

UNION
{ex:coldChainRule
edr:transferableTo $this.}}}}

as producer of all δi ∈ headt(r), and this production
information is used for the deployment of any rule r′

such as bodyt(r′) ∩ headt(r) 6= ∅. However, a non
stratified rule set where rules r and r′ coexist such that
bodyt(r′) ⊆ headt(r) and bodyt(r) ⊆ headt(r′) cannot
be processed successfully by EDR, and neither r nor r′

will be propagated or applied.

5.3. Implementation of EDRT in rule modules

The behavior of a node implementing EDRT is em-
bedded in the modules of EDRT -compliant rule. For
now, these rules are built manually: the property types
feature in the rule body and head are identified when
the rule is written, and the modules are built accord-
ingly. The knowledge required for the processing of
each module is local to the node performing the rea-
soning process. For the sake of legibility, the SHACL
representation of the rules is not reproduced in the
present paper, but it is available online6.

5.3.1. Rule Transfer module
The purpose of EDRT is to transfer each rule to

the lowest possible node in the architecture, to be
applied as early as possible. The propagation of a rule
rx from node n to node n′ is considered relevant if
n′ ∈ Children(n) ∧ bodyt(rx) ⊂ productions(n′),
which brings it closer to sensors.

This condition is expressed in Lst. 1, an extract of
the SHACL shape constituting rtrans f er

ColdChain.
Since it is assumed that rules are initially submit-

ted to the Cloud node, the neighbor-to-neighbor prop-
agation is only considered downwards in the topology.
Each node that handles the rule in the deployment pro-
cess keeps its representation in its KB. It is not neces-

6https://w3id.org/laas-iot/edr/iiot/visibility.ttl, https:
//w3id.org/laas-iot/edr/iiot/coldchain.ttl

https://w3id.org/laas-iot/edr/iiot/visibility.ttl
https://w3id.org/laas-iot/edr/iiot/coldchain.ttl
https://w3id.org/laas-iot/edr/iiot/coldchain.ttl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 2: ractivation
ColdChain shape

SELECT $this WHERE {
FILTER NOT EXISTS {

$this a lmu:HostNode.
$this lmu:hasDownstreamNode ?tempProvider,
?activityProvider.
?tempProvider edr:producesDataOn
adr:Temperature.

?activityProvider edr:producesDataOn
adr:MachineState.

FILTER EXISTS {
$this lmu:hasDownstreamNode ?lowerNode.
FILTER(

?lowerNode = ?activityProvider
|| ?lowerNode = ?tempProvider)

FILTER NOT EXISTS {
?lowerNode edr:producesDataOn

adr:Temperature, adr:MachineState.}}}}}

sary to re-propagate a rule upwards: if a node ceases
to be able to apply a rule, the change should be con-
sidered by the activation module of the rule held by its
ancestors, as it is detailed in Section §5.4.

Incrementally, the rule r will converge toward nodes
such that, for any node n of them:

– n can no longer propagate r, i.e. ∀n′ ∈ Lo-
wer(n), bodyt(rx) 6⊂ productions(n′),

– n is able to apply the rule r, i.e. bodyt(rx) ⊂
productions(n).

These are the nodes able to apply the rule that are the
closest to the original data producing: propagating the
rule deeper in the hierarchy is not necessary. Such a
node is represented on Fig. 5 with gray dashes con-
nected to RVisibility and RColdChain.

5.3.2. Activation module
In order to apply a rule r, a node n must be the

lowest common ancestor to the producers of property
types in the rule body. Such a node has a set P of
children (either sensors or other Fog nodes) partially
producing the rule head. Individually, none of the
children produce all the elements of the rule head,
but combined, their productions enable the process-
ing of the rule. It is characterized as such: ∃P , such
as ∀nc ∈ P , <n,lmu:hasDownstreamNode,nc> and
∃{ρt, ρ

′
t} ⊆ body(r), <nc,edr:producesDataOn,ρt>

and ¬∃ <nc,edr:producesDataOn,ρ′t>, and ∀ρt ∈
body(r),∃nc ∈ P ,<nc,edr:producesDataOn,ρt>. Lst.
2 gives a SPARQL implementation of these conditions
applied to ractivation

ColdChain.
If the conditional part of module ractivation deter-

mines that the current node is suitable to apply r, some
deductions are inferred. The activity of rule r is made

explicit by the triple <r,edr:isRuleActive,true>, and
the nodes n′ ∈ P are identified as providers of the data
type which r now consumes. The interest of n for the
consumption of the nodes n′ ∈ P is announced, as it
is captured by the <?interest,edr:announceTo,?partial-
DataProvider> triple in the SHACL rule. The object of
the interest, represented as a reified statement, will be
bound to any partial production of the rule head by a
child of n. The interest of the rule originator o is also
denoted with <o,edr:consumesResult,r>. These infer-
ences enable both the rule application and the rule
result forwarding mechanisms as described in Sec-
tion §4.3. The SPARQL CONSTRUCT embedded in
the SHACL rule for the ractivation

ColdChain module is provided
in Lst. 3. The focus of the SHACL shape, materialized
by the $this variable, captures the IRI of the node
applying the rule in its own KB. It is defined in the
SHACL documentation as the only element shared na-
tively between the SHACL conditional shape and the
SHACL rule said shape conditions: the $this cap-
tures the node violating the shape defined in the con-
dition. This is why some elements characterizing the
child nodes of the current node need to be recaptured
in the WHERE clause of the ractivation

ColdChain rule, while the
$this is already bound to the current node.

5.3.3. Result delivery module
In EDRT , the condition of the result delivery mod-

ule checks if a node expressed interest for the type of
deductions yielded by the rule. If there exists a triple
<n′,edr:interestedIn,ρt>, with n′ a remote node and
ρt an element of the rule r’s head head(r), then the
result transfer module infers that <n′,edr:consumes-
Result,r>.

5.4. Unraveling the main steps of EDRT

Nodes executing the EDR algorithm maintain a co-
herent view of their neighborhood, and deploy rules
with respect to this perception of their environment ac-
cording to the strategy implemented by EDRT . The
neighborhood of a node is modified when a new node
connects or a known node disconnects, and when the
productions or consumptions of a node are modified.
The main events impacting the exchanges of a node
with its neighbors are therefore: when its characteris-
tics are changed (which includes startup and discon-
nection), when receiving a new rule, and when receiv-
ing a new piece of data. In the following, the behavior
of EDRT for each of these events is described to refine
the high-level description given on Fig. 4.

18 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 3: ractivation
ColdChain rule

CONSTRUCT {
$this edr:isInterestedIn adr:MachineState,

adr:Temperature.
$this edr:producesDataOn ex:ColdChainBroken.
?interest a rdf:Statement;
rdf:subject $this;
rdf:predicate edr:isInterestedIn;
rdf:object ?partialProduction;
edr:announceTo ?partialDataProvider.
ex:coldChainRule edr:isRuleActive

"true"^^xsd:boolean.
?originator edr:consumesResult ex:coldChainRule.

} WHERE {
$this a lmu:HostNode.
{

$this lmu:hasDownstreamNode
?partialDataProvider.

?partialDataProvider edr:producesDataOn
?partialProduction.

FILTER NOT EXISTS {
?partialDataProvider edr:producesDataOn

adr:MachineState, adr:Temperature.
}

} UNION {
ex:coldChainRule edr:isRuleActivable
"true"^^xsd:boolean.

}
ex:R1 edr:ruleOriginatedFrom ?originator.
BIND(STRAFTER(str(?partialProduction), "#")

AS ?productionName)
BIND(URI(CONCAT(str($this), ?productionName,

"Interest")) AS ?interest)}

When changing characteristics Sensors are the pri-
mary source of data for the network. The data they
produce is collected by their reasoning-enabled par-
ent. When semantic computing-enabled nodes start,
they try to connect to their sensors children of which
they have a priori knowledge. How nodes discover
and gather information about sensors can be a process
tightly related to the underlying technology, or hard-
coded in the node KB.

Nodes connected to sensors announce the property
types they (and potentially any nc ∈ Children(n))
produce to their parent node, according to the an-
nouncement functionality captured in the triple <edr:-
producesDataOn,rdf:type,edr:ParentAnnouncedProper-
ty>. Similarly, when a sensor or a lower node pro-
viding data of type ρi to node n disconnects, n an-
nounces its updated characteristics if they have been
transformed, i.e. if the disconnected node was the sole
producer of ρi.

In the case when the node already held some rules,
their placement might need to be updated according to
the new topology denoted by the received message. In
order to adjust the rule deployment accordingly, rule
modules dedicated to such deployment, namely appli-

cation, transfer and delivery modules, are activated,
processed in a reasoning step, before being deactivated
again as detailed in Fig. 4. The deductions yielded by
this reasoning step, based on the edr vocabulary, are
used to control the node behavior as described previ-
ously. The use of these modules is similar when a new
rule is received, as it is described in the next section.
A part of the propagation of rVisibility in the illustrative
deployment provided in Fig. 5 is represented as a se-
quence diagram on Fig. 7.

When receiving a rule When node n receives a new
rule r, n evaluates whether it can apply r directly,
and/or if it should propagate r to some of its children
by performing a reasoning step with all modules of r
activated. Based on the deductions produced by this
reasoning step, some node functionalities are activated
if necessary:

– If the rule r is applicable by the current node, the
productions of n are updated by ractivation. n noti-
fies its parent of its new productions, i.e. the head
of r. Being able to produce the deductions of a
rule is processed like a characteristics change, de-
scribed in the previous section. If the applicabil-
ity of rule r is enabled by the productions of some
children of node n, the interest of n for their pro-
ductions has been added in the KB, as well as
the necessity for their notification of such interest.
Node n thus notifies these children of its interest
for these properties.

– The rule r is propagated to child nodes marked
suitable by the rule transfer module. Local meta-
data is added to rule r in order to keep track of the
lower nodes to which it has been transmitted with
the predicate edr:ruleTransmittedTo. Such meta-
data is not added by the rule transfer module, but
by the node after the completion of the propaga-
tion to the target.

When receiving new data Different kinds of data can
be received by node n:

– raw observations directly produced by a sensor
connected to n

– enriched observation or deduction sent to n by
node nc ∈ Children(n)

If the received observation is raw, node n enriches it
by annotating it with an ontology before its process-
ing as a new enriched observation. If the piece of data
is either an enriched observation or a deduction, it is
directly integrated to its KB and processed.

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Propagation of rColdChain

Announces ,

production Announces ,
Proxies ,

production
Proxies , ,

productions

Processes
rC modules

Propagate rC

Processes
rC modules

Propagate rC

Processes
rC modules

Announces
consumption

DatacenterF100C120M121

The data, of property type ρi, is first sent to np ∈
Parent(n) if it is a consumer of ρi. Then, node n checks
if new deductions can be obtained by applying the
rules it has marked up as active. When receiving new
data, a node does not need to activate the rule mod-
ules for activation, transfer or delivery: only the core
of the rule is relevant. If the rule body matches the
KB of node n, and postconditions of type δ j are de-
duced, these deductions are propagated to np if it is
consumer of δ j. Since rules are applied on the local
KB of node n, there is no impact of data distribution
on reasoning complexity. A new reasoning loop is sim-
ply applied each time new data is received. The de-
ductions yielded by rule r are also directly sent to r’s
originator(s). Therefore, applications are notified con-
tinuously by the nodes as those nodes apply the rules,
instead of being notified by a restricted set of central
nodes.

6. Experimentation

As EDR is a generic approach, it cannot be sub-
jected to a quantitative evaluation by itself: it must be
refined by a concrete approach implementing a deploy-
ment strategy. The evaluations presented in this sec-
tion are dedicated to EDRT , refining EDR with a de-
ployment strategy aiming at reducing the deduction
delivery delay.

In order to compare the proposed contribution to a
panel of baselines, different delivery mechanisms are
introduced in Section §6.1. By default, EDRT deliv-
ers deductions directly to applications. The proposed
alternative delivery mechanisms implement variations
of this approach, by propagating deliveries differently
across the network. A centralized deduction baseline is
also introduced.

The setup in which the evaluations were performed
is described in Section §6.2, along with the references
to the code used for running the experiments. Two
characteristics of EDRT are then assessed: its scala-
bility in Section §6.4, and its responsivity in Section
§6.5.

6.1. Deduction delivery mechanisms

The purpose of the evaluations presented in this
section is to compare the performances of centralized
Cloud-based and decentralized Fog-based approaches
to reasoning. It aims at distributing reasoning among
Fog nodes in order to perform computation as close
as possible to the sensors producing observations. The
baseline to which EDRT should be compared is a
centralized approach, where raw data is sent up to a
Cloud node to be processed by rules. Since the prop-
agation of rules for semantic Fog computing is per-
formed neighbor-to-neighbor, it seems logical that raw

20 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

data is propagated in the same way back to the Cloud
node. However, such comparison would be biased by
the necessity for each piece of data to transit through
multiple hops from Fog to Cloud nodes. In order to
limit the impact of transfer time, and focus on pro-
cessing time, new hypotheses are considered: in some
configurations, Fog nodes will deliver deductions to
Cloud nodes, instead of communicating directly with
applications. Similarly, for centralized processing, Fog
nodes should be able to deliver raw data to Cloud
nodes, instead of an indirect propagation. These differ-
ent configurations are referred to as “Deduction deliv-
ery mechanisms”.

Unlike rule deployment strategies, deduction deliv-
ery mechanisms are decorrelated from the rules: they
are variations of the “Deduction delivery” functional-
ity described in Section §4.3.1. Therefore, the propa-
gation of rules, the deductions they yielded and data
is described as intended according to ad-hoc strategies
(here, EDRT) through the EDR vocabulary, but for ex-
perimental purpose this propagation can be altered at
the node level, preventing rule deployment or rerout-
ing deduction delivery. Five deduction delivery mech-
anisms are compared in our experiments:

– Cloud-Indirect-Raw (CIR) is the baseline ap-
proach: the rules are only kept in the top Cloud
node, and raw observations are forwarded neighbor-
to-neighbor from the nodes that collect them to-
ward the central node. The Cloud then delivers
deductions to applications. Applications are noti-
fied by the Cloud node, and not by Fog nodes, in
all delivery mechanisms except the last one.

– Cloud-Direct-Raw (CDR) is also an approach
where rules are not deployed, and only processed
in the central Cloud node. In this configuration,
the observation producers directly send raw ob-
servations to the Cloud node, where they are used
for rule-based deductions. Such a delivery mech-
anism enables to measure the impact of transfer
time on deduction delay when centralizing raw
data for processing. To implement this configura-
tion, the interest proxying mechanism presented
in Section §5.2.2 is altered. Nodes that are not the
upper node in the hierarchy propagate the inter-
ests they receive without proxying them.

– Cloud-Indirect-Processed (CIP) is a hybrid de-
livery mechanism: rules are deployed among
Fog nodes according to EDRT , and deductions
are propagated neighbor-to-neighbor towards the
Cloud node before being delivered to applica-

tions. CIP mirrors the delivery mechanism of
CIR, with a decentralized reasoning. The purpose
of CIP is to measure the performance gain when
distributing reasoning even when communication
is only possible neighbor-to-neighbor in the Fog
infrastructure. To modify the result delivery be-
havior, whenever a node propagates a rule, it de-
clares itself as the originator of said rule instead
of the previously registered originator. Processing
rules based on semantic Fog computing means
that the propagation of observations is limited to
the Fog nodes applying rules consuming such ob-
servations, instead of going all the way up the
Cloud node.

– Cloud-Direct-Processed (CDP) is another hy-
brid mechanism where rules are processed by Fog
nodes, but deductions are delivered directly to the
Cloud node instead of applications. It is the Cloud
node that performs the delivery to applications. In
this case, the purpose is to measure the impact of
centralized delivery in a decentralized reasoning
context. To implement CDP, when forwarding a
rule it has received, the Cloud node declares itself
as the originator instead of the application. De-
ductions can also be propagated among Fog nodes
if a node explicitly expressed its interest.

– Application-Direct-Processed (ADP) is the purely
decentralized strategy that we propose for EDRT ,
where rules are processed based on semantic Fog
computing and deductions are delivered directly
to applications. In this case only, a deduction
that has been inferred in the network will not be
hosted by the Cloud node before being delivered.

The characteristics of the different delivery mecha-
nisms are summarized in Tab. 1, where their important
features are highlighted:

– whether rules are propagated among Fog nodes or
not,

– whether deductions are propagated neighbor-to-
neighbor or directly delivered,

– whether Fog nodes communicate with the Cloud
node or directly with applications.

All these characteristics are illustrated in an exam-
ple and illustrated on Fig. 8, where the propagation of
raw data and deductions according to the different de-
livery mechanisms is represented. In the case of deduc-
tion delivery, it is assumed for the sake of clarity that
deductions are made in the lowest Fog nodes. The ma-
nipulation of the EDR behavior by implementing dif-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Delivery mechanisms summary

Approach Rules
propagation

Neighbor-
to-Neighbor

content delivery

Fog-App
communication

CIR 7 For data 3 7

CDR 7 For data 7 7

CIP 3 For deductions 3 7

CDP 3 For deductions 7 7

ADP 3 For deductions 7 3

Fig. 8. Delivery mechanisms

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

Delivered content:
: Raw data
: Deductions

Mechanism:
: CIR
: CDR
: CIP
: CDP
: ADP

Control
center

Table 2
Experimental setup

RAM Cores CPU
Server 32GB 32 3.0GHz

Laptop 16GB 8 2.6GHz

RPi 3 1GB 4 1.4GHz

RPi 2 1GB 4 900MHz

ferent delivery mechanisms enables the comparison of
centralized (CIR and CDR) and distributed approaches
(CIP, CDP, ADP), and the comparison of approaches
based on direct (CDP, CDR) and indirect (CIR, CIP)
communication with the Cloud node.

6.2. Experimental setup and implementation

6.2.1. Hardware setup
In order to assess the distributed nature of the ap-

proach, and its suitability for constrained Fog nodes,
the experimental setup includes a Raspberry Pi 2 and a
Raspberry Pi 3, a laptop and a server, described in Tab.
2.

In order to measure the tradeoff between decentral-
ization and the loss of computing power when reason-
ing on Fog nodes, experiments are run twice, in two
different environments:

– In the first case, the complete topology is em-
ulated on the same server, each node being run
as an individual process. This environment is re-
ferred to as “single-host execution”. Such an ex-
ecution environment makes testing more practi-
cal.

– In the second case, the topology is distributed
across different machines listed on Tab. 2. This
environment is referred to as “multi-host execu-
tion”. Such execution environment is more real-
istic than single-host execution, since it includes
constrained nodes. However, large scale experi-
mentation on such decentralized environments is
harder to achieve, since it requires multiple ma-
chines. Ideally, each node should be executed on
a separate computing system, but this would re-
quire too many resources. We compromised by
executing multiple nodes on a single constrained
machine. The necessity to run the experiments on
multiple machines at the same time also creates
technical issues making the testing process more
complex.

6.2.2. Software setup
The use case topology is simulated for the exper-

iments. Simulated nodes are organized in a tree-like
hierarchy, with a Cloud node at the root, sensors at
the leaves, and Fog nodes in between. Each physical
machine running the simulation hosts multiple virtual
nodes, composed of an HTTP server, a KB, a SPARQL
engine, and a code base7.

Experiments are run by simulating a building setup
with sensors generating raw data. To enable the de-
ployment on multiple machines, each node is imple-
mented as a standalone Java process, and inter-process
communication is performed over HTTP. To enable
scalable experiments, sensors are implemented as mul-
tiple threads of one process, otherwise the RAM over-
head for having an HTTP stack deployed for each sen-
sor prevents deploying large topologies. To enable re-
playing exactly the same sequence of observations, it
would have been necessary to synchronize more than
400 threads since the order in which observations are
received impacts the obtained result. We were not able

7The code is available at https://framagit.org/nseydoux/edr

https://framagit.org/nseydoux/edr

22 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

to ensure such synchronization without reducing the
rate at which observations are produced by sensors. All
the results are therefore simulated by generating data.
Each sensor pushes a random observation to its parent
every two seconds, and each simulation is run for five
minutes.

6.2.3. Measured results
Two aspects of EDR have been evaluated:

– the validity of our hypothesis, namely that the dis-
tribution of rules increases responsiveness,

– the scalability of the proposed approach

To measure the responsiveness of applications en-
abled by EDR, the delay between the moment ob-
servations are captured by sensors and the delivery
of the deduction these observation triggered is mea-
sured. Precisely, the delay for the processing of a rule
is characterized as the time difference between the mo-
ment when the most recent data used in the body of
the rule is produced, and the moment when the rule
head is received by the application. A dedicated time-
stamp is associated to each observation once it has
been enriched, in order to avoid any impact of the en-
richment process on the measure. For instance, if a lu-
minosity observation observed at t1 and a temperature
observation observed at t2 match rcom f ort and trigger
a deduction that is delivered to the application at t3,
the delivery delay for this particular deduction will be
t3 − max(t1, t2). The clocks of all the machines used
for the experiment are synchronized to a local server
using Network Time Protocol (NTP)8, in order to en-
sure a minimal time difference between the different
distributed nodes.

Experimental measures showed that, for each sim-
ulation, the number of deductions is consistent be-
tween centralized and distributed approaches: there is
no knowledge loss when applying EDRT under our
assumptions that the Fog topology embeds correlation
between data.

In order to analyze closely the cause for the in-
creased delay, the journey of a message has been bro-
ken down in discrete timestamped events. The first
event related to a message is its construction, either
by enrichment of an observation or by achieving a de-
duction. In order to be propagated in the network, a
message might be sent from a node n to another node
n′, which is identified as two events: the sending from
node n, and the reception by node n′.

8http://www.ntp.org/

Multiple hops are registered, from the first node re-
sponsible for the message creation toward any node
that is interested in the message content for deduction.
When a message is received by a node n, n starts a
reasoning step where it tries to make new deductions
based on the rules in its knowledge base. Events are
logged at the beginning and at the end of reasoning. In
order to detail the delay for each deduction, the journey
of the most recent observation leading to the deduction
is reconstructed. This journey is built by identifying all
consecutive events related to the piece of data leading
to the deduction, from its initial enrichment to its pro-
cessing leading to the deduction, and the delivery of
said deduction to the application.

Three components of delay have been identified:

– Transfer delays, measured between the emission
and the reception of a message. This delay is both
impacted by the quality of the network link be-
tween two nodes, but also by the processing speed
of the recipient: the transfer is considered com-
pleted when the recipient declares the reception
at the software level, and it is not measured at the
network layer. When the message is transferred
through multiple hops, the delays are summed.

– Reasoning delays, measured between the begin-
ning and the end of a reasoning step. Reasoning
delays are summed if the same message is pro-
cessed with different rules across the topology.

– Idle delays, measured between the reception of a
message and its processing, or between the rea-
soning step and the propagation of deductions.

6.3. Use case details

The use case considered for the evaluation is the in-
dustry 4.0 scenario introduced in Section §2.1. Table
3 summarizes the rules driving the scenario. All the
rules’ SHACL representations are available online9.

As stated in Section §4.3.2, the EDR approach,
and by extension EDRT , is agnostic to the vocabu-
lary used to describe node characteristics. For this use
case, only a few properties were needed, as shown
in Lst. 4. The description of the node mainly en-
compasses its neighbors (with lmu: properties), its
API (with iotl:exposes), and its characteristics (edr:-
producesDataOn). As shown in a dump available on-
line10, a node’s knowledge base includes such a self-

9https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz
10https://w3id.org/laas-iot/edrt/node_kb_dump.ttl

http://www.ntp.org/
https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz
https://w3id.org/laas-iot/edrt/node_kb_dump.ttl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rule ID Rule core

R1: Low Ma-
chine Visibility

Location(?l) ∧ presence(?l, ?o1)∧?o1 = True ∧ luminosity(?l, ?o2)∧?o2 < 300L ∧ Machine(?m)
∧activity(?m, ?o3)∧?o3 = True ∧ locatedIn(?m, ?l)→ LowMachineVisibility(?m)

R2: Low Con-
veyor Visibility

Location(?l) ∧ presence(?l, ?o1)∧?o1 = True ∧ luminosity(?l, ?o2)∧?o2 < 300L ∧ Conveyor(?c)
∧activity(?c, ?o3)∧?o3 = True ∧ locatedIn(?c, ?l)→ LowConveyorVisibility(?c)

R3: No supervi-
sion

Location(?l) ∧ presence(?l, ?o1)∧?o1 = False ∧ Conveyor(?c) ∧ activity(?c, ?o3)∧?o3 = True
∧locatedIn(?c, ?l) ∧ S upervisorPost(?s) ∧ supervises(?s, ?c)→ NoS upervision(?c)

R4: Fire hazard
Location(?l) ∧ particleLevel(?l, ?o1)∧?o1 > 25% ∧ S parkMachine(?m) ∧ activity(?m, ?o3)∧
?o3 = True ∧ locatedIn(?m, ?l)→ Firehazard(?m)

R5: Cold chain
broken

Location(?l) ∧ temperature(?l, ?o1)∧?o1 > 6oC ∧ TemperatureS ensitiveMachine(?m)∧
activity(?m, ?o3)∧?o3 = True ∧ locatedIn(?l, ?m)→ ColdChainBroken(?m)

R6: Conveyor too
fast

Conveyor(?c) ∧ Machine(?m) ∧ onConveyor(?m, ?c) ∧ machineS peed(?m, ?sm)∧
conveyorS peed(?c, ?sc)∧?sc >?sm → ConveyorTooFast(?c)

R7: Low quality
product

Machine(?m) ∧ productQuality(?m, ?o1)∧?o1 < 98.5→ LowQualityProduct(?m)

Table 3
Safety and quality rules

Listing 4: Description of a node

ex:floor0002 a lmu:Node;
iotl:exposes ex:floor0002Service ;
edr:producesDataOn adr:Presence;
lmu:hasDownstreamNode ex:gallery0006,

ex:sensor0003 ;
lmu:hasUpstreamNode ex:building0001 ;
lmu:reasoningNode true ;
ioto:hasId "floor0002" .

Listing 5: Exchanged sensor observations

ex:sensor0003e3dff9e3_obs
a ssn:Observation ;
ssn:observationResult ex:sensor0003e3_out ;
ssn:observedBy ex:sensor0003 ;
ssn:observedProperty ex:floor0002presence ;
edr:receivedAt "2019-0..T..."^^xsd:dateTime.

ex:sensor0003e3dff9e3_out
a ssn:SensorOutput ;
ssn:hasValue ex:sensor0003e3dff9e3_val

ex:sensor0003e3dff9e3_val
a ssn:ObservationValue ;
dul:hasDataValue "1.0"^^xsd:float .

description along with ontologies, similar description
for its neighbors, and observed data. Lst. 5 shows
a snippet of observed data, mainly described with
the legacy version of the SSN ontology, and exten-
sions of the IoT-O [?] ontology for elements spe-
cific to our experiments. The proposed approach de-
pends on the observation representation, hard-coded
in the current implementation, which is why stan-
dard vocabularies have been used as much as possi-

ble. In future versions, EDR will be updated to be
compliant with the updated version of SSN, SSN/-
SOSA11 [?]. In the implemented simulation, data
is produced in the form of CSV records by sen-
sors that are sent over HTTP to the subscribing
node’s API. The CSV schema mimics the schema
observed in the actual deployment of ADREAM, a
smart building producing publicly available data12:
chrono,name,value,quality,comment. The
last two headers are ad-hoc to ADREAM, and they
are not used in this experiment, and the others are
self-explanatory. This raw data is enriched thanks to
a SPARQL-Generate query [?], a sample of which is
shown in Lst. 613.

6.4. Scalability of the proposed approach

6.4.1. Simulation topologies
In order to assess the scalability of the proposed

strategy for EDR, performances have been measured
on three topologies, denoted s0, s1 and s214, and col-
lectively as s*, as represented on Fig. 9. All s* topolo-
gies mimic the use case architecture presented in Fig.
1, with variations in the number of floors. A floor
comprises of two conveyors, each of which supports
two machines, with sensors distributed as shown on a
JSON blueprint provided online15, leading to a total

11http://www.w3.org/ns/sosa/
12https://syndream.laas.fr:8082/
13The complete query is available in the source code of EDR:

node/queries/data/enrich_data.sparql
14Topology representations are available at https://w3id.org/

laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl respectively
15https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json

http://www.w3.org/ns/sosa/
https://syndream.laas.fr:8082/
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json

24 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 6: Enrichment query snippet

GENERATE {
The observation
?obsURI a ssn:Observation;

ssn:observationResult ?sensorOutputURI;
ssn:observedBy ?sensor_uri;
edr:receivedAt ?receivedTime.
The sensor output

?sensorOutputURI a ssn:SensorOutput;
ssn:hasValue ?obsValURI.

...
}
SOURCE <file://{{ FILE }}> AS ?source
ITERATOR iter:CSV(?source) AS ?obs
WHERE {

BIND(fn:CSV(?obs, "name") AS ?sensor_id)
...

}

Table 4
s* topologies

Topology s0 s1 s2

Nodes 31 61 91

Fig. 9. Simulation topology s*

Factory floor

Factory datacenter

Floor

Conveyor

Machine Machine

Conveyor

Machine Machine

Factory floor Factory floor

s0
s1

s2

Table 5
Machine hosts for scalability experiments

Virtual node Datacenter Floor Conveyor Machine

Physical host Server Raspberry Pi Server Laptop

of 30 nodes (including both reasoning nodes and sen-
sors). The rules described in Section §6.3 are used. The
number of nodes is increased by duplicating floors: s0
has one, s1 two, and s2 three floors, for a total num-
ber of respectively 31, 61 and 91 nodes (as summa-
rized on Tab. 4). Fig. 10 shows results for centralized
approaches, and Fig. 11 for distributed reasoning, both
showing single-host and multi-host execution.

6.4.2. Results
Due to scaling issues, results are separated in several

figures:

– Results for centralized deduction delivery mech-
anisms (i.e. CIR and CDR) are shown on Fig.
10a for single-host execution, and on Fig. 11a for
multi-host execution.

– Results for distributed deduction delivery mech-
anisms (i.e. CIP, CDP and ADP), are shown on
Fig. 10b for single-host execution, and on Fig.
12a and 12b for multi-host execution.

The gain in scalability provided by the decentral-
ized approaches appears in the results. In topology s0,
the discrepancy between delivery delay for distributed
and centralized reasoning approaches is reduced, espe-
cially in the single-host execution setting, with a me-
dian around 0.65s for CIR and CDR, and 0.065s for
CDP, CIP and ADP.

However, in topologies s1 and s2, the gap between
centralized and distributed approaches increases dra-
matically. The deduction time is multiplied by more
than 20 from s0 to s2, while the relative share of rea-
soning time contributing to the delay decreases, as
shown on Fig. 13. The transit times are those which
increase relatively the most, which denotes a network
overflow over a computing saturation on the central-
ized reasoning node.

A delay increase is also observed for distributed de-
livery strategies in the single-host execution environ-
ment, but it is much smaller, as seen on Fig. 10b. In
the multi-host execution environment, there is a per-
formance difference between direct and indirect deliv-
ery mechanisms. Even though overall the increase in
the number of nodes has little impact on the measured
delays, the delays measured in the CIP configurations
are much longer than in CDP or ADP.

An explanation for this observation is the fact that,
due to their location, the Raspberry Pis are a bottle-
neck for communication only in this configuration. In
CIP, they must both forward observations and deduc-
tions towards a Cloud node, as well as performing
reasoning, while they only have to process rules with
the CDP and ADP strategies. This conclusion is also
strengthened by the fact that, if the Raspberry Pis 3
are replaced by Raspberry Pis 2, which have a lower
computing power, that same profile is observed, with
longer delays, as seen on Fig. 12c for CIP for instance.
On Fig. 13, among the three decentralized delivery
mechanisms, CIP has the shortest relative transfer time
dedicated to reasoning. This is coherent with the fact
that more deductions are forwarded by the constrained
nodes rather than deduced directly by it, since it is at

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 10. Scalability measures, single-host execution

(a) Centralized reasoning

s0
cir

s1
cir

s2
cir

s0
cdr

s1
cdr

s2
cdr

0
5

10
15
20
25
30
35
40
45
50

D
el

ay
(s

)

Centralized (b) Distributed reasoning

s0
cdp

s1
cdp

s2
cdp

s0
cip

s1
cip

s2
cip

s0
adp

s1
adp

s2
adp

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
el

ay
(s

)

Centralized

Fig. 11. Scalability measures, centralized reasoning

(a) Multi-host execution

s0
cir

s1
cir

s2
cir

s0
cdr

s1
cdr

s2
cdr

0
5

10
15
20
25
30
35
40
45
50

D
el

ay
(s

)

Centralized

depth 1 in the topology, and it is only connected to a
few sensors compared to conveyor or machine nodes.

Approaches promoting direct communication, i.e.
CDR and CDP, perform better than their indirect coun-
terparts, respectively CIR, CIP. This is an expected re-
sult, as direct communication reduces the number of
hops required for a message (be it an observation or a
deduction) to reach its target.

A trend that can be observed in the breakout is the
increase of the share of transfer time in centralized
strategies compared to decentralized ones. An expla-
nation for this phenomenon is the saturation of the
network link, combined to an overhead on the cen-
tral node induced by the necessity to perform all the
reasoning. The central node has less CPU time avail-
able to declare reception of messages, and therefore
the time between the emission event and the reception
event is increased. Overall, the limited increase of de-
lays and the balance of the delays breakdown in the
distributed settings support our claim that EDRT is a
scalable approach to rule-base reasoning based on se-
mantic Fog computing.

Table 6
Machines hosts for distribution experiments

Virtual node Datacenter Floor Conveyor Machine

Physical host Server Laptop Raspberry Pi Server

6.5. Impact of distribution on responsiveness

6.5.1. Simulation topology
To measure how distribution impacts responsive-

ness, four topologies were distinguished, labeled d1 to
d4 and further on simply denoted d*. Each of these
topologies is composed of 42 identical nodes, and pro-
cesses data according to four rules, r1 to r4. The dif-
ference between the four d* topologies is the location
of sensors, as depicted in Fig. 15. Sensors producing
data of the type ρ1 are directly attached to the top node
in d1, while they are attached to its children in d2.
Since bodyt(r1) = {ρ1, ρ4}, r1 is applied at a maxi-
mum depth of 1 in d1, but is propagated to nodes of
depth 2 in d2, hence a “more decentralized” execution
is performed in d2 than in d1. Rule execution depths
are given in Tab. 7: in d4, all sensors are connected to
leaf nodes, and the distribution is maximal.

To assess the impact of distribution, the same sen-
sors are deployed from topology d0 to d4, but they are
not situated at the same level, enabling the control of
the level at which rules are processed. Sensors are situ-
ated in d* topologies so that the rules are processed at
the depths depicted in Tab. 7. The simulation topology
is composed of 42 nodes in total (including sensors),
hosted on the physical machines as detailed on Tab.
6. Fig. 16 displays results for single-host approaches,
and Fig. 17 for multi-host approaches, both showing
centralized and distributed reasoning.

26 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 12. Scalability measures, decentralized reasoning

(a) Multi-host execution

s0
cdp

s1
cdp

s2
cdp

s0
adp

s1
adp

s2
adp

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
el

ay
(s

)

Centralized
(b) Multi-host execution

s0
cip

s1
cip

s2
cip

0
1
2
3
4
5
6
7
8

D
el

ay
(s

)

Centralized
(c) Multi-host execution (RPi 2)

s0
cip

s1
cip

s2
cip

0
1
2
3
4
5
6
7
8
9

10
11
12

D
el

ay
(s

)

Centralized

Fig. 13. Breakout of delays (normalized, multi-host execution)

adp cdp
s0
cip cdr cir adp cdp

s1
cip cdr cir adp cdp

s2
cip cdr cir

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Idle
Processing
Transit

Fig. 14. Reference topology for d*
Depth 0

Depth 1

Depth 2

Depth 3

Factory datacenter

Floor

Conveyor

Machine Machine

Conveyor

Machine Machine

Table 7
Depth of rule processing for d*

R1 R2 R3 R4 R5 R6 R7
d0 0 0 0 0 0 0 0

d1 0 1 0 1 1 0 0

d2 1 1 0 1 1 0 0

d3 1 1 0 3 3 1 3

d4 3 2 2 3 3 2 3

6.5.2. Results
With the centralized reasoning delivery mecha-

nisms, there is little impact of the distribution on per-

Fig. 15. d* topologies

(a) d1

B

F

C

M

ρ4

ρ3 M

ρ4

ρ2 C

M

ρ4

ρ3 M

ρ4

ρ1 F

C

M

ρ4

ρ3 M

ρ4

ρ2 C

M

ρ4

ρ3 M

ρ4

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

(b) d2

B

F

C

M

ρ4

ρ3 M

ρ4

ρ2 ρ1 C

M

ρ4

ρ3 M

ρ4

F

C

M

ρ4

ρ3 M

ρ4

ρ2 ρ1 C

M

ρ4

ρ3 M

ρ4

1

2

1

4 4

1

2

1 1

2

1

4 4

1

2

1

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 16. Distribution experiments, single-host execution

(a) Centralized reasoning

d0
cir

d1
cir

d2
cir

d3
cir

d4
cir

d0
cdr

d1
cdr

d2
cdr

d3
cdr

d4
cdr

0
1
2
3
4
5
6
7
8
9

D
el

ay
(s

)

(b) Distributed reasoning

d0
cdp

d1
cdp

d2
cdp

d3
cdp

d4
cdp

d0
cip

d1
cip

d2
cip

d3
cip

d4
cip

d0
adp

d1
adp

d2
adp

d3
adp

d4
adp

0

1

2

3

4

5

6

D
el

ay
(s

)

Fig. 17. Distribution experiments, multi-host execution

(a) Centralized reasoning

d0
cir

d1
cir

d2
cir

d3
cir

d4
cir

d0
cdr

d1
cdr

d2
cdr

d3
cdr

d4
cdr

0

1

2

3

4

5

6

7

8

D
el

ay
(s

)

(b) Distributed reasoning

d0
cdp

d1
cdp

d2
cdp

d3
cdp

d4
cdp

d0
cip

d1
cip

d2
cip

d3
cip

d4
cip

d0
adp

d1
adp

d2
adp

d3
adp

d4
adp

0
1
2
3
4
5
6
7
8
9

10

D
el

ay
(s

)

formances as seen on Fig. 16a. The best performances
are measured in the most centralized topology, d0,
when the sensors are directly connected to the reason-
ing node, thus minimizing the transit time, as shown on
Fig. 16a and Fig. 17a. Moreover, for this completely
centralized topology, the delays measured with the de-
centralized delivery mechanisms (CDP, CIP, ADP) are
comparable to the centralized ones (CIR, CDR), which
is an expected result: since all the sensors are con-
nected to a single node, there is no difference between
rule deployments. It should also be noted that there are
no significant differences between the centralized and
decentralized executions. Since all reasoning, which is
the most computing-intense process of the simulation,
is located in both cases on the most powerful node, it
is also an observation consistent with our expectations.

For the decentralized delivery mechanisms, where
rules are propagated into the network according to the
EDRT technique, the distribution has indeed an impact
on deduction delivery delay, seen on Fig. 16b. In the
single-host execution environment (Fig. 16b), where
all the nodes have comparable capabilities, there is a
correlation between the depth at which rules can be ex-

ecuted (denoting a greater distribution of processing),
and the delivery delay decreases. In this case, each
node takes charge of an increasing share of the rea-
soning, leading to a relative decrease of the idle time
compared to the reasoning time as seen on Fig. 18.

However, comparing Fig. 16 and 17 shows a dis-
crepancy between the simulation in a single-host and a
multi-host-host environment, the latter actually includ-
ing constrained nodes. For ADP and CIP on Fig. 17b,
at the d3 topology, the third and fourth quartiles show
an increase in the delays. The median delay is compli-
ant with the expected decreasing trend for ADP, but it
begins increasing for CIP. For the d4 topology on Fig.
17b, where the distribution is maximal, there is an sig-
nificant increase of delays for all decentralized deliv-
ery mechanisms, exceeding the delays measured even
for d0. This is discussed in details in Section §6.6

6.6. Discussion

When increasing the distribution of rule execution in
the multi-host experimentation environment, a degra-
dation of the performances is observed. An explana-

28 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 18. Distribution experiments delays breakout (single-host execution)

adp cdp
d0
cip cdr cir adp cdp

d1
cip cdr cir adp cdp

d2
cip cdr cir adp cdp

d3
cip cdr cir adp cdp

d4
cip cdr cir

Topologies

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Transit
Processing
Idle

Fig. 19. Distribution experiments delays breakout (multi-host execution)

adp cdp
d0
cip cdr cir adp cdp

d1
cip cdr cir adp cdp

d2
cip cdr cir adp cdp

d3
cip cdr cir adp cdp

d4
cip cdr cir

Topologies

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Transit
Processing
Idle

tion for this phenomenon is the saturation of the Fog
node beyond a certain work load, the tipping point be-
ing crossed around d3 (see Fig. 17b). Rules executed
deeper are processed by constrained Fog nodes, and
beyond a certain load, the benefits of the distribution
are compensated by the limitations of their processing
capabilities.

The progressive relative increase of idle time when
increasing distribution, seen when comparing d3 an d4
on Fig. 18 and Fig. 19, supports this hypothesis. To
this regard, the EDRT technique has a naive approach,
where the capabilities of the Fog nodes are not consid-
ered in the deployment process. The results obtained
are encouraging, especially in terms of scalability, and
moreover the proposed experimentation aimed at cre-
ating extreme conditions, by distributing the rules as
much as possible. The topology obtained is not neces-
sarily an accurate reflection of what would be deployed

in a real-world application, and it is designed to show
a trend rather than to be applied directly.

The technological choices made for the implemen-
tation of EDRT are also factors to be considered in the
observed results. Overall, EDRT is still a proof of con-
cept, and some choices in the implementation should
be reconsidered for performance:

– The HTTP framework used (Jersey16) has been
chosen for convenience for the flexibility of de-
velopment it allows, but it adds a certain overhead
in the memory print and execution time which is
not negligible in a constrained environment.

– The SHACL engine used in our experiments is
described by its creators as "not really optimized
for performance, just for correctness"17. It is pos-
sible that in the future, better performances will

16https://jersey.github.io/
17https://github.com/TopQuadrant/shacl

https://jersey.github.io/
https://github.com/TopQuadrant/shacl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

be reached by sheer improvement of the SHACL
engine. This engine was chosen because, to the
best of our knowledge, it was the only Jena-
compatible SHACL implementation at the time of
implementation.

– Knowledge is exchanged between nodes serial-
ized in RDF Turtle. Other more compact RDF se-
rializations exist [?], and switching to such a for-
mat would reduce the communication overhead
when messages are exchanged.

Moreover, due to technical constraints, the experi-
ments we conducted could not be performed at a large
scale on constrained nodes. This introduces a bias in
the measured results, since the simulated nodes ran
on much more powerful machines than the Fog nodes
should be. We are aware of this bias, and the exper-
iments are designed in such way that it has as little
impact as possible. For future experiments, we intend
to set up a network of virtual machines, emulating the
actual capabilities of physical nodes, rather than mere
processes.

7. Conclusion and future work

In this paper, we proposed EDR, a generic approach
for dynamically distributed rule-based reasoning in a
Cloud-Fog IoT architecture. In existing approaches to
rule-based reasoning for the SWoT, computation is of-
ten performed on Cloud nodes only, potentially lead-
ing to a centralized bottleneck, and, by design, creating
network communication overhead. In order to tackle
these issues, decentralized approaches are proposed in
the literature, taking advantage of the Fog comput-
ing paradigm. In such cases, computation is dissemi-
nated among Fog nodes in order to be brought closer
to the IoT devices producing the data. However, these
distributed reasoning approaches do not discuss rule
placement: it is static, either computed at design time,
or all the nodes execute the same set of rules.

With EDR, the contributions described in this paper,
address these shortcomings by leveraging the comple-
mentarity between Cloud and Fog computing, in order
to associate remote powerful nodes providing stability,
and local, limited, opportunistically available comput-
ing resources. EDR is a generic approach to dynami-
cally distributed rule-based reasoning, based on modu-
lar SHACL rules. The execution by Fog nodes of core
EDR functionalities is controlled via a dedicated vo-
cabulary describing knowledge in each node’s KB.

This vocabulary is used by rule modules to imple-
ment deployment strategies enabling the propaga-
tion of rules neighbor-to-neighbor across the Fog tier
of the Cloud-Fog-Device pattern. Rule deployment
strategies aim at optimizing rule placement for cus-
tomizable criteria, such as response time or energy
consumption, based on the knowledge stored in each
node’s KB. Such knowledge includes a description
of its neighbors, the current state of the environment
based on sensor observations, and background knowl-
edge. Overall, EDR enables, in a purely decentralized
and emergent manner, the deployment of rules, the
propagation of data and the delivery of deductions
inferred when applying the rules once they have been
deployed. In order to enforce its genericity, EDR it-
self is made agnostic to individual deployment strate-
gies. It has to be refined by injecting rules embedding
their own deployment strategy, selected according
to application-level requirements. The obtained gener-
icity enables the implementation of several policies,
however it requires from the developing team a full
SWoT expertise, from the IoT to the SW. We hope that
future adoption of the SWoT will support the general-
ization of such expertise.

To show the interest of our contribution, we pro-
posed EDRT , an EDR refinement implementing a de-
ployment strategy dedicated to reducing delays for
transmitting deductions to applications. EDRT aims
at deploying rules on Fog nodes as close as possible
to sensors, while avoiding unnecessary computation.
Rules are thus propagated toward sensors producing
the type of data they consume, as deep as possible
in the topology. The propagation stops when the rule
is deployed on the Fog node which is the closest com-
mon ancestor to these sensors in the topology. To en-
force the locality of decisions, node characteristics are
announced through the network thanks to a proxying
mechanism, where data productions and consumptions
are propagated.

The genericity and the dynamicity of the EDR ap-
proach are achieved by design, while its scalability
and the improvement brought by distribution for re-
sponsiveness have been measured through experimen-
tation. A simulated smart factory use case has been
considered, executed on a powerful server or dis-
tributed across constrained nodes. Decentralized deliv-
ery mechanisms outperform centralized ones: Quality
of Service (QoS) is less degraded when the number of
nodes increase in a distributed reasoning setting. En-
abling a more widespread distribution of rules by mod-
ifying sensor deployment does not improve QoS with

30 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

a centralized delivery mechanism. The complementar-
ity of Fog and Cloud paradigms is also supported by
the results of our approach: there is an improvement of
performances even in cases where deductions are for-
warded to a Cloud node, and not directly to applica-
tions, compared to a centralized reasoning approach.
Therefore, unloading the Cloud infrastructure by per-
forming semantic Fog computing, while considering
the Cloud node both as a computation resource and as
a stable Web endpoint for applications enables scalable
deployments for the SWoT.

However, not considering the resources available in
the Fog showed limitations, and in future work we in-
tend to develop distribution strategies able to perform
load balancing between Cloud and Fog nodes based on
node capabilities. The impact of the changes in the un-
derlying network on the deployment is not evaluated
in this paper. The dynamicity of EDR is shown by con-
struction, but future work will include a detailed eval-
uation of the performances of this adaptation mecha-
nism.

The genericity of the EDR approach enables such
extensions to be developed without modifying the core
algorithm. Likewise, future work will include the de-
velopment of a privacy-aware deployment strategy for
EDR. In the strategy implemented by EDRT , a com-
plete cooperation is assumed between nodes, and there
are no guarantees regarding the scope of data ex-
change. However, IoT data includes private elements,
that should only be shared with trusted third-parties.
The distributed nature of EDR fosters a paradigm shift:
data producers can become data owners, and remain
in control. Instead of sending their data to service
providers, data owners are provided with rules, and
only reveal to remote node part of their data. In the
past years, multiple security breaches have been re-
vealed, so enabling users to regain control over their
data might restore the trust users need to have regard-
ing the systems that are deployed in their environment.
Distributing reasoning driven by a privacy-aware strat-
egy would be a first step towards safer, more user-
friendly IoT systems.

Appendix A. Namespaces

Appendix. References

[1] T. Berners-Lee, J. Hendler and O. Lasilla, The Se-
mantic Web, Scientific American 284(5) (2001), 34–43.
doi:10.1038/scientificamerican0501-34.

Prefix Namespace

ssn: http://purl.oclc.org/NET/ssnx/ssn
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

owl: http://www.w3.org/2002/07/owl#
lmu: https://w3id.org/laas-iot/lmu#
iotl: http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite#
ex: http://example.com/ns#

edr: https://w3id.org/laas-iot/edr#
edrt: https://w3id.org/laas-iot/edrt#
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
adr: https://w3id.org/laas-iot/adream#

Table 8
Namespaces referenced in this paper, and the associated prefixes

[2] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mi-
etz, C. Truong, H. Hasemann, A. Kröller, M. Pagel,
M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant and
R. Richardson, SPITFIRE: toward a semantic web of things,
IEEE Communications Magazine 49(11) (2011), 40–48.
doi:10.1109/MCOM.2011.6069708.

[3] A. Gyrard, M. Serrano, J.B. Jares, S.K. Datta and M.I. Ali,
Sensor-based Linked Open Rules (S-LOR): An Automated
Rule Discovery Approach for IoT Applications and its
use in Smart Cities, in: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion, In-
ternational World Wide Web Conferences Steering Com-
mittee, 2017, pp. 1153–1159. ISBN 978-1-4503-4914-7.
doi:10.1145/3041021.3054716.

[4] S. Wang, J. Wan, D. Li and C. Liu, Knowledge reason-
ing with semantic data for real-time data processing in
smart factory, Sensors (Switzerland) 18(2) (2018), 1–10.
doi:10.3390/s18020471.

[5] P. Mell and T. Grance, The NIST Definition of Cloud Comput-
ing Recommendations of the National Institute of Standards
and Technology, National Institute of Standards and Technol-
ogy, Information Technology Laboratory 145 (2011), 7. ISBN
1047-6210. doi:10.1136/emj.2010.096966.

[6] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, Fog Computing
and Its Role in the Internet of Things, in: Proceedings of the
first edition of the MCC workshop on Mobile cloud comput-
ing, ACM Press, New York, New York, USA, 2012, pp. 13–16.
ISBN 978-1-4503-1519-7. doi:10.1145/2342509.2342513.

[7] P. Patel, M. Intizar Ali and A. Sheth, On Using the Intelligent
Edge for IoT Analytics, IEEE Intelligent Systems 32(5) (2017),
64–69. doi:10.1109/MIS.2017.3711653.

[8] Y. Sahni, J. Cao, S. Zhang and L. Yang, Edge Mesh: A New
Paradigm to Enable Distributed Intelligence in Internet of
Things, IEEE Access 5 (2017), 16441–16458. ISBN 978-1-
5090-6517-2. doi:10.1109/ACCESS.2017.2739804.

[9] F.B. Charrada and S. Tata, An Efficient Algorithm for the
Bursting of Service-Based Applications in Hybrid Clouds,
IEEE Transactions on Services Computing 9(3) (2016), 357–
367. doi:10.1109/TSC.2015.2396076.

[10] N. Seydoux, K. Drira, N. Hernandez and T. Monteil, A Dis-
tributed Scalable Approach for Rule Processing: Computing in
the Fog for the SWoT, in: 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), IEEE, 2018, pp. 112–
119.

http://purl.oclc.org/NET/ssnx/ssn
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
https://w3id.org/laas-iot/lmu#
http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite#
http://example.com/ns#
https://w3id.org/laas-iot/edr#
https://w3id.org/laas-iot/edrt#
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
https://w3id.org/laas-iot/adream#

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[11] N. Seydoux, K. Drira, N. Hernandez and T. Monteil, Towards
Cooperative Semantic Computing: a Distributed Reasoning ap-
proach for Fog-enabled SWoT, in: OTM Confederated Interna-
tional Conferences" On the Move to Meaningful Internet Sys-
tems", Springer, 2018, pp. 407–425.

[12] A. Khandelwal, I. Jacobi and L. Kagal, Linked rules: Princi-
ples for rule reuse on the web, in: International Conference on
Web Reasoning and Rule Systems, Vol. 6902 LNCS, Springer,
pp. 108–123.

[13] A.I. Maarala, X. Su and J. Riekki, Semantic reasoning for
context-aware Internet of Things applications, IEEE Internet
of Things Journal 4(2) (2016), 461–473.

[14] X. Su, P. Li, J. Riekki, X. Liu, J. Kiljander, J.-P. Soininen,
C. Prehofer, H. Flores and Y. Li, Distribution of Semantic Rea-
soning on the Edge of Internet of Things, in: IEEE UbiComp,
2018, p. 79. ISBN 9781450348140.

[15] H. Boley, M. Kifer, P.-L. Pătrânjan and A. Polleres, Rule inter-
change on the web, in: Reasoning Web International Summer
School, Springer, 2007, pp. 269–309.

[16] A. Sheth, C. Henson and S.S. Sahoo, Semantic Sen-
sor Web, in: IEEE Internet Computing, Vol. 12, 2008,
pp. 78–83. ISSN 1089-7801. ISBN 1089-7801 VO - 12.
doi:10.1109/MIC.2008.87.

[17] O.B. Sezer, E. Dogdu and A.M. Ozbayoglu, Context Aware
Computing, Learning and Big Data in Internet of Things: A
Survey, IEEE Internet of Things Journal 5(1) (2018), 1–1.
doi:10.1109/JIOT.2017.2773600.

[18] Z. Li, C.H. Chu, W. Yao and R.a. Behr, Ontology-driven
event detection and indexing in smart spaces, in: Proceedings
- 2010 IEEE 4th International Conference on Semantic Com-
puting, ICSC 2010, 2010, pp. 285–292. ISBN 9780769541549.
doi:10.1109/ICSC.2010.63.

[19] Y. Sun and A.J. Jara, An extensible and active semantic model
of information organizing for the Internet of Things, Personal
and Ubiquitous Computing 18(8) (2014). ISBN 1617-4909.
doi:10.1007/s00779-014-0786-z.

[20] G. Xu, Y. Cao, Y. Ren, X. Li and Z. Feng, Network Security
Situation Awareness Based on Semantic Ontology and User-
Defined Rules for Internet of Things, IEEE Access 5 (2017),
21046–21056.

[21] I.B. Rodriguez, J. Lacouture and K. Drira, Semantic
Driven Self-Adaptation of Communications Applied to
ERCMS, in: 2010 24th IEEE International Conference
on Advanced Information Networking and Applications,
IEEE, 2010, pp. 1292–1299. ISBN 978-1-4244-6695-5.
doi:10.1109/AINA.2010.158.

[22] Y. Evchina, J. Puttonen, A. Dvoryanchikova and J.L.M. Lastra,
Context-aware knowledge-based middleware for selective in-
formation delivery in data-intensive monitoring systems, Engi-
neering Applications of Artificial Intelligence 43 (2015), 111–
126. doi:10.1016/j.engappai.2015.04.008.

[23] P. Kasnesis, C.Z. Patrikakis and I.S. Venieris, Collective do-
motic intelligence through dynamic injection of semantic
rules, in: IEEE International Conference on Communications,
Vol. 2015-Septe, 2015, pp. 592–597. ISSN 15503607. ISBN
9781467364324. doi:10.1109/ICC.2015.7248386.

[24] P. Lillo, L. Mainetti, V. Mighali, L. Patrono and P. Rametta, A
Novel Rule-based Semantic Architecture for IoT Building Au-
tomation Systems, in: International Conference on Software,
Telecommunications and Computer Networks (SoftCOM),

Vol. 12, IEEE, 2015, pp. 124–131. ISSN 18456421. ISBN 978-
9-5329-0056-9. doi:10.1109/SOFTCOM.2015.7314063.

[25] D. Hussein, S.N. Han, G.M. Lee, N. Crespi and E. Bertin, To-
wards a dynamic discovery of smart services in the social in-
ternet of things, Computers & Electrical Engineering (2016).
doi:10.1016/j.compeleceng.2016.12.008.

[26] W. Van Woensel and S.S.R. Abidi, Optimizing Semantic Rea-
soning on Memory-Constrained Platforms Using the RETE Al-
gorithm, in: ESWC, Vol. 10843 LNCS, 2018, pp. 682–696.
ISSN 16113349. ISBN 9783319934167.

[27] P. Desai, A. Sheth and P. Anantharam, Semantic gateway as
a service architecture for IoT interoperability, in: 2015 IEEE
International Conference on Mobile Services, IEEE, 2015,
pp. 313–319.

[28] Y.H. Lee and S. Nair, A Smart Gateway Framework for IOT
Services, Proceedings - 2016 IEEE International Conference
on Internet of Things; IEEE Green Computing and Communi-
cations; IEEE Cyber, Physical, and Social Computing; IEEE
Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016
(2016), 107–114. ISBN 9781509058808. doi:10.1109/iThings-
GreenCom-CPSCom-SmartData.2016.44.

[29] C.E. Kaed, I. Khan, A.V.D. Berg, H. Hossayni and
C. Saint-Marcel, SRE: Semantic Rules Engine for
the Industrial Internet-Of-Things Gateways, IEEE
Trans. Industrial Informatics 14(2) (2018), 715–724.
doi:10.1109/TII.2017.2769001.

[30] I. Chatzigiannakis, H. Hasemann, M. Karnstedt, O. Kleine,
A. Kröller, M. Leggieri, D. Pfisterer, K. Römer and C. Truong,
True self-configuration for the IoT, in: 2012 3rd IEEE Interna-
tional Conference on the Internet of Things, IEEE, 2012, pp. 9–
15.

[31] H. Hasemann, A. Kröller and M. Pagel, RDF provision-
ing for the internet of things, in: Proceedings of 2012
International Conference on the Internet of Things, IOT
2012, IEEE, 2012, pp. 143–150. ISBN 9781467313469.
doi:10.1109/IOT.2012.6402316.

[32] M. Taneja and A. Davy, Resource aware placement of IoT
application modules in Fog-Cloud Computing Paradigm, in:
2017 IFIP/IEEE Symposium on Integrated Network and Ser-
vice Management, IEEE, 2017, pp. 1222–1228. ISBN 978-3-
901882-89-0. doi:10.23919/INM.2017.7987464.

[33] C.E. Kaed, I. Khan, A. Van Den Berg, H. Hossayni
and C. Saint-Marcel, SRE : Semantic Rules Engine For
the Industrial Internet- Of-Things Gateways, IEEE Trans-
actions on Industrial Informatics 14(2) (2018), 715–724.
doi:10.1109/TII.2017.2769001.

[34] C.E. Kaed, I. Khan, H. Hossayni and P. Nappey, SQenloT:
Semantic query engine for industrial Internet-of-Things gate-
ways, 2016 IEEE 3rd World Forum on Internet of Things,
WF-IoT 2016 (2016), 204–209. ISBN 9781509041305.
doi:10.1109/WF-IoT.2016.7845468.

[35] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi,
Internet of Things for Smart Cities, IEEE Internet of Things
Journal 1(1) (2014), 22–32. doi:10.1109/JIOT.2014.2306328.

[36] M. Ben-Alaya, S. Medjiah, T. Monteil and K. Drira, To-
ward semantic interoperability in oneM2M architecture,
IEEE Communications Magazine 53(12) (2015), 35–41.
doi:10.1109/MCOM.2015.7355582.

[37] I. Szilagyi and P. Wira, Ontologies and Semantic Web for the
Internet of Things - a survey, in: IECON, IEEE, 2016.

32 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[38] N. Seydoux, K. Drira, N. Hernandez and T. Monteil, IoT-
O, a core-domain IoT ontology to represent connected de-
vices networks, in: European Knowledge Acquisition Work-
shop, Springer, 2016, pp. 561–576.

[39] N. Seydoux, K. Drira, N. Hernandez and T. Monteil, Capturing
the contributions of the semantic web to the IoT: a unifying
vision (extended abstract), Semantic Web technologies for the
Internet of Things (2017).

[40] S. Nikoli, V. Penca and Z. Konjovi, Semantic Web Based
Architecture for Managing Hardware Heterogeneity in Wire-
less Sensor Network, in: International Journal of Computer
Science and Applications, Vol. 8, 2011, pp. 38–58. ISBN
9781450301480.

[41] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopou-
los, Context aware computing for the internet of things:
A survey, IEEE Communications Surveys and Tutori-
als 16(1) (2014), 414–454. ISBN 1553-877X VO - PP.
doi:10.1109/SURV.2013.042313.00197.

[42] K. Janowicz, A. Haller, S.J.D. Cox, D. Le Phuoc
and M. Lefrançois, SOSA: A lightweight ontol-
ogy for sensors, observations, samples, and actu-
ators, Journal of Web Semantics 56 (2019), 1–10.
doi:10.1016/j.websem.2018.06.003. http://www.sciencedirect.
com/science/article/pii/S1570826818300295.

[43] M. Lefrançois, A. Zimmermann and N. Bakerally, A SPARQL
Extension for Generating RDF from Heterogeneous Formats,
in: The Semantic Web, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig, eds, Lecture Notes in
Computer Science, Springer International Publishing, 2017,
pp. 35–50. ISBN 978-3-319-58068-5.

[44] X. Su, J. Riekki, J.K. Nurminen, J. Nieminen and
M. Koskimies, Adding semantics to internet of things, Con-
currency and Computation: Practice and Experience 27(8)
(2015), 1844–1860. doi:10.1002/cpe.3203.

http://www.sciencedirect.com/science/article/pii/S1570826818300295
http://www.sciencedirect.com/science/article/pii/S1570826818300295

	Introduction
	Desirable characteristics for the proposed solution
	Illustrative smart factory use case
	Scalability
	Responsivity
	Dynamicity

	Related work for rule deployment in SWoT architectures
	Rules for the SWoT
	Centralizing rule processing on Cloud nodes
	Distributing rule processing on Fog nodes

	Distributing reasoning with EDR
	Assumptions on the underlying architecture
	Overview of the EDR approach
	A vocabulary driving the deployment mechanism
	Basic node functionalities
	Announce self-description:
	Apply rules:
	Deliver deduction:
	Send data:
	Propagate rule:

	Controlling node characteristics propagation
	Announcing characteristics to a node's parent:
	Announcing characteristics to a node's children:

	Propagating knowledge beyond neighbors
	Characteristics proxied from children to parent:
	Characteristics proxied from parent to children:

	Rule representation and deployment
	Rule modular structure
	Rule modules
	Core module
	Rule transfer module
	Rule activation module
	Result delivery module

	Dynamically managing modules activation
	Leveraging the unique identification of rules
	Preventing redundant computation
	Updating rules at runtime

	Refining EDR with EDRT
	Implementing a deployment strategy based on property types with EDRT
	Node characteristics at stake in EDRT
	Node knowledge on itself
	Node knowledge on the topology
	Announcing productions:
	Announcing consumptions:

	Exploiting the contextual locality of IoT data

	Implementation of EDRT in rule modules
	Rule Transfer module
	Activation module
	Result delivery module

	Unraveling the main steps of EDRT
	When changing characteristics
	When receiving a rule
	When receiving new data

	Experimentation
	Deduction delivery mechanisms
	Experimental setup and implementation
	Hardware setup
	Software setup
	Measured results

	Use case details
	Scalability of the proposed approach
	Simulation topologies
	Results

	Impact of distribution on responsiveness
	Simulation topology
	Results

	Discussion

	Conclusion and future work
	Appendix A. Namespaces
	Appendix. References

