o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 1 (0) 1-5
10S Press

Ontologies as Nested Facet Systems for
Human-Data Interaction’

Guo-Qiang Zhang ®", Shigiang Tao ®, Ningzhou Zeng®, and Licong Cui "
2 The University of Texas Health Science Center at Houston, Houston, Texas, USA

E-mails: guo-qgiang.zhang @uth.tmc.edu, shigiang.tao @uth.tmc.edu, licong.cui @uth.tmc.edu
b Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA

E-mail: ningzhou.zeng @uky.edu

Editors: Pascal Hitzler, Kansas State University, Manhattan, KS, USA; Krzysztof Janowicz, University of California, Santa Barbara, USA
Solicited reviews: Stefano Borgo, Consiglio Nazionale delle Ricerche (CNR), Italy; One anonymous reviewer

Abstract. Irrespective of data size and complexity, query and exploration tools for accessing data resources remain a central
linkage for human-data interaction. A fundamental barrier in making query interfaces easier to use, ultimately as easy as online
shopping, is the lack of faceted, interactive capabilities. We propose to repurpose existing ontologies by transforming them into
nested facet systems (NFS) to support human-data interaction. Two basic issues need to be addressed for this to happen: one
is that the structure and quality of ontologies need to be examined and elevated for the purpose of NFS; the second is that
mappings from data-source specific metadata to a corresponding NFS need to be developed to support this new generation of
NFS-enabled web-interfaces. The purpose of this paper is to introduce the concept of NFS and outline opportunities involved in
using ontologies as NFS for querying and exploring data, especially in the biomedical domain.

Keywords: Web-interface, Ontology, Biomedical Big Data, Nested facet system, User experience

1. Introduction

When it comes to exploring and accessing biomed-
ical data, often is the question asked: “Why can’t it be
as easy as shopping on Amazon?”

To answer this question, we need to identify the
core technologies that made online-shopping experi-
ence “pleasant,” and then hope to be able to apply a
similar strategy for exploring and accessing biomedi-
cal data, big or small. Among many drivers of online-
shopping [1], faceted search [2, 3] capability is per-
haps one of the most ubiquitously applied information-
retrieval techniques. Indeed, studies show that faceted
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search can help enhance user experience in a variety of
settings [4-8].

Semantic labeling is the missing link between an en-
tity (such as consumer goods for online shopping or
study subjects in a clinical data warehouse) and ways
to identify and accessing it through means such as a
web-based user interface. This is well-articulated in a
recent article by Balog [9] and in information organi-
zation as tags for folder and menu hierarchies [10-12].

Semantic labeling enables facets, such as size, color,
make, price to be annotated for entities such as shoes in
an online store. Faceted organization and presentation
of metadata on products is the key mechanism that al-
lowed consumers of web-sites to quickly narrow down
from millions of products to items of interest using
such simple facets. The entities for biomedical data,
however, are highly complex and there does not exist a
corresponding small set of semantic labels to support
faceted search. For example, clinical data, captured as
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a part of patient care, are highly complex, and includes
demographics, medical history, lab reports, diagnosis,
medication, and discharge summaries.

Biomedical ontologies are suitable as semantic la-
bels for biomedical entities. However, these ontolo-
gies, intended to model and capture concepts and their
relations in the biomedical domain, are broad and com-
plex. For example, SNOMED CT [13], the largest
clinical terminology used worldwide, contains over
300,000 concepts and over 1.5 million relations. The
National Cancer Institute thesaurus (NCIt) [14, 15],
on the other hand, is a biomedical terminology man-
aged by NCI Enterprise Vocabulary Services, contain-
ing more than 140,000 concepts related to cancer. Such
size and complexity raise basic questions related to
their potential role as facets for web-based user in-
terfaces: What, if any, structural transformations are
needed for ontologies to play the role of facets for
information retrieval? Is it feasible to have ontolo-
gies to play the role of facets? What kind of desirable
properties are required for ontologies to support facet-
oriented user interaction? How to measure and evalu-
ate the performance of this approach?

In this paper we propose the concept of nested facet
system (NFS), outline a strategy to transform exist-
ing ontologies into NFS to support human-data inter-
action, and identify exemplar research questions re-
lated to the use of NFS to enhance user experience
in human-data interaction. Unlike traditional faceted
search, the intended users of interfaces supported by
NFS are those equipped with some levels of knowl-
edge in specific domains. Our motivation for NFS is
to facilitate information retrieval in such specific do-
mains, but NFS can also be readily implemented as a
navigation interface for the corresponding underlying
ontologies [16].

2. Nested Facet System

A facet is a semantic label of an entity along mul-
tiple possible axes or dimensions. Facets correspond
to properties of the entity of interests. For exam-
ple, online vendors use facets to label their product
using readily available information about their type,
brand, price, and support consumer shopping experi-
ence through faceted search [2].

A nested facet, or higher-order facet, is a facet that
includes a (finite) collection of other facets as its com-
ponents. In this context, traditional facets are primi-
tive facets, those that are not made of other facets. A

nested facet system is a set of nested facets (we call
them facets from now on) with a taxonomy relation
(i.e., subclass, subsumption, or hierarchical relation)
among them.

Definition 1. A nested facet system F is a finite set
P (with its element called facet) and a collection of
refinements p = {q1,...,qn}, with p € P (called the
“head” of the refinement) and q; € P for each 1 < i <
n (called the “body” of the refinement), such that

1. Each element p € P is the head of at most one
refinement;

2. The head of any refinement is not a part of the
body of the same refinement.

With respect to each refinement p & {q1,...,qn}, qis
are called sub-facets of p, and p is called a nested
facet. Elements of P that do not have any sub-facets
are called primitive facets.

The intuition for a refinement p = {q1,...,¢,} is
that a complex facet p can be captured by a collection
of sub-facets ¢1, . .., g,. Alternatively, if we think of p
as a “query,” then the logical disjunction of ¢1,...,q,
is a “query expansion” for p.

Each NFS F induces a partial order in the follow-
ing way. When p F {q1,...,q,}, we write ¢; < p.
We write < for the reflexive, transitive closure of <,
which is a partial order on P (taking account for the
equivalence class induced by < when necessary).

To endow NFS’ with their intended meaning, we
treat facets as generalized semantic labels as follows.
Given a set of entities E, a facet p with value space
D(p) is a collection of parameterized semantic labels
p(t), such that for each member ¢ € E and for each
t € D(p), e can be classified as having property p(¢)
or not. For each e € E, we write e |= p(r) if entity
e has facet p with value . We write [p(#)]] for the set
{e € E| e = p(t)} for ¢, and [[p] for the set {e € E |
e l=p(1),t € p(E)}. In extreme cases, we allow D(p)
to be empty, and p can be specified without a parame-
ter. For a refinement p = {q1,...,¢.}, we write p(?)

for {q1(t1),-..,qu(ty)}, Where " = (r1,...,1,).

Definition 2. When [[p]| is defined for each facet of an
NFS F, the triple (E, D, |=) is called an interpretation
of F. A refinement p - {q1,...,qu} of F is sound with
respect to an interpretation if [[¢q;]] C [[p]l for each
1 < i < n An NFS F is sound with respect to an
interpretation if each of the NFS’ refinement is sound.

Proposition 1. If (E, D, |=) is a sound interpretation
for F, then we have [[q]] C [[p]l whenever g < p.
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Definition 3. We call F complete with respect to
(E, D, =), when it is the case that with respect to any
refinement p - {q1, ..., q,} in F, we have the property
that for any e € E, if e |= p, then for some i, ¢ = g;
withl <i<n

Proposition 2. If (E, D, |=) is a complete interpreta-
tion for F, then we have

Ipl= |J gl
1<ign

for each refinement pt {q1,...,q,} in F.

Note that the notation F is deliberatively sugges-
tive of a potential connection with “Information Sys-
tems” [17, 18], part of domain theory [19] as a math-
ematical foundation for programming languages [20].
There appears to be potential formal connection to the
notion of disjunctive information systems [18, 21].

3. Ontologies as Nested Facet Systems

Biomedical ontologies serve as the semantic scaf-
folding for us to fully capitalize on the transforma-
tive opportunities of the increasingly large amounts
of digital data produced by the biomedical research
enterprise. For example, BioPortal [22], the world’s
most comprehensive repository, contains over 600 on-
tologies and over 7 billion concepts that have been
used to support a wide spectrum of scientific projects.
Biomedical ontologies provide the basis for scientific
rigor during the process of data collection, annotation,
management, analysis, and sharing in biomedicine.
They not only serve as metadata standards, but also
play a vital role in down-stream systems as a declar-
ative knowledge source [23]. For example, SNOMED
CT [13], the most comprehensive and precise clini-
cal health terminology product in the world, facilitates
the clear exchange of health information in Electronic
Health Records (EHRs), leading to higher quality, con-
sistency and safety in healthcare delivery [24, 25].

Ontological systems are not designed a priori as
nested facet systems. But what if we attempt to reuse
them as facets to support user interfaces? An intu-
itive idea is to leverage the hierarchical or is-a relation,
the structural backbone of most ontologies and simply
treat Ontological Concepts as Facets.

For a given ontology such as SNOMED CT, we can
treat each concept ¢ as a facet p, and build a nested
facet system by letting p - {q1,. .., q,} if the concepts

@ Neoplastic T-Lymphocyte

Neoplastic Large
Lymphocyte

Neoplastic Large T-Lymphocyte

@ Neoplastic Large Cell

Anaplastic Cell

Anaplastic T-Lymphocyte

@ Neoplastic T-Lymphocyte

Lymphocyte
Neoplastic
Large
T-Lymphocyte

Anaplastic T-Lymphocyte

Neoplastic Large Cell

Anaplastic Cell

Fig. 1. Two example NCI Thesaurus fragments. Above: a fragment
containing a bug. Below: fragment with the bug fixed by redirecting
node 5 as a direct parent of node 6 (red edge).

corresponding to the ¢;’s are the (immediate) lower
neighbors of p. In other words, if p is the facet corre-
sponding to ¢, and g;’s are the facets corresponding to
all the (immediate) lower neighbors of ¢ with respect
to the hierarchical relation, then make p a nested facet
with g;s its components.

For this (very reasonable) intuition to work, the fol-
lowing questions must be answered:

1. Does this construction obey the soundness prop-
erty mentioned at the end of the previous section?

2. Does this construction obey the completeness
property, mentioned at the end of the previous
section?

Intuitively, soundness means that all items below
each facet are relevant to the facet. Completeness
means that any items or facets relevant to a specific
facet are already contained in and accessible through
the facet. The soundness and completeness properties
of NFS directly affect query performance in terms of
precision and recall. Incomplete facets will reduce re-
call, while unsound facets will reduce precision. Top
of Figure 1 contains an incomplete facet, in that con-
cept node 5 as a facet missed the sub-facet represented
by concept node 6.

Interestingly, similar properties of soundness and
completeness have been studied in the area called
Ontology Quality Research (OQR [26]) encompass-
ing ontology quality auditing, assurance, and evalua-
tion [27, 28]. For example, OQR method can identify a
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missing is-a relation (incompleteness) in the top frag-
ment of Figure 1 and automatically suggest the addi-
tion of is-a in the lower part of Figure 1. The addition
of this is-a edge (in red) makes the facet represented
by node 5 “more complete” because it now includes
node 6 as a sub-facet (as it should be). The goal of
OQR is to develop methods and tools to detect [29, 30],
identify [31], and address [32—34] quality issues in on-
tologies. This is a particularly important area in the
biomedical domain, because of the significance, scope,
complexity, manual involvement and evolving nature
of biomedical ontologies that are intended to serve as
terminology standards, as well as to codify knowledge
at the same time.

Identifying quality issues in ontologies such as un-
soundness or incompleteness is a task similar to find-
ing bugs in software. Just as there is no single “recipe”
to catch and fix all software bugs, no single method is
expected to exist that addresses all ontology quality is-
sues all at once. Similarly, for NFS, a single method
to ensure and allow us to formally prove its sound-
ness and completeness is unlikely. Instead, we see the
development of methods to “improve” soundness and
completeness of NFS’ derived from ontological sys-
tems, leading to meaningful enhancement of the per-
formance of NFS for information retrieval tasks.

In the following sections we discuss such questions
in more depth using biomedical ontologies and clini-
cal data resources as examples, and provide use cases
to demonstrate the feasibility and work involved to im-
plement this approach.

4. Data Resources and Related Ontologies

An array of biomedical datasets in the context of hu-
man health exists but there is a general lack of faceted
interfaces to facilitate data exploration and informa-
tion retrieval. In most of the cases, ontological systems
have already been used for annotating or labeling the
backend data but their interface roles have not been
fully exploited. This state of affairs represents a ripe
and rich setting for developing and implementing NFS
to facilitate cohort discovery and sub-group analysis.
This section provides a brief synopsis of these data re-
sources and the associated ontological systems as an
illustration of a targeted application area for NFS.

4.1. Clinical Data Warehouse

The entity E for clinical data consists of patients.
Clinical data from EHRs are critical for analyses to

improve health care delivery. Clinical data warehouses
are EHR data made available for research. Examples
include i2b2 data warehouses [35, 36], PCORnet —
the National Patient-Centered Clinical Research Net-
work [37], and Observational Health Data Sciences
and Informatics (OHDSI) research network [38] with
an open, community data standard called the Observa-
tional Medical Outcomes Partnership (OMOP) Com-
mon Data Model. SNOMED CT is a common ontolog-
ical component of all these data sources.

4.2. Health Claims Data

Health claims data (also called administrative data)
such as Cerner Health Facts, IBM Market Analyt-
ics, and Optum Health Data and Analytics, are those
collected for the purpose of health insurance claims.
They include information at the patient encounter level
regarding diagnoses, treatments and billed and paid
amounts. This is a valuable data source for research
aimed at driving improvements in population health to
address issues related to cost, quality and outcomes.
The use of administrative data can complement EHR
data by providing a regional or national scale view.
Because of the health claims context, main vocabu-
laries for health claims data involve diagnosis (ICD 9
and ICD 10), procedure code (CPT), and medication
(RxNorm).

Clinical data and health claims data are domain-
agnostic: they cover the entire spectrum of disorders
and disease domains. Domain-specific data resources,
however, are those cover a signal medical specialty, but
with greater depth. We highlight several such resources
next.

4.3. The National Sleep Research Resource - NSRR

The gold standard for sleep diagnosis is polysomnog-
raphy (PSG), which monitors physiological processes
including electroencephalogram (EEG - brain waves),
electromyogram (EMG - muscle tone), and electro-
occulogram (EOG - eye movements). The recorded
polysomnograms provide comprehensive data about
biophysical changes that occur during sleep and char-
acterize the association between sleep and other public
health related problems. The NSRR [39, 40] is a ret-
rospectively annotated repository of 30,000 overnight
sleep recordings. The NSRR offers free and open
web access to large collections of de-identified, well-
annotated national repository of sleep data, including
PSGs which are linked to risk factor and outcome data
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for participants in major NIH studies. Since its launch-
ing in 2014, 282TB of data have been shared by over
3,000 users around the world through the NSRR portal
sleepdata.org.

NSRR uses the Sleep Domain Ontology [41] as the
canonical vocabulary for across-study data mapping.

4.4. The Center for SUDEP Research - CSR

The Center for Sudden Unexpected Death in Epilepsy
(SUDEP) Research [42] manages another domain-
specific clinical research data resource. The CSR has
prospectively collected high grade multimodal data in-
cluding high-resolution electroencephalographic sig-
nal, research-grade brain MRI, biochemical and DNA
samples together with detailed phenotypic data for
more than 3,000 epilepsy patients. Similar to NSRR, a
disease-specific ontology called Epilepsy and Seizure
Ontology [43] has been created as a part of the CSR
informatics infrastructure process.

4.5. Cancer Registries

For cancer research, the US National Cancer In-
stitute’s Surveillance Epidemiology and End Results
(SEER) program [44] coordinates a collection of state-
based SEER registries. These state-centered cancer
registry receiving data about new cancer cases from
healthcare facilities and physicians within the state.
Typically, five aspects of data are captured: patient
data, case data, follow-up, therapy data and pathol-
ogy reports. Patient data consists of variables includ-
ing various patient-related information such as demo-
graphics, race, ethnicity, smoking, and clinical trial
participation information. Case data captures vari-
ables for diagnosis, morphology, staging, biomark-
ers, and other categories. Follow up information con-
tains variables including follow-up physician, date of
last contact, survival status, and cancer status. Ther-
apy data records variables with information on surgery,
chemotherapy, radiation, and other treatment modali-
ties.

In general, SEER data are considered to be among
the most accurate and complete population-based can-
cer registries in the world that includes stage of can-
cer at the time of diagnosis and patient survival data.
Cancer registries uses NAACCR data dictionary [45]
for variable definition, and is only partially mapped to
NCTt. This is where work on primitive facets is needed
in order to use NCIt as NFS.

Data Import NFS Query Engine

Ontologies

Query Translation & Optimization
Data Resources \_ J
\ J

Fig. 2. High level functional architecture of an NFS-based system.
5. Implementation Strategy

The following steps are typically involved in devel-
oping an NFS-based query engine for a data source
(see Figure 2 for a functional architecture).

1. Identify or develop a domain ontology covering
the conceptual scope of the data source. If multi-
ple ontologies are used, ontology merging would
be a necessary step involved in developing such
a domain ontology.

. Construct a mapping from the data dictionary for

the data source to concept of the domain ontol-

ogy.

Convert the domain ontology to NFS and im-

plement NFS-based query interface by system-

atically extracting the “refinement” structure of
nested facets from the hierarchical relationships
of the ontology following the method given in

Section 3.

4. Implement an appropriate query optimization

N

et

strategy dedicated to the data source as a database.

Transformation to a NoSQL database such as
MongoDB may be desirable depending on the
data source.

Model-View-Controller [46], a well-established and
popular web-based application development paradigm,
is a suitable approach for developing an NFS-based
system, particularly for the clinical informatics do-
main [47].

6. Opportunities and Challenges

For disease-specific domains such as sleep and
epilepsy, we have developed NFS query interfaces
such as x-search [48] and Multi-Modality Epilepsy
Data Capture and Integration System (MEDCIS [49]).
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x-search is a cross-cohort query and exploration sys-
tem to enable researchers to query patient cohort
counts across a growing number of completed, NIH
funded studies in the NSRR. x-search is public avail-
able at https://x-search.net covering over
26,000 unique subjects. The canonical data dictionary,
Sleep Domain Ontology [41], covers over 900 com-
mon data elements across a dozen cohort studies in
NSRR. x-search has received over 2,300 queries by
users from 16 countries since its initial launch [48].
For epilepsy, the MEDCIS interface uses a dedicated
Epilepsy and Seizure Ontology [43] to drive an NFS-
based query interface. MEDCIS is the main query
interface for CSR data, integrating curated multi-
modality clinical data of 2,000 epilepsy patients from
8 medical centers.

Based on our experience, benefits of an NFS-based
query interface include:

1. It provides an intuitive interface for users to nav-
igate to a specific concept of interest and spec-
ify the corresponding query criterion in a menu-
driven, templated style.

2. The same boolean query can be constructed in
a more efficient manner, usually involving only
half of the time than that is needed for alternative
interfaces without involving NFS.

3. A query optimization strategy can be readily im-
plemented by precomputing queries correspond-
ing to primitive facets and ordering the query ex-
ecution sequence based on the result sizes for
primitive facets.

Such benefits have been studied in the clinical data
warehouse setting [S0] but we also encountered chal-
lenges that seem to be typical in developing an NFS-
based query interface:

1. There is no clear and efficient way to guaran-
tee the soundness and completeness properties
of NFS in general. For example, even though
SNOMED CT and NCIt satisfy the soundness
and completeness properties “for the most part”
using the NFS refinements specified in Section 3,
enough facet instances exist where such proper-
ties are violated [29]. Such violations affect the
soundness and completeness properties of facets,
leading to reduced precision and recall for query
interfaces using NFS. Interestingly, non-lattice
auditing methods can precisely identify and po-
tentially fix such issues [30-34].

2. Primitive facets are not always specified and
ready for use. For example, for Cancer Reg-
istries, the common data dictionary exists (i.e.
NAACCR), but not all of its variables have been
structurally mapped to appropriate NCIt terms
both in value type and value range. Effort is
needed to construct such a mapping (once only,
though) before data dictionary variables can be
used as primitive facets.

3. When a domain ontology is large and deep (e.g.
SNOMED CT), interface response can be slug-
gish if the hierarchical (sub-facet) interface wid-
get rendering algorithm is not optimized.

7. Conclusion

We outlined a general approach for constructing
nested facet systems from ontologies. We highlighted
use cases for clinical data, and discussed progress and
remaining challenges. Given the importance of faceted
search, our proposed approach deserves further study.
Efforts in developing experimental interfaces support-
ing NFS will be highly desirable and impactful for ac-
cessing biomedical data for research.
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