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1. A Design Loop

After 20 years of Semantic Web, at least 60 years
of attempts to build computational models of meaning,
and 100 years from the publication of Ludwig Wittgen-
stein’s Tractatus Logico-Philosophicus [65], let alone
the previous footwork of philosophers, linguists, and
logicians, the situation with publicly shared, rigor-
ous representations of meaning is only partly satisfy-
ing. The deep learning turn in artificial intelligence is
adding new means for inductive inference and pattern
discovery, but not much to the general problem: what
are the basic bricks of meaning, if any, and their vi-
able computational representation? How to make them
converge (or diverge) according to the needs for local
efficacy and global interoperability?

In work presented in 2010 for the inaugural issue
of this journal [26], those building blocks were identi-
fied in Knowledge Patterns (KP) [10][20], a semantic
web generalisation of frames in cognitive science, lin-
guistics, and sociology literature, which have played
a substantial role in early knowledge representation.
The proposed approach was to empirically collect and
use KPs for design, re-engineering and interoperability
across data, schemas, lexicons, and interaction.
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While in 2010 the amount of known KPs was lim-
ited to certain well known ontology design patterns
[20][50] and informal linguistic frames, with examples
of how different data models and data structures could
be made interoperable through them, from that time
some advancements have been made, which are briefly
summarized in Sect. 3.

It is now time to assess where we are, and to take
another step towards an integration of scientific efforts
from related disciplines ranging from cognitive neuro-
science to knowledge representation.

2. KP as Relational Knowledge

As Dedre Gentner [30] stated in a crystalline way:

the ability to perceive and use purely relational similarity
is a major contributor –arguably the major contributor– to
our species’ remarkable mental powers.

Gentner’s quotation gives us a starting point to propose
a dual nature for knowledge patterns and relations: on
one hand, they are intensional structures that represent
certain invariant features of the world, making specific
situations emerge out of the continuum of reality as
perceived, memorised, and publicly recognised in hu-
man societies and individuals. On the other hand, they
are relations with a precise extensional semantics. The
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extensionally ordered view of relations corresponds to
the intensional view of knowledge patterns, and vicev-
ersa. Feature similarity, as processed by humans or ma-
chines in reasoning and learning, helps detecting a re-
lation that has been already sensed in the past, as well
as recognising a pattern that has been already stored in
bodily, societal, or cultural memory.

The Semantic Web has started as a pragmatic way
to use the Web as a platform to spread human seman-
tics and human ability to process meaning. That plat-
form was supposed to be decentralised, and to (unin-
tentionally) realise the dream of a transparent negoti-
ation of meaning, where entities have a public iden-
tity, with publicly known features that are encoded in
public representations that can be dereferenced on the
Web.

Eventually, the Semantic Web has created the con-
ditions for web semantics to evolve: billions of multi-
domain Linked Data triples, the international accep-
tance of governmental linked open data, the F.A.I.R.
data movement1, and the crucial asset development for
enterprise knowledge graphs, are all evidence for a
paradigm shift. Yet, where real semantic interoperabil-

Fig. 1.: Incomplete mappings between accommodation
schemas for Rome vs. Milan municipality data.

ity has succeeded, it has typically happened in a cen-
tralised way. Some examples are mentioned here:

– public administrations produce data with hetero-
geneous schemas, even for simple conceptualisa-
tions such as accommodations in Rome and Mi-
lan (Fig. 1): in most cases, it’s centralised efforts
to create shared schemas, and complex refactor-
ing procedures after data ingestion, which alle-
viate the problem.2 Exceptions such as naming
hubs in sameas.cc, which are used by multiple

1https://www.go-fair.org/fair-principles/
2Cf. the DAF platform supported by the OntoPiA ontology net-

work in Italy https://github.com/ontopia/ontopia

distributed data providers, are not yet attacking
the problem of relational meaning;

– web designers and content producers use their
own tags, and only something like schema.org has
enabled SEO and semantic search to take off;

– DBpedia has evolved a large schema for Wikipedia
data that is partly dependent on Wikipedia In-
foboxes, partly on collaborative design of classes
and properties, however, data needs cleaning, and
only a stronger semantics as shown in [47] is able
to detect the most severe problems emerging from
bulk reengineering practices. Active work is be-
ing done also on Wikidata [62], but catching reg-
ularities in its massively heterogeneous entities is
still an elusive task;

– the decision making on sharing schemas is painful
and subject to conflicts, let alone the cases when
generic schemas, which are independent from
an organisation’s control, and do not necessar-
ily cover the same semantics, are nonetheless as-
sumed as standard. A proper practice may be in-
stead to analyse the requirements extracted from
scenarios or competency questions, as recom-
mended by state-of-the-art agile methods such as
eXtreme Design [51], and only later to align the
resulting ontology to existing ones. The ArCo on-
tology network [9] demonstrates the advantages
of this approach;

– a large amount of knowledge needs to be ex-
tracted from natural language, but the integration
between natural language understanding, which
is progressing towards shareable semantic repre-
sentations such as AMR [4], and ontology de-
sign, is not yet widespread, despite the road has
been opened by knowledge extraction methods
[29] and massive integration of linguistic and fac-
tual resources [22].

Notwithstanding the long (15 years) activity of the
Ontology Design Patterns community, with the sub-
stantial work collected in dedicated repositories,3 or
published (e.g. [35]), let alone the general agreement
on reusing design patterns in ontology design for the
Semantic Web and Conceptual Modelling [16], ontolo-
gies usually do not include their design practices (as
possible e.g. with OPLA [36]), and modeling choices

3E.g. http://www.ontologydesignpatterns.org,
http://www.gong.manchester.ac.uk/odp/html/,
https://github.com/INCATools/dead_simple_owl_
design_patterns
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are scarcely documented, leading to difficulties in in-
tegrating schemas and their data. Even the FrameBase
approach [54], which practically implements interop-
erability based on FrameNet frames as hubs for alter-
native schemas sharing a KP, does not yet look as a real
game-changer, possibly due to its limited coverage.

Clearly, there is a difficulty in abstracting from local
modeling choices, without a strong centralization, or
a push towards the reuse of a quasi-standard. The rea-
son probably lies in both the distance between domain
expertise and ontology design practices, which require
non-trivial logical competence, and in the existence of
alternative terminologies, design solutions, and local
alternatives, which make different but potentially over-
lapping schemas look farther than they actually are.

Semi-automated ways to design ontologies, to match
them, or to inject interoperability, are still on the aca-
demic side of things, probably because of their limited
friendliness, or conceptual coverage.

The suggestion here is to take the bull by the horns,
which in this case means to accelerate the widespread
collection of knowledge patterns where they actually
are: existing ontologies, data models, large natural lan-
guage corpora, linguistic resources, competency ques-
tions from formal and informal contexts, workflows,
how-to repositories, commonsense knowledge bases;
as well as when they can be extracted at scale: auto-
matic construction of knowledge bases, schema induc-
tion, language models, etc. This is already happening
(see Sect. 3), but at a pace and level of awareness that
are too low to impact within a reasonable time. What
is missing includes a good theory, and practical repre-
sentation, collection, and reuse tools.

For example, much research for practical features
and languages to facilitate ontology design, including
e.g. OWL2 [40] punning (a.k.a. type reification [19])
and keys (a.k.a. identification constraints [8]), SPIN4,
ShEX5, SHACL6, OTTR7, etc., mostly originates from
the need to represent, evaluate, or respect implicit KPs,
and to make existing ontologies and data satisfy KP
cognitive requirements (Sect. 4).

The knowledge patterns emerging from this activ-
ity need to have both intensional and extensional rep-
resentation. KPs should preserve their intensional na-
ture, and avoid a strong commitment to specific log-
ical primitives, in order to be robust against the evo-

4https://www.w3.org/Submission/spin-overview/
5https://www.w3.org/2013/ShEx/Primer
6https://www.w3.org/TR/shacl/
7http://ottr.xyz/

lution of knowledge representation, knowledge en-
gineering, and alternative paradigms, including e.g.
graph databases [53] and graph networks [7]).

However, a correspondence between KP inten-
sion and extension can be maintained by using a
lightweight, pragmatic semantics, e.g. the Framester
semantics, which is summarised in Sect. 6.

3. Where are we now?

What are the main research questions for KP re-
search? A partial list is proposed here as a checklist for
the next years.

1. what KPs are known?
2. is KP coverage enough to approximate human

knowledge patterns?
3. how to extend, evolve, learn, or discover KPs?
4. how to enrich automated reasoning with an in-

tensional characterisation of KPs?
5. how to use intensional KPs to foster interoper-

ability independently from the local representa-
tion of an ontology or conceptual model? In other
words, how to employ KPs in ontology reengi-
neering and ontology matching?

6. what is the intensional difference between frames,
roles, and selectional constraints or types?

7. how to formalize KP compositionality?
8. how to study higher levels of semantics, such as

modalities, opinion, emotions, metaphors, narra-
tives, and other macrostructures?

This is definitely an ambitious research programme,
which has been partly carried out in the last 10 years.

Concerning known KPs and their coverage, some
progress has been made, for example the Framester
[22] knowledge graph is able to represent any linguis-
tic or ontology predicate as a KP, and to reconcile it to a
foundational layer initially provided by FrameNet [55]
frames, and extended by aligning and incorporating
predicates from multimodal linguistic, data, and multi-
modal resources. Hundreds of thousands of KPs have
been automatically extracted from existing repositories
[43],[22]. Many more KPs can be extracted from ex-
isting data [49], or informal graphs such as Wikipedia
links [44]. Now state-of-the-art formal knowledge ex-
traction tools such as FRED [29] (see also Sect. 6) are
able to extract KP-based knowledge graphs from text,
and aligning them to Framester-based predicates.

The ability to make use of KPs for interoperability
has been proved e.g. by FrameBase [54]. Another ex-
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periment has been described in [1] about reconciling
different but related knowledge graphs (extracted from
text), by exploiting KP embeddings and combinatorial
optimisation.

An example of using KPs from the DOLCE foun-
dational ontology [52] to clean up a knowledge graph
is described in [47]. Examples of using KPs for rep-
resenting higher levels of meaning are described in
[28] about using a two-tier semantics for extracting
knowledge graphs from text, and over-describing them
with opinion KPs that improve the state of the art in
aspect-based sentiment analysis. Another recent exam-
ple [23] is about representing conceptual metaphors
as KP mappings, and attempting to use the resulting
knowledge base for both detection and generation of
metaphors.

Tooling is also important for supporting the adop-
tion of KPs. Recommendations such as ShEX and
SHACL, jointly with languages such as SPIN and
OTTR, seem valuable commodities to that purpose,
even though they do not directly indicate KPs as use
cases. Named graphs are also an underexploited possi-
bility for adding a “graph of KP-based graphs” to com-
plex ontologies and data.

Whatever the language or recommendation, there
seems to be emerging a need for “packaging” subsets
of axioms from an ontology, which make sense as a
unit for designing, unit testing, rapid prototyping, cus-
tomising inferential procedures. A reasonable hypoth-
esis is that such packaging is ultimately motivated by
the intuitive necessity to make ontologies better cor-
respond to the cognitive principles used to organise
knowledge, a.k.a. knowledge patterns (Sect. 4).

Finally, some recent work is being carried out out-
side of the semantic web community, but it has a lot
of relevance for KP research in discoverying patterns
that can be easily converted into KPs. Some examples
includes end-to-end neural frame detection systems
(e.g. [59], and automatically constructed common-
sense repositories from large scale data (e.g. Atomic
[56]).

In the next sections we revisit the cognitive founda-
tions of KP (Sect. 4), and the deeper problem of inten-
sional compositionality (Sect. 5). Concerning KP se-
mantics, in Sect. 6 we summarize a long-standing in-
vestigation into the nuances of intensional KP repre-
sentation. How full-fledged reasoning with KP com-
positionality might impact existing automated reason-
ing techniques? Could we reduce the computational
complexity of knowledge graphs and their matching

by counting on the schematic nature of KPs, and auto-
mated translation into existing logical languages?

4. KP and Cognition

The term knowledge pattern was firstly introduced
by de Beaugrande [12]:8

the availability of global patterns of knowledge cuts
down on non-determinacy enough to offset idiosyncratic
bottom-up input that might otherwise be confusing.

However, the idea of recurrent, invariant units of
knowledge was already present in philosophy, psy-
chology and sociology as schemata, at least since [48]:

La logique égocentrique est plus intuitive, plus «syncré-
tique», que déductive ... Elle emploie des schémas person-
nels d’analogie, souvenirs du raisonnement antérieur, qui
dirigent le raisonnement ultérieur sans que cette influence
soit explicite.9

Notably, in the same period (1970-1980) more notions
were being introduced to characterize cognitive struc-
tures that were supposed to bridge research in linguis-
tics, artificial intelligence, knowledge representation,
etc. These include Frames in linguistics [17], later de-
fined in FrameNet10 as:

a schematic representation of a situation involving vari-
ous participants, props [inanimate entities, ed.] and other
conceptual roles, each of which is a frame element

and in artificial intelligence [39], defined as:

a remembered framework to be adapted to fit reality by
changing details as necessary ... a frame is a data-structure
for representing a stereotyped situation.

Macrostructures [61], defined as:

higher-level semantic or conceptual structures that organ-
ise the ‘local’ microstructures of discourse, interaction,
and their cognitive processing.

Scripts [58], defined as:

8A close usage of the term can be found earlier in a “creative
engineering” book [2]: “knowledge pattern ... by this is meant the
knowledge and experience applicable to the technique of synthesis ...
There are three important parts to the knowledge pattern as regards
creative work, (1) scientific knowledge, (2) design curiosity, and (3)
the ability to generalize experience.”

9“Egocentric logic is more intuitive, more “syncretic”, than de-
ductive ... It uses personal patterns of analogy, memories of previ-
ous reasoning, which direct the subsequent reasoning without this
influence being explicit.”

10https://framenet.icsi.berkeley.edu/
fndrupal/glossary
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a structured representation describing a stereotyped se-
quence of events in a particular context.

As de Beaugrande noticed about those different no-
tions, “These large-scale knowledge configurations
supply top-down input for a wide range of communica-
tive and interactive tasks.”. In fact, there seems to be
a common intuition concerning invariances shared by
multiple situations, typically featuring an internal or-
der, and being applied to multiple reasoning and inter-
action activities.

Since something can be invariant only if it re-
mains unchanged under transformations11 that span
through time, space, observers, physical conditions,
constituency, measurement, procedural constraints,
etc.,12 and since knowledge patterns are representa-
tions of situations, they reflect that those situations re-
main unchanged under some transformation of fea-
tures that are not relevant for the pattern to be applica-
ble (they “offset idiosyncratic bottom-up input”).

For example, a red ball might still be a red ball af-
ter being deflated, but a red ball to play volley cannot.
Throwing paper waste on the street may be the same
action on any street, but in a country the same action
can be tolerated, in another not. A slap is a slap, but
it could be voluntary or not, an aggression or a joke,
according to the intention of who’s slapping, or to the
observer’s perspective.

Knowledge patterns contain invariant features that
make them appropriate as abstract data structures to
be remembered/stored, and, as Minsky [39] noticed
about frames, they can be adapted to fit reality by
changing details as necessary. Minsky’s intuition can
be used to propose KP dynamics as striking a balance
between invariances (converging to universal patterns)
and localities (tending to pattern divergence, adapta-
tion or blending). Cognition works with patterns, but
updates them to local observations, which are unique,
because of the richness and compositional interference
of actual (multi-modal) perceptions. This tension is re-
flected also in Barsalou’s simulation theory [5], which
can be summarised as the defense that concepts are
grounded by multi-modally-informed, situated simula-
tions of the external world. Barsalou [6] also proposes
that concepts can be shared thanks to a huge coordina-

11Cf. Paul Dirac [13]: “The important things in the world appear
as invariants ... of ... transformations”.

12Cf. [42] for a detailed study on invariance and objectivity,
and [31] for Gibson’s psychological theory of how invariances in
stimulus-energy pair permanent (“projectable”) properties in the en-
vironment (“affordances”).

tion activity aimed at establishing a common ground
for mutual understanding.

The balance suggested by Minsky, and re-proposed
by Barsalou as social coordination, has some analogy
in inconclusive results of neurological experiments
that aimed at finding evidence for, or against, contex-
tual dependency of core cognitive processes. For ex-
ample, a recent fMRI metastudy by David Wisniewski
[64] starts from the following dilemma:

Some suggested that intentions representations in the
fronto-parietal cortex change flexibly when external de-
mands change (context-dependent coding). Others sug-
gested that these representations are encoded in an ab-
stract format that is not affected by changes in external
demands (context-invariant coding)

It then revisits the literature on goal-oriented action
and context, and finds that the stability/flexibility dy-
namics (which corresponds to the common-ground/adaptation
dynamics of Minsky’s and Barsalou’s) is a motivation
for inconclusiveness:

results to date are mixed, showing context-dependence in
some, but context-invariance in other cases ... depending
on characteristics of intentions as well as environment, in-
tentions can either be encoded in a context-dependent or
a context-invariant format ... to achieve both stability and
flexibility of behavior under constantly changing external
demands

Two questions emerge then for a computational
treatment of knowledge patterns: what features char-
acterize a pattern? how to be tolerant to pattern adap-
tation?

On one hand, since patterns have inherent invari-
ances, they are useful to make predictions, to create ex-
pectations, to quickly judge something, to catch oppor-
tunities (affordances), to avoid obstacles, to diagnose a
medical condition, to hypothesize a natural law, to es-
tablish a social norm, to maintain a physical, social, or
individual equilibrium, etc. This massive importance
make them key to interoperability across multiple rep-
resentations.

On the other hand, in many contexts a pattern can
be used analogically, approximately, partially, while
still retaining some of its explanatory power. In other
words, patterns retain their usefulness even when they
do not fully correspond to a situation.

An extreme case happens when a KP is used to
denote the special or unique quality of a situation,
e.g. when a politician has a lot in common with a
sportsman, or a gangster (cf. the cases described in
an exploration of knowledge patterns emerging out
of Wikipedia links [45]), or when one recognizes the
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unique way of nodding by a friend (uniqueness prizes
“idiosyncratic bottom-up input”).

In addition, due to their tolerance to modification,
knowledge patterns have a dynamics: they are adapt-
able (e.g. when applying a Too Much frame to sit-
uations as different as food consumption, sunlight, or
amusement), and can be learned or discovered by a
human or a machine from a collection of examples.

Adaptability results in compositional problems that
are easily interpreted by humans, but remain opaque
even to sophisticated logical methods. For example,
when we apply a Too Much frame to food consump-
tion (e.g. too much sugar) vs. amusement (e.g. too
much fun situations, knowledge patterns show a pecu-
liar compositionality, which we discuss in Sect. 5).

5. KP Compositionality

Knowledge Patterns, variously called schemas, frames,
scripts, scenes, modeling components, data modeling
patterns, etc., have been proposed as the core build-
ing blocks in ontology design [26], providing cog-
nitive relevance, explicit situation boundaries, inde-
pendence from a particular formalism, under the as-
sumption of direct associations to modeling require-
ments. For example, in the classical blocks world ex-
ample of AI, a generic Over(o1, o2) frame involv-
ing a vertical spatial relation between any two physi-
cal objects satisfies a modeling requirement that only
takes into account the relative position of the objects.13

However, if the requirements include the knowledge
whether the two objects touch each other or not, a
richer On/Above(o1, o2, c) frame that requires a role
for the contact situation will be needed. The richer
frame is actually the composition of the Over(o1, o2)

and Contact(o1, o2, c) frames.
A KP can be represented in a specific logical lan-

guage, but it should also preserve an intensional rep-
resentation that is invariant across logical languages.
In their original presentation of KPs in knowledge rep-
resentation, Peter Clark and colleagues [10] indicated
category theory as the most adequate abstraction for

13A reviewer wondered if relations like Over are “just” pred-
icates, while KPs should be “configurations of interrelated predi-
cates”. As argued later in Sect. 6, a KP is an intensional (reified)
view of a multigrade predicate, i.e. a predicate with arbitrary arity.
Hence, all predicates can be either elementary or composed KPs. For
example, Over may be used with more arguments for time, spatial
context, amount of touching between the objects, etc.

KP representation. More recently, Oliver Kutz and col-
leagues [14] chose a close approach for the repre-
sentation of conceptual blending. Our intention here
has been to start from a more traditional mathematical
framework, close to existing KR languages: a two-tier
intensional/extensional logic, which can use the same
basic semantic web languages or knowledge graphs in
use today (see Sect. 6).

For example, a Playing Music KP (represented
here as a first-order predicate) PM(p, i, c, t, tim, loc),
with role projections (Sect. 6) such as player, instrument,
composition, tempo, time, location, etc. Seman-
tic types (cf. Sect. 6) [63] could be added to those roles,
e.g. a player should be a person, an instrument should
be tempered, a composition should be in written

form, a tempo should be in a certain range, etc. How-
ever, specific applications of Playing Music might
force roles to accept an untempered musical instru-
ment, an AI playing a part, a section that is not written,
but improvised, etc.
Playing Music could also be used to refer to

a metonymically related situation, e.g. when one
plays music on an audio system: in this case in-
terpretation needs to reconstruct a composition of
default music playing, its recording, and its repro-
duction. We may want to treat this as two separate
Playing Music-1 and Playing Music-2 frames,
but Playing Music-2 is the result of a composition
depending on Playing Music-1.

Literature on compositionality is huge (cf. [34] for
a recent palette of positions), but the basic argument is
about the asymmetry between symbolic and semantic
compositionality:14 is the meaning of a structure en-
tirely determined by the meaning of its constituents?
There are multiple reasons why the answer is “not al-
ways”. We can consider several classes of asymmetry
between purely symbolic and semantic compositions,
here examplified with natural language cases:

– anaphoric composition: They got married. She is
beautiful;

– modal composition: 23-year-old man dies after
fake doctor administered unidentified treatment
via injection;

– hidden relations: this plaid jacket with hood is
made of cotton;

14Following common practice in knowledge representation, by
semantic compositionality we mean that composed symbols are
interpreted with respect to e.g. a model-theoretic semantics that
grounds symbols into an intended world.
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– world structure: cutting a cake vs. cutting the
grass;

– metaphoric composition: Breaking point: why the
Kyrgyz lost their patience.

In all those cases, entailment, perspective, background
or commonsense knowledge, or blending [14][23],
need to be supplemented in order to finalise semantic
composition.

In practice, those cases are more or less easily un-
derstood by people, despite their asymmetry: what
is lacking to computational semantics to approximate
that ability?

Currently, we have sophisticated logical composi-
tionality within ontologies: classes are associated with
other classes via properties or taxonomical relations,
properties are associated with other properties through
chains, SWRL, or SPIN rules, classes are associated to
properties via domains and ranges, or restrictions. We
have an ontology compositionality via ontology im-
port. We even have vectorial compositionality in vec-
tor space models of semantics [60], now enriched by
deep learning techniques.

But we do not have a straightforward compositional
machinery, let alone an algebra, to compose knowl-
edge patterns. We can represent KPs in ontology mod-
ules (or alternatively in named graphs), and import
them in a new ontology, or merging them into a graph.
We could use intersection of predicates for e.g. an A
cat is on the mat situation, predicating both Over and
Contact to it. But how to establish which role of Over
maps to a respective role of Contact? We may use
“layering” (Sect. 6) by reifying the ordering of roles in
the two relations, as well as their mappings. But this is
not straightforward. We may at least empirically study
intersections of predicates in existing ontologies, and
check what properties are shared, and if the potential
composition (provided it is logically coherent) makes
sense cognitively.

In fact, how to establish whether the result of com-
posing a KP with another is a third KP? Our proposal is
that we need a language to talk about intensional com-
positionality, jointly with a grounding into ontologies
and off-the-shelf classes and properties. A beginning
of such a composition style is demonstrated in Sect.
6. We exemplify here in more detail how KP com-
positionality provides a different view on well-known
problems in natural language semantics and ontology
engineering.

Framality Some compositionality effects on formal
representations of meaning seem to derive from fra-
mality i.e. the hypothesis that KP (a.k.a. frames) are
one of the motivating forces of contextual meaning.
The hypothesis is supported by linguistic data, but also
by neuropsychological studies (e.g. [63]) that report
framal effects on selectional restrictions.

An example of framality can be given in adjectival
semantics [25] as the ability of an expression to evoke
a KP from the joint evocation of KPs emerging dur-
ing interpretation. In the case of adjectives, a good ex-
ample is the following pair of terms: Extroverted Sur-
geon vs. Skillful Surgeon. We might represent the two
terms as a conjunction of predications, but while we
can safely infer that all extroverted surgeons are extro-
verted in general, we are not safe at inferring that skil-
ful surgeons are skilful in general. The likely reason is
that Being_skilled is a possible value for the core
aspects of the Medical_professionals KP, while
Being_extroverted is not, therefore this tends to be
interpreted as a frame composition. For comparison,
a similar treatment for extroverted comedian does not
allow a safe inference of being extroverted in general,
while alcoholic comedian does.

Another example of framality can be done with
reference to meta-properties proposed by the Onto-
Clean methodology [33]. E.g. a property is tradition-
ally called rigid when it is true for an entity during
the entire course of its life, as with the Student prop-
erty (in the sense of being enrolled at some educa-
tional institution) can hardly be true during the en-
tire life of a person. However, this distinction is usu-
ally understood without taking into account locality
conditions. For example, if an ontology is not inter-
ested in representing properties of entities in a forever-
lasting perspective –as with a university enrolment
ontology– what establishes rigidity is the temporal per-
spective of e.g. Being_a_Student frame, rather than
the Being_a_Person frame. Within the university
context, it is a property like Enrolled_in_a_course
that is non-rigid, since the frame of that property has a
shorter time span compared to that of Being_a_Student.

In other words, the context of meta-level proper-
ties is maximal, while framality requires contexts to be
bound to requirements or local conditions. Interoper-
ability requirements may change this sanity assump-
tion: if university data are integrated with personal
data, Being_a_Student would become non-rigid.
Anyway, this may also apply to Being_a_Person if
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personal data are integrated with notarial data, which
may include actions of a person even after death.15.

6. A Framester Semantics for KP

Following from previous sections analysis of knowl-
edge patterns, we provide here a more precise notion
of KP as a reified relation that can be used to homoge-
neously represent relations as they can be evoked by
natural language terms, logical constants, data mod-
elling entities, informal terms such as those found
in web formats: XML stylesheets, templates, micro-
data, infoboxes, JSON objects, etc. as well as “concept
norms” as used in cognitive neuroscience [38], and
“features” as used in machine learning. KP need to be
independent from a particular representation or nota-
tion; in practice, we are talking about relational senses
(Frege’s Sinn [18]) of symbols, i.e. their intension. We
will defend the intuition that a relational sense has no
fixed arity, and we will discuss how KPs as intensional
relations are approximated extensionally in OWL im-
plementations.

The notion is presented here in a succinct formal
notation, but it is equally implemented in OWL2 as a
schema16 for the Framester [22] factual-linguistic data
hub. Framester is used here as evidence of a pragmatic
and rigorous way of obtaining semantic interoperabil-
ity at the schema level, across heterogeneous knowl-
edge.

We start with defining multigrade predicates [46][57].
A multigrade predicate denotes a polyadic relation.
The notion was firstly introduced by Leonard and
Goodman [37]:

a relation without any fixed degree may be called a
“multigrade relation” (p. 50).17

This notion is nowadays scarcely known, but it is de
facto used everywhere in formal linguistics and knowl-
edge representation, following the neo-Davidsonian
approach [11] of reifying event relations as individ-
uals. In practice, most relations intuitively admit a
non-fixed amount of arguments in their signature, e.g.
preparing a coffee may express its maker, the coffee

15In that case, the legal validity of Being_a_Legal_Person
persists beyond the physical persistence of Being_a_Person.

16https://w3id.org/framester/schema/
17A predicate is the name for a relation that represents actual

situations, but in the literature the two terms are often used inter-
changeably.

produced, the mix used, the machine employed, time,
location, method, etc. It is in fact quite obvious that
people tend to use a unique predicate for the same re-
lation, taking the complexity of its context for granted.
Trying to make all arguments explicit may even have
deleterious effects e.g. in conversation (verbosity), in
data modelling (local irrelevance), or machine learning
(non-existent information for the expected feature).

Multigrade predicates have a signature including ar-
gument labels. Some arguments can be optional, and
even implicit. In other words, a signature can be ex-
panded once new knowledge becomes available be-
cause of some inferential process, or knowledge evolu-
tion. For example, given the Over(x,y,t,...,s)
relation with the meaning of an object standing over
another, we may expect that two of its arguments (x
and y, with labels above object and below object) are
not optional. We may also expect that other arguments
are optional (e.g. a time t), and even implicit (e.g.
the amount of shadow s projected by the above object
onto the below object).

In other words, the intensional signature of a KP is
ideally open, so that its implementations would typi-
cally result as approximations as per the Open World
Assumption –values can be missing– and Contextual-
ity: arguments can be different in different contexts.

Approximation obeys pragmatic principles: avail-
ability of knowledge, local/evolving requirements, etc.
For example, Over could be implemented with dif-
ferent signatures in different ontologies, data models,
machine learning features, etc., based on local require-
ments.

When ontology matching is applied in order to en-
able interoperability, signatures need to be morphed
into one another, and interpretation incompatibility or
expansion may arise. For example, given five ontolo-
gies A,B,C,D,E with a notion of Over, in A time
might be instantaneous, while in B is based on inter-
vals; in A shadow has a relevance, while in C does
not care, but has a different argument considering mag-
netic forces between the objects; in D objects can be
only of a certain size or type; in E objects can be non-
physical, leading to metaphorical interpretations, etc.

As a consequence, semantic interoperability across
heterogeneous data needs abstraction, which has to
rely e.g. on a general intension of Over, indepen-
dently from how it is logically represented (e.g. OWL
class, property, individual, restriction). Unfortunately,
current techniques for ontology matching do not ad-
dress this problem in general, with the exception of
those that do take into account KPs, as with Frame-
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Base [54], and Framester [22]. The latters do not en-
tirely solve the task of large-scale interoperability with
the detail that e.g. Formal Ontology has been dreaming
of since 25 years ago [32], but at least they take a step
into that direction, at Web scale.

KP as multigrade predicates can be easily repre-
sented in OWL2 by using punning [40], and a vocab-
ulary to talk about their argument places (a.k.a. roles),
and the types of things denoted by argument values.

This vocabulary already exists since 2003, as a
knowledge pattern framework called Descriptions and
Situations (D&S) [24,21,27]. D&S was originally in-
tended as a two-tier modelling of the extensional and
intensional semantics of predicates, with a focus on
events or situations. The motivating use cases were in
legal and medical ontologies, where we need to talk
both about the world (e.g. organic or social facts), and
about the way we observe or categorize it (e.g. a clini-
cal condition or a legal norm).

In Framester D&S-inspired semantics, a KP is de-
fined as a multigrade predicate φ(e, x1, ..., xn), where
φ is a first-order relation, e is a situation described
by a KP, and xi is a variable for any argument place.
Now, using D&S-style OWL2 punning, φ is both an
individual denoting a knowledge pattern from the class
KP (axiom 1), i.e. its intension, and a subclass of
the class SIT (axiom 2) of situations occurred or ob-
served by using that KP, i.e. its extension. For example,
PreparingCoffee is both a class of situations, and
an individual belonging to the class of knowledge pat-
terns. Once punning is established for multigrade pred-

Fig. 2.: An automatically generated knowledge graph
based on Framester semantics.

icates, Framester semantics introduces punning for ar-
guments and types. Axioms 4-6 introduce ρ, the class
of reified projections of multigrade predicates, which
was originally employed [43] to formalise FrameNet
[3] conceptual frames.

Axiom 3 is for semantic roles ρr, expressing binary
relations between the reified predicate, and one of its
reified arguments, e.g. between PreparingCoffee
the CoffeeMix.

Axiom 4 is for co-participation relations ρc, ex-
pressing binary relations between between any two

arguments of a same predicate, e.g. a prepares
relation holding between a CoffeeBrewer and a
Coffee.

Axiom 5 is for types ρt, expressing unary relations
for the type of things that are used as values for an
argument, e.g. Agent for CoffeeBrewer.

∀(φ)KP(φ) (1)

∀(s)φ(s)↔ SIT(s) (2)

∀(s, xi)ρr(s, xi) −→ φ(s, x1, ..., xn) (3)

∀(s, xj , xk)ρc(xj , xk) −→ φ(s, x1, ..., xn) (4)

∀(s, xm)ρt(xm) −→ φ(s, x1, ..., xn) (5)

(i,j,k,m≥1≤n)

Clothing ∈ KP (6)

Causation ∈ KP (7)

Jacket.n.1 v Clothing (8)

Make_26010000 v Causation (9)

Cotton.n.1 v Substance (10)

Make_26010000.Theme ∈ ρr (11)

Make_26010000.Theme.Material∈ ρc (12)

Cotton.n.1 ∈ ρt (13)

J.M.C.≡ (14)

(Jacket.n.1⊗ Make_26010000⊗ Cotton.n.1)

A simple example of Framester KP semantics is pro-
vided in Axioms 6-14 with a description logic rep-
resentation of KPs and a sample of their projections
evoked by the sentence: this jacket is made of cotton18.
Framester semantics is also adopted in the knowledge
graphs extracted by FRED [29],19 see also Fig. 2.

An advantage of this intensional generalisation is
its neutrality: no special knowledge representation lan-
guage is required. E.g. a make concept may be repre-
sented in different ways: an object property from an
ontology, a datatype property from a database refac-
toring, a class from another ontology, an individual
from a linguistic ontology, etc. In the KP view to in-

18The used predicates are all from the Framester knowledge
graph, which can be downloaded and queried from https://
github.com/framester/Framester

19Use this API for an example: http://wit.istc.cnr.
it/stlab-tools/fred/demo
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teroperability, they can be all aligned using both on-
tology and linguistic matching techniques, once the in-
tensional disambiguation has been performed.

Based on the two-tier semantics sketched here, we
exemplify the formal problem of intensional composi-
tionality (Sect. 5) with the sentence this jacket is made
of cotton, which evokes a KP (J.M.C.) that is com-
posed as in axiom 14 by using an ⊗ operator.

However, the formal semantics for the ⊗ operator
needs to be investigated, and a comfortable solution for
its extensional representation is yet to come. As antici-
pated in Sect. 5, a simple class intersection may fail to
catch the actual situation. The actual situation is in fact
a context to jointly interpret a piece of clothing, a cau-
sation event, and some substance. Representing the sit-
uation as an instance of an intersection of Clothing,
Causation and Substance may be superficially
valid, but fails to catch the underlying cognitive pattern
reflected in the ordering of the arguments for the three
composed KP.

7. Discussion

We have presented a blended essay-position pa-
per on the current state of knowledge pattern (KP)
research. We have proposed an intensional abstrac-
tion for knowledge patterns (KP) on top of heteroge-
neous representation formats and languages. This is
needed at a time when data is an essential fuel of soci-
ety, but semantics is still a hodgepodge of approaches
from different communities, and multiple computa-
tional and reasoning paradigms co-exist without much
interaction, as with symbolic vs. sub-symbolic meth-
ods, scruffy vs. neat attitudes in modeling, proprietary
vs. open representations, etc.

While the Semantic Web (SW) has induced a sub-
stantial leap forward in bringing a knowledge-level
paradigm to computer science, its modelling practices
have barely touched the problem of cognitive mean-
ing processing. Cognition heavily relies on intensional
schemas, and uses sensory data/entities to activate, and
possibly adapting, them in order to make sense of the
environment, store memories, resolve a problem, etc.
(cf. Sect. 4).

In the SW, ontology evolution and matching are
the main areas where semantic interoperability is ad-
dressed, and can be seen as the empirical counterpart to
Minsky’s and Barsalou’s (cf. Sect. 4) notions of adap-
tation and need for coordination as forces for human
knowledge sharing.

However, those authors showed us that adaptation
and coordination are not casually emerging, but hap-
pen on top of stable patterns. The research hypoth-
esis of ODP is that knowledge patterns can be used
(once discovered and represented) as heuristics to co-
ordinate evolution and matching, aiming at a simplic-
ity that naturally matches human cognitive interpreta-
tion of the world. The fairly large literature on KP, and
their related adoption, prove that the ambition is justi-
fied, even though discovering, representing, and shar-
ing KP is less simple than expected. Firstly, because
of the said dynamics of evolution/stability; secondly,
because social, economic, and political reasons often
work against it.

As an example, the current practices of accumu-
lating data, and their automated analysis without an
explicit shareable knowledge accessible to final users
of semantically-enhanced systems, as argued in [15],
hints at general policies that only partly work for co-
ordination, focusing instead on local adaptations moti-
vated e.g. by revenue optimisation.

The proposal for an intensional abstraction is there-
fore a call towards cognitive transparency in society:
stable patterns are made available for the sake of in-
teroperability across arbitrary knowledge organisation
systems, which are often far from rigorous logical de-
sign, and their representation requires attention to how
humans compose meaning It is a responsibility of the
Semantic Web community to find scientific solutions
and incentives to foster attention to those human fac-
tors in the adoption of semantic technologies.

Far from being complete, we have made an assess-
ment of the state of play about knowledge patterns in
the Semantic Web (Sect. 2-3), jointly with a review of
why cognitive science can give us directions to design,
extract, and use data and ontologies in the most effi-
cient way when the problem is interoperability in com-
putational treatment of meaning (Sect. 4).

We have presented a simple, layered semantics for
KP as multigrade predicates (Sect. 6), as currently im-
plemented in the Framester data hub, and touched re-
search issues concerning KP compositionality (Sect.
5).

The variety of situation types addressed by exist-
ing ontologies, let alone the larger societal scenar-
ios, require a stronger push towards cross-disciplinary
systematization of KP research. This can be helped
by more semantics (i.e. more detailed axiomatisa-
tion in ontologies), but it requires the availability
of a large-scale repository of cognitive patterns that
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enable complex similarity reasoning (KP matching,
(un)predictable KP evolution) among ontologies.

Given the amount of work carried out in multiple
communities in order to gather KP or KP-like data, we
can conclude that the situation is not so bad. The diffi-
culty of knowing our own ways of representing knowl-
edge, and the effects that emerge out of a continuous
activity of data production and coordination, constitute
a formidable challenge.

We assume a positive lookout for the next years,
when we may be able to make currently unrelated
approaches converge, eventually gathering wider cov-
erage and more detailed understanding of how KP
emerge, change, and compose in our computationally-
enriched societies.
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