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Abstract. The timely and efficient cooperation across sectors and borders during maritime crises is paramount for the safety of 
human lives. Maritime monitoring authorities are now realizing the grave importance of cross-sector and cross-border infor-
mation sharing. However, this cooperation is compromised by the diversity of existing systems and the vast volumes of heter-
ogeneous data generated and exchanged during maritime operations. In order to address these challenges, the EU has been 
driving several initiatives, including several EU-funded projects, for facilitating information exchange across sectors and bor-
ders. A key outcome from these efforts is the Common Information Sharing Environment (CISE), which constitutes a collabo-
rative initiative for promoting automated information sharing between maritime monitoring authorities. However, the adoption 
of CISE is substantially limited by its existing serialization as an XML Schema only, which facilitates information sharing and 
exchange to some extent, but fails to deliver the fundamental additional benefits provided by ontologies, like the richer seman-
tics, enhanced semantic interoperability and semantic reasoning capabilities. Thus, this paper presents EUCISE-OWL, an on-
tology representation of the CISE data model that capitalizes on the benefits provided by ontologies and aims to encourage the 
adoption of CISE. EUCISE-OWL is an outcome from close collaboration in an EU-funded project with domain experts with 
extensive experience in deploying CISE in practice. The paper also presents a representative example for handling information 
exchange during a maritime crisis as well as performance results for specific querying tasks that can demonstrate and evaluate 
the use of the proposed ontology in practice.  
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1. Introduction 

During maritime crises, human lives are constantly 
at stake, while the time to react to unforeseen events 
is extremely limited. Therefore, cooperation across 
sectors, and often across borders, is valuable in order 
to ensure the safety and efficiency of operations. Rel-
evant studies indicate that authorities are indeed start-

ing to realize the importance of cross-sector and 
cross-border information sharing [28]. 

Nevertheless, on a practical level, this cooperation 
is compromised by the vast diversity of systems that 
operate simultaneously but are not yet adequately 
interconnected. On top of that, one should also add 
the vast volumes of heterogeneous data generated 
during maritime operations, including sensor meas-
urements, intelligence, and reporting, amongst others. 



In order to address the above challenges, the EU 
launched in 2005 several initiatives for improving the 
interoperability between national authorities’ systems. 
These efforts included published communications, 
roadmaps, and green and blue papers, and eventually 
resulted in EU’s Integrated Maritime Policy (IMP) 
[6]. In parallel, there have been several EU-funded 
projects aimed at fostering information exchange 
across sectors and borders [27], with the participation 
of many EU maritime monitoring authorities.  

A key outcome from these EU-wide efforts is the 
Common Information Sharing Environment (CISE), 
representing an open, collaborative process within 
the EU for promoting automatic information sharing 
between authorities involved in maritime monitoring, 
across sectors and borders [5]. In order to support the 
authorities’ continuously increasing needs, in con-
junction with the constant decrease of operational 
personnel (operators), CISE aims to (a) increase the 
efficiency, quality, and responsiveness of surveil-
lance and operations at sea, and, (b) ensure a safer, 
more secure, and environmentally protected EU 
maritime domain. The benefits of deploying a uni-
form model like CISE for maritime monitoring in-
clude: (a) minimizing the risk of human errors; (b) 
establishing a standard detection threshold, which 
can be dynamically adapted each time according to 
the needs and the occurring incidents; (c) expanding 
the human cognitive area; (d) reducing the need for 
highly experienced and specialized personnel; (e) 
reducing the adaptation and familiarization time for 
the users (operational personnel) with a minimal im-
pact in their performance. 

An important milestone in the roadmap for imple-
menting CISE is represented by the EUCISE2020 
project [4], which ran from 2014 to 2018 and prom-
ised to deliver an operational solution built on a 
common service-based architecture and open infor-
mation exchange. In order to facilitate the adoption 
of CISE by third parties, EUCISE2020 openly pub-
lished its CISE-based data model as an XML Schema 
specification accompanied by UML diagrams [3]. 

However, the adoption of CISE is compromised 
by the very serialization of the data model as an 
XML Schema. The latter does promote information 
sharing and exchange to an extent, but largely fails to 
deliver the fundamental additional benefits provided 
by ontologies, most prominently including a syntacti-
cally and semantically richer representation, en-
hanced semantic interoperability and semantic rea-
soning capabilities [13]. In order to capitalize on the 
critical benefits provided by ontologies, this paper 
presents a serialization of the EUCISE2020 data 

model as an ontology that will substantially encour-
age the extensive adoption of CISE. The proposed 
ontology is called EUCISE-OWL and aims to serve 
as a common representation framework for putting 
CISE in practical use. To the best of our knowledge, 
EUCISE-OWL is the first ontology attempting to 
fully implement the EU-wide approach represented 
by CISE. EUCISE-OWL is an outcome from the 
ROBORDER EU-funded project [20], after close 
collaboration with our end users who have extensive 
experience in deploying CISE in practice [14]. 

The paper is structured as follows. Section 2 pre-
sents the EUCISE2020 data model, while Section 3 
describes our adopted process for converting the 
EUCISE2020 UML diagrams into an ontology. In 
Section 4, we present our EUCISE-OWL ontology, 
followed by an example in Section 5 for handling 
information exchange during a maritime crisis to 
demonstrate the use of the proposed ontology in 
practice. Section 6 assesses the EUCISE-OWL on-
tology, while Section 7 presents relevant approaches 
and models with similar scope. Finally, Section 8 
concludes the paper with a discussion and key direc-
tions for future work. 

2. The EUCISE2020 data model 

The EUCISE2020 data model is based on the 
CISE Data Model v1.0 [1], which was defined in FP7 
project CoopP (Cooperation Project Maritime Sur-
veillance). CISE’s key ambition is to serve as a 
common European format for sharing information 
across countries and sectors. Towards this direction, 
and in order to facilitate the adaptation of existing 
maritime monitoring systems in Europe, the CISE 
data model considers the corresponding data stand-
ards and identifies the most useful aspects for mari-
time monitoring authorities, as they were identified 
and validated by experts who participated in the 
CoopP project and represented all relevant sectors at 
EU and national level. CISE’s main design principles 
included sector neutrality, flexibility, extensibility, 
simplicity and understandability.  

In a nutshell, the CISE data model identifies seven 
core data entities (Agent, Object, Location, Document, 
Event, Risk and Period) and eleven auxiliary ones 
(Vessel, Cargo, Operational Asset, Person, Organi-
zation, Movement, Incident, Anomaly, Action, Unique 
Identifier and Metadata). Fig. 1 illustrates the core 
concepts of the CISE v1.0 data model. 



Without extending the scope of the CISE data 
model, EUCISE2020 maintains the original concepts, 
but also defines some additional attributes, in order to 
consider additional data sources and to ensure that 
EUCISE2020 services can be implemented in prac-
tice. As already mentioned in the introduction, the 
EUCISE2020 data model is available as an XML 
Schema specification and as a set of UML diagrams. 

 

 

Fig. 1. CISE v1.0 core concepts [1]. 

3. Ontology creation 

The Unified Modelling Language (UML) [21] and 
the Web Ontology Language (OWL 2) [32] are both 
established conceptual modelling languages that pre-
sent significant similarities, despite being created on 
the basis of different contexts. A comparative over-
view of UML and OWL is presented in [10], [35]. 
Both language definitions are referred to comparable 
meta-models that follow the object-property model-
ling pattern. However, in contrast to UML, OWL 2 is 
fully built upon formal logic, which enables the ap-
plication of logical reasoning in ontologies, a charac-
teristic that can be used to discover inconsistencies in 
conceptual models and new knowledge that lies be-
hind the asserted concepts and relations. 

Many approaches already address the problem of 
reusing knowledge from existing UML class dia-
grams to develop ontologies, in automated or semi-
automated procedures [10], [17], [34]. Regardless the 
degree of automation or the adopted technologies 
(XML, XSLT, translation algorithms, etc.), a precise 
conceptual correspondence between UML and OWL 
elements is defined, through a semantics-preserving 

schema translation [17], [34]. The model-conversion 
from UML to OWL follows simple conversion rules, 
the most common of which are presented in Table 1. 

These mappings formed the groundwork in creat-
ing EUCISE-OWL, an ontology-based model of the 
domain of discourse that is fully compliant to the 
available well-established UML definitions presented 
in the EUCISE2020 data model [3]. The rules applied 
to convert the EUCISE2020 notions to OWL triples 
are presented in Turtle format [33] below, accompa-
nied by indicative examples based on the eu-
cise:Agent core class (see UML excerpt in Fig. 2). 
Classes. Any core entity or class described in the 
EUCISE2020 data model is defined in EUCISE-
OWL as an owl:Class, which is a subclass of eu-
cise:Entity (subclass of owl:Thing). Below is 
the definition of class eucise:Agent. 
eucise:Agent rdf:type owl:Class; 

rdfs:subClassOf eucise:Entity . 
eucise:Entity rdf:type owl:Class;  

rdfs:subClassOf owl:Thing . 

Attributes. In the EUCISE2020 data model, classes 
are related to other data types (either classes or literal 
values) through the declaration of relevant attributes. 
In EUCISE-OWL, object and data properties are nat-
urally responsible for this representation. Two re-
spective examples are illustrated below.  
eucise:creator rdf:type 

owl:ObjectProperty ; 
rdfs:domain eucise:Metadata ; 
rdfs:range eucise:Agent . 

eucise: isSuspect rdf:type 
owl:DatatypeProperty ; 
rdfs:domain eucise:Agent ; 
rdfs:range xsd:boolean . 

Association Classes and Association Roles. In the 
EUCISE2020 data model, an association class is a 
specific type of class that defines the connection be-
tween the core entities of the model, using specific 
attributes called “association roles”. Association 
classes also have additional properties and datatypes 
of their own. Thus, we represent association classes 
in EUCISE-OWL as notions of type owl:Class 
(and not simply as object properties), whereas asso-
ciation roles define their related object properties. All 
association classes of the EUCISE2020 data model 
are grouped together under a top-level class named 
eucise:AssociationClass (subclass of 
owl:Thing). Below is an example of eu-
cise:AgentRisk, as illustrated in Fig. 2. 



eucise:AgentRisk rdf:type owl:Class ; 
rdfs:subClassOf eu-
cise:AssociationClass . 

eucise:AssociationClass 
rdfs:subClassOf owl:Thing . 

eucise:involvedAgent rdf:type 
owl:ObjectProperty ;  
rdfs:domain eucise:AgentRisk; 
rdfs:range eucise:Agent . 

eucise:involvedRisk rdf:type 
owl:ObjectProperty ;  
rdfs:domain eucise:AgentRisk; 
rdfs:range eucise:Risk . 

Enumerations and Enumeration Types. Enumera-
tions in the EUCISE2020 data model define the pos-
sible types of specific entities. In EUCISE-OWL, 
enumerations are represented as classes (rdf:type 
owl:Class) that additionally have a predefined list 
of asserted instances. All enumerations of the EU-
CISE2020 data model are grouped together under a 
top-level class named eucise:EnumerationType 
(subclass of owl:Thing). Below is the definition of 
eucise:AgentRoleInRiskType, which represents 
the role of an agent in relation to a risk; allowed val-
ues are: cause, involved, reports, other, non-specified. 

eucise:AgentRoleInRiskType rdf:type 
owl:Class ; 
rdfs:subClassOf eu-
cise:EnumerationType . 

eucise:EnumerationType 
rdfs:subClassOf owl:Thing . 

eucise:cause rdf:type eu-
cise:AgentRoleInRiskType; 
rdf:type owl:NamedIndividual . 

Metadata. The EUCISE2020 data model contains 
metadata descriptions in each defined component, in 
order to enrich their comprehensibility and facilitate 
their reuse. Those data were completely integrated 
into the ontological model through the adoption of 
well-known object, datatype and annotation proper-
ties (e.g. rdfs:comment, skos:example, 
rdfs:seeAlso and rdfs:label). Indicative ini-
tialisations are presented in triples below.   
eucise:ClassC rdfs:comment "Description 

text"^^xsd:string ; 
skos:example "Example 
 text"^^xsd:string ; 
rdfs:seeAlso <source_URL> ; 
rdfs:label "Label text" . 

 

Table 1 

Mappings between UML and OWL elements 

UML Definitions OWL definitions 
UML package name The namespace of owl:Ontology that corresponds to the UML package 
Class owl:Class 

Association class owl:Class 

Enumeration class owl:oneOf 
Instance Individual (ex:instance rdf:type ex:Class . ex:Class rdf:type owl:Class) 
Attribute owl:DatatypeProperty 
Binary association Pair or properties (relation owl:inverseOf) 
Generalization (Class) rdfs:subClassOf 
Generalization (Association) rdfs:subPropertyOf 
Set of subclasses owl:unionOf 
Multiplicity owl:cardinality, owl:minCardninality, owl:maxCardinality, 

owl:FunctionalProperty, owl:InverseFunctionalProperty 
Navigable association rdfs:domain, rdfs:range 
Inheritance  
(default annotation: {incomplete1, disjoint}) 

ex:ClassB rdfs:subClassOf ex:ClassA . 
ex:ClassC rdfs:subClassOf ex:ClassA . 
ex:ClassB owl:disjointWith ex:ClassC 

Inheritance  
(annotation: {complete2, disjoint}) 

ex:ClassB rdfs:subClassOf ex:ClassA . 
ex:ClassC rdfs:subClassOf ex:ClassA . 
ex:ClassB owl:disjointWith ex:ClassC . 
ex:ClassA owl:disjointUnionOf(ex:ClassB ex:ClassC) 

Inheritance  
(annotation: {incomplete, overlapping3}) 

ex:ClassB rdfs:subClassOf ex:ClassA . 
ex:ClassC rdfs:subClassOf ex:ClassA (i.e., only inheritance is declared) 

 
1 Incomplete means that there are instances of the parent class ClassA which are neither of type ClassB nor ClassC. 
2 Complete means that each instance of the parent class ClassA is either of type ClassB or ClassC. 
3 Overlapping means that instances of the parent class ClassA may be both of type ClassB and of type ClassC. 



 

Fig. 2. A UML excerpt representing the core class Agent in the EUCISE data model. 

4. EUCISE-OWL 

The EUCISE-OWL ontology has been implement-
ed in OWL 2, in accordance to the NeOn methodolo-
gy Scenario 2: "Reusing and re-engineering non-
ontological resources" [26], where the EUCISE2020 
data model and UML diagrams played the role of the 
resources for the ontology we developed. The main 
purpose of EUCISE-OWL is to specify a common 
information sharing environment, based οn a widely 
accepted format, in order to enhance the usability and 
adaptability of the EUCISE2020 data model. Such an 
ontology-based representation can easily be integrat-
ed in an information or decision support system for 
supporting knowledge representation, event trigger-
ing, action inference, and information dissemination 
to the authorities. In a nutshell, the proposed ontolo-
gy enumerates a total number of 153 classes, 127 
object properties and 135 data properties. The key 
ontology metrics are summarised in Table 2. 

In compliance with the original model, there are 8 
core elements defined in the ontology under class 
Entity: classes Agent, Document, Event, Loca-
tion, MeteoOceanographicCondition, Object, 
OperationalAsset and Risk. Additional concepts 
are represented as subclasses of owl:Thing, as seen 
in Fig. 3. Moreover, we introduced two additional 
concepts: (i) the AssociationClass for represent-
ing classes that interconnect core classes, and (ii) the 
EnumerationType for representing sets of enumer-
ated values that define different types of entities in 
specific concepts. In the EUCISE-OWL ontology, 
there are 10 association classes and 869 enumerated 
values (see individual count in Table 2). 

Table 2 

EUCISE-OWL ontology metrics 

Metric Value 
Class count 153 (4)4 
Object property count 127 (17) 
Object property – Domain axioms count 116 
Object property – Range axioms count 116 
Data property count 135 (1) 
Data property – Domain axioms count 132 
Data property – Range axioms count 132 
Individual count 869 
DL expressivity SHIF(D) 
Number of triples 6,209 (257) 
 

 

Fig. 3. Hierarchy of the EUCISE-OWL ontology’s main notions. 

In order to facilitate the semantic interoperability 
between EUCISE-OWL and existing data models, we 
performed an ontology alignment, which is the pro-
cess of defining a set of correspondences between 
two or more ontologies. In general, the relation that 
holds between the matching entities may simply fol-

 
4 The count of imported concepts is in parentheses.  



low specific ontology language definitions (equiva-
lence, disjointness, hierarchy) or even assert 
SPARQL queries, fuzzy relations and similarity 
measures [7]. An extensive survey of matching tech-
niques is presented in [18]. Here, we focus only on 
hierarchy definitions via rdfs:subClassOf and 
rdfs:subPropertyOf; by linking concepts this 
way, we inherit all involved semantics declared in the 
adopted ontologies and we extend their definitions 
with respect to the context of our domain. Details of 
the aligned EUCISE-OWL entities with those from 
third-party ontologies are summarized in Table 3.  

 
Table 3 

EUCISE-OWL ontology alignment with third-party ontologies 

EUCISE-OWL Class rdfs:subClassOf 

Agent dce:Agent, dc:Agent, foaf:Agent, 
prov:Agent 

Person foaf:Person, prov:Person, 
dul:Person 

Period time:TemporalEntity, 
time:GeneralDateTimeDescription, 
time:GeneralDurationDescription, 
dc:PeriodOfTime 

Geometry geosparql:Geometry 

Entity geosparql:Feature 

FileMediaType dce:MediaType, dc:FileFormat 

Event event:Event, dul:Event, 
dcm:Event 

Document foaf:Document 

SensorType sosa:Sensor, ssn:SensingDevice 

Incident sosa:Observation 

AgentEvent prov:Association 

AgentRoleInEventType, 
AgentRoleInRiskType, 
AgentRoleInAgentType, 

prov:Role 

Organization prov:Organization 

PlannedOperationsType, 
PlannedWorksType 

prov:Plan 

 
EUCISE-OWL Property rdfs:subPropertyOf 
latitude geo:lat 

longitude geo:long 

creator foaf:maker 

dateTime time:hasTime 

geometry geosparql:hasGeometry, geo-
sparql:hasDefaultGeometry 

 
Prefix declarations Namespace 
dc <http://purl.org/dc/terms/> 
dce <http://purl.org/dc/elements/1.1> 
dcm <http://purl.org/dc/dcmitype/> 
dul <http://www.ontologydesignpatterns. 

org/ont/dul/DUL.owl> 
event <http://purl.org/NET/c4dm/event.owl#> 
foaf <http://xmlns.com/foaf/0.1/> 
geo <http://www.w3.org/2003/01/geo/ 

wgs84_pos#> 
geosparql <http://www.opengis.net/ont/geo 

sparql#> 
prov <http://www.w3.org/ns/prov#> 
sosa <http://www.w3.org/ns/sosa/> 
ssn <http://purl.oclc.org/NET/ssnx/ssn/> 
time <http://www.w3.org/2006/time#> 

5. Example 

To illustrate the efficiency and completeness of the 
implemented ontology, we present an operational 
scenario, inspired from [8] (Use Case 25b: Investiga-
tion of antipollution situation (law enforcement)). 
More specifically, the example presented here con-
cerns a sea pollution incident reported when an oil 
spill was detected by a drone in its monitoring area. 
The main instances populated in the ontology as well 
as their interrelations are visualised in Fig. 4, using 
the Graffoo ontology visualization framework [9]. 
The circles indicate instances (real data), while their 
captions are written in the form of “in-
stance_XYZ::Class_ABC”, declaring the name 
and the type (class) of each instance correspondingly. 
All classes and relations mentioned in the diagram or 
the text below, belong to the EUCISE-OWL ontolo-
gy, otherwise they are explicitly defined with their 
relevant prefixes.  

As seen in Fig. 4, a drone (drone_1) is represent-
ed in the ontology as an OperationalAsset 
(rdfs:subClassOf Object), which is associated 
with an instance of detection event (detection_1 
rdf:type Action and Action 
rdfs:subClassOf Event) via the ObjectEvent 
association class. Details of the detection event are 
included in document_1 (rdf:type Attached 
Document and AttachedDocument 
rdfs:subClassOf Document). The event con-
cerns an oil spill (oilspill_1), spotted in an area 
(location_1) under observation. The oil spill is 
represented in the ontology as an instance of class 
PollutionIncident (rdfs:subClassOf Event). 
Both events (detection_1 and oilspill_1) are 
associated with each other through an instance of the 
association class EventEvent. Details of the pollu-
tion incident (e.g. the analysis dataset) may be poten-
tially described through asserted values in docu-
ment_2 (rdf:type EventDocument and Event-
Document rdfs:subClassOf Document). The 
occurred pollution incident may imply direct risks to 
the ecosystem and human health, the degree or de-
tails of which can be encoded through the assertions 
of relevant properties/values in an instance of Risk 
type (risk_1). On the basis of the observed pollu-
tion incident, of its severity and its implied risks, the 
interested authorities could be informed, the details 
of which can be represented as an instance of Or-
ganization type (organization_1). 



 

Fig. 4. Main instances in EUCISE-OWL for representing a sea pollution incident where an oil spill was detected. 

 

 
Fig. 5. Asserted instances to the detection_1 instance of Action 

type. 

 
Instances detection_1 and oilspill_1 repre-

sent events of different types (Action and Pollu-
tionIncident, respectively), and are associated 
with different properties and values. As seen in Fig. 5, 
an instance of Action type may be described 
through the assertion of relevant enumeration values 
that define the mission type, as well as the type, the 
status and the priority of the action. On the other 
hand, an instance of PollutionIncident may be 
described through the assertion of relevant enumera-
tion values that define the pollution type, the nature, 
the type, the severity and certainty of the incident, as 
well as the urgency and response type of the event 
(Fig. 6). In the specific example, the severity of the 
incident was defined as moderate, i.e. possible threat 
to life or property (severity_type_03); consider-
ing this, responsive actions should be taken soon 
(urgency_type_02), according to the defined pro-
tocol (response_type_04). 

Details about the actual geographical location (lati-
tude and longitude) of the pollution incident can be 
presented through the assertion of properties and val-

ues in an instance of type Location. Additional 
metadata can be represented through relevant instan-
tiations attached to instance eventlocation_1 of 
the association class EventLocation. For example, 
as seen in Fig. 7, the date and time at which the oil 
spill was detected is represented through an instance 
of type Period; the location where the oil spill was 
detected is where the event started (enumeration val-
ue location_role_in_event_type_01); and, the 
area where the event takes place is now considered as 
dangerous (enumeration value 
event_area_type_DGR). 

 

 
Fig. 6. Asserted instances to the oilspill_1 instance of Pollu-

tionIncident type. 

6. Ontology assessment 

In order to assess the EUCISE-OWL ontology, we 
followed the guidelines in [22]. Initially, we focused 
on evaluating its modelling quality by submitting it 
to OOPS! (OntOlogy Pitfall Scanner!), an online 



system for testing an ontology against the most 
common modelling pitfalls [19]. OOPS! also pro-
vides an indicator (critical, important, minor) for 
each pitfall, according to the respective possible neg-
ative consequences. In the case of EUCISE-OWL, 
OOPS! did not detect any pitfall. 

 

 
Fig. 7. Asserted instances to the eventlocation_1 instance of 
EventLocation type.  

 
Moreover, although the development of the pro-

posed ontology was heavily based on a UML-to-
OWL conversion from an existing data model (see 
Section 3), which was in turn designed with substan-
tial contributions by domain experts (see Section 2), 
it would be interesting to get some insight into the 
assessment of the ontology’s domain coverage. Thus, 
we submitted EUCISE-OWL to OntoMetrics [15], an 
online platform for calculating more advanced ontol-
ogy metrics. Table 4 includes a subset of the metrics 
calculated by OntoMetrics that present the most in-
teresting aspects of the ontology with regards to its 
domain coverage. 

 
Table 4 

EUCISE-OWL advanced metrics 

Metric Value 
Attribute richness 1.694805 

Inheritance richness 0.967532 

Relationship richness 0.464029 

Average population 5.603896 

Class richness 0.558442 
 
As indicated in [12], the first three metrics refer to 

the ontology’s accuracy, while the other two refer to 
its conciseness: 

- Attribute richness is defined as the average 
number of attributes (slots) per class, giving an 
indication of both the ontology design quality 
and the amount of information pertaining to in-
stance data. The more slots that are defined, the 
more knowledge the ontology conveys. The val-
ue of 1.694805 demonstrates a high attribute 
richness for EUCISE-OWL, especially when 
taking into account the fact that a large subset of 
the classes in the ontology are enumeration 
types (see Sections 3 and 4), which correspond 
simply to sets of instances. 

- Inheritance richness is defined as the average 
number of subclasses per class and describes the 
distribution of information across different lev-
els of the ontology’s inheritance tree. It is a 
good indication of how well knowledge is 
grouped into different categories and subcatego-
ries in the ontology. This metric distinguishes a 
horizontal from a vertical ontology. The value of 
0.967532 for EUCISE-OWL indicates that the 
ontology covers a wide range of concepts, with-
out delving too deep into their specialisations. 

- Relationship richness is defined as the ratio of 
the number of (non-inheritance) relationships 
divided by the total number of relationships in 
the ontology and reflects the diversity of the 
types of relations. An ontology containing only 
inheritance relationships conveys less infor-
mation than an ontology that contains a diverse 
set of relationships. The value for EUCISE-
OWL in Table 4 indicates that the ontology has 
a mediocre richness of relationships, mostly due 
to the numerous enumeration types and associa-
tion classes (see Sections 3 and 4). 

- Average population corresponds to the number 
of instances compared to the number of classes 
and is an indication of the ontology population 
quality. Since, as already mentioned, EUCISE-
OWL is rich in enumeration types, the specific 
value is considered very high. 

- Class richness is related to how instances are 
distributed across classes. The number of ontol-
ogy classes that have instances is compared with 
the total number of classes, giving an overview 
of how well the knowledge base utilises the 
knowledge modelled by the schema classes. The 
low value of the specific metric in Table 4 indi-
cates that the ontology does not contain data that 
exemplifies all the class knowledge existing in 
the schema. This is reasonable, since EUCISE-
OWL does not contain sample data, like e.g. the 



instances discussed in the example presented in 
the previous section. 

Furthermore, we wanted to assess the ontology’s 
performance and efficiency with real data. Thus, we 
generated four (4) different serializations of the EU-
CISE-OWL ontology, with a different total number 
of populated incident instances per case (i.e., 100, 1K, 
10K, 100K). These serializations were generated via 
a custom service we developed for populating the 
ontology with synthetic data, namely, individuals of 
specific subclasses of type Event; every such in-
stance is asserted with: 

− a severity value (1 out of 5 severity levels enu-
merated in the EUCISE-OWL), 

− an instance of type Period, with timestamp re-
ferred to the event’s occurrence, 

− an instance of type EventLocation, which as-
serts to the event a Geometry instance of type 
sf:Point with random lat/long values, 

−  an instance of type ObjectEvent, for associ-
ating one or more instances of type Object 
with the event, 

− a specification of the ship type (instance of cor-
responding enumeration), when the aforemen-
tioned Object is of type Vessel.  

The experiments described below were executed 
with the use of rdf4j 5  and OWL API 6  for access-
ing/querying the serialized ontologies, stored in a 
GraphDB7 installation located on a server machine 
(2xIntel® Xeon® Processor E5-2620 v4, 2.10 GHz, 
125.8GB memory). We first measured the time 
elapsed for checking the consistency of the four on-
tologies, using the following reasoners: FaCT++ [29] 
(v1.6.2), Pellet [25] (v2.3.1), and HermiT [16] 
(v1.3.8). Indeed, all the reasoners verified the con-
sistency of the ontologies, while Table 5 displays the 
average respective times (in ms) after 10 iterations 
for loading and consistency checking. 

 
Table 5 

Average times (ms) for loading (A) and consistency checking (B) 

  No of incidents 
 Reasoners 100 1K 10K 100K 

A 
Fact++ 273 679.9 2,156.7 21,968.3 
Pellet 331.2 699.2 2,313.9 19,811.9 

HermiT 327.9 946.5 2,202.5 24,205.5 

B 
Fact++ 44.3 313.4 3,035.8 385,72.9 
Pellet 45.9 192.1 1,780.8 308,52.1 

HermiT 56.1 425.8 30,374.5 1,854,432.8 

 
5 https://rdf4j.eclipse.org/ 
6 http://owlcs.github.io/owlapi/ 
7 http://graphdb.ontotext.com/ 

We then proceeded to evaluating the semantic rea-
soning performance, by creating three inference tasks 
(SPARQL queries Q1-Q3) with increasing complexi-
ty: 

− Q1 searches for events of specific type (Pollu-
tionIncident) with a “severe” or “extreme” 
severity value 

− Q2 filters from the populated ontologies those 
events that involve a high-speed vessel and oc-
cur after a specific period of time (date), ordered 
from the most to the least recent on 

− Q3 reports those three events that took place in 
an area close to the one reported in a specific in-
cident of interest. For calculating the distance 
between two locations, we utilize the 
geof:distance function from the Geo-
SPARQL query language8.  

For brevity, Fig. 8 presents only the last SPARQL 
query. Results are summarized in Table 6.  

 
Table 6 

Experimental set and evaluation results 

Metadata Exp1 Exp2 Exp3 Exp4 
Total # of  

instances of 
type Event  

100 1Κ 10Κ 100Κ 

Total # of 
 statements 11,891 46,414 391,571 3,841,119 

Query Average elapsed time (ms) from 10 iterations 
Q1 10.6 30.3 67.4 69.1 
Q2 18 30.3 31 616.70 
Q3 44.8 121 850 7,349.50 

 
On the basis of the aforementioned results, it can 

be stated that the ontology’s responses are given al-
most real time, regardless the number of triples, 
when queries do not involve complicated relations 
(like for example Q1). High response times are rec-
orded in complex SPARQL queries, when the popu-
lated instances of Event type reach up to 100K; such 
a delay can be justified due to the additional effort 
that is required in Q3, for calling the GeoSPARQL 
function (geof:distance) in each repetition.  

 
8  https://www.opengeospatial.org/standards/ 

geosparql 



 

 
Fig. 8. Indicative SPARQL query applied for performance evaluation purposes. 

7. Related work 

There is currently a great interest in automated, 
on-time maritime surveillance, with an increasing 
attention towards efficient data handling. Besides 
EUCISE2020, an indicative list of ongoing relevant 
maritime EU-funded projects includes MARISA 9 , 
AtlantOS10, MARSUR11, EMODnet12, RANGER13 
and datAcron14. From these projects, only RANGER 
is aimed at being in line with established EU mari-
time standards, while a similar process is also un-
derway for MARISA. On the other hand, only 
datAcron proposes an ontology-based solution for 
the representation of trajectories of moving objects’ 
[23].  

There are additional semantic approaches that 
model concepts relevant to the maritime domain, but 
usually they have a narrower scope than EUCISE-
OWL. More specifically, in [31] an ontological rep-
resentation of the different types of ships and rele-
vant parameters is implemented, according to the 
AIS (Automatic Identification System), for maritime 
traffic analysis. Moreover, the detection or predic-
tion of abnormal ship behaviour is investigated, by 

 
9 https://www.marisaproject.eu/  
10 https://www.atlantos-h2020.eu  
11https://www.eda.europa.eu/what-we-

do/activities/activities-search/maritime-
surveillance-(marsur)  

12 http://www.emodnet.eu  
13 https://ranger-project.eu/  
14 http://datacron-project.eu/  

analysing semantic trajectories and geographical 
localizations of the maritime objects [2], [30]. In 
[11], an ontology-based representation of maritime 
regulations is proposed, for formulating maritime 
decision support rules in a machine-readable way.  

To the best of our knowledge, CISE is the most 
concrete and complete model for implementing a 
common information sharing environment across 
countries and involved authorities, where all mari-
time surveillance operations can cooperate with one 
another and share data, following a common set of 
rules. Thus, its availability in an interoperable and 
easily adoptable form, as our proposed EUCISE-
OWL representation, is of vital importance for oper-
ational use. As also stated before, to the best of our 
knowledge, EUCISE-OWL is the first attempt to 
fully capitalize on the EU-wide CISE framework, in 
order to develop an ontology model for facilitating 
information exchange in the maritime domain.  

8. Conclusions and future work 

This paper presented EUCISE-OWL, an ontology 
representation of the CISE data model that consti-
tutes an EU-wide collaborative initiative for facili-
tating information sharing between maritime moni-
toring authorities. EUCISE-OWL is an outcome 
from the ROBORDER EU-funded project, and we 
are currently deploying it as a common platform for 
semantically integrating analysed data from hetero-
geneous sensors and for performing semantic rea-
soning on top of this data, in order to facilitate deci-
sion support for authorities. Within ROBORDER, 



EUCISE-OWL is addressing the project’s pilot use 
cases, which include addressing pollution incidents 
at sea (see Section 5), tracking suspicious vessels, 
countering illegal activities etc. Therefore, the on-
tology has only been evaluated in experimental set-
tings (e.g. see Section 6), but the upcoming pilot 
demonstrations will provide an excellent opportunity 
for actually evaluating the utility of the ontology in 
practice. 

As for our future goals, ROBORDER serves as a 
good testbed for the wider adoption of our proposed 
ontology and its potential extensions in a wider vari-
ety of scenarios, like e.g. border trespassing in the 
sea or on the land, or in applying robotics for en-
hanced security [24]. Within ROBORDER, we have 
the substantial advantage of collaborating with mari-
time authorities who have been deploying CISE in 
practice and could greatly contribute in encouraging 
the wider use of our EUCISE-OWL model through 
disseminating the outcomes of this work within their 
respective networks. On our part, we will be able to 
support the required technical implementations, in 
order to facilitate the wider and easier adoption of 
the model. Finally, a more long-term goal is to work 
towards including EUCISE-OWL in the EU’s SEM-
IC action15 for promoting semantic interoperability 
amongst the EU Member States. 

Disclaimer 

The work within the ROBORDER project that in-
volves the EUCISE-OWL ontology is characterised 
as “classified”. Thus, the ontology is not (yet) pub-
licly available. Access can be granted after submit-
ting to the corresponding author a request that will 
be evaluated on a per case basis. 
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