
Semantic Web 0 (2019) 1–26 1
IOS Press

Knowledge Graph OLAP
A Multidimensional Model and Query Operations for Contextualized Knowledge Graphs

Christoph G. Schuetz a,*, Loris Bozzato b, Bernd Neumayr a, Michael Schrefl a, and Luciano Serafini b

a Department of Business Informatics – Data & Knowledge Engineering, Johannes Kepler University Linz, Austria
E-mails: christoph.schuetz@jku.at, bernd.neumayr@jku.at, michael.schrefl@jku.at
b Center for Information and Communication Technology, Fondazione Bruno Kessler, Italy
E-mails: bozzato@fbk.eu, serafini@fbk.eu

Abstract. A knowledge graph (KG) represents real-world entities and their relationships with each other. The thus represented
knowledge is often context-dependent, leading to the construction of contextualized KGs. Due to the multidimensional and
hierarchical nature of context, the multidimensional OLAP cube model from data analysis is a natural fit for the representation
of contextualized KGs. Traditional systems for online analytical processing (OLAP) employ cube models to represent numeric
values for further processing using dedicated query operations. In this paper, along with an adaptation of the OLAP cube model
for KGs, we introduce an adaptation of traditional OLAP query operations for the purposes of working with contextualized KGs.
In particular, we decompose the roll-up operation from traditional OLAP into a merge and an abstraction operation. The merge
operation corresponds to the selection of knowledge from different contexts whereas abstraction replaces entities with more
general entities. The result of such a query is a more abstract, high-level view on the contextualized KG.

Keywords: Contextualized Knowledge Repository, Knowledge Graph Management System, Knowledge Graph Summarization,
Resource Description Framework, Ontologies

1. Introduction

A knowledge graph (KG) serves organizations to rep-
resent real-world entities and their relationships with
each other. KGs have been described as “large networks
of entities, their semantic types, properties, and rela-
tionships” [1], as consisting of “a set of interconnected
typed entities and their attributes” [2] with possibly arbi-
trary relationships [3]. The majority of a KG’s contents
are facts/instances or assertional knowledge (ABox) [3],
although KGs may also include terminological/ontolog-
ical knowledge (TBox) representing “the vocabulary
used in the knowledge graph” [2] in order to allow for
“ontological reasoning and query answering” [4] over
the facts. Furthermore, a KG typically covers a variety
of topics rather than focusing exclusively on a single as-
pect of the real world such as geographic terms [3]. The
Resource Description Framework (RDF) is the standard
representation format for KGs.

*Corresponding author. E-mail: christoph.schuetz@jku.at.

KGs present a wide range of potential applications,
e.g., (web) search [5] and question-answering [6], intra-
company knowledge management [7] and investment
analysis [8]. Among the most popular examples of
KGs are proprietary ones such as Google’s Knowl-
edge Graph [9] and Microsoft’s Satori [10] as well as
community-driven efforts such as DBpedia [11] and
Wikidata [12]. More and more organizations follow suit
with the development of KGs for their own purposes,
necessitating the development of appropriate Knowl-
edge Graph Management Systems (KGMS) [4] that fa-
cilitate knowledge exploitation, e.g., by providing KG
summarization mechanisms [13].

In a strive for successful management, KGs are in-
creasingly subject to contextualization, i.e., the enrich-
ment of facts with context metadata information such
as time and location. For example, in the aeronautics
domain, the relevant knowledge for air traffic manage-
ment is inherently context-dependent [14], especially
with respect to time and location but also other con-
text dimensions. In particular, knowledge about airport

1570-0844/19/$35.00 c© 2019 – IOS Press and the authors. All rights reserved

2 C.G. Schuetz et al. / Knowledge Graph OLAP

infrastructure and airspace such as operational status
of runways and closure of airspace varies over time.
Frameworks such as the Contextualized Knowledge
Repository (CKR) [15] serve to organize knowledge
within hierarchically ordered contexts along multiple
contextual dimensions, e.g., spatial and temporal.

The multidimensional nature of context invites com-
parison with the multidimensional modeling approach
as employed by online analytical processing (OLAP)
systems for data analysis. In traditional OLAP sys-
tems, hierarchically ordered dimensions span a multi-
dimensional space – also referred to as OLAP cube –
where each point (or cell) represents an event of inter-
est quantified by numeric measures. Similarly, context
dimensions span a multidimensional space where each
cell represents a context that comprises facts of a KG.
OLAP systems employ multidimensional models to per-
form analytical queries over datasets using operations
such as slice-and-dice and roll-up (see [16] for further
information). In this regard, slice-and-dice refers to the
selection of relevant data for the analysis whereas roll-
up refers to the aggregation of the selected data in order
to obtain a more abstract view on the underlying busi-
ness situation. Graph OLAP [17], which is also known
as InfoNetOLAP [18], extends the OLAP paradigm to
structured graph data, e.g., co-author or other social
graphs. In Graph OLAP, each cell of an OLAP cube
contains a graph with weighted edges. Informational
OLAP then refers to the combination of graphs from
different cells. Topological OLAP, on the other hand,
refers to the transformation of the graphs, thereby ag-
gregating the weights of the edges. In the same vein,
we extend the OLAP paradigm to KGs.

In this paper, we introduce Knowledge Graph OLAP
(KG-OLAP), a formal framework that consists of a
multidimensional model and corresponding query op-
erations for summarizing contextualized KGs. Based
on the CKR framework, KG-OLAP extends the idea
of Graph OLAP to the management of contextualized
KGs. Unlike Graph OLAP, which deals with more
structured graphs focused on the relationships between
simple entities, KG-OLAP deals with more complex,
semi-structured KGs with assertional and terminologi-
cal components that must be adequately dealt with. To
this end, KG-OLAP cubes collect knowledge into hier-
archically ordered contexts: each cell of a KG-OLAP
cube corresponds to a context, with RDF triples replac-
ing numeric measures as the contents of the cells. In
KG-OLAP cubes, knowledge from the more general
contexts propagates to the more specific contexts. Typi-
cally, the more general contexts establish the common

terminological knowledge whereas the more specific
contexts contain assertional knowledge. Central to KG-
OLAP are then the notions of merge and abstraction,
extending the notions of informational and topological
OLAP from Graph OLAP. The merge operation com-
bines the knowledge from different contexts whereas
the abstraction operation replaces individual entities
within a context with more abstract entities.

Figure 1 draws an analogy between query operations
in KG-OLAP and traditional OLAP operations over
numeric values. The example’s setting is air traffic man-
agement, where air traffic controllers dispatch messages
notifying airmen of changes in airport infrastructure
and airspace characteristics. In this example, aircraft,
location, and time dimensions span a three-dimensional
space where each cell contains (a) numeric values in
case of traditional OLAP or (b) RDF triples in case of
KG-OLAP. On the left-hand side, each cell contains
the number of notification messages relevant for an air-
craft model in a flight information region segment for
a particular month. The roll-up operation that sums up
message count per aircraft type instead of individual
aircraft model and flight information region instead of
individual segment boils down to a sequence of merge
and abstraction. First, the merge operation obtains a set
of numeric values for each grouping of cells by aircraft
type and flight information region. Then, the abstrac-
tion operation applies the SUM aggregation operator
on the set of numeric values to obtain a single numeric
value. On the right-hand side, each cell contains RDF
triples representing knowledge relevant for an aircraft
in a flight information region segment for a particular
month. Here, the merge operation first collects the RDF
triples from the individual cells that make up a grouping
of cells by aircraft type and flight information region.
Then, an abstraction operation replaces entities A and D
by some entity G – representing the grouping of those
entities A and D – in the merged graph.

We illustrate KG-OLAP using the case of (contex-
tualized) knowledge graphs for air traffic management
(ATM) [14, 19] in combination with the concept of ATM
information cubes [20, 21]; we draw from experience
in research projects on the use of semantic technolo-
gies in ATM (see [22–24]). ATM knowledge graphs
potentially comprise a wide variety of topics: events,
weather, flight plans, infrastructure, equipment, organi-
zations, companies, and personnel. The running exam-
ple focuses on the representation of events such as run-
way closures and surface contamination which affect
the operational status of airport infrastructure and thus
alter general ATM knowledge. In our case, merge and

C.G. Schuetz et al. / Knowledge Graph OLAP 3

msgCnt
= 70

A380

msgCnt
= 50

msgCnt
= 5

msgCnt
= 20

A330

Jan

Feb

LOVV-
22

Fixed
Wing

msgCnt
= {50, 20, 70, 5}

Jan

Feb

LOVV (Austria)

Fixed
Wing

msgCnt
= 145

Jan

Feb

LOVV (Austria)

GROUP BY
[Aircraft: type,
 Location: region]

SUM

M
er

ge

A380

A330

Jan

Feb

Fixed
Wing

Jan

Feb

LOVV (Austria)

Jan

Feb

LOVV (Austria)

A x

B

D

y

E

D

x

C A y

E

A x

B

y

E

D

y

C

x

x

B
C

x

E

y

G

GROUP BY
[Aircraft: type,
 Location: region]

REPLACE BY
GROUPING
[A G, D G]

LOVV-
23

LOVV-
22

LOVV-
23

Fixed
Wing

A
bs

tr
ac

ti
o
n

M
er

ge

(a) OLAP (b) KG-OLAP

A
bs

tr
ac

ti
o
n

Fig. 1. The roll-up operation as a combination of merge and abstrac-
tion in (a) traditional OLAP with numeric values and (b) Knowledge
Graph OLAP

abstraction serve to obtain a management summary for
pilot briefings or post-operational analysis, providing a
more abstract view on the knowledge graph containing
only the relevant ATM knowledge for a particular situa-
tion. Another potential application of KG-OLAP is the
representation of business reports and their subsequent
analysis using merge and abstraction [25].

In this paper, we make a number of contributions
with respect to contextualized KG management:

(i). a formalization of contextualized KGs with hier-
archical contexts and knowledge propagation.

(ii). a set of query operations for working with con-
textualized KGs.

(iii). an experimental analysis of run time perfor-
mance of working with contextualized KGs.

The remainder of this paper is organized as follows.
In Section 2, we present the use case that serves to il-
lustrate KG-OLAP and motivate the approach. In Sec-
tion 3, we introduce the modeling language for KG-
OLAP cubes. In Section 4, we present query operations
for KG-OLAP cubes. In Section 5, we discuss imple-
mentation of the approach. In Section 6, we review
related work. We conclude with a discussion and an
outlook on future work.

2. Use Case: Air Traffic Management

Modern air traffic management (ATM) strives to en-
sure safe flight operations through careful management,
analysis, and advance planning of air traffic flow as
well as timely provisioning of relevant information in
form of messages. The exchange of data/information
between ATM stakeholders is of paramount importance
in order to foster common situational awareness for im-
proved efficiency, safety, and quality in planning and op-
erations. In this regard, situational awareness refers to
a “person’s knowledge of particular task-related events
and phenomena” [26], i.e., knowledge about the world
relevant for ATM, which must be accurately represented
and conveyed to the various stakeholders. To this end,
ATM relies on a multitude of standardized data/informa-
tion (exchange) models, e.g., the Aeronautical Informa-
tion Exchange Model (AIXM), the Flight Information
Exchange Model (FIXM), the ICAO Meteorological In-
formation Exchange Model (IWXXM), and the ATM
Information Reference Model (AIRM). Furthermore, a
growing interest in the use of semantic technologies in
ATM (see [27] for an overview) has led to the develop-
ment of domain ontologies, e.g., the NASA ATM Ontol-
ogy [28] and the AIRM Ontology [29], and knowledge
graphs for ATM [19, 30].

Among the most common types of messages ex-
changed in ATM are Notices to Airmen. A Notice to
Airmen (NOTAM) – or Digital NOTAM (DNOTAM)
when in electronic form using AIXM format – is a mes-
sage that conveys important information about tempo-
rary changes in flight conditions to aircraft pilots [31],
e.g., aerodrome, runway, and taxiway closures, surface
conditions, and construction activities (see [32] for a
list of event scenarios) but also airspace restrictions.
Air traffic controllers dispatch relevant DNOTAMs to
pilots prior to a flight, possibly with additional annota-
tions and further background knowledge. Automated
rule-based filtering and prioritization techniques pro-
vide assistance to controllers and pilots in determining
the relevance and importance of DNOTAM messages
for a particular flight [22].

Messages shape the knowledge about the world as
relevant for ATM. For example, a DNOTAM (Listing 1)
may change the knowledge about the runways of a par-
ticular airport by announcing the temporary closure
of a runway due to snow. To this end, a DNOTAM
employs different time slices. A baseline timeslice de-
fines the regular, baseline knowledge whereas a tem-
pdelta timeslice announces temporary changes of the
baseline knowledge. Instead of the baseline timeslice,

4 C.G. Schuetz et al. / Knowledge Graph OLAP

2018-02-12T08:00:00 –
2018-02-12T10:00:00

VIE

VIE_RWY1

VIE_RWY1_AV1

AirportHeliport

VIE_RWY1_NT1

operationalStatus

REMARKCLOSED

DUE_TO_SNOW

propertyName

operationalStatus

note

All-date

Note

rdf:type

ManoeuvringAreaAvailability

rdf:type

covered by

VIE_RWY1

isSituatedAt

Runway

rdf:type

rdf:type

REMARK
CLOSED

CodeNotePurposeType

rdf:type

CodeStatusAirportType

rdf:type

DUE_TO_SNOW

TextNoteType

rdf:type

availability

annotation

purpose

3600
lengthStrip

Fig. 2. A contextualized KG based on the DNOTAM in Listing 1

a DNOTAM typically employs the snapshot timeslice
– the baseline blended with tempdelta knowledge. In
the example DNOTAM in Listing 1, the encoded snap-
shot/baseline knowledge consists of the definition of
the designator of Vienna airport (Lines 6-13) and the
definition of various attributes of a runway at Vienna
airport (Lines 18-28) per 12 February 2018 at 8:00 am.
The tempdelta knowledge consists of the notification of
a runway closure due to snow (Lines 31-50).

The knowledge encoded in DNOTAMs is more natu-
rally represented using contextualized KGs [14]. Fig-
ure 2 illustrates the contextualized representation of the
knowledge encoded in the DNOTAM from Listing 1
along a temporal dimension. The all-date context de-
fines general knowledge about various infrastructure
elements, which hardly changes. The temporal context
for the timespan from 8:00-10:00 am on the 12 Febru-
ary 2018, on the other hand, defines knowledge about a
temporarily reduced availability – a closed operational
status – due to snow. Other context dimensions may
also serve to organize ATM knowledge into contextual-
ized KGs [14], e.g., geography, topic.

Manual and automated rule-based filtering, combi-
nation, and enrichment activities allow for the collec-
tion of individual DNOTAMs (or other messages) along
with additional information and domain knowledge into
semantic containers [23] for different contexts of rele-
vance. For example, a container may comprise the rele-
vant DNOTAMs in the context of a flight from Dubai to

Listing 1: An example DNOTAM in XML notifying of
a runway closure in Vienna due to snow

1 �- <AIXMBasicMessage>
2 �- <hasMember>
3 �- <AirportHeliport id="VIE">
4 �- <timeSlice>
5 �- <AirportHeliportTimeSlice
6 id="VIE_TS1">
7 �- <validTime>
8 �- <TimeInstant
9 id="VIE_TS1_TI">

10 �- <timePosition>
11 2018-02-12T08:00:00
12 �- <interpretation>SNAPSHOT
13 �- <designator>VIE
14 �- <hasMember>
15 �- <Runway id="VIE_RWY1">
16 �- <timeSlice>
17 �- <RunwayTimeSlice
18 id="VIE_RWY1_TS1">
19 �- <validTime>
20 �- <TimeInstant
21 id="VIE_RWY1_TS1_TI">
22 �- <timePosition>
23 2018-02-12T08:00:00
24 �- <interpretation>SNAPSHOT
25 �- <isSituatedAt
26 xlink:href="VIE"/>
27 �- <designator>VIE_RWY1
28 �- <lengthStrip>3600
29 �- <timeSlice>
30 �- <RunwayTimeSlice
31 id="VIE_RWY1_TS2">
32 �- <validTime>
33 �- <TimePeriod
34 id="VIE_RWY1_TS2_TP">
35 �- <beginPosition>
36 2018-02-12T08:00:00
37 �- <endPosition>
38 2018-02-12T10:00:00
39 �- <interpretation>TEMPDELTA
40 �- <availability>
41 �- <RunwayAvailabilty
42 id="VIE_RWY1_AV1">
43 �- <operationalStatus>CLOSED
44 �- <annotation>
45 �- <Note
46 id="VIE_RWY1_NT1">
47 �- <propertyName>
48 operationalStatus
49 �- <purpose>REMARK
50 �- <note>DUE TO SNOW

C.G. Schuetz et al. / Knowledge Graph OLAP 5

Vienna on a particular day. Now depending on the ad-
dressee, e.g., pilot or network manager, and the task that
the information serves, e.g., operational or analytical,
the containers may have different context dimensions.
For example, a pilot, in order to prepare for and safely
conduct a flight, might prefer to receive DNOTAMs that
have been collected into different containers per combi-
nation of flight phase, route or ground segment, event
scenario, and importance. The pilot could then select
the appropriate containers at the right moment without
being overloaded with information. This application ba-
sically corresponds to a combination of previous work
on automated rule-based filtering and prioritization of
DNOTAMs [22] with semantic containers [23].

Post-operational analytical tasks may also leverage
contextualized ATM knowledge. In air traffic flow and
capacity management (ATFCM) – one of the core ac-
tivities in ATM – a post-operations team analyzes op-
erational events in order to identify valuable lessons
learned for the benefit of future operations and pro-
duces an overview of occurred incidents [33, p. 131]. A
data warehouse provides the post-operations team with
statistical data about flight operations [33, p. 130]. In
addition, a repository of semantic containers may com-
prise contextualized ATM knowledge extracted from
DNOTAMs and other types of messages by temporal
relevance, route or ground segment, aircraft model, and
importance. By analyzing such ATM knowledge, an
air traffic flow post-operations team may gain a more
comprehensive picture of past air traffic operations.

In the remainder of this paper, we illustrate the KG-
OLAP approach using the cases of ATM knowledge
representation for pilot briefings and post-operational
analysis in ATFCM. In particular, we propose to em-
ploy a KG-OLAP cube of hierarchically ordered se-
mantic containers comprising ATM knowledge, ob-
tained from DNOTAMs according to the AIXM stan-
dard [34] and possibly other sources, for different con-
texts of relevance – a cube of ATM knowledge. Using
the merge operation, an air traffic controller or a post-
operations team in ATFCM may combine ATM knowl-
edge from different contexts. For example, the relevant
ATM knowledge per aircraft model and importance
could be combined to obtain the ATM knowledge per
aircraft type and importance category; the ATM knowl-
edge per day and geographic segment could be com-
bined to obtain the ATM knowledge per month and geo-
graphic region. Various incarnations of the abstraction
operation then serve to obtain a more abstract repre-
sentation of the ATM knowledge. For example, instead
of indicating specific closures of individual runways

or taxiways, the abstract ATM knowledge would indi-
cate closures of runways and taxiways in general for
aircraft with certain characteristics. The abstract ATM
knowledge constitutes a management summary of the
detailed knowledge, providing a high-level overview.
Besides DNOTAMs, other types of aeronautical infor-
mation relevant to ATFCM, e.g., flight data in FIXM
and meteorological messages in IWXXM, could sim-
ilarly serve to populate the cube of ATM knowledge.
In this regard, we have previously proposed the notion
of ATM information cubes [20, 21] which, however,
comprise the ATM messages themselves rather than
contextualized knowledge graphs derived from possibly
various different sources.

In our scenario, RDF serves as the common represen-
tation language for ATM knowledge even though XML
is the native format of DNOTAMs in the AIXM stan-
dard. AIXM, however, builds on the Geography Markup
Language (GML), the initial proposal of which was
based directly on RDF, with subsequent editions con-
tinuing to “borrow many ideas from RDF” [35, p. 20],
including the GML’s object-property model [35, p. 16].
Other ATM information (exchange) models could sim-
ilarly be represented using RDF, e.g., IWXXM for
weather information. Furthermore, ontologies such as
the AIRM Ontology [29] and the NASA ATM Ontol-
ogy [19, 28, 30] could serve for the representation of
ATM knowledge.

3. Multidimensional Model

In this section, we introduce the KG-OLAP cube
model for the management of contextualized KGs. We
first introduce the model informally before providing
a formal definition. We define the model as a special-
ization of the Contextualized Knowledge Repository
(CKR) framework [15, 36].

3.1. KG-OLAP Cube Model

KG-OLAP adapts the multidimensional modeling
paradigm from data warehousing (see [16]) in order to
organize multidimensional KGs. Hence, the KG-OLAP
cube is the central modeling element. Following the
basic structure of the CKR framework, the KG-OLAP
cube consists of two distinct layers: an upper and a
lower layer. The upper layer describes the structure and
properties of a cube’s cells; the lower layer specifies cell
contents. The two layers employ distinct and possibly
disjoint languages.

6 C.G. Schuetz et al. / Knowledge Graph OLAP

Location

segment

+ mod: RDFGraph

ATMKnowledge day

month

yearregion

importance

Importance Date

package

model

Aircraft

type

Fig. 3. A KG-OLAP cube with its dimensions and levels in DFM
notation for the organization of KGs in air traffic management

A KG-OLAP cube’s upper layer defines the multidi-
mensional structure of a cube and associates specific
knowledge modules with individual cube cells. Intu-
itively, the cube’s dimensions (e.g., time, location) span
a multidimensional space, the points of which are re-
ferred to as cells1. The dimensions are hierarchically
organized into levels. The definition of a cube’s dimen-
sions and their hierarchical organization – the cube’s
multidimensional structure – into levels is referred to
as KG-OLAP cube schema.

Example 1 (KG-OLAP cube schema). Figure 3 illus-
trates, in Dimensional Fact Model (DFM) notation [37],
a KG-OLAP cube’s schema with its dimensions and lev-
els. The presented KG-OLAP cube organizes relevant
knowledge for air traffic management (ATM). The box
in the center represents the cells of the cube: Each cell
contains an RDF graph that encodes the contextualized
ATM knowledge – the cell’s knowledge module. The
cube has four context dimensions that characterize the
cells: importance, location, date, and aircraft. Hence,
the ATM knowledge graph is partitioned by importance
of the knowledge for a particular aircraft model on a
certain day within a geographic segment. The impor-
tance dimension has the levels importance and pack-
age, the location dimension has segment and region, the
date dimension has day, month, and year, the aircraft
dimension has model and type. 3

The dimension members (e.g., June 2016, Vienna)
of a KG-OLAP cube are organized in a complete linear
order, which is referred to as roll-up relationship. For
example, the month June 2016 rolls up to the year 2016
and Vienna rolls up to Austria. Dimension members
belong to levels, which define the granularity of the
dimension members (e.g. month and year, country and

1 Alternatively, data warehouse literature refers to those points
as facts – a term which in order to avoid confusion we reserve to
designate the statements in a KG.

city). The levels serve to aggregate individual cells of a
cube (see Section 4). Levels are likewise organized in
a complete linear order, which is similarly referred to
as roll-up relationship. For example, month rolls up to
year and city rolls up to country.

Example 2 (Dimensions and levels). Figure 4 shows
an ordering of dimension members and the correspond-
ing levels, which is used in the running example cube of
ATM knowledge. A tree represents each dimension, the
name of the dimension depicted above the tree. Each
node represents a dimension member, the caption next
to each node shows the respective dimension member’s
name. An edge between two nodes represents a roll-up
relationship between the respective dimension mem-
bers, from bottom to top. On the left hand side of each
tree are the levels of the dimension members, ordered
from most general to most specific. Each dimension
has an implicit all level, which is not shown in Fig. 3.
For example, in the importance dimension, the Flight-
Critical member at the importance level rolls up to the
Essential member at the package level, which rolls up
to the All-importance member at the all-importance level.
The hierarchical ordering of the dimension members
mirrors the hierarchical ordering of the levels. 3

The dimension members characterize the cells of a
KG-OLAP cube: Each cell has a set of dimension mem-
bers as identifying attributes and the dimension hierar-
chies organize the cells into a hierarchical structure. For
example, the combination of dimension members June
2016 and Austria identifies a particular cell. The hier-
archical order of dimension members determines the
coverage relationship, which is a partial order between
cells. For example, the cell identified by the combina-
tion of dimension members June 2016 and Austria cov-
ers the cell identified by the combination of dimension
members 23rd June 2016 and Vienna. With each cell,
a KG-OLAP cube furthermore associates a knowledge
module – a set of knowledge facts.

Example 3 (KG-OLAP cube cells). Figure 5 shows a
set of cells according to the KG-OLAP cube schema
in Fig. 3; the contents of the knowledge modules are
shown in Fig. 6 (see Example 4). The c0 cell associates
the K0 knowledge module, which contains the knowl-
edge facts relevant for all importance categories, all lo-
cations, on all dates, and for all aircraft. The c1 cell as-
sociates the K1 knowledge module, which contains the
knowledge facts relevant for all importance categories,
the LOVV (Austria) flight information region, the year
2020, and all aircraft. The c0 cell covers the c1 cell,

C.G. Schuetz et al. / Knowledge Graph OLAP 7

All-
importance

Importance

Essential :
package

Supplementary :
package

FlightCritical :
importance

Restriction :
importance

PotentialHazard :
importance

2020 :
year

02-2020 :
month

All-
date

Date

12-02-2020 :
day

FixedWing :
type

A380 :
model

All-aircraft

Aircraft

All-location

Location

LOVV :
region

LIMM :
region

LOWW :
segment

LOWL :
segment

LIMF :
segment

LIMC :
segment

B474 :
model

01-2020 :
month

12-01-2020 :
day

RotaryWing :
type

EC145 :
model

importance

package

all-importance

segment

region

all-location

model

type

all-aircraft

day

month

year

all-date

Fig. 4. Example hierarchies for the context dimension members

which is determined by the hierarchical order of the
identifying dimension members: All of c1’s attribute
dimension members are equal or roll up to c0’s attribute
members for the respective dimensions. Context cov-
erage indicates a sort of “extension” relationship: The
covered cells inherit the knowledge in the modules of
the covering cells.

The c2 cell, which is covered by c1, associates the
K2 knowledge module, which contains the knowledge
facts relevant for the Supplementary briefing package,
the LOVV region, the month 02-2020, and FixedWing
aircraft. The c3 cell, which is covered by c1, associates
the K3 knowledge module, which contains the knowl-
edge facts relevant for all importance categories, the
LOWW (Vienna airport) segment, the year 2020, and
all aircraft. The cells c2 and c3 are not in a coverage
relationship: c2’s importance, temporal, and aircraft at-
tributes are more general than c3’s attributes in the re-
spective dimensions but c3’s location attribute is more
general than c2’s.

The c4 cell, which is covered by c3, associates the K4

knowledge module, which contains the knowledge facts
relevant for the Essential briefing package, the LOWW
segment, the day 12-02-2020, and the A380 aircraft
model. The cells c5 and c6, which are covered by c4, as-
sociate the K5 and K6 knowledge modules, respectively,
which contain the knowledge facts of FlightCritical and
Restriction importances, respectively, relevant for the
LOWW segment, the day 12-02-2020, and the A380 air-
craft model. The c7 cell, which is covered by c2 and c3,
associates the K7 knowledge module, which contains
the knowledge facts of PotentialHazard importance rel-
evant for the LOWW segment, the day 12-02-2020, and
the A380 aircraft model. 3

A KG-OLAP cube’s lower layer consists of the ac-
tual knowledge modules that are associated with the
individual cells. A knowledge module contains state-
ments valid in the context of the associated cell. The
knowledge inside each module is specified using an
object language and expresses the facts and axioms
valid in the specific context defined by the cell. Fur-
thermore, knowledge propagates downwards along the
coverage relationships, from the more general to the
more specific contexts.

Example 4 (Knowledge modules). Figure 6 defines
(in a description logics-style syntax) the contents of
the knowledge modules K0-K7 associated with the KG-
OLAP cube cells c0-c7 from Fig. 5. The representation
of the module contents follows the AIXM standard [34]
with minor modifications for illustration purposes.

The K0 module (Rows 1-24) defines terminological
knowledge valid across all contexts. In particular, the
module defines Runway and Taxiway as subconcepts
of RunwayTaxiway (Row 1). The isSituatedAt property
links infrastructure, e.g., a RunwayTaxiway, to an Air-
portHeliport (Row 2). The availability property links in-
frastructure to a ManoeuvringAreaAvailability, which is-
sues a warning (Row 4), e.g., of inspection activity. The
warningAdjacent data property indicates whether the
warning applies to an area adjacent to the infrastructure
(Rows 5 and 6). The operationalStatus property (Row 7)
indicates the general availability of the infrastructure,
e.g., closed or limited, and the usage property (Row 8
and 9) specifies a ManoeuvringAreaUsage which indi-
cates usageType (Row 10), e.g., allow or forbid, of a spe-
cific operation (Row 11), e.g., landing, for aircraft with
certain characteristics (Rows 12 and 13), e.g., aircraft
with a weight above 140 or aircraft with a wingspan
below 8. In this regard, the weight property (Row 14)
of the AircraftCharacteristic concept specifies a weight

8 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 5. An example instance of the KG-OLAP cube schema in Fig. 3. The arrows denote coverage relationships between contexts; the covered
context points to the covering. The contents of the knowledge modules K0-K7 are defined in Fig. 6.

value and weightInterpretation specifies whether the
weight value signifies an upper (weight interpretation
below) or lower threshold (above); the wingspan prop-
erty (Rows 16 and 17) works analogously. The contam-
inant property (Row 18) indicates SurfaceContamina-
tion of infrastructure, e.g., runways and taxiways. A
SurfaceContamination has an overall depth (Row 19)
and several SurfaceContaminationLayers specified via
the layer property (Rows 20 and 21). A SurfaceContam-
inationLayer has a contaminationType (Row 22), e.g.,
compact_snow or dry_snow. The contamination types
compact_snow and dry_snow, in turn, are grouped into
snow as indicated by the grouping property (Rows 23
and 24). Moreover, the frequency property (Row 25) in-
dicates the frequency of a Very High Frequency (VHF)
Omni-Directional Range (VOR) navigation aid equip-
ment used for determining an aircraft’s position.

The K1 module (Rows 26-29) defines concepts and
individuals relevant for the LOVV (Austria) region in
2020. In particular, the module defines airportLOWW
(Vienna airport) as an individual of the AirportHeliport
class (Row 26) and the vorLNZ (VOR near the city of
Linz) as an individual of the VOR class (Row 27). Fur-
thermore, the module defines the HeavyWeight concept
(Row 28) for aircraft characteristics that designate air-
craft with a weight above 136 and the DeepContamina-
tion concept (Row 29) for surface contaminations with
a depth greater than 0.2.

The K2 module (Row 30) defines supplementary
knowledge relevant for FixedWing aircraft in the LOVV
region in February 2020. In this month, the vorLNZ
navigation aid operates on a frequency of 116.8.

The K3 module (Rows 31-34) defines knowledge
relevant in the LOWW (Vienna airport) segment of
the LOVV region in 2020. That knowledge consists

C.G. Schuetz et al. / Knowledge Graph OLAP 9

K0

Runway, Taxiway v RunwayTaxiway (1)
> v ∀isSituatedAt.AirportHeliport (2)
> v ∀availability.ManoeuvringAreaAvailability (3)
∃warning.> v ManoeuvringAreaAvailability (4)
∃warningAdjacent.> v ManoeuvringAreaAvailability (5)
> v ∀warningAdjacent.Boolean (6)
∃operationalStatus.> v ManoeuvringAreaAvailability (7)
∃usage.> v ManoeuvringAreaAvailability (8)
> v ∀usage.ManoeuvringAreaUsage (9)
∃usageType.> v ManoeuvringAreaUsage (10)
∃operation.> v ManoeuvringAreaUsage (11)
∃aircraft.> v ManoeuvringAreaUsage (12)
> v ∀aircraft.AircraftCharacteristic (13)
∃weight.> v AircraftCharacteristic (14)
∃weightInterpretation.> v AircraftCharacteristic (15)
∃wingspan.> v AircraftCharacteristic (16)
∃wingspanInterpretation.> v AircraftCharacteristic (17)
> v ∀contaminant.SurfaceContamination (18)
∃depth.> v SurfaceContamination (19)
∃layer.> v SurfaceContamination (20)
> v ∀layer.SurfaceContaminationLayer (21)
∃contaminationType.> v SurfaceContaminationLayer (22)
grouping(compact_snow, snow) (23)
grouping(dry_snow, snow) (24)
∃frequency.> v VOR (25)

K1

AirportHeliport(airportLOWW) (26)
VOR(vorLNZ) (27)
HeavyWeight v ∃weight.{> 136} u

(28)∃weightInterpretation.{above}
DeepContamination v ∃depth.{> 0.2} (29)

K2 frequency(vorLNZ, 116.8) (30)

K3

Runway(runway16/34) (31)
isSituatedAt(runway16/34, airportLOWW) (32)
Taxiway(taxiway10/004) (33)
isSituatedAt(taxiway10/004, airportLOWW) (34)

K4

contaminant(runway16/34, runway16/34-contam#265) (35)
depth(runway16/34-contam#265, 0.2) (36)
layer(runway16/34-contam#265, runway16/34-layer#265-1) (37)
contaminationType(runway16/34-layer#265-1, dry_snow) (38)
contaminant(taxiway10/004, taxiway10/004-contam#343) (39)
depth(taxiway10/004-contam#343, 0.4) (40)
layer(taxiway10/004-contam#343, taxiway10/004-layer#343-1) (41)
contaminationType(taxiway10/004-layer#343-1, compact_snow) (42)

K5

availability(runway16/34, runway16/34-avail#241) (43)
operationalStatus(runway16/34-avail#241, closed) (44)
usage(runway16/34-avail#241, runway16/34-usage#241-1) (45)
usageType(runway16/34-usage#241-1, forbid) (46)
operation(runway16/34-usage#241-1, landing) (47)
aircraft(runway16/34-usage#241-1, characteristic#556) (48)
weight(characteristic#556, 140) (49)
weightInterpretation(characteristic#556, above) (50)

K6

availability(taxiway10/004, taxiway10/004-avail#352) (51)
operationalStatus(taxiway10/004-avail#352, closed) (52)
usage(taxiway10/004-avail#352, taxiway10/004-usage#352-1) (53)
usageType(taxiway10/004-usage#352-1, forbid) (54)
aircraft(taxiway10/004-usage#352-1, characteristic#677) (55)
weight(characteristic#677, 150) (56)
weightInterpretation(characteristic#677, above) (57)
usage(taxiway10/004-avail#352, taxiway10/004-usage#352-2) (58)
usageType(taxiway10/004-usage#352-2, allow) (59)
aircraft(taxiway10/004-usage#352-2, characteristic#723) (60)
wingspan(characteristic#723, 8) (61)
wingspanInterpretation(characteristic#723, below) (62)

K7

availability(runway16/34, runway16/34-avail#528) (63)
warning(runway16/34-avail#528, inspection) (64)
warningAdjacent(runway16/34-avail#528, true) (65)

Fig. 6. Example contents of the KG-OLAP cube cells in Fig. 5

of the definition of individuals representing a runway
(runway16/34) and a taxiway (taxiway10/004), which
are both situated at Vienna airport (airportLOWW).

The K4 module (Rows 35-42) defines knowledge es-
sential for aircraft of the FixedWing type in the LOWW
segment on the 12th February 2020. On that day, run-
way16/34 is covered by a contaminant (Row 35) with a
depth of 0.2 (Row 36) consisting of one layer (Row 37)
of dry_snow (Row 38). Moreover, taxiway10/004 is cov-
ered by a contaminant (Row 39) with a depth of 0.4
(Row 40) consisting of one layer (Row 41) of com-
pact_snow (Row 42).

The K5 module (Rows 43-50) defines knowledge
of flight critical importance for A380 aircraft in the
LOWW segment on the 12th February 2020. On that day,
runway16/34’s availability (Row 43) indicates a closed
operational status (Row 44) where usage is forbidden
(Rows 45 and 46) for landing aircraft (Row 47) with a
weight above 140 (Rows 48-50).

The K6 module (Rows 51-62) defines knowledge
about restrictions relevant for A380 aircraft in the
LOWW segment on the 12th February 2020. On that
day, taxiway10/004’s availability (Row 51) indicates a
closed operational status (Row 52) where usage is for-
bidden (Rows 53 and 54) for all aircraft with a weight
above 150 (Rows 55-57). Usage of taxiway10/004 is al-
lowed (Rows 58 and 59) for all aircraft with a wingspan
below 8 (Rows 60-62).

The K7 module (Rows 63-65) defines knowledge
about potential hazard relevant for A380 aircraft in the
LOWW segment on the 12th February 2020. A warning
notifies of an inspection adjacent to runway16/34. 3

The knowledge from the higher-level cells propa-
gates to the covered lower-level cells; on the other hand,
the knowledge associated to such lower-levels cells spe-
cialize the more general knowledge inherited from the
higher levels. This organization facilitates the combi-
nation of knowledge across cells in the course of data
analysis: the higher-level facts contain a shared con-
ceptualization of business terms that may be extended
by lower-level facts. On the other hand, the actual con-
tents of lower-level cells are defined in terms of the
shared conceptualization provided by the higher-level
facts. The propagated knowledge is also available for
reasoning.

Example 5 (Inference). Given the cells in Fig. 5 and
the corresponding knowledge modules in Fig. 6, in
the K4 module, runway16/34-contam#265 (Rows 35
and 36) and taxiway10/004-contam#343 (Rows 39
and 40) can be classified as DeepContamination accord-

10 C.G. Schuetz et al. / Knowledge Graph OLAP

ing to the definition of this concept in the K1 mod-
ule (Row 29), which is inherited by the lower-level
cells. Furthermore, characteristic#556 in the K5 mod-
ule (Rows 48-50) and the characteristic#677 in the K6

module (Rows 55-57) can be classified as HeavyAircraft
according to the definition of this concept in the K1

module (Row 28). 3

3.2. Formalization

In the following, we adapt and extend the definitions
of the CKR framework – building on the CKR defini-
tion [36, 38] in a generic description logic (DL) lan-
guage [39] – in order to fit the needs of KG-OLAP and
its query operations (see Section 4).

3.2.1. Basic Definitions
We first define the basic notions of a KG-OLAP

cube before relating the KG-OLAP cube definitions to
the CKR framework. The multidimensional structure
is expressed using a cube vocabulary Ω, which is a
DL signature. Ω is composed of the mutually disjoint
sets NRΩ of atomic roles, NCΩ of atomic concepts,
and NIΩ of individual names. The vocabulary further
specifies a set F ⊆ NIΩ of cell names, a set D ⊆ NRΩ

of dimensions, a set L ⊆ NIΩ of levels, a set I ⊆ NIΩ of
dimension members, and for every dimension E ∈ D, a
set DE ⊆ I of dimension members of E (cf. dimensional
structure in [15]). The cube language LΩ for expressing
a KG-OLAP cube’s multidimensional structure is thus
a DL language over cube vocabulary Ω.

For every dimension A ∈ D, we define the role ≺A

of dimensional ordering for A as a strict partial or-
der relation over dimension members DA, i.e., an ir-
reflexive, transitive and antisymmetric role over couples
〈d, d′〉 ∈ DA×DA. In the following, we also employ the
non-strict dimensional ordering �A over DA. In general,
we assume that each dimension is ordered in a simple
hierarchy (or tree). Thus, if we denote with ≺̇A the di-
rect successor relation in the dimensional ordering, we
require that d≺̇Ae1 and d≺̇Ae2 implies e1 = e2, i.e., ≺̇A

is functional, and we assume that, for every DA, there
is a maximum, i.e., an all level with one all member.
We further formally define for every dimension A ∈ D
its set LA ⊆ L of levels. We define the role ≺L

A as a
strict order relation over LA and a role lev associating
dimension members in DA to levels in LA. For example,
in Fig. 4, the Date dimension has dimension member
ordering 12-02-2020 ≺ 02-2020 ≺ 2020 ≺ All-date.
The Date dimension further has the hierarchical order
of levels day ≺L

Date month ≺L
Date year ≺L

Date all-date.

In order to define the hierarchical order of cells, we
adapt the definition of dimensional vector and context
coverage from the CKR definition in [15]. Let |D| = k,
we define a dimensional vector as the set

d = {A1 := d1, . . . , Ak := dk}

s.t. for j with 1 6 j 6 k, d j ∈ DAj . We call multidi-
mensional space DΩ the set of all dimensional vectors
of Ω. We denote with dA the value given by d to the
dimension A. For example, given the dimensional vec-
tor d = {Importance := All-importance, Location :=
LOVV, Time := 2020, Aircraft := All-aircraft}, dLocation

is equal to LOVV.
Given a dimensional vector, we associate with it a

cell name using the function cn : DΩ → F. We re-
quire cn to be bijective, that is, each cell name is as-
sociated with a point in the multidimensional space
and, conversely, the cell name can be interpreted as
the unique identifier of the corresponding dimensional
vector. For example, in Fig. 5, given the dimensional
vector e = {Importance := FlightCritical, Location :=
LOWW, Time := 12-02-2020, Aircraft := A380}, we
have cn(e) = c5. We denote with cn− the inverse func-
tion of cn.

Let d, e ∈ DΩ, we say that d � e iff dA � eA

for each A ∈ D. Similarly, given c1, c2 ∈ F, we
say that c2 covers c1 and we write c1 � c2 iff
cn(d) = c1 and cn(e) = c2 and, for every A ∈
D, dA � eA. For example, given the dimension hi-
erarchies from Fig. 4, for the dimensional vectors
d = {Importance := All-importance, Location :=
LOVV, Time := 2020, Aircraft := All-aircraft} and
e = {Importance := FlightCritical, Location :=
LOWW, Time := 12-02-2020, Aircraft := A380}, we
have e � d. Then, given the cells in Fig. 5, where
cn(d) = c1 and cn(e) = c5, we have c5 � c1.

The knowledge represented in each cell is expressed
in a DL language LΣ called object language which in
turn is based on a DL object vocabulary Σ = NCΣ]
NRΣ] NIΣ. Note that the expressivity of languages at
the meta and at the object level may be different. In our
examples, however, we assume that meta and object
level employ the same logic.

3.2.2. Extending the CKR Framework
We now define a KG-OLAP cube as a special kind of

CKR with hierarchically-ordered dimensions and cells
as well as knowledge propagation from higher to lower-
level cells. In the following, in order to formalize the
semantics of a KG-OLAP cube, we employ the OLAP
cube vocabulary Ω as a CKR meta-knowledge vocab-

C.G. Schuetz et al. / Knowledge Graph OLAP 11

ulary and extend the definitions of the CKR core. In
particular, we extend the definitions that express prop-
agation of knowledge along the coverage relation and
we allow contexts with empty knowledge contents [36].
We provide only basic definitions of the CKR core and
refer to previous work [15, 36] for an exhaustive pre-
sentation of the CKR framework.

A CKR is a two-layered structure composed of (1)
the global context G, consisting of a knowledge base
that contains meta-knowledge, i.e. the structure and
properties of contexts, and global (context-independent)
knowledge, i.e., knowledge that applies to every context;
(2) a set of (local) contexts that contain locally valid
knowledge.

The meta-knowledge of a CKR is expressed in a DL
language containing the elements that define the contex-
tual structure. A meta-vocabulary Γ is a DL vocabulary
that consists of a set of context names N ⊆ NIΓ, a set
of module names M ⊆ NIΓ, a set of context classes
C ⊆ NCΓ, including the classes Ctx and Null, a set of
contextual relations R ⊆ NRΓ, a set of contextual at-
tributes A ⊆ NRΓ, and for every attribute A ∈ A, a
set DA ⊆ NIΓ of attribute values of A. The role mod
defined over N×M expresses associations between con-
texts and modules. Intuitively, modules represent pieces
of knowledge specific to a context or context class; at-
tributes describe contextual properties (e.g., time, loca-
tion, provenance) identifying a context (or class). The
context class Ctx defines the class of all contexts, while
the Null class defines the contexts with empty knowl-
edge modules, the latter being useful for deliberately
ruling out inapplicable combinations of dimensions
known to lack relevant knowledge content. It is then
easy to relate the KG-OLAP cube language (Sec. 3.2)
to the CKR core languages: we have that F ⊆ N (i.e.
cells are a kind of context), D ⊆ A (i.e. dimensions are
a kind of contextual attributes) and context coverage is
a partial order relation in R.

The meta-language LΓ of a CKR is a then DL lan-
guage over Γ. The knowledge inside contexts of a CKR
is expressed via a DL object language LΣ over object
vocabulary Σ. The expressions of the object language
are evaluated locally to each context, i.e., contexts can
interpret each symbol independently. The local evalua-
tion corresponds to the local knowledge of each cell in
the KG-OLAP cube. Based on the meta- and object lan-
guages, a Contextualized Knowledge Repository (CKR)
is defined (cf. [36]) as follows.

Definition 1 (Contextualized Knowledge Repository).
A Contextualized Knowledge Repository (CKR) over

a meta-vocabulary Γ and an object vocabulary Σ is a
structure K = 〈G,KM〉 where:

– G is a DL knowledge base over LΓ ∪ LΣ, and
– KM = {Km}m∈M where every Km is a DL knowledge

base over LΣ, for each module name m ∈ M.

In particular, in the following we call K a (KG-OLAP)
cube if its metaknowledge is based (following the above
relations) on a cube language LΩ.

The CKR semantics basically follows the two-
layered structure of the CKR framework: A CKR in-
terpretation is composed by a DL interpretation for
the global context and a DL interpretation for every
context.

Definition 2 (CKR interpretation). A CKR interpreta-
tion for 〈Γ,Σ〉 is a structure I = 〈M, I〉 s.t.:

(i). M is a DL interpretation of Γ ∪ Σ s.t., for every
c ∈ N, cM ∈ CtxM and, for every C ∈ C, CM ⊆
CtxM;

(ii). for every x ∈ CtxM, I(x) is a DL interpretation
over Σ s.t. ∆I(x) = ∆M and, for a ∈ NIΣ,
aI(x) = aM.

The interpretation of ordinary DL expressions inM
and each I(x) is defined as in the CKR core [39]. We
then extend as follows the original definition of CKR
model [36] with new conditions for the intended inter-
pretation of the multidimensional structure.

Definition 3 (KG-OLAP cube model). A CKR inter-
pretation I = 〈M, I〉 is a KG-OLAP cube model of K
iff the following conditions hold:

(i). for α ∈ LΣ ∪ LΓ in G,M |= α;
(ii). for 〈x, y〉 ∈ modM with y = mM and x /∈

NullM, I(x) |= Km;
(iii). for α ∈ G∩LΣ and x ∈ CtxM \NullM, I(x) |=

α.
(iv). if c1, c2 ∈ F, and for every A ∈ D,M |= A(c1, d)

andM |= A(c2, d) then c1 = c2.
(v). for d ∈ DΩ and cn(d) = c ∈ F, then M |=

A(c, dA) for each A ∈ D.
(vi). if c1, c2 ∈ F, if M |= c1 � c2 and M |=

mod(c2,m), thenM |= mod(c1,m).

Intuitively, while the conditions (i) and (ii) of Def-
inition 3 impose that I verifies the contents of global
and local modules associated to contexts, condition (iii)
states that global knowledge has to be propagated to
local contexts. Note that the contexts in the Null class
have no local knowledge associated to them. Condi-
tion (iv) states that contexts are identified by the values

12 C.G. Schuetz et al. / Knowledge Graph OLAP

of their dimension attribute values. Condition (v) basi-
cally states that dimensional vectors are a compact way
to represent assertions of the kind A(c, dA) in the meta-
knowledge. Finally, Condition (vi) defines the propaga-
tion of modules associated with more general contexts
to the covered contexts.

Given a CKR K over 〈Γ,Σ〉 and c ∈ N, an axiom
α ∈ LΣ is c-entailed by K (denoted K |= c : α) if
I(cM) |= α for every model I = 〈M, I〉 of K. We
say that an axiom α is globally entailed by K (denoted
K |= α) if: (i) α ∈ LΣ and K |= c : α for every c ∈ N,
or (ii) α ∈ LΓ and M |= α for every cube model
I = 〈M, I〉 of K.

3.2.3. Reasoning in OWL-RL Cubes
As in the original formulation of CKR in [36], we

can formalize instance-level reasoning inside a KG-
OLAP cube using a materialization calculus [40]. As
in [36], the calculus is provided for cubes using a spe-
cific DL language2, that we call SROIQ-RL, which
corresponds to the OWL-RL fragment [41]. The defi-
nition of the calculus and of the SROIQ-RL DL lan-
guage are provided in the Appendix.

Intuitively, the materialization calculus is based on a
translation to Datalog. The axioms of the input cube K
are translated into Datalog atoms (by input rules I), and
Datalog rules (called deduction rules P) are added to
the translation in order to encode the global and local
inference rules. Instance checking is then performed by
translating (by output rules O) the ABox assertion to
be verified into a Datalog fact and verifying whether
this fact is entailed by the CKR program PK(K).

With respect to the calculus for OWL-RL CKRs pre-
sented in [36], it is necessary to introduce additional
rules and translation steps in order to express the com-
putation of the coverage relation and the propagation of
object knowledge. In particular, regarding the transla-
tion rules, we need to introduce global input rules that
encode the coverage in the level and dimensional hierar-
chies: the following global deduction rule then provides
the propagation of modules (corresponding to condition
(vi) in the definition of KG-OLAP model), where gm
denotes the context name of global meta-knowledge:

triple(c1, covers, c2, gm),triple(c1,mod,m, gm)

→ triple(c2,mod,m, gm)

Then, the translation procedure is extended from the
one presented for CKR [36] by introducing new steps

2Note that, otherwise, definitions for KG-OLAP cube and CKR are
independent of the DL language used at the meta and object levels.

in which the cell coverage relation is computed from
the dimensional coverage in the global program.

We can show (see the Appendix, extending the results
in [36]) that the presented rules and translation process
provide a sound and complete calculus for instance
checking for SROIQ-RL KG-OLAP cubes.

Theorem 1. Given K = 〈G,KM〉 a consistent KG-
OLAP cube in SROIQ-RL normal form, α ∈ LΣ an
atomic concept or role assertion and c ∈ F s.t. O(α, c)
is defined, then PK(K) |= O(α, c) iff K |= c : α.

4. Query Operations

In this section, we introduce a set of query operations
for working with KG-OLAP cubes. We distinguish be-
tween contextual and graph operations. Contextual op-
erations alter the multidimensional structure of a cube.
Graph operations modify the RDF graph in the knowl-
edge modules of the cells. Formally, the operations are
defined as transformations of KG-OLAP cubes.

4.1. Contextual Operations

The contextual operations select and combine cells of
a KG-OLAP cube using its dimensions and levels. The
slice-and-dice operation allows for the selection of a
set of facts whereas the merge operation combines cells
at finer granularities into aggregated cells at a coarser
granularity, merging the contents of the modules from
the finer-grained cells.

4.1.1. Slice and Dice
The slice-and-dice operation restricts a cube to a set

of cells with a specific subset of dimension attribute
values; the operation selects a subcube of an input KG-
OLAP cube. The slice-and-dice operation selects a par-
tition of the cube for subsequent manipulation. Note
that slice-and-dice operations in data warehousing liter-
ature and practice come in various fashions. The defi-
nition in this section establishes a basic notion of slice-
and-dice for KG-OLAP cubes. Future work may well
extend this notion to provide rich query mechanisms in
order to filter contexts based on complex conditions in
an expressive domain ontology.

Definition 4 (Slice and dice). Given a cube K =
〈G,KM〉 and a dimensional vector d which defines the
dice coordinates, we define the slice-and-dice oper-

C.G. Schuetz et al. / Knowledge Graph OLAP 13

Fig. 7. Illustration of contextual operations definitions

ation δ(K,d) of K with respect to d as a new cube
K′ = 〈G′,KM′〉 over 〈Γ′,Σ〉, such that3:

– M′ = M, D′ = D, and for each A ∈ D, L′A = LA;
– For each A ∈ D,

D′A = {d′A ∈ DA | d′A � dA or dA � d′A,with dA ∈ d};
– F′ = {c ∈ F | for each dA ∈ cn−(c), dA ∈ D′A};
– G′ = GΣ ∪GΓ′ (i.e., metaknowledge in G′ is equal

to the formulas in GΓ that have only symbols in Γ′).

Figure 7a depicts the definition of slice-and-dice op-
eration on a one-dimensional cube. Intuitively, the slice-
and-dice operation takes as argument the coordinates
of a point in the cube, i.e., a dimensional vector d, and
produces a new cube by extracting all cells, along with
their associated knowledge modules, at points under-

3In the definition of operations, for simplicity of notation, we
assume that components of the cube K′ and languages Γ′,Σ′ are
recognized with a prime superscript, e.g., Γ′ contains M′, F′, D′, etc.

neath the argument point as well as the cells that are
in a coverage relationship with those cells at points
underneath the argument point.

Example 6 (Slice and dice). Figure 8 illustrates the
application of the slice-and-dice operation on the KG-
OLAP cube from Fig. 5, which we denote by KATM.
The context shown as shaded box represents the dice
coordinates {Importance := Essential, Location :=
LOWW, Date := All-date, Aircraft := FixedWing}.
Only cells that are underneath the point identified by
the dice coordinates, i.e., c4, c5, and c6, or cells that are
in a coverage relationship with c4, c5, and c6, i.e., c0, c1,
and c3 are kept in the result cube K′ATM; the disregarded
cells are shown in gray color. 3

4.1.2. Merge
The merge (or contextual roll-up) operation changes

the granularity of a cube and its dimensions. Given an
argument granularity specified as a vector of dimension
levels l, the merge operation combines the contents
of knowledge modules at granularities that are more
specific than the given granularity.

Formally, we define a level vector as a set: l =
{l1, . . . , lk} s.t. for j ∈ {1, . . . , k}, lj ∈ LAj . We define
restrictions of dimensional space DΩ given w.r.t. a level
vector l as follows:

Dl
Ω = {d ∈ DΩ | for d ∈ DA, lev(d, l) with l ∈ l}

Dl�
Ω = {d ∈ DΩ | e � d,with e ∈ Dl

Ω}

Intuitively, the subspace Dl
Ω identifies all the vectors

exactly at the level specified by the level vector l, while
Dl�

Ω defines the vectors above (or equal to) the specified
level vector.

Let µ(c) =
⋃

c′≺c{m ∈ M |G |= mod(c′,m)}. The
set µ(c) then contains all module names of the initial
cube associated to contexts c′ that are more specific
than the input context c (with respect to the coverage
relation).

Definition 5 (Merge). Given a cube K = 〈G,KM〉 and
a level vector l, we define the merge operation ρmet(K, l)
of K with respect to the level vector l as a new cube
K′ = 〈G′,KM′〉 over 〈Γ′,Σ′〉 s.t.

– F′ = {c ∈ F | cn−(c) ∈ Dl�
Ω };

– D′ = D;
– M′ = M ∪ {mg(c) | c ∈ F′ with cn(c)− ∈ Dl

Ω} with
each mg(c) a new module name;

– For each A ∈ D, L′A = {l′A ∈ LA | lA � l′A, lA ∈ l};
– For each A ∈ D, D′A = {d′A ∈ DA | lev(d′A, lA), lA ∈

L′A};

14 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 8. Applying slice-and-dice and merge operations on the KG-OLAP cube instance from Fig. 5. Gray lines denote contexts that are disre-
garded by the slice-and-dice operation δ(KATM, {Importance := Essential, Location := LOWW, Date := All-date, Aircraft := FixedWing}),
with the unnamed context shown as shaded box denoting the dice coordinates, and the dashed box denotes a merge of contexts
ρ∪(K′

ATM, {package, segment,month, type}) into the c8 context.

C.G. Schuetz et al. / Knowledge Graph OLAP 15

– G′ = GΣ ∪ GΓ′ ∪ {mod(c,mg(c)) | c ∈ F′ with
cn(c)− ∈ Dl

Ω};
– Union merge (met = ∪): knowledge module Kmg(c)

for c is added to KM′ with: Kmg(c) =
⋃

m∈µ(c) Km

– Intersection merge (met = ∩): knowledge mod-
ule Kmg(c) for c is added to KM′ with: Kmg(c) =⋂

m∈µ(c) Km

Figure 7b shows an illustration of the merge oper-
ation definition. Intuitively, the merge operation is a
transformation over the original cube that combines the
knowledge from lower-level cells into higher-level cells
in the contextual hierarchy (by adding a new module
mg(c) containing the merged knowledge) and “cuts”
the contexts below the level defined by the input level
vector l. The roll-up operation employs a specific com-
bination method met ∈ {∪,∩}, which specifies the
kind of combination of knowledge inside the merged
cells.

Example 7 (Merge). In Fig. 8, the c8 context is the re-
sult of a union merge to the {package, segment,month,
type} dice level of the result cube K′ATM from the pre-
vious slice-and-dice operation. The c8 cell is at the
dice level, its knowledge module being the union of the
knowledge modules from the covered cells. 3

4.2. Graph Operations

Graph operations – abstraction, pivoting, and reifica-
tion – alter the structure of the RDF graphs inside the
knowledge modules of a cell. Abstraction replaces sets
of entities with individual and more abstract entities.
Pivoting moves metaknowledge (contextual informa-
tion) inside the modules. Reification allows to represent
relations as individuals.

4.2.1. Abstraction
Abstraction serves as an umbrella term for a class of

graph operations that, broadly speaking, replace entities
in an RDF graph with more abstract entities. This ab-
straction is based on various types of ontological infor-
mation, e.g., class membership and grouping properties.
We also refer to abstraction as ontological roll-up.

We distinguish three types of abstraction: (a). triple-
generating abstraction generates new triples from ex-
isting triples, where an existing individual acts as ab-
straction of a set of other resources; (b). individual-
generating abstraction generates a new individual that
acts as abstraction of a set of resources; (c). value-
generating abstraction computes a new value using
some aggregation operation on a set of values.

Consider the set of asserted and inherited modules
of a cell c: mod(c) = {m ∈ M |G |= mod(c,m)}. We
then denote the local knowledge base of cell c as:

Kmod(c) =
⋃

m∈mod(c) Km

Definition 6 (Abstraction). Given a cube K = 〈G,KM〉,
a context name c ∈ F, a (possibly complex) concept C of
LΣ restricting abstraction to a subset of individuals, a
(possibly complex) role S ofLΣ – the grouping property
– we define the abstraction operation αmet(K, c,C, S)
as a new cube K′ = 〈G′,K′M〉 over 〈Γ′,Σ′〉, with
met ∈ {T, I,V(op)} for the specific abstraction method
(triple, individual or value generation), where the lo-
cal knowledge module Kmod(c) is modified as follows,
depending on the abstraction method:

– M′ = M ∪ {mg(c)} \ mod(c), with mg(c) a new
module name and mod(c) the set of asserted modules
of c in the original cube;

– G′ = G ∪ {mod(c,mg(c))} \ {mod(c,m) |m ∈
mod(c)}

– Kmg(c) = Kmod(c) and KM′ = KM ∪ {Kmg(c)} \
{Kmod(c)}

– triple generation T : for b ∈ NIΣ with Kmod(c) |=
C(a), let S−(b) = {a ∈ NIΣ |Kmod(c) |= S (a, b)};
then:

– for every role assertion R(a, c) ∈ Kmg(c) with
a ∈ S−(b) and R 6= S , add R(b, c) to Kmg(c) and
remove R(a, c) from Kmg(c);

– for every role assertion R(c, a) ∈ Kmg(c) with
a ∈ S−(b) and R 6= S , add R(c, b) to Kmg(c) and
remove R(c, a) from Kmg(c);

– individual generation I: for a ∈ NIΣ with Kmod(c) |=
C(a), let S (a) = {b ∈ NIΣ |Kmod(c) |= S (a, b)};
then:

– for every b ∈ S (a), add grouping(a, gb) to Kmg(c)

with gb ∈ NIΣ′ a new individual name (associated
to the grouping individual b).

– for every role assertion R(a, c) ∈ Kmg(c), for ev-
ery b ∈ S (a), add R(gb, c) to Kmg(c) and remove
R(a, c) from Kmg(c);

– resp. for every R(c, a) and C(a) ∈ Kmg(c)

– value generation V(op): for a ∈ NIΣ with Kmod(c) |=
C(a), considering the operation op on values in the
range of S , let S (a) = {v ∈ NIΣ | S (a, v) ∈ Kmg(c)},
then:

– add to Kmg(c) the assertion S (a, op(v1, . . . , vm))
with {v1, . . . , vm} = S (a);

– remove every S (a, v) ∈ Kmg(c) with v ∈ S (a);

16 C.G. Schuetz et al. / Knowledge Graph OLAP

cc

cc

C

rdf:type

a

S

b

c1

c2

R

R

a

S

c1

c2

R

RαT(,c,C,S)

(a) Triple-generating Abstraction

C

rdf:type

a1

S

b

c2

c1

R

(b) Individual-generating Abstraction

a2

S

R

rdf:type
C

rdf:type

a1

grouping

gb

c2c1

R

a2

grouping

R

rdf:type

b S

c

C

rdf:type

a

(c) Value-generating Abstraction

S v2

v1

S

c

C

rdf:type

a

op(v1,v2)

S

C b

rdf:type

αI(,c,C,S)

αV(op)(,c,C,S)

Fig. 9. Illustration of abstraction operations definitions

Note that for simplicity we treat literal values as indi-
viduals and we do not distinguish roles across individ-
uals and values in our language. We note that rdf:type
may serve as grouping property, provided that (newly
introduced) grouping individuals represent the concepts
employed for grouping and that the management of
these grouping individuals is taken care of (cf. OWL
“punning” [42]). Individual-generating abstraction may
be extended for multiple grouping properties. More-
over, we note that the grouping role S is allowed to be a
complex role expression, thus permitting to group, e.g.,
along role compositions.

Figure 9 shows a graphical representation of the ab-
straction operations definition. Intuitively, the abstrac-
tion operation takes as input the single cell on the knowl-
edge module of which the operation is applied, the
class C of individuals to be abstracted and a property
S , which represents the grouping relation along which
the elements have to be abstracted. The kind of manip-
ulation on the cell’s knowledge then depends on the
abstraction type: (a) in triple-generating abstraction, for
every instance C(b), if there is some relation of the

kind S (a, b) (i.e. a is grouped by b), then all of the role
assertions of the kind R(a, c) or R(c, a) are redirected to
the grouping individual b; (b) in individual-generating
abstraction, for every instance C(a), if there is some
relation of the kind S (a, b)4 then a new grouping in-
dividual gb and assertion grouping(a, gb) are added
and, as above, all of the ABox assertions of the kind
R(a, c),R(c, a) and A(a) are redirected to gb; (c) in
value-generating abstraction, for every element C(a),
we consider all of the values v1, . . . , vm that are re-
lated to a by role S and we add their aggregation
op(v1, . . . , vm) by a parameter operator op as a new S
value for a.

In the following, we illustrate the different variants
of abstraction using examples from the ATM domain.
We start with an example combining triple-generating,
individual-generating, and value-generating abstrac-
tion before separately looking at triple-generating and
individual-generating abstraction in more detail.

Example 8 (Abstraction). Figure 10 illustrates the dif-
ferent variants of abstraction on the running example of
ATM knowledge graphs. The RDF graph on the bottom
shows (part of) the triples of the K4 module of the c4

context of KATM from Fig. 6 indicating runway and
taxiway contaminations. A triple-generating abstraction
αT (KATM, c4,>, grouping) leads to the replacement of
individuals dry_snow and compact_snow with snow,
using grouping as grouping property. On the result of
that abstraction, K′ATM, an individual-generating abstrac-
tion αI(K′ATM, c4,RunwayTaxiway, contaminationType)
groups all RunwayTaxiway individuals with the same
contaminationType property value; the grouping prop-
erty indicates which individuals have been grouped.
The new individual assumes the place of the grouped
individuals in the graph. Another individual-generating
abstraction αI(K′′ATM, c4,SurfaceContamination, layer)
then groups all SurfaceContamination individuals with
the same layer target. A value-generating abstrac-
tion αV(avg)(K′′′ATM, c4,SurfaceContamination, depth),
in turn, replaces multiple depth property values (0.2
and 0.4) by the average depth (0.3). The result graph
thus indicates, at an abstract level, the presence of snow
contamination at runways and taxiways along with the
average depth. 3

4 Note that the definition can be easily extended for multiple
grouping properties. In this case, every individual a with S 1(a, b) and
S 2(a, c), for example, could be replaced by a grouping gbc, which
allows for more complex group-by operations. See the appendix for
a SPARQL-based implementation that allows for multiple grouping
properties to be specified.

C.G. Schuetz et al. / Knowledge Graph OLAP 17

A
b
st
ra
ct
io
n

Individual-generating

runway16/34 taxiway10/004

contaminant contaminant

runway16/34-contam#265 taxiway10/004-contam#343

depth depth

layer
layer

0.2 0.4

runway16/34-layer#265-1+taxiway10/004-layer#343-1

snow

contaminationType

compact_snow
dry_snow

grouping grouping

runway16/34-layer#265-1 taxiway10/004-layer#343-1

groupinggrouping

runway16/34 taxiway10/004

contaminant contaminantdepth

layer

0.3

runway16/34-layer#265-1+taxiway10/004-layer#343-1

snow

contaminationType

runway16/34-layer#265-1 taxiway10/004-layer#343-1

groupinggrouping

runway16/34-contam#265+taxiway10/004-contam#343

runway16/34-contam#265 taxiway10/004-contam#343

groupinggrouping

A
b
st
ra
ct
io
n

Individual-generating
Value-generating

runway16/34
taxiway10/004

contaminant contaminant

runway16/34-contam#265 taxiway10/004-contam#343

depth depth

layer

runway16/34-layer#265-1

layer

dry_snow

contaminationType

A
b
st
ra
ct
io
n

Triple-generating

0.2 0.4

taxiway10/004-layer#343-1

contaminationType

compact_snow

snow

grouping

grouping

runway16/34 taxiway10/004

contaminant contaminant

runway16/34-contam#265 taxiway10/004-contam#343

depth depth

layer

runway16/34-layer#265-1

layer

snow
contaminationType

0.2 0.4

taxiway10/004-layer#343-1

contaminationType

compact_snowdry_snow

grouping grouping

compact_snow
dry_snow

grouping grouping

Fig. 10. Triple-, individual-, and value-generating abstraction illus-
trated on the knowledge module K4 of the c4 context (see Fig. 6)

Example 9 (Triple-generating abstraction). Figure 11
shows two other applications of triple-generating ab-
straction. The example abstraction basically operates
on the merge of knowledge modules K5 and K6 from
Fig. 6 – extended with a grouping property to heavy-
Weight for characteristic#556 and characteristic#677.
Assume that the grouping property was added based
on the classification of characteristic#556 and charac-
teristic#677 as HeavyWeight prior to the abstraction,
according to the definition of that concept in the K1

module. Let K′ATM denote the KG-OLAP cube from
Fig. 8 after applying the merge, then the lower part
of Fig. 11 shows the contents of K8 (omitting the
facts from K4) of the c8 cell generated by a previ-
ous merge. The triple-generating abstraction K′′ATM :=
αT (K′ATM, c8,AircraftCharacteristic, grouping) then re-
places the aircraft characteristics characteristic#556 and
characteristic#677 by their grouping heavyWeight. In
the result of that operation, the triple-generating ab-
straction αT (K′′ATM, c8, RunwayTaxiway, isSituatedAt)
replaces runway16/34 and taxiway10/004 by airport-
LOWW. Thus, the graph after execution of those opera-
tions (upper part of Fig. 11) shows restricted availabili-
ties for heavy-weight aircraft in Vienna. 3

Example 10 (Individual-generating abstraction). Fig-
ure 12 shows two other applications of individual-
generating abstraction. Let KATM denote the KG-
OLAP cube from Fig. 11 after applying the triple-
generating abstraction, the individual-generating ab-
straction αI(KATM, c8,ManoeuvringAreaUsage, aircraft)
groups all individuals of ManoeuvringAreaUsage
that refer to the same aircraft, effectively replac-
ing runway16/34-usage#241-1 and taxiway10/004-
usage#352-1 by the individual runway16/34-usage#241-
1+taxiway10/004-usage#352-1; K′ATM denotes the re-
sult cube of that abstraction. The second individual-
generating abstraction αI(K′ATM, c8,ManoeuvringArea-
Availability, usage) then groups all individuals of Ma-
noeuvringAreaAvailability that refer to the same Manoeu-
vringAreaUsage, effectively replacing runway16/34-
avail#241 and taxiway10/004-avail#352 by the individ-
ual runway16/34-avail#241+taxiway10/004-usage#352.
Thus, the graph after execution of those operations
(upper part of Fig. 12) is a compact representation of
availabilities and usage restrictions in Vienna. 3

4.2.2. Pivoting
The pivoting operation attaches dimensional prop-

erties (dimension attribute values) of a cell to a spec-
ified set of individuals inside the cell’s object knowl-

18 C.G. Schuetz et al. / Knowledge Graph OLAP

140

airportLOWW

isSituatedAtisSituatedAt

runway16/34 taxiway10/004

availability
availability

runway16/34-avail#241 taxiway10/004-avail#352

closed

operationalStatus
operationalStatus

usage

runway16/34-usage#241-1 taxiway10/004-usage#352-1

taxiway10/004-usage#352-2

usage

usage

landing

operation

forbid

usageType
usageType

usageType

allow

characteristic#556

aircraft

characteristic#677

characteristic#723

aircraft

aircraft

150

8 below

above

weight weightInterpretation

weightInterpretation

weight

wingspan wingspanInterpretation

heavyWeight

grouping

grouping

A
b
st
ra
ct
io
n

Triple-generating

140

airportLOWW

isSituatedAtisSituatedAt

runway16/34 taxiway10/004

availability
availability

runway16/34-avail#241 taxiway10/004-avail#352

closed

operationalStatus
operationalStatus

usage

runway16/34-usage#241-1
taxiway10/004-usage#352-1

taxiway10/004-usage#352-2

usage

usage

forbid
usageType

usageType

usageType

allow

aircraft

characteristic#723

aircraft

aircraft

150

8 below

above

weight
weightInterpretation

weight

wingspan wingspanInterpretation

characteristic#556 characteristic#677

heavyWeight

landing

operation

grouping

grouping

Fig. 11. Triple-generating abstraction illustrated on the merge of
knowledge from the knowledge modules K5 and K6 (see Fig. 6)

edge. Pivoting allows for the preservation of contextual
knowledge in case of a merge operation.

Definition 7 (Pivoting). Given a cube K = 〈G,KM〉,
a cell name c ∈ F, a (possibly complex) concept C
of LΣ of the objects to be labeled, and a set D =
{A1, . . . ,An} ⊆ D of the selected set of dimension la-
bels, we define the pivoting operation π(K, c,C,D) as a
new cube K′ = 〈G′,KM′〉 over 〈Γ′,Σ′〉 s.t.

– M′ = M ∪ {mg(c)}, with mg(c) a new module name;
– G′ = G ∪ {mod(c,mg(c))}
– KM′ = KM ∪ {Kmg(c)}
– for every e ∈ NIΣ with Kmod(c) |= C(e), we add to

Kmg(c) the set of assertions A1(e, dA1), . . . ,An(e, dAn)
if G |= A1(c, dA1), . . . ,An(c, dAn).

A
b
st
ra
ct
io
n

Individual-generating

140

airportLOWW

isSituatedAtisSituatedAt

runway16/34 taxiway10/004

availability closed

operationalStatus

usage

taxiway10/004-usage#352-2

usageforbid

usageType

usageType

allow

aircraft

characteristic#723

aircraft

150

8 below

weight weight

wingspan wingspanInterpretation

characteristic#556 characteristic#677

heavyWeight

landing

operation

grouping

grouping

runway16/34-usage#241-1

taxiway10/004-usage#352-1

runway16/34-usage#241-1+taxiway10/004-usage#352-1

grouping

grouping

140

airportLOWW

isSituatedAtisSituatedAt

runway16/34 taxiway10/004

availability
availability

runway16/34-avail#241 taxiway10/004-avail#352

closed

operationalStatus
operationalStatus

usage

taxiway10/004-usage#352-2

usage

usage

forbid

usageType

usageType

allow

aircraft

characteristic#723

aircraft

150

8 below

weight weight

wingspan wingspanInterpretation

characteristic#556 characteristic#677

heavyWeight

landing

operation

grouping

grouping

runway16/34-usage#241-1

taxiway10/004-usage#352-1

runway16/34-usage#241-1+taxiway10/004-usage#352-1

grouping

grouping

runway16/34-avail#241

taxiway10/004-avail#352

runway16/34-avail#241+taxiway10/004-avail#352

grouping
grouping

above

weightInterpretation

above

weightInterpretation

A
b
st
ra
ct
io
n

Individual-generating

Fig. 12. Individual-generating abstractions starting from the result of
the triple-generating abstraction from Fig. 11

Note that we have to admit that Σ∩Γ 6= ∅ in order to
use metaknowledge symbols in the local object knowl-
edge. Figure 13 shows an illustration of the pivoting
operation definition. Intuitively, the pivoting operation
takes as input a cell c and as parameters a class C as

C.G. Schuetz et al. / Knowledge Graph OLAP 19

Fig. 13. Illustration of the pivoting operation definition

cc

b

R

a

(,c,R)

R-type

R-a-b

b

R

a

hasSubject

hasObject

rdf:type

Fig. 14. Illustration of the reification operation definition

well as a set of dimensions D. The operation associates
with c an additional knowledge module mg(c) that con-
tains, for each element e of argument class C in c, a set
of assertions that label the element e with the dimen-
sion attribute values of c associated with the argument
dimensions in D ⊆ D.

Example 11 (Pivoting). Consider the K4 knowledge
module of the c4 context from Fig. 6 (see Fig. 10 for
an illustration of the cell contents). The pivoting op-
eration π(K, c4,SurfaceContamination, {Importance,
Date}) then returns a new cube K′ with a knowledge
module mg(c4) that contains the additional assertions
Importance(runway16/34-contam#265,Essential) and
Date(runway16/34-contam#265, 12-02-2020) as well
as Importance(taxiway10/004-contam#343,Essential)
and Date(taxiway10/004-contam#343, 12-02-2020). 3

4.2.3. Reification
The reification operation takes “triples” in the object

knowledge of a cell and creates individuals that repre-
sent such triples. Reification allows for the preservation
of duplicates in case of a union merge, which facilitates
subsequent counting of occurrences in the course of the
analysis. Furthermore, in combination with pivoting,
the reification operation allows for attaching contextual
information to context-dependent knowledge, preserv-
ing information about the context of a triple in case of
a merge union.

Consider the set of asserted modules of cell c,
mod(c) = {m ∈ M |G |= mod(c,m) and, for every c′ 6=
c where c � c′,G 6|= mod(c′,m)}. We denote the local
knowledge base of cell c as Kmod(c) =

⋃
m∈mod(c) Km.

Definition 8 (Reification). Given a cube K = 〈G,KM〉,
a cell name c ∈ F, a role R of LΣ (i.e. the reified
property), we define the reification operation %(K, c,R)
as a new cube K′ = 〈G′,K′M〉 over 〈Γ′,Σ′〉 s.t.:

– a module name mg(c) is added to M′, mod(c,mg(c))
is added to G′ and Kmg(c) is added to KM′ ;

– a concept R-type ∈ NC′Σ (representing the reified
role type) is added to 〈Γ′,Σ′〉;

– for every a, b ∈ NIΣ s.t. R(a, b) ∈ Kmod(c), a new
individual R-a-b is added to Kmg(c) with the following
set of assertions (associating the subject and object
to the reified role assertion):

hasSubject(R-a-b, a) hasObject(R-a-b, r) R-type(R-a-b)

Figure 14 shows an illustration of the reification op-
eration definition. Intuitively, the reification operation
considers a single cell c with its asserted knowledge
Kmod(c) and a role R to be reified: For each asserted
instance of property R, a new individual representing
that instance is added to the cell’s knowledge. Formally,
as with pivoting, the new knowledge is added as a new
knowledge module mg(c).

Example 12 (Reification). Consider the K4 knowl-
edge module of the c4 context from Fig. 6 (see Fig. 10
for an illustration of the cell contents). The reification
operation %(K, c4, depth) then returns a new cube K′

with a knowledge module mg(c4) containing the asser-
tions hasSubject(depth-runway16/34-contam#265-0.2,
runway16/34-contam#265), hasObject(depth-runway
16/34-contam#265-0.2, 0.2), and depth-type(depth-run-
way16/34-contam#265-0.2).

5. Proof-of-Concept Implementation

In this section we sketch the foundations of a proof-
of-concept implementation of a KG-OLAP system us-
ing off-the-shelf quad stores5. We refer to the appendix
for additional information on the implementation.

5.1. Architecture, Model, and Operations

A mapping of the formal language to an actual RDF
representation allows for the storage of KG-OLAP
cubes in off-the-shelf quad stores with SPARQL realiza-
tions of the query operations. Context-aware rules serve
to materialize roll-up relationships for levels and cells
as well as inference and propagation of knowledge.

5http://kg-olap.dke.uni-linz.ac.at/

20 C.G. Schuetz et al. / Knowledge Graph OLAP

Architecture. For each KG-OLAP cube, a base repos-
itory in a quad store comprises the cube knowledge
(structure) and object knowledge (contents) for the cube.
Using the slice-and-dice operation, the user selects a
subset of the base data into a temporary repository,
which then contains a working copy of the original data
that can be modified using merge and abstraction.

Multidimensional model. The definition of the KG-
OLAP model primitives (e.g., cell/fact, dimension, di-
mension members) can be easily defined in terms of
RDF/OWL classes and properties; we refer to the ap-
pendix for details. The two-layered structure of the KG-
OLAP system with a global context and multiple lo-
cal contexts – as in the CKR core [36] – is realized in
RDF using different RDF graphs – one graph for the
global knowledge and one graph for each knowledge
module as well as a graph for the materialized inferred
knowledge of each module.

Materialization. The reasoning procedure presented
in Section 3.2.3 and the appendix, analogously to the
CKR core [36], can be implemented using SPARQL-
based forward rules that materialize the inferences, in-
cluding coverage relationships between contexts. The
KG-OLAP implementation employs the RDFpro frame-
work [43] as library for the execution of rules. RDFpro
allows for the specification of queries across different
graphs, a feature needed for the reasoning inside indi-
vidual cells as well as across different cells.

OLAP operations. The query operations introduced in
Section 4 can be implemented using SPARQL queries.
In particular, we implement the query operations as
SPARQL SELECT statements that return “delta” tables
which consist of quads along with an indication of the
operation (insert or delete). The delta tables can then
be applied to the temporary repository. We refer to the
appendix for details on the implementation of query
operations. We note that performance optimization was
not a goal of this work.

5.2. Performance Evaluation

In the following, we analyze performance of the core
set of KG-OLAP cube operations – i.e., slice-and-dice,
merge union, and abstraction – based on experimental
results. Specifically, we look at median run times for the
computation of the query operations’ delta statements,
i.e., the statements that must be inserted or deleted in or-
der to perform the respective query operation, measured

over multiple iterations, relative to repository size (num-
ber of statements), context size (number of contexts),
and delta size (number of computed delta statements).
We do not include the duration of actual insertions or
deletions of the delta statements in the run times since
these are not specific to contextualized KGs. We re-
fer to the appendix for more information, including an
analysis of reification and pivoting performance.

In the performance experiments, we employed syn-
thetic datasets based on the ATM use case, which al-
lowed us to vary the number of dimensions, contexts,
and statements while keeping the graphs similar. Hence,
we tested query operations on three-dimensional and
four-dimensional datasets with 1 365, 2 501, and 3 906
contexts, respectively. For each dimensionality and con-
text size, we had three different repository sizes. In
addition, we used “baseline” datasets for abstraction
operations, which consisted of a single context, in order
to investigate the impact of contextualization.

The performance experiments were conducted on
a virtual CentOS 6.8 machine with four cores of an
Intel Xeon CPU E5-2640 v4 with 2.4 GHz, hosting
a GraphDB6 8.9 instance. The Java Virtual Machine
(JVM) of the GraphDB instance ran with 100 GB heap
space. The JVM of the KG-OLAP cube, which con-
ducts rule evaluation and caches query results, ran with
20 GB heap space.

The GraphDB instance comprised two repositories
– base and temporary – with the following configura-
tion (see [44] for further information). The entity in-
dex size was 30 000 000 and the entity identifier size
was 32 bits. Context index, predicate list, and literal in-
dex were enabled. Reasoning and inconsistency checks
were disabled; the KG-OLAP implementation takes
care of reasoning via RDFpro rule evaluation.

Figure 15a shows run times of the slice-and-dice op-
eration. The plot on the left shows run time relative
to repository size per dimensionality. The plot in the
middle shows run time relative to repository size per
context size. The plot on the right shows run time rela-
tive to the size of the delta table computed by the query
operation. Hence, performance of the slice-and-dice op-
eration primarily depends on the number of delta state-
ments in the query result, i.e., the number of selected
cells/statements from the base repository. In fact, in this
example, the slice-and-dice operation performs better
on the large context size (3 906 contexts) due to fewer
delta statements being computed. Dimensionality does
not play a role here.

6http://graphdb.ontotext.com/

C.G. Schuetz et al. / Knowledge Graph OLAP 21

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
20

40
60

80

Repository size [million statements]

●

3D
4D

0 5 10 15 20 25 30 35

0
20

40
60

80

Repository size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts

0 2 4 6 8

0
20

40
60

80

Delta size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts

M
ed

ia
n

ru
n

tim
e

[s
]

(a) Slice/Dice

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
50

0
10

00
15

00

Repository size [million statements]

●

3D
4D

0 5 10 15 20 25 30 35

0
50

0
10

00
15

00

Repository size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts

0 10 20 30 40 50 60 70

0
50

0
10

00
15

00

Delta size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts

M
ed

ia
n

ru
n

tim
e

[s
]

(b) Merge

Fig. 15. Performance of contextual operations

In case of the merge operation, we deliberately chose
a query that results in a massive reorganization of the
KG-OLAP cube, causing a vast number of lower-level
cells to be merged, in order to study worst-case per-
formance. The run time of the merge union operation
(Figure 15b) primarily depends on the number of con-
texts. For each context size, we observe a linear in-
crease in run time with respect to the repository size.
For the large context size (3 906 contexts) there is also
a marked influence of dimensionality on run time.

For abstraction operations, we employ baseline
datasets which consist of a single context comprising
all statements in order to gain an understanding of the
inherent complexity of these operations regardless con-
textualization. Such abstraction operations on a single
context correspond to the formalization. In addition, we
perform abstraction operations in a variant that applies
to each cell at a particular granularity level. Similar to
the merge operation, we deliberately choose a setting
where the query operations affect a large number of
statements in order to study worst-case performance.

Figure 16a shows run times of triple-generating ab-
straction. Run time grows linearly with repository size.
Run times for individual-generating abstraction with a
single grouping property look similar (Figure 16b). For
triple-generating abstraction, the baseline datasets had
significantly higher run times. The difference was less
pronounced for individual-generating abstraction.

For value-generating abstraction, the queries resulted
in smaller sizes of the computed delta tables. Figure 16c
shows that the run time of value-generating abstraction
grows about linearly with respect to repository size with
a small influence of context size and little influence of
dimensionality. Run times for the baseline datasets were
smaller. We note that the run times of value-generating
abstraction were quite low in general.

For results of reification and pivoting operations we
refer to the appendix. In summary, the reification op-
eration grows linearly with the repository size. For the
pivoting operation we observe context size as the main
factor influencing run time.

22 C.G. Schuetz et al. / Knowledge Graph OLAP

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0

Repository size [million statements]

●

3D
4D
Baseline

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0

Repository size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

0 2 4 6 8

0
20

0
40

0
60

0
80

0

Delta size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

M
ed

ia
n

ru
n

tim
e

[s
]

(a) Triple−Generating Abstraction

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0

Repository size [million statements]

●

3D
4D
Baseline

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0

Repository size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

0 2 4 6 8

0
20

0
40

0
60

0
80

0

Delta size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

M
ed

ia
n

ru
n

tim
e

[s
]

(b) Individual−Generating Abstraction

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0
50

10
0

15
0

Repository size [million statements]

●

3D
4D
Baseline

0 5 10 15 20 25 30 35

0
50

10
0

15
0

Repository size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

0.0 0.5 1.0 1.5

0
50

10
0

15
0

Delta size [million statements]

1365 Contexts
2501 Contexts
3906 Contexts
Baseline

M
ed

ia
n

ru
n

tim
e

[s
]

(c) Value−Generating Abstraction

Fig. 16. Performance of abstraction operations

C.G. Schuetz et al. / Knowledge Graph OLAP 23

●

●●

●●●

●●●

0 5 10 15 20 25 30 35

0
50

0
10

00
15

00
20

00

Repository size [million statements]

●

3D
4D

●

●●

●●●

●●●

0 1000 2000 3000 4000

0
50

0
10

00
15

00
20

00

Number of contexts

●

3D
4D

M
ed

ia
n

ru
n

tim
e

[s
]

Rule Evaluation

Fig. 17. Performance of rule evaluation

The proof-of-concept implementation relies on ma-
terialization of coverage relationships and inferences,
which requires evaluation of a set of rules over the base
repository in order to initialize the KG-OLAP cube.
Figure 17 shows run times for rule evaluation relative
to repository size and number of contexts for three-
dimensional and four-dimensional KG-OLAP cubes.
Reasoning in performance experiments was conducted
with the entire repository being loaded into main mem-
ory first. Reasoning was limited to a subset of RDFS
inference rules and thus the main influence for run time
turned out to be the number of contexts. As with the
merge operation, for the large context size, there is a
marked influence of dimensionality on run time.

Precomputation of coverage relationships and infer-
ences shifts the burden away from the individual query
operations. Merge and abstraction (but not slice/dice)
require rule evaluation after the operation has been per-
formed in order to allow for possibly new inferences to
be uncovered. In this regard, future work will provide
an implementation that performs local reasoning only
on the contexts that have been subject to change.

Concerning the ATM use case, we note that the
single-machine implementation allows for employ-
ing KG-OLAP cubes for pilot briefings and post-
operational analysis in individual regions. Maintaining
a large-scale contextualized KG for ATM in Europe
with tens of thousands of contexts in a single KG-OLAP
cube, however, would require a different implementa-
tion strategy. In this regard, future work will investi-
gate a clustered implementation with cells distributed
on different server nodes and parallel computation of
query operations. Another possibility is the introduc-
tion of the metacube [21] concept, i.e., a cube of cubes,
in conjunction with the drill-across operation.

6. Related Work

Semantic technologies have been used for a vari-
ety of tasks in the context of OLAP (see [45] for an
overview). Related to KG-OLAP are techniques for
data analysis over RDF data. The RDF data cube vo-
cabulary (QB) [46] and its extension, QB4OLAP [47],
provide an RDF representation format for publishing
traditional OLAP cubes with numeric measures on the
semantic web, with often SPARQL-based operators that
emulate traditional OLAP queries for analyzing multi-
dimensional data in QB [48] and QB4OLAP [49, 50].
Such statistical linked data are just different serializa-
tion and publication formats of traditional OLAP cubes
rather than KGs. Other work has suggested “lenses”
over RDF data [51] for the purpose of RDF data anal-
ysis, i.e., analytical schemas which can be used for
OLAP queries on RDF data. Similarly, superimposed
multidimensional schemas [52] define a mapping be-
tween a multidimensional model and a KG in order to
allow for the formulation of OLAP queries. Contrary to
these approaches, KG-OLAP focuses on RDF graphs
as the “measures” of OLAP cubes rather than numeric
measures that are aggregated using aggregation opera-
tors such as SUM and AVG.

Fusion cubes [53] supplement traditional OLAP
cubes with external data in RDF format, particularly
linked open data where typically the data are not owned
by the analyst. Fusion cubes are traditional OLAP cubes
with numeric measures that can be populated dynam-
ically with statistical data from RDF sources. Fusion
cubes store contextual information about provenance
and data quality of the external sources. Other sim-
ilar work [54] extracts traditional OLAP cubes with
numeric measures from RDF data sources and ontolo-

24 C.G. Schuetz et al. / Knowledge Graph OLAP

gies, which analysts may then query using a tradi-
tional OLAP language, namely MDX. The semCockpit
project [55] employed ontologies for the definition of
a shared understanding of business terms and analy-
sis situations among business analysts. With respect to
these approaches, KG-OLAP cubes may be considered
a structured data lake approach (see [56] for more in-
formation), which stores the data of interest in a seman-
tically richer format than plain numeric measures and
provides dedicated query operations.

Closely related to KG-OLAP is Graph OLAP (also
known as InfoNetOLAP) [17, 18], which through its
informational and topological OLAP queries provides
rich query facilities suitable for graph analysis. In
Graph OLAP, graphs are associated with dimensional
attributes, which yields a graph cube. The edges of the
graphs themselves are weighted; the weights represent
the measures to be analyzed. Typical applications of
Graph OLAP are analysis of co-author and similar so-
cial graphs from different time periods, geographic lo-
cations, and so on. Graph OLAP distinguishes between
informational roll-up and topological roll-up, which
corresponds to the distinction between contextual and
graph operations in KG-OLAP. Graph OLAP, however,
is not suitable for working with heterogeneous KGs.
Rather, Graph OLAP is another means of data analysis
for a certain type of numeric measures, e.g., how many
times two researchers have collaborated on a paper. The
focus of Graph OLAP are weighted directed graphs
with highly structured and homogeneous data. RDF
data, on the other hand, have rich semantics and a more
heterogeneous structure, therefore requiring specific
query operators. Unlike KG-OLAP, Graph OLAP does
not consider knowledge propagation and inferencing
over contextualized KGs.

The KG-OLAP query operations also invite com-
parison with (knowledge) graph summarization tech-
niques [57, 58], which aim at making KGs more ac-
cessible to end users and applications by providing a
condensed view on the represented knowledge. Use
cases for KG summarization include visualization and
exploration of KGs as well as facilitating query for-
mulation and processing. Broadly speaking, KG (or
RDF) summarization techniques may be divided into
structural summarization, mining-based, and statisti-
cal summarization [58]. Statistical summarization com-
putes quantitative measures that characterize a graph
whereas mining-based (or pattern-based) summariza-
tion employs graph mining to extract frequent patterns
that act as a summary. Structural summarization aims at
finding a summary graph that preserves characteristics

of the original graph while considerably reducing the
size of the graph, making the graph easier to handle and
comprehend.

Among the structural summarization approaches for
RDF graphs, quotient RDF summaries represent a com-
mon type of summaries that produce an RDF graph
where multiple nodes from the source graph are re-
placed by a single summary node in the RDF summary.
Accordingly, the results of abstraction operations in
KG-OLAP may be considered structural quotient RDF
summaries [58]. Unlike most structural approaches to-
wards RDF summarization, KG-OLAP allows for ad
hoc summarization based on user-specified, application-
specific summarization criteria.

Unlike KG-OLAP, existing work on graph and KG
summarization largely ignores contextuality in KGs. In
fact, existing work on KG summarization is orthogonal
to the KG-OLAP approach. Consequently, future work
may adapt summarization algorithms to serve as graph
operators in KG-OLAP.

7. Conclusion

In this paper, we presented KG-OLAP for working
with KGs. Hence, we extended the multidimensional
modeling paradigm from online analytical processing
(OLAP) for the representation of contextualized KGs.
We then introduced specific query operations: First,
contextual operations for selecting and merging con-
texts and then graph operations for summarizing the
graphs within individual contexts. We illustrated KG-
OLAP using a real-world use case from the air traf-
fic management (ATM) domain [20, 21]. A proof-of-
concept implementation using off-the-shelf quad stores
and SPARQL queries demonstrates feasibility. In this
regard, we conducted an experimental evaluation of
the performance of working with contextualized KGs.
Continuing from here, future work may investigate the
following:

– the extension of KG-OLAP with defeasible axioms
similar to previous work [38, 59].

– potential applications of KG-OLAP in KG refinement
(see [3] for more information).

– the extension of graph operations with common RDF
summarization techniques.

– distributed, parallelized implementation of a KG-
OLAP system, including the concept of metacube
and the drill-across operation [21], in order to support
big KGs.

C.G. Schuetz et al. / Knowledge Graph OLAP 25

References

[1] M. Krötzsch and G. Weikum, Editorial for special section on
knowledge graphs, Journal of Web Semantics 37-38 (2016),
53–54. doi:10.1016/j.websem.2016.04.002.

[2] J.M. Gomez-Perez, J.Z. Pan, G. Vetere and H. Wu, Enter-
prise Knowledge Graph: An Introduction, in: Exploiting Linked
Data and Knowledge Graphs in Large Organisations, J.Z. Pan,
G. Vetere, J.M. Gomez-Perez and H. Wu, eds, Springer, 2017,
pp. 1–14.

[3] H. Paulheim, Knowledge graph refinement: A survey of ap-
proaches and evaluation methods, Semantic Web 8(3) (2017),
489–508.

[4] L. Bellomarini, G. Gottlob, A. Pieris and E. Sallinger,
Swift Logic for Big Data and Knowledge Graphs, in: Pro-
ceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, IJCAI-17, 2017, pp. 2–10.
doi:10.24963/ijcai.2017/1.

[5] A.Y. Halevy, F. Korn, N.F. Noy, C. Olston, N. Polyzotis, S. Roy
and S.E. Whang, Managing Google’s data lake: an overview
of the Goods system, IEEE Data Engineering Bulletin 39(3)
(2016), 5–14.

[6] W. Tunstall-Pedoe, True Knowledge: Open-Domain Question
Answering Using Structured Knowledge and Inference, AI Mag-
azine 31(3) (2010), 80–92. doi:10.1609/aimag.v31i3.2298.

[7] V. Penela, G. Álvaro, C. Ruiz, C. Córdoba, F. Carbone,
M. Castagnone, J.M. Gómez-Pérez and J. Contreras, miKrow:
Semantic Intra-enterprise Micro-Knowledge Management Sys-
tem, in: The Semanic Web: Research and Applications, G. An-
toniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis,
P. De Leenheer and J. Pan, eds, Springer, 2011, pp. 154–168.

[8] T. Ruan, L. Xue, H. Wang, F. Hu, L. Zhao and J. Ding, Build-
ing and Exploring an Enterprise Knowledge Graph for Invest-
ment Analysis, in: ISWC 2016, P. Groth, E. Simperl, A. Gray,
M. Sabou, M. Krötzsch, F. Lecue, F. Flöck and Y. Gil, eds,
LNCS, Vol. 9982, Springer, 2016.

[9] Google, Introducing the Knowledge Graph: things, not
strings, 2012, https://search.googleblog.com/2012/05/
introducing-knowledge-graph-things-not.html (Accessed: 05
August 2018).

[10] R. Qian, Understand your world with Bing,
2013, https://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing/ (Accessed: 05 August
2018).

[11] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P.N. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer
and C. Bizer, DBpedia – a large-scale, multilingual knowledge
base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–
195.

[12] D. Vrandečić and M. Krötzsch, Wikidata: A Free Collaborative
Knowledgebase, Communications of the ACM 57(10) (2014),
78–85. doi:10.1145/2629489.

[13] H. Wu, R. Denaux, P. Alexopoulos, Y. Ren and J.Z. Pan, Under-
standing Knowledge Graphs, in: Exploiting Linked Data and
Knowledge Graphs in Large Organisations, J.Z. Pan, G. Vetere,
J.M. Gomez-Perez and H. Wu, eds, Springer, 2017, pp. 147–
180.

[14] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger, A. Ven-
nesland and S. Wilson, The Case for Contextualized Knowl-
edge Graphs in Air Traffic Management, in: CKG 2018, CEUR

Workshop Proceedings, Vol. 2317, CEUR-WS.org, 2018. http:
//ceur-ws.org/Vol-2317/article-10.pdf.

[15] L. Serafini and M. Homola, Contextualized Knowledge Repos-
itories for the Semantic Web, Journal of Web Semantics 12
(2012), 64–87.

[16] A. Vaisman and E. Zimányi, Data Warehouse Systems – Design
and Implementation, Springer, Berlin Heidelberg, 2014.

[17] C. Chen, X. Yan, F. Zhu, J. Han and P.S. Yu, Graph OLAP: a
multi-dimensional framework for graph data analysis, Knowl-
edge and Information Systems 21(1) (2009), 41–63.

[18] C. Chen, F. Zhu, X. Yan, J. Han, P. Yu and R. Ramakrishnan,
InfoNetOLAP: OLAP and mining of information networks, in:
Link Mining: Models, Algorithms, and Applications, P.S. Yu,
J. Han and C. Faloutsos, eds, Springer, 2010, pp. 411–438.

[19] R.M. Keller, Building a knowledge graph for the air traf-
fic management community, in: Companion Proceedings of
The 2019 World Wide Web Conference, 2019, pp. 700–704.
doi:10.1145/3308560.3317706.

[20] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger and S. Wil-
son, Semantics-Based Summarization of ATM Data to Man-
age Information Overload in Pilot Briefings, in: Proceedings
of the 31st Congress of the International Council of the Aero-
nautical Sciences, 2018. http://www.icas.org/ICAS_ARCHIVE/
ICAS2018/data/papers/ICAS2018_0763_paper.pdf.

[21] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger and S. Wil-
son, Semantics-based summarisation of ATM information: Man-
aging information overload in pilot briefings using semantic
data containers, The Aeronautical Journal (2019), To appear.
doi:10.1017/aer.2019.74.

[22] D. Steiner, I. Kovacic, F. Burgstaller, M. Schrefl, T. Friesacher
and E. Gringinger, Semantic enrichment of DNOTAMs
to reduce information overload in pilot briefings, in:
Proceedings of the 16th Integrated Communications
Navigation and Surveillance (ICNS) Conference, 2016.
doi:10.1109/ICNSURV.2016.7486359.

[23] B. Neumayr, E. Gringinger, C.G. Schuetz, M. Schrefl, S. Wil-
son and A. Vennesland, Semantic data containers for real-
izing the full potential of system wide information man-
agement, in: Proceedings of the 36th IEEE/AIAA Digi-
tal Avionics Systems Conference (DASC), 2017, pp. 1–10.
doi:10.1109/DASC.2017.8102002.

[24] E. Gringinger, C. Schuetz, B. Neumayr, M. Schrefl and
S. Wilson, Towards a value-added information layer for
SWIM: The semantic container approach, in: Proceed-
ings of the 18th Integrated Communications Navigation
and Surveillance (ICNS) Conference, 2018, pp. 3–113114.
doi:10.1109/ICNSURV.2018.8384870.

[25] C.G. Schütz, B. Neumayr and M. Schrefl, Business Model On-
tologies in OLAP Cubes, in: CAiSE 2013, C. Salinesi, M.C. Nor-
rie and O. Pastor, eds, LNCS, Vol. 7908, Springer, 2013, pp. 514–
529. doi:10.1007/978-3-642-38709-8.

[26] Skybrary, Situational Awareness, https://www.skybrary.aero/
index.php/Situational_Awareness (Accessed: 05 August 2019).

[27] R.M. Keller, Ontologies for aviation data management, in: Pro-
ceedings of the IEEE/AIAA 35th Digital Avionics Systems Con-
ference (DASC), 2016.

[28] R.M. Keller, The NASA Air Traffic Management Ontology
(atmonto) – Release dated March 2018, Technical Report, Na-
tional Aeronautics and Space Administration, 2018, Accessed:
05 August 2018. https://data.nasa.gov/ontologies/atmonto/.

26 C.G. Schuetz et al. / Knowledge Graph OLAP

[29] A. Vennesland, B. Neumayr, C. Schuetz, A. Savulov, S. Wil-
son, E. Gringinger and J. Gorman, AIRM-O – ATM Informa-
tion Reference Model Ontology, 2017, https://w3id.org/airm-
o/ontology.

[30] R.M. Keller, The NASA Air Traffic Management Ontology (at-
montoPlus) – Release dated March 2018, Technical Report, Na-
tional Aeronautics and Space Administration, 2018, Accessed:
05 August 2018. https://data.nasa.gov/ontologies/atmontoPlus/.

[31] International Civil Aviation Organization, Annex 15 to the Con-
vention on International Civil Aviation: aeronautical informa-
tion services, 13 edn.

[32] Federal Aviation Administration, Federal NOTAM system air-
port operations scenarios, 2010, Accessed: 05 August 2018.
https://notams.aim.faa.gov/FNSAirportOpsScenarios.pdf.

[33] S. Niarchakou and J. Simón Selva, ATFCM operations manual
– network operations handbook, 21.0 edn, 2017, Accessed: 05
August 2019. http://www.eurocontrol.int/sites/default/files/
content/documents/nm/network-operations/HANDBOOK/
ATFCM-Operations-Manual-next.pdf.

[34] AIXM 5.1.1 - Data Model (UML), Accessed: 05 August 2019.
http://aixm.aero/document/aixm-511-data-model-uml.

[35] R. Lake, D.S. Burggraf, M. Trninić and L. Rae, Geography
Mark-Up Language: foundation for the geo-web, John Wiley &
Sons, 2004.

[36] L. Bozzato and L. Serafini, Materialization calculus for con-
texts in the Semantic Web, in: DL 2013, CEUR Workshop Pro-
ceedings, Vol. 1014, CEUR-WS.org, 2013. http://ceur-ws.org/
Vol-1014/paper_51.pdf.

[37] M. Golfarelli, D. Maio and S. Rizzi, The dimensional fact
model: a conceptual model for data warehouses, International
Journal of Cooperative Information Systems 7(2–3) (1998), 215–
247.

[38] L. Bozzato, T. Eiter and L. Serafini, Enhancing context knowl-
edge repositories with justifiable exceptions, Artificial Intelli-
gence 257 (2018), 72–126.

[39] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-
Schneider (eds), The Description Logic Handbook, Cambridge
University Press, 2003.

[40] M. Krötzsch, Efficient Inferencing for OWL EL, in: JELIA
2010, LNCS, Vol. 6341, Springer, 2010, pp. 234–246.
doi:10.1007/978-3-642-15675-5_21.

[41] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue and
C. Lutz, OWL 2 Web Ontology Language Profiles (Second Edi-
tion) – W3C Recommendation 11 December 2012, Technical
Report, W3C, 2009, https://www.w3.org/TR/2012/REC-owl2-
profiles-20121211/.

[42] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P.F. Patel-
Schneider and U. Sattler, OWL 2: The next step for OWL,
Journal of Web Semantics 6(4) (2008), 309–322.

[43] F. Corcoglioniti, M. Rospocher, M. Mostarda and M. Amadori,
Processing Billions of RDF Triples on a Single Machine Using
Streaming and Sorting, in: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015, pp. 368–375.
doi:10.1145/2695664.2695720.

[44] Ontotext, Configuring a repository, http://graphdb.ontotext.
com/documentation/8.9/free/configuring-a-repository.html (Ac-
cessed: 31 July 2019).

[45] A. Abello, O. Romero, T.B. Pedersen, R. Berlanga, V. Nebot,
M.J. Aramburu and A. Simitsis, Using semantic web technolo-

gies for exploratory OLAP: a survey, IEEE Transactions on
Knowledge and Data Engineering 27(2) (2015), 571–588.

[46] R. Cyganiak and D. Reynolds, The RDF Data Cube Vocab-
ulary – W3C Recommendation 16 January 2014, Technical
Report, W3C, 2014, https://www.w3.org/TR/2014/REC-vocab-
data-cube-20140116/.

[47] L. Etcheverry and A.A. Vaisman, QB4OLAP: A Vocabulary for
OLAP Cubes on the Semantic Web, in: COLD 2012, CEUR
Workshop Proceedings, Vol. 905, CEUR-WS.org, 2012.

[48] M. Meimaris, G. Papastefanatos, P. Vassiliadis and I. Anag-
nostopoulos, Efficient Computation of Containment and Com-
plementarity in RDF Data Cubes, in: Proceedings of the 19th
Conference on Extending Database Technology (EDBT 2016),
2016, pp. 281–292. doi:10.5441/002/edbt.2016.27.

[49] L. Etcheverry, A.A. Vaisman and E. Zimányi, Modeling and
Querying Data Warehouses on the Semantic Web Using
QB4OLAP, in: DaWaK 2014, LNCS, Vol. 8646, Springer, 2014,
pp. 45–56.

[50] J. Varga, L. Etcheverry, A.A. Vaisman, O. Romero, T.B. Ped-
ersen and C. Thomsen, QB2OLAP: Enabling OLAP on Sta-
tistical Linked Open Data, in: Proceedings of the 32nd IEEE
International Conference on Data Engineering (ICDE 2016),
2016, pp. 1346–1349. doi:10.1109/ICDE.2016.7498341.

[51] D. Colazzo, F. Goasdoué, I. Manolescu and A. Roatiş, RDF
Analytics: Lenses over Semantic Graphs, in: Proceedings of
the 23rd International Conference on World Wide Web, 2014,
pp. 467–478. doi:10.1145/2566486.2567982.

[52] M. Hilal, C.G. Schuetz and M. Schrefl, Using superim-
posed multidimensional schemas and OLAP patterns for RDF
data analysis, Open Computer Science 8(1) (2018), 18–37.
doi:10.1515/comp-2018-0003.

[53] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón,
F. Naumann, T.B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis
and G. Vossen, Fusion Cubes: Towards Self-Service Business
Intelligence, International Journal of Data Warehousing and
Mining 9(2) (2013), 66–88.

[54] V. Nebot and R. Berlanga Llavori, Building data warehouses
with semantic web data, Decision Support Systems 52(4) (2012),
853–868.

[55] T. Neuböck, B. Neumayr, M. Schrefl and C. Schütz, Ontology-
Driven Business Intelligence for Comparative Data Analysis,
in: eBISS 2013, LNBIP, Vol. 172, Springer, 2014, pp. 77–120.

[56] P. Russom, Data Lakes: Purposes, Practices, Patterns, and
Platforms, 2017, Accessed: 05 August 2019. https://tdwi.org/
research/2017/03/best-practices-report-data-lakes.

[57] Y. Liu, T. Safavi, A. Dighe and D. Koutra, Graph Summarization
Methods and Applications: A Survey, ACM Computing Surveys
51(3) (2018). doi:10.1145/3186727.

[58] Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos,
I. Manolescu, G. Troullinou and M. Zneika, Summarizing se-
mantic graphs: a survey, The VLDB Journal 28(3) (2019), 295–
327. doi:10.1007/s00778-018-0528-3.

[59] L. Bozzato, L. Serafini and T. Eiter, Reasoning with Justifi-
able Exceptions in Contextual Hierarchies, in: Principles of
Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference (KR 2018), M. Thielscher,
F. Toni and F. Wolter, eds, AAAI Press, 2018, pp. 329–338.
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18032.

