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Abstract. Knowledge graphs (KGs) contain rich resources that represent human knowledge in the world. There are mainly
two kinds of reasoning techniques in knowledge graphs, symbolic reasoning and statistical reasoning. However, both of them
have their merits and limitations. Therefore, it is desirable to combine them to provide hybrid reasoning in a knowledge graph.
In this paper, we present the first work on the survey of methods for hybrid reasoning in knowledge graphs. We categorize
existing methods based on applications of reasoning techniques, and introduce the key ideas of them. Finally, we re-examine the
remaining research problems to be solved and provide an outlook to future directions for hybrid reasoning in knowledge graphs.
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1. Introduction

With the rapid development of Internet technol-
ogy and Web applications, large amounts of data are
published online, which become an important source
for large-scale knowledge extraction. How to orga-
nize, represent and analyze this knowledge has at-
tracted much attention. Knowledge graphs (KGs) con-
tain rich resources that represent human knowledge in
the world. Most of KGs are directed labeled graphs
composed of entities (nodes) and various relations
(different semantic labels of edges) [1]. A fact in a
knowledge graph is usually represented as a triple of

*Corresponding author. E-mail: gqi@seu.edu.cn.

the form (head entity, relation, tail entity), indicating
that two entities are connected by a specific relation,
e.g. (Barack Obama, BornIn, Honolulu Hawaii). Re-
cent years have witnessed the rapid growth in open
KGs such as DBpedia [2], YAGO [3], NELL [4] and
Probase [5], which have been widely used to support
real applications of the Semantic Web.

The quality of a knowledge graph is critical to its
applications, such as question answering. Two impor-
tant factors that influence the quality of a knowledge
graph are completeness and logical coherence of a
knowledge graph. Knowledge reasoning, which plays
an important role in the services of KGs, aims at infer-
ring implicit knowledge to enrich incomplete KGs and
refine their logical correctness. There are two main-
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stream techniques for knowledge reasoning. One is
based on symbolic reasoning that formalizes the prob-
lem by a semantic framework and infers the implicit
knowledge according to some predefined rules. The
other is based on statistical reasoning that tries to finds
suitable statistical models to fit the samples and pre-
dicts the expected probabilities of inferred relations be-
tween entities.

Unfortunately, both symbolic reasoning and sta-
tistical reasoning have drawbacks in applications of
knowledge graphs. Symbolic reasoning is often based
on either rules or schematic knowledge, which is hard
to obtain. In contrast, statistical reasoning draws im-
precise conclusions and the results of reasoning may
be hard to find an explanation. Therefore, many re-
searchers tried to combine their advantages together,
and obtained some encouraging performance in related
tasks such as knowledge completion [6, 7], schema in-
duction [8, 9], knowledge alignment [10, 11], ques-
tion answering [12, 13] and so on. For example, one
can merge the symbolic information (e.g. path, context
or logical rules) into the statistical framework so as to
constrain the conditions of object functions or refine
the predicted results.

So far, there is no systematical and in-depth sur-
vey on hybrid reasoning methods in KGs for various
goals of reasoning. In this paper, we summarize the lat-
est research progress of methods in knowledge graphs
and look forward to future development directions and
prospects. Specifically, we first give a short introduc-
tion of knowledge graphs, and analyze the pros and
cons of symbolic reasoning and statistic reasoning, re-
spectively, which motivate the necessity of hybrid rea-
soning. Next, we provide a thorough review of cur-
rent methods for various goals of reasoning in KGs.
Finally, we re-examine remaining research challenges
and give an outlook to future directions for hybrid rea-
soning in KGs.

2. Hybrid reasoning in knowledge graph

In this section, we present a short introduction of
knowledge graphs and motivate hybrid reasoning in
a knowledge graph. So far, some people have tried
to provide a formal definition of a knowledge graph
[14, 15]. However, none of them has become a stan-
dard definition as the term "knowledge graph" can
have different views. In this paper, we do not intend to
provide such a definition, but consider the characteris-
tics of a knowledge graph given in [16, 17]:

– mainly describes real world entities and their in-
terrelations, organized in a graph.

– defines classes and properties of entities in a
schema.

– allows for potentially interrelating arbitrary enti-
ties with each other.

– covers various topical domains.

As shown in Fig. 1, entities represent real-world
individuals (e.g. “Yao Ming” and his wife “Ye Li”).
A concept represents a set of individuals with the
same characteristics, for example, “Yao Ming”, “Kobe
Bryant”, “Michael Jordan”, and etc., compose a set
corresponding to the concept “Basketball Player”. Lit-
erals refer to the strings which indicate specific val-
ues of some relations, such as string “2.29 m”, the
“height” of entity “Yao Ming”. Edges between these
nodes represent different relationships between enti-
ties, concepts and literals, such as “Yao Ming” is a
“Basketball player” and the wife of “Yao Ming” is “Ye
Li”. All of these relationships and their related entities,
concepts or literals are stored in the form of triples,
which are the basic storage units of knowledge graphs.
Triples organize knowledge in the form of <subject,
predicate, object>, e.g. <Yao Ming, is-a, Basketball
Player> and <Yao Ming, height, “2.29 m”>.

Fig. 1. An example for a part of a knowledge graph

There are two kinds of knowledge in a knowl-
edge graph, one is called schematic knowledge and
the other is called factual knowledge. The schematic
knowledge consists of the statements about concepts
and properties, and the factual knowledge consists of
the statement about instances. For example, the triple
<Asian Country, subclassOf, Country> is a piece of
schematic knowledge, whilst the triples given in Fig. 1
are all factual knowledge. Existing knowledge graphs
mostly consist of lots of factual knowledge and a small
amount of schematic knowledge. For example, the
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well-known knowledge graph DBpedia1 contains more
than 6.6M entities and over 13 billion triples. However,
it only contains 685 concepts which are described by
2,795 different properties, and these concepts form a
subsumption hierarchy consisting of subclassOf rela-
tions. There exist some knowledge graphs which con-
sist of a large number of schematic knowledge, such as
SNOMED CT2.

Knowledge graphs have their logical foundations
based in ontology languages, such as the Resource De-
scription Framework (RDF)3 and the Ontology Web
Language (OWL)4, which are W3C recommended cri-
terions. RDF is a graph data model for describing re-
sources on the Web and to enable data exchange and
sharing; it was originally used to represent metadata of
a webpage, such as what tools were used to create the
webpage and the authors of the webpage. The factual
knowledge in a knowledge graph can be described by
RDF. OWL is a family of ontology languages which
can represent rich and complex knowledge about enti-
ties, properties and relations. OWL can describe both
factual and schematic knowledge and can support log-
ical reasoning. Since ontology languages, such as RDF
and OWL, are often based on first-order logic seman-
tics, one kind of reasoning in a knowledge graph is
deductive reasoning. Logic-based reasoning, or sym-
bolic reasoning, is important to ensure the quality of
a knowledge graph and to infer implicit knowledge
from a given knowledge graph. Another approach to
reasoning in a knowledge graph is based on statisti-
cal machine learning, and this kind of reasoning is of-
ten called statistical reasoning. Both symbolic reason-
ing and statistical reasoning have their pros and cons.
Symbolic reasoning can infer precise conclusions, but
it is often based on either rules or schematic knowl-
edge, which are hard to obtain. In contrast, statisti-
cal reasoning draws imprecise conclusions and is often
data-driven, thus is easier to scale to large knowledge
graphs without human intervention or with little hu-
man intervention. Therefore, it is desirable to combine
symbolic reasoning and statistical reasoning to provide
hybrid reasoning in a knowledge graph. In the follow-
ing sections, we will give a review of existing works
on hybrid reasoning in a knowledge graph and present
some challenging problems for future works.

1https://wiki.dbpedia.org
2https://bioportal.bioontology.org/ontologies/SNOMEDCT
3https://www.w3.org/RDF/
4https://www.w3.org/OWL/

3. Methodology

In this section, we roughly categorize hybrid rea-
soning techniques based on goals of reasoning in KGs
into four groups: knowledge completion, schematic
knowledge induction, knowledge alignment, multi-
hop reasoning for question answering. We also intro-
duce some other hybrid reasoning methods that are
hard to be categorized into these groups.

3.1. Knowledge completion

To deal with the problem of incompleteness in
knowledge graphs, much work has been done to ap-
ply statistical relational learning (SRL) models [18]
to infer implicit relations between two entities in a
knowledge graph. Path ranking algorithm (PRA) [19]
and knowledge graph embedding (KGE) [1] are two
typical kinds of methods belonging to SRL, and have
shown widely used in knowledge completion. In this
subsection, we first introduce path ranking algorithm.
We then introduce three categories of methods for
knowledge graph embedding models.

3.1.1. Path ranking algorithm and its extensions
Path ranking algorithm based on random walk tech-

niques is proposed for discovering complex path fea-
tures of relational data [19]. The key idea of PRA is
employing the paths that connect two entities as fea-
tures to predict potential relations between them. For
example, 〈bornIn, capitalOf〉 is a path linking Ludwig
van Beethoven to Germany, through an intermediate
node Bonn. Such paths can be used as features to pre-
dict the presence of specific relations, e.g. nationality.
There exist various extensions that have been explored
such as incorporating text corpus [20], using subgraph
feature extraction [21] and so on. Some well-known
KGs such as NELL [4] adopt PRA to perform knowl-
edge completion.

3.1.2. Merging relational paths in KGE
Knowledge graph embedding encodes components

of a KG including entities and relations into continu-
ous vector spaces [1]. There are mainly three types of
KG embedding models. The first is translational dis-
tance models, such as TransE, which exploit distance-
based scoring functions and measure the plausibility
of a fact as the distance between two entities [6]. The
second is semantic matching models, like RESCAL
[7], which measure plausibility of facts by matching
latent semantics of entities and relations embodied
in their vector space representations. Another type of

https://wiki.dbpedia.org
https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://www.w3.org/RDF/
https://www.w3.org/OWL/
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KG embedding models is based on language model-
ing approaches that employ unsupervised feature ex-
traction from sequences of words. RDF2Vec [22] gen-
erates a set of sequences of entities using two different
approaches, i.e. graph walks and Weisfeiler-Lehman
Subtree RDF graph kernels. Then, the authors uti-
lized those sequences to train Word2vec for estimat-
ing the likelihood of a sequence of entities appear-
ing in a graph. Cochez et al. [23] exploited a global
pattern instead of local sequences generated for nodes
in RDF2Vec. The authors combined Global Vectors
(GloVe) with Bookmark-Coloring Algorithm to effi-
ciently learn embeddings of entities.

As triples in KGs are not independent, so the interre-
lations of triples should not be ignored, which can give
context information to improve existing KG embed-
ding models. PTransE [24] extends TransE by model-
ing a path-based representation. The authors utilized
connected relational facts between entity pairs instead
of only considering the relation between two entities.
Since not all relational paths are reliable, they designed
a path-constraint resource allocation algorithm to mea-
sure the reliability of relation paths and represented
these paths via semantic composition of relation em-
beddings. GAKE [25] defines three types of graph con-
texts which contain different KGs structured informa-
tion for representation learning. Therefore, the score
function of GAKE takes into account the connection
between target entities (or relations) and their contexts.
In addition, the authors designed an attention mecha-
nism to learn the representative power of different ver-
tices or edges. Gao et al. [26] proposed a triple context-
based embedding method called TCE for knowledge
graph completion. TCE takes two kinds of structured
information of each triple into consideration. One is a
set of neighboring entities along with their outgoing
relations, the other is a set of relation paths which con-
tain a pair of target entities.

3.1.3. Employing logical rules in KGE
Logical rules can also enhance the performance

of KG embedding models for knowledge completion.
Wang et al. [27] utilized these rules to refine embed-
ding models. In their work, KG completion was for-
mulated as an integer linear programming problem that
was constrained by rules. Hence, the inferred facts
would be the most preferred by the embedding mod-
els and complied with all the rules. Similarly, Wei et
al. [28] combined rules and embedding models via
Markov logic networks, in which they incorporated the
similarity priori generated by embedding-based mod-

els into inferring and designed a grounding network
sampling strategy to promote the inference precision.
On the other hand, logical rules can be represented
as horn clauses e.g. ∀x, y (x, Capital-Of, y) → (x,
Located-In, y) stating that any two entities linked by a
relation Capital-Of should also be satisfied with a rela-
tion Located-In. Guo et al. [29] proposed a joint model
that embeds factual knowledge and logical rules in a
unified framework, in which logical rules were inter-
preted as complex formulae constructed by combining
ground atoms with logical connectives (e.g. ∧ and →)
and measured by t-norm fuzzy logics. After that, they
improved this model further [30], which could learn
simultaneously from labeled triples, unlabeled triples
and soft rules in an iterative manner. Zhang et al. [31]
proposed a novel framework called IterE for alleviat-
ing of sparsity entities in KGs. IterE could iteratively
learn embeddings and logical rules, in which rules are
learned from embeddings with proper pruning strategy,
and embeddings are learned from existing triples and
new triples inferred by rules. In addition, Gutiérrez-
Basulto and Schockaert [32] argued that existing com-
bined models might not represent expressive classes
of rules sufficiently, and proposed a method based on
convex-regions. With defined convex-regions, KGs re-
stricted to the quasi-chained existential rules could be
faithfully encoded in most cases.

3.1.4. Preserving logical properties in KGE
Another type of KG embedding methods has been

proposed for preserving the logical properties of se-
mantic relations. On2Vec [33] employs translation-
based embedding models for populating ontologies,
which integrated matrices that transformed the head
and tail entities in order to characterize the transitiv-
ity of some relations. To represent concepts, instances,
and relations differently in the same semantic space,
TransC [34] encodes instances as vectors and concepts
as spheres so that they could preserve the transitiv-
ity of isA relations. Sun et al. [35] proposed a model
based on complex spaces, called RotateE. It employs
the characteristics of complex real numbers and imagi-
nary numbers to effectively characterize the symmetry,
antisymmetry and composition of relations.

3.2. Schemaitc knowledge induction

Existing KGs contain lots of triples but lack schematic
knowledge, e.g. subclassOf axioms and disjointness
axioms. It brings a difficulty to infer implicit informa-
tion, deal with the heterogeneity for ontology mapping
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[36], object reconciliation [37] and resolve contradic-
tions [38]. Hence, learning schematic knowledge to
enrich KGs becomes a critical and meaningful task.

One main category of the methods to produce
schematic knowledge combines rule mining algo-
rithms with symbolic reasoning. The works in [36, 39]
defined association rule patterns to generate various
kinds of axioms and performed inconsistency handling
for ontology construction by enriching an original
schema incrementally. Considering the open world as-
sumption adopted by KGs, Galárraga et al. [8] adopted
partial completeness assumption to generate coun-
terexamples for rules and redefined the standard mea-
surements for support and confidence. Its extension
AMIE+ [40] further improved the precision by using
type hierarchy and joint reasoning when learning as-
sociation rules. Inspired by these methods, Gao et al.
[41] exploited a type inference algorithm and defined a
mining model with the probabilistic type assertions to
deal with noisy negative examples, which could gen-
erate high-quality subclassOf axioms and disjointness
axioms. To improve the scalability of rule-based meth-
ods, Omran et al. [42] introduced a new sampling al-
gorithm and embedding representations of arguments.
Both of them could guide the extraction of rules. Sim-
ilarly, the work in [43] employed embedding models
to iteratively extracted rules by probabilistic represen-
tations of missing facts and feedback from a precom-
puted embedding model.

The other main category combines machine learn-
ing techniques with logical reasoning. The work in [9]
used inductive logic programming, which integrated
machine learning with logic programming, and de-
fined an ALC downward refinement operator for learn-
ing concept descriptions. This operator was extended
in [44] that could learn more expressive schematic
knowledge like cardinality restrictions. In [38], a sta-
tistical method was proposed to extract domain and
range of a property. The vector space model from in-
formation retrieval was applied to extract disjoint con-
cepts. After the extraction finished, consistency check-
ing was performed in parallel based on predefined
inconsistency patterns. The work in [45] integrated
the probabilistic inference capability of Bayesian net-
works with the logical formalism to learn subclassOf
axioms and disjointness axioms. It used logical rules
for generating more complex axioms and dealing with
inconsistency during the schema construction of KGs.

3.3. Knowledge alignment

Over past decades, more and more knowledge
graphs become available on the Web, but the hetero-
geneity and multi-linguality gap of KGs still hinder
their sharing and reusing in the Semantic Web. Bene-
fited from hybrid reasoning, the studies of knowledge
alignment have obtained some encouraging results.

Cross-lingual taxonomy alignment (CLTA) refers to
mapping each category in the source taxonomy of one
language onto the most relevant category in the tar-
get taxonomy of another language. However, exist-
ing methods for CLTA mainly rely on features based
on symbolic similarities. Wu et al. [10] proposed a
bilingual topic model, called Bilingual Biterm Topic
Model (BiBTM). After identified the matched cate-
gories based on string similarity, they trained BiBTM
by textual contexts extracted from the Web and ob-
tained the topic vector of the extracted textual con-
text for each category. Finally, they utilized the cosine
similarity between topic vectors to calculate the taxon-
omy alignment. Furthermore, they improved the per-
formance of proposed models by merging explicit cat-
egory correlations including co-occurrence correlation
and structural correlation [46].

In addition, there exist some works that employ
embedding-based ideas [6] for entity alignment (EA)
among knowledge graphs. MTransE [11] separately
trains the entity embeddings of two KGs and designed
different techniques to represent cross-lingual transi-
tions including axis calibration, translation vectors and
linear transformations. JAPE [47] learns the embed-
dings of two KGs in a unified space and leveraged at-
tributes of triples to refine entity embeddings. To deal
with the problem of lack of prior alignment, IPTransE
[48] and BootEA [49] employ an iterative process and
designed several sophisticated strategies based on the
structure of KGs to refine the new alignment. Chen
et al. [50] proposed a method called KDCoE, which
co-trains the embeddings of multilingual KGs and de-
scriptions of entities. To utilize various features of
KGs, Zhang et al. [51] proposed a framework to unify
multiple views of entities and learn embeddings for en-
tity alignment. Furthermore, they designed two cross-
KG identity inference methods at the entity level as
well as the relation and attribute level to preserve and
enhance the alignment between different KGs.

3.4. Multi-hop reasoning for question answering

Question answering (QA) is a hot topic that has re-
cently been facilitated by large-scale knowledge bases.
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However, due to the variety and complexity of ques-
tions and knowledge, question answering over knowl-
edge bases (KBQA) is still a challenging task, espe-
cially in multi-hop QA.

There are two typical categories of multi-relation
questions, a path question [52] and a conjunctive ques-
tion [53]. A path question contains only one topic en-
tity and its answer could be found by walking down
an answer path consisting of a few relations and inter-
mediate entities. A conjunctive question contains more
than one subject entity and its answer could be ob-
tained by the intersection of results from multiple path
questions. At present, semantic parsing models [12]
and embedding-based models [13] tailored for QA are
not adequate to handle multi-hop QA because of heavy
data annotations and reasoning ability. Therefore, re-
cent works utilized hybrid ideas to improve the perfor-
mance and make these results explainable.

Zhang et al. [54] proposed a probabilistic model-
ing framework for multi-hop QA, which could simul-
taneously handle uncertain topic entity and multi-hop
reasoning for QA. They introduced a new propaga-
tion architecture over KGs so that logical inference
could be performed in the probabilistic model. Zhou
et al. [52] designed an interpretable reasoning network
(IRN). It could dynamically decide which part of an
input question should be analyzed at each hop, and
predict a relation corresponding to the parsed results.
Compared with existing methods, the intermediate en-
tities and relations predicted by IRN could construct
traceable reasoning paths to reveal how the answer
was derived. Hamilton et al. [53] introduced a frame-
work to efficiently make predictions about conjunctive
logical queries. They encoded graph nodes in a low-
dimensional space and represented logical operators
(i.e. projection operator and intersection operator) as
learned geometric operations. Moreover, they further
demonstrated how to map a practical subset of logic to
efficient geometric operations in an embedding space.
Vakulenko et al. [55] proposed a novel approach for
complex QA using unsupervised message passing. It
could propagate confidence scores by parsing an input
question and matching terms in a KG to a set of possi-
ble answers. This approach was implemented as a se-
ries of sparse matrix multiplications mimicking joins
over small local subgraphs so that it could successfully
be applied to very large KGs, such as DBpedia.

3.5. Other hybrid reasoning methods

Other hybrid reasoning methods focus on boosting
the performance of NLP tasks. Most of them merge
the symbolic information (e.g. the structure of a KG)
into the statistic-based methods and provide the expla-
nation for results of reasoning [56].

Wang et al. [57] proposed a joint model that takes
advantage of both explicit and implicit representations
for short text classification. They incorporated char-
acter level features of KG into a convolutional neural
network to capture fine-grained subword information.
Experiments on real data showed that their method
achieved significant improvement for this task.

To alleviate the bound of number and quality of
annotated data, Luo et al. [58] exploited the rich ex-
pressiveness of regular expressions at different levels
within a neural network (NN). This combined frame-
work could significantly enhance the learning effec-
tiveness and improve the performance on the tasks of
intent detection and slot filling.

To tackles the problem of learning and prediction
with concept drifts, Chen et al. [59] revisited features
embeddings as semantic ones (i.e. consistency vec-
tors and entailment vectors). Such embeddings can
be exploited in a context of supervised stream learn-
ing to learn statistic models, which are robust to con-
cept drifts. Moreover, they explored an ontology-based
knowledge representation and reasoning framework
for the transfer learning explanation [60]. It can models
a learning domain in transfer learning with expressive
OWL ontologies and complement the learning domain
with the prediction task-related common sense knowl-
edge. Furthermore, the authors designed a correlative
reasoning algorithm to infer three kinds of explanatory
evidence for explaining a positive feature or a negative
transfer from one learning domain to another.

4. Conclusion and future direction

Hybrid reasoning in knowledge graphs plays an
important role in knowledge completion, schematic
knowledge induction, knowledge alignment, complex
question answering, explanation of AI, etc. However,
there does not exist a survey of existing methods and
discuss the challenging problems for this topic. In this
paper, we gave an overview of existing methods for hy-
brid reasoning in KGs. We provided a thorough review
of current methods for various goals of reasoning in
KGs, and further introduced the key ideas of them. Al-
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though there exist many methods for hybrid reasoning
in knowledge graphs, there still exist some problems
to be solved which are listed in the following.

– Knowledge completion: Taking relational paths
and logical rules into account can efficiently im-
prove the performance of KG embedding models.
Nevertheless, few methods consider the reliabil-
ity of triples and deal with sparse long-tail rela-
tions, which are ubiquitous in KGs. Besides, ex-
isting methods focus on preserving partial logical
properties of relations. It is still hard for them to
encode complex definitions of concepts and logi-
cal properties of relations in OWL language.

– Schematic knowledge induction: Horn rule is
one of the simplest schemas that can be learned
from KGs. It is still challenging to consider com-
plex schematic knowledge, involving existential
variables and disjunctions. As far as we know,
some research groups are working on this chal-
lenging problem and we hope some good results
can be obtained in the next two years.

– Knowledge alignment: Although KG embed-
ding has been used in some recent works on entity
alignment, it is still not clear if it is useful for tax-
onomy alignment. The recent works on schema
embedding can provide some possibilities to ap-
ply KG embedding to taxonomy alignment. Fur-
thermore, inconsistency handling is an important
issue closely related to knowledge alignment and
is often solved by a symbolic method. It is chal-
lenging to propose a hybrid reasoning method
that can deal with knowledge alignment and in-
consistency handling simultaneously.

– Multi-hop reasoning for QA: The frameworks
of multi-hop reasoning are still limited by some
types of questions so that they cannot handle
arithmetic operation or logical queries with nega-
tion or disjunction. Integrating attention mech-
anism [61] and utilizing graph neural networks
[62] to incorporate richer feature information on
nodes and edges will be two promising directions.
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