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Abstract.
A lot of tabular data are being published on the Web. Semantic labeling of such data may help in their understanding and

exploitation. However, many challenges need to be addressed to do this automatically. With numbers, it can be even harder
due to the possible difference in measurement accuracy, rounding errors, and even the frequency of their appearance. Multiple
approaches have been proposed in the literature to tackle the problem of semantic labeling of numeric values in existing tabular
datasets. However, they also suffer from several shortcomings: closely coupled with entity-linking, rely on table context, need
to profile the knowledge graph and the prerequisite of manual training of the model. Above all, they all treat different kinds
of numeric values evenly. In this paper, we tackle these problems and validate our hypothesis: whether taking into account the
typology of numeric data in semantic labeling yields a better solution.

Keywords: Semantic Labeling, Semantic Annotation, Levels of Measurements, Typology of Numbers, Fuzzy Clustering,
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1. Introduction

The number of structured data published on the
web is constantly growing thanks to initiatives such
as the Open Data movement (e.g., data.gov1) and
more specialized platforms (e.g., Kaggle2, Figshare3,
data.world4). One of the most fundamental problems
is enabling the understanding of the dataset content,
which could be beneficial for different groups, for
example, researchers working on the expansion of
Knowledge Bases5 (KB), such as DBpedia or Wikidata
[1], for a data scientist who found a dataset and wants
to use it for their knowledge discovery task [2], or for
expanding meta-data describing a dataset which could

1https://www.data.gov/
2https://www.kaggle.com/
3https://figshare.com/
4https://data.world/
5In this work, we use the terms “Knowledge Base” and “Knowl-

edge Graph” interchangeably

be utilized further for data search (e.g., Google Dataset
Search Engine [3]).

There are several of approaches focusing on the
problem of understanding the semantic meaning of the
content of datasets [4–8]. They focus on detecting se-
mantic labels for specific dataset cells (such as [6]) or
assigning semantic labels to the whole column (such as
[4, 5]). However, the majority of the existing efforts fo-
cused mainly on textual columns with not much atten-
tion being drawn to numerical columns present in the
dataset. Recently, the research focusing on the problem
of assigning semantic labels to numerical columns in a
dataset started to get traction. In the work of Mitlöhn-
ert et al. [9], it was pointed out that numerical columns
are the most popular column type among datasets from
several open data portals.

The approaches targeting the annotation of numer-
ical columns need to tackle different issues than the
ones developed for textual columns; it can be harder
due to the possible difference in measurement ac-
curacy, rounding errors, the frequency of their ap-
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pearance or different values being reported by dif-
ferent resources (e.g., population data). Multiple ap-
proaches tried to solve this problem, but they also suf-
fer from several shortcomings: closely coupled with
entity-linking (each number in the numeric columns
has to match a numeric property of an entity in the
knowledge graph), rely on table context (e.g., the URL
of the page, the caption of the table, the surrounding
text), need to profile the knowledge graph (e.g., create
a model of the whole knowledge graph, build inverted
index), and the prerequisite of manual training of the
model. Above all, they treat different types of numeric
data evenly.

In this work, we expand our recent work [8], where
the semantic labeling of numerical values is performed
using fuzzy clustering. Our previous work shows that it
is possible to semantically annotate numerical columns
in tabular datasets without applying object matching or
entity linking techniques. However, since all numeric
data were treated uniformly, there were cases where
the approach mislabel some of the numeric columns.
Hence, in this work, we expand the approach to take
into account the typology of the numeric data. We hy-
pothesize that taking into account the typology of the
numeric data in the semantic labeling process results
in better accuracy. We propose a typology of numbers
based on the typology proposed by others [10–12] for
the process of semantic labeling. We take different ap-
proaches to annotate each of them.

The contributions of this paper can be summarized
in the following points:

– We introduce an extension of the typology of nu-
merical values presented in the literature. This ex-
tension includes the concept of sub-type, where a
type can be divided further into sub-types.

– We propose a way to detect the type of a list of nu-
merical values based solely on its content, with-
out external resources or context.

– We propose a new approach to label numerical
columns in tabular data taking into account the
type of numerical values in a column.

The rest of the paper is organized as follows. We
begin by reviewing the typology of numbers in Sec-
tion 2. We review the state-of-the-art in Section 3, and
we explain the problem statement in Section 4. We in-
troduce the typology of numerical values in Section 5
and show how we can detect each of the (sub-)types
in Section 6. In Section 7, we show how we extract
data from a knowledge graph and construct the model
which we use for the semantic labeling in Section 8.

We evaluate our approach in Section 9 and conclude
the paper in Section 10.

2. Background: Types of Numbers

Mosteller and Tukey said: “Just writing in digits
does not make a number”[11]. On the other hand,
Stevens and Birkhoff [10] typology of numbers does
not quite agree with this6. They propose four types of
numbers: nominal, ordinal, interval, and ratio.

Nominal where digits are just like names, so they do
not imply extra meanings like order. For example, if
we have two names, John and Adam, we can not say
that the name John is greater (or less) than the name
Adam. An example of nominals are the digits printed
on the shirts of football players: they only distinguish
the players, but it doesn’t have a “greater than” or
“smaller than” concept to it. So, the only operation
available is to compare two nominals, whether they are
same or not.

Ordinal type implies an order among a set of ele-
ments. So one appears before the other. There is the
concept of greater than (or less than) between two el-
ements. An example would be ordering the dishes in
a menu from the most favorable to the least favor-
able, or differences in responses in satisfaction sur-
veys between “very satisfied” and “somewhat satis-
fied” [13]. However, there is no regard to the dif-
ference between the two items. For example, if a
person likes dark chocolate more than white choco-
late (darkchocolate > whitechocolate), there is noth-
ing about the difference between his likeness of dark
chocolate and white chocolate. Such an operation
could be referred to as “illegal” [10].

Interval scale is used to denote the increase or ex-
pansion in some way on a scale. A classical example
presented by [10] is the use of two different scales to
measure the temperature. We (humans) use Centigrade
and Fahrenheit, and we have a way to transform the
temperature from one scale to the other. The intervals
are the same (e.g., the difference between 10 and 20
degrees Celsius is the same as the difference between
25 and 35 degrees Celsius) [13].

6The paper was written by Stevens, but Birkhoff helped com-
plete the list of types. They refer to nominals as numbers, but they
(along with Mosteller and Tukey) agree that numbers (or collec-
tion of digits) can carry different meaning, and hence the different
types. Stevens approach the typology from the measurements points
of view while Mosteller and Tukey view is more from a data analysis
point of view.
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Ratio scales refer to things we measure that con-
tain a real zero such as counts, fundamental, and de-
rived ratios. Counts represent the number of elements
or occurrences (e.g., number of eggs in a basket). Fun-
damental ratio represents measurements taken directly
(e.g., when the width of the table is taken directly using
a measuring tape or a ruler). Derived ratio is the math-
ematical function of the magnitudes of a simple (fun-
damental) ratio measure (e.g., computing the speed of
a car using a measured time and distance). The differ-
ence between ratio and interval is the existence of a
true zero7. For example, when we talk about the tem-
perature, there can be an agreement on a zero value
(for example 0 in Celsius and 32 in Fahrenheit for the
freezing point of water at 1 atmosphere unit), but it is
not a true zero point (it does not mean a complete ab-
sence of temperature). Such a point is referred to as the
“starting” point [11, 13].

Some measures are not considered by Stevens, such
as the cyclical measures [12]. An example of such
cyclical measures is the angle; Chrisman said: “the di-
rection 359◦ is as far from 0◦ as 1◦ is” [12]. The added
levels presented by Chrisman are: Log-interval, exten-
sive ratio, cyclic ratio, derived ratio, counts, and abso-
lute8. Log-interval is similar to the interval scale with
the scaling happening on the exponent level. Extensive
ratio is the same as the fundamental ratio explained by
Stevens (e.g., the width of a book). Cyclic ratio is the
same as the extensive ratio where it is bounded and
repeat. Absolute is when a scale is predetermined and
cannot be transformed while preserving the meaning.

Mosteller and Tukey have a similar categorization:
names (nominal), grades and ranks9 (ordinal), amounts
(fundamental ratio), balances10 (derived ratio), counts,
counted fractions11 (absolute). However, it lacks the
followings: interval12, log-interval, and cyclical ratio.

Types of numbers are also referred to as kinds of
numbers, scales of measurement, and levels of mea-
surement [10–13].

7also referred to as “real” and “absolute”.
8Chrisman suggestion is to consider them as separate types
9ranks are numbered while grades are labels (e.g., A, B, ...)
10It is similar to log-interval but also is a ratio, so we consider it

here a derived ratio
11It is not exactly equal as absolute; it is more general than

counted fractions, but it is enough approximation for our purpose in
this paper.

12Even though Mosteller and Tukey warns the reader when re-
expressing zeros, they do not create a separate category for it

3. State-of-the-art

The topic of semantic annotation for tabular data has
been of interest for search engine companies as well as
for the semantic web community for several decades.
Different techniques have been used to perform this
task: graphical probabilistic models [14–17], linear re-
gression [18, 19], decision trees [20], hierarchical clus-
tering [5], and support vector machine (SVM) [15],
among others.

These techniques need to be applied to computed
information extracted from the data, which are re-
ferred to as “features” in machine learning. Cafarella
et al. [18] use attribute correlation statistics computed
from the crawled web documents and schema co-
herency score. Features like the number of hits on the
tables [18], column types [14, 15], and text similar-
ity [15, 19], and the relation between columns/enti-
ties [14–16, 21] are all used and shown to be the main
drivers of high-quality annotation. [22] uses a long
short-term memory (LSTM) network in order to ob-
tain a semantic representation of each cell in the table.
Statistical tests to compare distributions from different
samples have also been adopted, especially for dealing
with numerical data [5, 7, 19, 23].

From our review of the state-of-the-art, we can see
that there are two kinds of learning sources (train-
ing sets). The first kind uses knowledge graphs such
as YAGO [15] and DBpedia [4, 5] to create learn-
ing sets. Others are more focused on learning from
scraped web pages which do not provide such ease
to focus on a specific domain [14, 18, 20, 21]. De-
spite the fact that these approaches may be automatic
or semi-automatic13, some of them require manual ac-
tions (e.g., provide predefined conversion rules [4, 17],
a blacklist of properties [5] to improve the accuracy
and abbreviations resolution [4, 17] while others rely
on experts to semantically annotate columns to se-
mantic properties such as [24]. Approaches such as,
[7, 25, 26] base their analysis of numerical columns
on a context subject column - a column to which other
columns in the table could be linked with knowledge
base properties. We also found that they treat all nu-
merical columns and their values in the same way, not
taking into account the type of numerical values except
for [25]. Oulabi et al. [25] divide numeric values into
Quantity and Nominals. This is not really a typology,

13We are not referring here to the gold standards that are built
manually or the semantic models that are constructed by domain
experts.
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it is to distinguish whether to treat the values as mea-
surements (Quantity) or as text (Nominals). Their de-
tection algorithm of the type of numerical data (Nom-
inal or Quantity) relies on the data in the knowledge
graph.

In this work, we first detect the type of numerical
values as a way to improve the performance of se-
mantic labeling without matching the exact numbers
to a property of a matched entity, relying on an ontol-
ogy, profiling knowledge graphs, manual elimination
of properties, or tweaking of parameters (that is knowl-
edge graph dependent).

4. Problem Statement

We define a dataset as a collection tables, and each
table is composed of multiple columns. In this work,
the terms dataset, tables, and tabular data refer to the
same thing. Columns in a table may consist of numer-
ical values, textual values, or a combination of both.
In this work, we focus on numerical columns and ex-
clude any textual context, such as the header of the col-
umn or any text within column cells. This results in
each numerical column being represented as a collec-
tion of numerical values. The problem statement of
this work could be summarized as follows:

Given a collection of numerical values of a specific
type, a class describing the content of a table and a tar-
get knowledge base, return the list of properties in the
knowledge base that most likely correspond to those
numerical values, ordered by likelihood score.

Figure 1 outlines the inputs and outputs of the se-
mantic labeling approach.

5. Typology of Numerical Columns

In this work, we adopt the typology presented by
Stevens et al. [10] as a base, and we build on top of
it. This is because it is more suitable for the detection
of different types as we explain in Section 6. We ex-
tend two of the high-level types (nominal and ratio)
into sub-types. We based our work on types discussed
by Tukey [27], Mosteller et al. [11], and Stevens et
al. [10].

Example

We present a table with numerical columns, and we
assign to each column a type and a sub-type (Figure 2).

The table is about military individuals. The first col-
umn contains the first names, so it is not a numeric
column. The second column represents the “service
name”. Each person has a unique service name show-
ing on their uniform. The 3rd column represents the
heights in centimeters. After that is the column about
the “sex” of the people, so males are denoted as 1 and
2 for females. The “Race rank” column represents the
order of the winners of a race held for those people
(e.g., 1 means the person came first, 2 means the per-
son came second place). The sixth column represents
the number of goals each of the players scored in a sea-
son. The 7th column contains the internal identifiers of
the personal files (there is a file about personal infor-
mation for each person). The following column con-
tains the coldest temperature (in Celsius) of the water
in which the corresponding person was able to swim.
The last column represents the civil id for each person.
We discuss further the construction of the civil ids later
in this section (Figure 3).

5.1. Nominal

Nominals are labels that are composed of digits.
They are used to distinguish between things repre-
sented by different labels. Such are used instead of
names because it is easy to check for uniqueness com-
pared to names as multiple people can share the same
name 14.

It could be impossible to know whether given nu-
merals in a column are nominal or not without hav-
ing extra context. However, understanding how these
numerals are generated can give us some insights. To
ensure the uniqueness, some use a sequence of natural
numbers (e.g., military units). Some starts from large
numbers and the sequence would be, for example, or-
ganized as (90000, 90001, 90002, ...). We refer to such
sets of numbers as sequential. In Figure 2, an exam-
ple of sequential sub-type is presented in the column
“Service number”, where the values range from 9001
to 9009.

In other cases, the number is a combination of seg-
ments, where each segment has a meaning [28]. A seg-
ment of a number can mean the unit of the soldier
(in the case of military personnel) 15, or the date of
birth [28], sex, place of birth, and usually the last part
of a such a nominal number ends with a random num-

14As the case of baseball https://en.wikipedia.org/wiki/Uniform_
number_(Major_League_Baseball

15https://en.wikipedia.org/wiki/Service_number

https://en.wikipedia.org/wiki/Uniform_number_(Major_League_Baseball
https://en.wikipedia.org/wiki/Uniform_number_(Major_League_Baseball
https://en.wikipedia.org/wiki/Service_number
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Fig. 1. Outline of inputs and outputs of the problem tackled in this work. Light gray highlights the inputs to the semantic labeling approach.

Name

John
Judy
Nancy
Alex
Jack
Mary
Bob
Mike
Alice

Service
number

9008
9001
9005
9004
9002
9003
9006
9009
9007

Sex

1
2
2
2
1
2
1
1
2

Race
rank

1
2
3
4
5
6
7
8
9

Height

185
188
171
160
210
191
154
187
178

Number
of goals

0
2
3
2
43
52
5
18
1

File ID

12034
34842
43833
83732
29243
30152
18513
50418
13312

sequential categoricalother ordinal counts random

Coldest
swim

18
7
12
15
6
19
17
10
9

other

Types:

Sub-types:

nominal nominalinterval-ratio ordinal interval-ratio nominal interval-ratio

Civil ID

2900201134
3890415293
2881214201
7841128284
3920820131
5940423221
1850404118
4850327178
4911223213

hierarchical

nominal

Fig. 2. An example of types and sub-types

ber or sequence [28]. Such is referred to as hierarchi-
cal (see Figure 3).

The third sub-type of nominal is the general case
where a number represents a group, sometimes re-

ferred to as categorical. An example of such data can

be seen in the column “sex” in Figure 2, where 1 is

used to represent male and 2 to represent female.
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01

SexState

Day

Month

Year
Random

38301102902

Fig. 3. An example of hierarchical sub-type

The fourth kind of nominal is something that is ei-
ther randomly generated (like automatically generated
ids in software), or they only make sense for the plat-
form like addresses in memory (column “File ID” in
Figure 2).

To summarize, we identify four sub-types of nomi-
nals: 1) sequential; 2) hierarchical; 3) categorical; and
4) random.

5.2. Ordinal

It is the same ordinal scale we explained in Sec-
tion 2. It represents a rank with no regard to the dif-
ference. For example, it is concerned with the order of
the winners (1st, 2nd, ...) but with no regards to how
many seconds it took each of the runners to complete
the race. It also does not regard on how much faster the
1st runner from the 2nd (speed difference). It is also
not concerned about how much faster the 1st runner
from the 2nd (speed difference).

5.3. Interval and Ratio

We introduce two sub-types: counts and other.
Following [10], we define the sub-type counts (also
known as cardinal numbers) as the number of instances
or occurrences of something. An example of this is the
number of goals scored, as shown in Figure 2.

In fundamental ratio, the numbers tend to have
fewer digits in the fraction parts than derived ratios be-
cause they are measured, and the accuracy is bound by
measurement tools while the derived ratio is a function
which could produce more fractions (more digits af-
ter the decimal point). For example, if we have a cir-
cle with a radius of 0.13 (which is a fundamental ra-
tio), and we want to calculate the area of this circle16

16area = 0.5 ∗ 2 ∗ π ∗ r2

(derived ratio). Even with π rounded to 3.14, the result
is 0.053066. Despite this observation, it is just a mat-
ter of limitation that changes over time (as measure-
ment tools get more advanced) and computers advance
to handle such numbers. Furthermore, data published
on the web does not tend to have many digits after the
decimal point as we notice from the datasets we exper-
iment on in this paper and it is common for people to
round their numbers to a few digits after the decimal
point17. Hence, we group fundamental ratio and de-
rived ratio in a sub-type we refer to as “other”. An ex-
ample of this sub-type is the human height (Figure 2).

For the cyclical ratio, some can fall under the fun-
damental ratio, while others can fall under the derived
ratio (e.g., whether the angle is measured by a protrac-
tor or is the output of a function). Therefore, we add
the cyclical ratio to the sub-type other.

Moreover, we group ratio and interval together de-
spite the fact that they are different conceptually. But
just looking at a zero; it is impossible to tell whether
it is a “real” zero or just an agreement without ex-
tra information (which is the difference between ra-
tio and interval). Since we can not tell them apart, we
group them together. As the counts is distinguishable
from the rest, we will put the interval in the other sub-
type. We show an example in Figure 2 (column “Cold-
est swim” represents the coldest temperature they can
swim in).

6. Typology Detection

In this section, we present our approach to detect
typology of numeric columns. The aim is to assign the
(sub-)type of any given column. This step corresponds
to the "TYPE DETECTION" box in Figure 1.

6.1. Nominal

In general all nominal numbers are expected to be
natural numbers. Let X be the input collection of num-
bers,

∀xi ∈ X; xi ∈ N

Sequential nominal numbers are easier to detect if
the data is complete. For example, if we have a list of
numbers X which has 700 as the minimum value and

17This observation is data source dependent and could not hold on
some datasets.
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923 as the maximum value, we check if this list is of
the sub-type sequential by checking if the list X equal
the natural sequence [700,923] 18 Y . It becomes tricky
when we have missing values due to the selected pop-
ulation having something in common (e.g., sequences
of solider for a sub-unit). The intuition that we follow
is that if more than the square root of the numbers in
the sequence Y are also in the original collection of
numbers X, then we consider the collection of numbers
as a sequential collection. So we consider a collection
of numbers X sequential if the following equation is
satisfied:

||X ∩ Y|| >
√
||Y||

There is nothing magical about the square root; we
can use a cube root or a simple percentage (e.g., 50%).
In the end, it really depends on the kind of published
data that we are dealing with (e.g., how much noise in
the data). For example in Figure 2 in column “Service
number”, the numbers have the same number of digits,
4, and ranges from 9001 to 9009 (no missing values in
the sequence), hence we consider them sequential. If
there are two missing numbers, we will still consider
this column sequential as (7 >

√
9).

Hierarchical nominal numbers are more difficult to
detect. They can be easily confused with another sub-
type of nominal and even non-nominal numbers. They
tend to include a sequence in their composition. They
also have the same number of digits, but this is also
the case for the sequential nominal numbers. In order
to detect hierarchical data in a column, we first check
the number of digits; if it is the same in all the cells,
then we consider it to be hierarchical if it is not se-
quential. This is if the values are unique; having dupli-
cate values is strong evidence of non-hierarchical num-
bers. We have to admit that this detection method is not
perfect, but it is an intuitive way to detect hierarchical
nominal numbers. In Figure 2 in column “Civil ID”, all
the numbers have the same number of digits, and they
fail the sequential test; hence, they will be considered
hierarchical.

Categorical nominal numbers have some unique as-
pects compared to the other nominal numbers. They
tend to have a large number of repetitions; the num-
ber of categories is an important signal to distinguish
it from other categorical data. Another aspect of cate-
gorical numbers is that they are usually natural num-

18The natural sequence of [700, 923] is [700, 701, 702, 703, ... ,
922, 923]

bers. We consider a list of numbers X as categorical if
they are nominal and the number of unique values U is
much less << than the total population.

1 < ||U|| <
√
||X||

Similar to the sequential sub-type detection, other
ways to interpret or execute << is cube root or log, but
they might not be suitable for smaller datasets com-
pared to the square root). We show in example of cate-
gorical data in column “Sex” in Figure 2. There are two
distinct values (U = 2), so (1 < 2 <

√
9) is satisfied,

and hence, the column will be considered categorical.
We outline the algorithm to detect nominal categorical
data in Algorithm 1.

Function isCategorical(ob jects):
counts = ∅
foreach object do

if object in counts then
counts[object] += 1

else
counts[object] = 1

end
end
if
√

ob jects.length > counts.keys.length > 1
then

True
else

False
end

return
Algorithm 1: Detect Categorical Properties

In case there is only one single unique value (U =
1), we do not consider that categorical. We simply
ignore that collection as extra knowledge would be
needed to understand the meaning of this number.

Random nominal numbers are all of the remaining
nominal numbers. But we have no way of detecting
that, which makes sense because it is random. This
kind of numbers is usually manually removed as dis-
cussed by [5, 24].

6.2. Ordinal

Ordinal scale is one of the easiest scales to detect.
Generally, it is just a sequence of natural numbers
starting from 1 until n (while n is the number of ele-
ments in the sequence). An intuitive way to detect them
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is to see whether the set of numbers X (what we want
to examine) is equal to the list of numbers from 1 until
the size of the list. Having a set of negative numbers
or floats is a sign that the list of numbers we are exam-
ining is not ordinal. For example, if we have nine ele-
ments, they are ordinals if they range from 1 to 9 (see
column “Race rank” in Figure 2).

6.3. Ratio and Interval

The numbers in the counts sub-type are positive by
nature and do not have fractions.

One of the main aspects of counts is the way the
distances between the numbers increase. Let us say we
have a list of numbers of the sub-type counts X, if we
order the numbers ascendingly

∀x ∈ X : xi < xi+1

the distance between one number and the following
one increases rapidly

∀x ∈ X : (xi+1 − xi) << (x j+1 − x j)

j >> i; j, i ∈ [0, n− 1]

where n is the number of elements in X 19.
To check if the numbers falling under the ratio-

interval umbrella are simple counts, we use the follow-
ings:

1.5 ∗ (Q3 − Q1) + Q3 6 P95 (1)

(P95 − Q2)

Q2
> β (2)

P95 refers to the 95 percentile and Q1, Q2, and Q3

refers to the first, second, and third quartiles, respec-
tively. Eq. (1) checks whether P95 is considered an
outlier or not. Following the intuition that counts sub-
type tends to increase a lot at the end (if ordered in-
creasingly). We pick the P95 instead of the P100 to
avoid possible noise or outliers (which can cause it
to be falsely positive). Eq. (2), follows the same intu-
ition that counts tend to have a large increase at the
top (large) percentiles and here we check if it doubles
(β = 2) the numbers in the middle (knows as median or
Q2). Note that in some cases, the optimal value of β is

19This is inspired by the work of Tukey [27] in the analysis of
counts data.

Table 1
Typology Detection Order

Order Type Sub-type Rules

1 Ordinal - ∈ [1, n]

2 Nominal Categorical few unique numbers

3 Nominal Sequential same length* and
∈ [min(X),max(X)]

4 Nominal Hierarchical same length*

5 Ratio-Interval Counts natural and large increase
in values†

6 Ratio-Interval Other anything else
* All elements have the same number of digits
† Growth similar to quadratic or more

greater or less than 2, but we found it to be a good bal-
ance in our preliminaries exploratory tests. If Eqs. (1)
and (2) are not satisfied, then we consider them of the
sub-type other.

6.4. The Detection Order

We start by checking whether a column is ordinal
because it the most restrictive – it is the only one that
checks for exact values. It tests whether the column is
composed of natural numbers from 1 until n (n being
the number of elements in the column).

For the second one, it should be one of the sub-types
that checks for equal digits (hierarchical, sequential) or
categorical. But the order here does not matter as cat-
egorical data contain a lot of duplicates, while sequen-
tial and hierarchical do not. We choose to check for
categorical first. Then we check for sequential as the
hierarchical detection method checks if the numbers
have the same number of digits and are not sequential.
For the fourth, we check if it is hierarchical.

The last check is the counts check; if they are not
counts, then they will be considered of the sub-type
other as we do not have a specific detection method for
it. Note that for the random sub-type (under nominal),
we do not have a detection method for it as mentioned
earlier in this section. We show the order of detection
and summarize the features in Table 1.

7. Model

In this section, we describe how we extract numeric
values from a given knowledge graph. We use the ex-
tracted data to build a model that we use afterward to
assign labels to numerical columns. This step (with the
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Table 2
Model Features

Property URI Numeric Type/Sub-type Features

.../military-service-number sequential 95000, ...
.../height other 192.4, ...

... ... ...

Table 3
Labeling features per sub-type

Type Sub-type Features

nominal sequential trimean, tstd
nominal categorical # categories*, % categories†

ratio-interval counts trimean, tstd
ratio-interval other trimean, tstd
* The number of categories
† The percentages of each category

semantic labeling step in Section 8) correspond to the
"LABEL DETECTION" box in Figure 1.

7.1. Data Extraction

In this step, we extract the numeric values from the
knowledge graph.

To extract numeric properties from the knowledge
graph, we use the following SPARQL query with a
class URI. This will get all the properties for a given
class.

SELECT d i s t i n c t ? p r o p e r t y WHERE {
? s u b j e c t a <classURI > . ? s u b j e c t ? p r o p e r t y [ ] .
} GROUP BY ? p r o p e r t y

Then, for each property, we check whether more
than 50% of the values (which are known as objects)
are numeric. If so, then we consider this property as a
numeric property which will be used with its values to
build the model.

7.2. Model Construction

Before we build the model, we first need to detect
the sub-types of the numbers for each property for the
corresponding class. The model for each class will be
in the format shown in Table 2.

Next, we show the different model construction
methods for each numeric (sub-)type. We summarize
the features for each sub-type in Table 3.

7.2.1. Nominal
The features used to build the model depend on

whether the numbers are sequential, hierarchical, or
categorical. We show how we compute features de-
pending on different kinds of nominal numbers.

For the sequential kind, we use the trimean, which is
more resistant to outliers than the mean [27]. We show
the formula here:

trimean =
Q1 + 2 ∗ Q2 + Q3

4
(3)

We also use the standard deviation with the trimean
instead of the mean. We refer to the standard deviation
with the trimean as tstd.

For the categorical sub-type, we use the number of
unique numbers (the number of categories) followed
by the percentages for each category ordered ascend-
ingly.

Matching hierarchical data type with a numeric
property from the knowledge graph is complex. If we
know the different sections and which digits represent
them, we would be able to do more20, but this is not
the case, and hence we will not be able to semantically
annotate them.

For the random sub-type, we ignore it because it
is impossible to annotate such kind without extra evi-
dence or elimination of other kinds, as it is random by
definition.

7.2.2. Ordinal
This kind of data is common in tabular data, but we

found that is very limited in knowledge graphs, which
makes sense as such ordering usually done with some
filtering (e.g., heights in zone A); hence, ordinal num-
bers are ignored.

7.2.3. Ratio and Interval
We can distinguish the counts sub-type from the

other sub-type as they have different aspects that can
be exploited to annotate numeric columns.

Counts Raw values of counts as-is are typically hard
to understand and analyze [11, 27]. Annotating such
data by machines is also difficult as the probability dis-
tribution or the numbers (counts) alone does not pro-
vide enough evidence to distinguish the data [11, 27].
Exact match will not be a solution as a single differ-
ence in counts or the data for the same events but from

20e.g., treating each section differently or treating each section as
a dimension
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a different year or reported by a different person could
be very close but not exactly the same.

Nonetheless, exploratory data analysis techniques
may help us here. Although they are generally meant
to be used by humans to explore the data, we intend
to automate this process. So, we transform the data to
help us in understanding it; exploratory data analysis
experts use square root (

√
X) and logs (log X) to ana-

lyze the data; such transformation of data is referred to
as “re-expression” of the data [11, 27]. Logs generally
make the results too close while square roots tend to
be a good balance between the logs and the raw val-
ues [27]; hence, we transform the raw data using the
square root. After that, we use the trimean Eq. (3) and
the trimean-standard-deviation (tstd).

Other For the sub-type other, we use the trimean [27]
Eq. (3) and (tstd).

The use of trimean and tstd instead of the mean
and the standard deviation reduces the effects of long-
tailed distributions in the input data and the values of
the numeric properties in the knowledge graph.

8. Semantic Labeling

In this section, we discuss the process of semantic
labeling for the different types of numeric data where
we treat each type differently to maximize accuracy.
We introduce different features specific to each sub-
type.

For the labeling task, we use the fuzzy c-means clus-
tering technique [29]. We can divide it into two steps:
the first one is computing the centers of the clusters;
the second step is the classification (to assign seman-
tic labels). Note that in the classical fuzzy c-means, it
computes the cluster centers based on the data points
minimizing the total error. In our case, we compute the
clusters from the points (features) we extract from the
knowledge graph (Section 7), which are the centers of
the clusters. After that, we use the input data of the nu-
meric column and compute the features, which is used
to look for the closest cluster. As this is fuzzy cluster-
ing, it will belong to multiple clusters with a percent-
age of the belonging for each.

8.1. Centroids

In contrast to classical fuzzy c-means [29], we com-
pute the clusters centers - which are also known as cen-
troids - using the features presented in Section 7. Each
numeric property extracted from the knowledge graph

Table 4
Membership Vector Example

Notation Meaning

m weighting exponent to control fuzziness
dik the distance between a datapoint k and a cluster center i

N the number of data points
yk the data point value at index k

c number of clusters
vi cluster at index i

uik the membership value of a data point at index k to cluster i

has a separate centroid; the value of each centroid is
the set of features of the corresponding numeric prop-
erty.

The reason we compute the centroids that way is that
we already know the clusters that correspond to the nu-
meric properties, while in the classical fuzzy c-means
the clusters are not known and need to be discovered
by the algorithm.

8.2. Classification

Given a collection of numbers as an input (a numeric
column), we detect the (sub-)type. Then, we retrieve
a corresponding model (a model with the same class),
and we strip it to include only the numeric properties
that match the detected sub-type. Next, we compute
the features of the input as in Section 7.

The computed features are then used as new data
points. As the features are comma-separated, each
value will represent a dimension (see Table 2 and 3).
For each data point – which are the features computed
for a given numeric column – the membership vector
is computed as in Eq. (4) 21 with fuzziness (m = 2)
as suggested by Bezdek et al. [29]. This membership
vector indicates the percentage of belonging of a given
column to each of the clusters (numeric properties) in
the model.

For example, if we have three clusters: dbp:height,
dbp:weight, and dbp:waist, a membership vector
for a numeric column can be something like this
< 0.15, 0.80, 0.05 >. This means that the given column
belongs 15% to dbp:height cluster, 80% to dbp:weight
cluster, and 5% to dbp:waist cluster. An output of the
classification is the membership vector. For practical
reasons, we order the results in descending order with

21This equation was introduced by Bezdek et al. [29] to compute
the membership.
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Table 5
Membership Vector Example

Cluster Membership

dbp : weight 0.8
dbp : height 0.15
dbp : waist 0.5

Table 6
Typology Detection and Labeling

Type Sub-type Detect Label

Nominal Sequential yes yes
Nominal Hierarchical yes no
Nominal Categorical yes yes
Nominal Random no no
Ordinal - yes no

Ratio-Interval Counts yes yes
Ratio-Interval Other yes yes

the corresponding cluster and the membership vector
as in Table 5. Note that the sum of the membership
values for a given data point should be 1.

uik =

 c∑
j=1

(
dik

d jk

)2/(m−1)
−1

∀k, i : 1 6 k 6 N; 1 6 i 6 c (4)

9. Evaluation

In this section, we evaluate our hypothesis that de-
tecting and treating numeric values differently depend-
ing on the kind of numeric values would results in
higher precision than using a general technique (where
different types of numbers are treated uniformly).

We define the set of experiments to evaluate the hy-
pothesis; we describe the data we use, report the results
of the experiments, and we finish this section with the
discussion of the results.

9.1. Experiment

As we are dealing with different kinds of num-
bers, we divide the input data for each (sub-)type:
sequential, hierarchical, categorical, ordinal, counts,
and other. We do this manually, and then we apply
the detection methods we reported earlier in this paper.

This is done to measure the performance of our de-
tection methods. Then, taking into account the knowl-
edge that we have about the (sub-)types of numbers,
we apply the labeling methods and report the preci-
sion, recall, and F1 scores. We do this for each dataset.
The results of the detection is a type (e.g., nominal)
and a sub-type (e.g., sequential). For the labeling, the
output is the URI of the property of the numeric col-
umn that our algorithm determines to be more proba-
ble. The source code of the experiment and the data are
published [30] (also available on GitHub 22). It also in-
cludes the manual annotations and the (sub-)types for
each of the numeric columns 23.

We summarize the (sub-)types that we are detecting
and labeling in Table 6 with “yes” for the (sub-)types
that we can detect or label and “no” for the ones we do
not predict.

Next, we report the scores; we show the precision
which we compute by dividing the number of cor-
rect prediction by the overall predicted ones Eq. (5).
For the recall, we divide the number of correctly pre-
dicted over the total number of the same (class/type).
Eq. (6). The final performance measure is the F1 mea-
sure, which is shown in Eq. (7). These performance
measures are used for the detection and the labeling
experiments.

precision =
#correct

#correct +#incorrect
(5)

recall =
#correct

#correct +#not f ound
(6)

F1 =
2 ∗ precision ∗ recall

precision + recall
(7)

9.2. Data

We use T2Dv2 dataset [31]: the only benchmark
that we found in the literature that has different types
of numeric columns. We use 124 numerical columns
from that dataset that we were able to understand and
for which we find a corresponding property in DBpe-

22https://github.com/oeg-upm/ttla
23The manual annotation and assignment of the (sub-)types have

been done by one of the authors, and the process took around two
working days.

https://github.com/oeg-upm/ttla
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Table 7
Typology in T2Dv2 dataset

Numeric Type Sub-type Percentage

Nominal Sequential 0.008
Nominal Hierarchical 0.0
Nominal Categorical 0.0
Nominal Random 0.048
Nominal combined 0.056
Ordinal - 0.04

Ratio-Interval Count 0.387
Ratio-Interval Other 0.234
Ratio-Interval combined 0.621

Year - 0.282

dia. We show the typology found in the dataset in Ta-
ble 7. We can see that the most prominent lies under
the ratio-interval type. The count type takes close to
0.4 of the total number of numerical columns. This has
been reported in our previous paper [8] when talking
about long-tailed distributions, which often caused by
the data being condensed in one of the sides far from
the mean. This was the primary cause of incorrect la-
beling in that work. We also notice here that we have a
type called Year, which is not mentioned in the back-
ground nor in the typology that we adopt. This is due
to its unique properties. The type Year is confusing as
it can be thought of as a simple count from the birth of
Jesus until a given moment. This could also be thought
of as a nominal since it is often used to tag and name
things produced, created, or occurred in a year without
any regard of the counting aspect. Since it can be com-
pared, some might argue that it is not nominal (nomi-
nal does not encompass the greater or less than oper-
ator [10]). Due to that, we will be ignoring it in our
experiments.

9.3. Results and discussion

We first report the scores for the detection of the ty-
pology for each of the numeric columns in Table 8.
For the sequential, we found that there is only one col-
umn, and we got it wrong. The reason is the noise; the
file contains multiple tables with headers located be-
low each other, which does not make the column look
like an actual sequence(it looks like a subset of dif-
ferent columns merged together into a single column).
From the benchmark T2Dv2, we did not find any hi-
erarchical or categorical columns hence the N/A in the
table. For the ordinal, we got high precision and recall
applying a simple function. For the counts, we reached

Table 8
Typology Detection Scores

Numeric Type Sub-type Precision Recall F1

Nominal Sequential 0.0 0.0 N/A
Nominal Hierarchical N/A N/A N/A
Nominal Categorical N/A N/A N/A
Nominal Random N/A N/A N/A
Ordinal - 0.8 1.0 0.889

Ratio-Interval Count 0.792 0.809 0.8
Ratio-Interval Other 0.552 0.516 0.533

a precision score of approximately 0.8 and a similar re-
call. We inspected the wrongly detected ones, and we
see that they do not look like counts. Counts tend to
have a high variance as the number increases (so dif-
ferences increase as mentioned in Section 6), which
was not the case in a couple of the columns that were
wrongly detected. For the last type, it is when the data
do not match any of the other sub-types, as mentioned
in Section 6, so there is no specific detection algorithm
for it.

For the labeling part, we report the precision, recall,
and the F1 score. We do that for different values of k,
taking the top k properties that are the most probable.
For k = 1 (taking into account only the top suggested
property) the resulted recall is high (> 0.8) while the
precision is not (> 0.4). Looking closely to the type
with the lowest precision, we found that it is the other
sub-type; we were not expecting the precision of it to
be low.

We inspected the wrongly labeled properties and
found that some are due to being labeled to knowledge
graph specific/internal properties (e.g., dbo:wikiPageID)
or wrong type detection. For example, the type of
areaOfCatchment is wrongly detected as of sub-type
counts when building the model (while it should have
been other). Also, a couple of them wrongly point
to properties related to years (e.g., dbp:yearLeader,
dbo:eruptionYear ). We found that years are one of the
most difficult to work with relying only on the val-
ues [8, 16]. This could also be improved by having
a better type detection, but may not prevent wrongly
assigning year-related properties if the used typology
does not have a (sub-)type year.

Not only the sub-type other has wrongly labeled
properties, but also other types have mislabeled prop-
erties. We scrutinize and found that there are proper-
ties that are simply just wrong in the knowledge graph.
For example, the dbp:iosNumber of a dbo:Currency is
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Table 9
Typology Labeling Scores

k Numeric Type Sub-type Precision Recall F1

1

Nominal Sequential 1.0 1.0 1.0
Nominal Hierarchical N/A N/A N/A
Nominal Categorical N/A N/A N/A

Nominal Random
*

N/A N/A N/A
Ordinal - N/A N/A N/A

Ratio-Interval Count 0.83 0.957 0.889

Ratio-Interval Other
†

0.486 0.8 0.604
All - 0.687 0.892 0.776

3

Nominal Sequential 1.0 1.0 1.0
Nominal Hierarchical N/A N/A N/A
Nominal Categorical N/A N/A N/A

Nominal Random
*

N/A N/A N/A
Ordinal - N/A N/A N/A

Ratio-Interval Count 0.957 0.957 0.957

Ratio-Interval Other
†

0.914 0.8 0.853
All - 0.94 0.892 0.915

5

Nominal Sequential 1.0 1.0 1.0
Nominal Hierarchical N/A N/A N/A
Nominal Categorical N/A N/A N/A

Nominal Random
*

N/A N/A N/A
Ordinal - N/A N/A N/A

Ratio-Interval Count 1.0 0.957 0.978

Ratio-Interval Other
†

0.943 0.8 0.866
All - 0.976 0.892 0.932

10

Nominal Sequential 1.0 1.0 1.0
Nominal Hierarchical N/A N/A N/A
Nominal Categorical N/A N/A N/A

Nominal Random
*

N/A N/A N/A
Ordinal - N/A N/A N/A

Ratio-Interval Count 1.0 0.957 0.978

Ratio-Interval Other
†

1.0 0.8 0.889
All - 1.0 0.892 0.943

* Unable to detect and fail back
† Include failed back (sub-)types

labeled as dbp:width; we looked it up and found that
there is nothing called the width of a currency. Look-
ing at the values, they look similar to the values of
dbp:iosNumber, so it makes sense why it was confused
with it.

As the k increases and takes more properties into ac-
count, we notice the significant score increase, espe-
cially for the precision of the sub-type other; it rises
from 0.486 to 0.914. This means that those correct
properties are still in the top suggested ones for the
most part and the precision increase as we increase k.

We have carefully checked the result for recall for
the sub-type sequential. This may be misleading be-
cause there was only one column with that type and
the algorithm got it correctly; so the two possible out-
comes were 0 or 1. For the other types that have N/A,
this is due to the lack of these types in either the in-
put dataset or the knowledge graph. An exception to
that is sub-type random; the reason is that we do not
have a way to detect a such (sub-)type. As a result, the
sub-type random is reported with the sub-type other
(combined).
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Table 10
Compare Labeling Scores

k Approach Precision Recall F1

1
TTLA 0.687 0.892 0.776
FCM 0.34 - -

Random 0.0004 - -

3
TTLA 0.94 0.892 0.915
FCM 0.55 - -

Random 0.0012 - -

5
TTLA 0.976 0.892 0.932
FCM 0.83 - -

Random 0.002 - -

10
TTLA 1.0 0.892 0.943
FCM 0.91 - -

Random 0.004 - -

We compare our approach with our previous work [8]
as we did not find any other approach reporting the
classification of numeric columns separately for the
only two publicly available tabular datasets with nu-
meric columns. We denote our approach in Table 10
with TTLA (which stands for Tabular Typology-based
LAbeling) and our previous approach with FCM as de-
noted in the other paper. We also include the scores
of getting a correct property randomly from [8]. The
scores of our approach (TTLA) for k = 1 achieve
twice the precision as the previous work (FCM). TTLA
continue to out-perform FCM as we increase k. We can
see a clear significant improvement of precision. The
recall is not reported in the previous work, so we put
the sign − in the corresponding cell, and we report the
recall to allow comparison in future work.

10. Conclusion and Future work

In this paper, we introduce a typology of numeric
data taking into account the task of semantic labeling.
We show that taking into account the typology of nu-
meric data and using such information to perform se-
mantic labeling results in better performance. We also
found out that there are (sub-)types that are under-
represented in the existing benchmarks like (e.g., hier-
archical and categorical).

As for the future work, we plan to extend the bench-
mark to include the under-represented (sub-)types. We
also would like to explore the idea of having the sub-
types as part of the features and use it to reduce the
effect of the incorrect detection of (sub-)types.
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