
Semantic Web 1 (2019) 1–5 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An Empirical Evaluation of Cost-based
Federated SPARQL Query Processing
Engines
Umair Qudus a, Muhammad Saleem b , Axel-Cyrille Ngonga Ngomo c and Young-koo Lee a,*

a DKE, Kyung Hee University, South Korea
E-mail:{umair.qudus,yklee}@khu.ac.kr
b AKSW, Leipzig, Germany
E-mail: {lastname}@informatik.uni-leipzig.de
c University of Paderborn, Germany
E-mail: axel.ngonga@upb.de

Abstract.
Finding a good query plan is key to the optimization of query runtime. This holds in particular for cost-based federation engines,

which make use of cardinality estimations to achieve this goal. A number of studies compare SPARQL federation engines across
different performance metrics, including query runtime, result set completeness and correctness, number of sources selected and
number of requests sent. However, although they are informative, these metrics are generic and unable to quantify and evaluate the
accuracy of the cardinality estimators of cost-based federation engines. In addition, to thoroughly evaluate cost-based federation
engines, the effect of estimated cardinality errors on the overall query runtime performance must be measured. In this paper, we
address this challenge by presenting novel evaluation metrics targeted at a fine-grained benchmarking of cost-based federated
SPARQL query engines. We evaluate the query planners of five different cost-based federated SPARQL query engines using
LargeRDFBench queries. Our results suggest that our metrics are clearly correlated with the overall query runtime performance of
the selected federation engines, and can hence provide important solutions when developing the future generations of federation
engines.

Keywords: SPARQL, Benchmarking, cost-based, cost-free, federated, Querying

1. Introduction

The availability of increasing amounts of data pub-
lished in RDF has led to the genesis of many federated
SPARQL query engines. These engines vary widely in
their approaches to generating a good query plan [1–
3]. In general, there exist several possible plans that a
federation engine can consider when executing a given
query. These plans have a different cost in terms of the
resources required and the overall query execution time.
Selection of the best possible plan with minimum cost
is hence of key importance when devising cost-based

*Corresponding author. E-mail: yklee@khu.ac.kr

federation engines; a fact which is corroborated by a
plethora of works in database research [4, 5].

In SPARQL query federation, index-free (heuristics-
based) [6, 7] and index-assisted (cost-based) [8–17] en-
gines are most commonly used for federated query pro-
cessing [1]. The heuristics-based federation engines do
not store any pre-computed statistics and hence mostly
use different heuristics to optimize their query plans
[6]. Cost-based engines make use of an index with pre-
computed statistics about the datasets [1]. Using cardi-
nality estimates as principal input, such engines make
use of cost models to calculate the cost of different
query joins and generate optimized query plans. Most
state-of-the-art cost-based federated SPARQL process-

1570-0844/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved

2 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ing engines [8, 9, 11–17] achieve the goal of optimizing
their query plan by first estimating the cardinality of the
query’s triple patterns. Then, they use this information
to estimate the cardinality of the joins involved in the
query. A cost model is then used to compute the cost
of performing different query joins while considering
network communication costs. One of the query plans
with minimum execution costs is finally selected for
result retrieval. Since the principle input for cost-based
query planning is the cardinality estimates, the accuracy
of these estimates is crucial to achieve a good query
plan.

The performance of federated SPARQL query pro-
cessing engines has been evaluated in many recent
studies [1, 8, 11, 13, 18–25] by using different fed-
erated benchmarks [26–34]. Performance metrics, in-
cluding query execution time, number of sources se-
lected, source selection time, query planning time, an-
swer completeness and correctness, time for the first
answer, and throughput, are usually reported in these
studies. Recently, Acosta et al. [24] proposed new met-
rics to measure the continuous efficiency of query pro-
cessing approaches. While these metrics allow the eval-
uation of certain components (e.g., the source selection
model), they cannot be used to evaluate the accuracy of
the cardinality estimators of the cost-based federation
engines. Consequently, they are unable to show how
the estimated cardinality errors affect the overall query
runtime performance of federation engines.

In this paper, we address the problem of measuring
the accuracy of the cardinality estimators of federated
SPARQL engines, as well as the effect of these errors
on the overall query runtime performance. In particular,
we propose metrics1 for measuring errors in the car-
dinality estimations of (1) triple patterns, (2) joins be-
tween triple patterns, and (3) query plans. We correlate
these errors with the overall query runtime performance
of state-of-the-art, cost-based SPARQL federation en-
gines. The observed results show that these metrics are
significantly correlated with the overall runtime perfor-
mances. In summary, the contributions of this work are
as follows:

– We propose metrics to measure the errors in cardi-
nality estimations of cost-based federated engines.
These metrics allow a fine-grained evaluation of
cost-based federated SPARQL query engines and
uncover novel insights about the performance of

1Our proposed metric is open-source and available online at
https://github.com/dice-group/CostBased-FedEval

these types of federation engines that were not
reported in previous works evaluating federated
SPARQL engines.

– We measure the correlation of the values of the
novel metrics with the overall query runtimes. We
show that some of these metrics have a strong cor-
relation with runtimes and can hence be used as
predictors for the overall query execution perfor-
mance.

– We present an empirical evaluation of five—
CostFed[8], Odyessey[11], SemaGrow[13], LHD[9]
and SPLENDID[12]—state-of-the-art cost-based
SPARQL federation engines on LargeRDFBench
[26] by using the proposed metrics.

The rest of the paper is organized as follows: In Sec-
tion 2, we present related work. A motivating example
is given in Section 3. In Section 4, we present our novel
metrics for the evaluation of cost-based federation en-
gines. The evaluation of these engines with proposed
metrics is shown in Section 6. Finally, we conclude in
Section 7.

2. Related Work

In this section, we focus on the performance met-
rics used in the state of the art to compare federated
SPARQL query processing engines. Based on the pre-
vious federated SPARQL benchmarks [26–28] and per-
formance evaluations [6, 8–13, 18, 19, 22, 24, 25] (see
Table 1 for an overview), the performance metrics used
for federated SPARQL engines comparison can be cat-
egorized as:

– Index-Related: Index-assisted approaches [1]
make use of stored dataset statistics to generate
an optimized query execution plan. The indexes
are pre-computed by collecting information from
available federated datasets. This is usually a one-
time process. However, later updates are required
to ensure the result-set completeness of the query
processing. The index generation time and its com-
pression ratio (w.r.t. overall dataset size) are im-
portant measures to be considered when devising
index-assisted federated engines.

– Query-Processing-Related: This category con-
tains metrics related to the query processing capa-
bilities of the federated SPARQL engines. The to-
tal number of triple-pattern-wise sources selected,
number of ASK requests used to perform source
selection, source selection time, query planning

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Index Processing Network Res RS Add

Cr Gt Qp #Ts Qet #A Sst #Tt #Er Cu Mu Cp Ct @T @K

CostFed[8] 3 3 7 3 3 3 3 7 7 7 7 3 7 7 7

SPLENDID[12] 7 7 7 3 3 7 7 7 3 7 7 7 7 7 7

SemaGrow[13] 7 7 3 3 3 7 7 7 7 7 7 7 7 7 7

Odyssey[11] 7 7 3 3 3 7 7 3 3 7 7 3 7 7 7

LHD[9] 7 7 7 7 3 7 7 3 3 3 3 3 7 7 7

DARQ[10] 7 7 3 7 3 7 7 7 7 7 7 7 7 7 7

ANAPSID[22] 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7

MULDER[19] 7 7 7 7 3 7 7 7 7 7 7 3 3 3 3

FedX[6] 7 7 7 7 3 3 7 7 3 7 7 7 7 7 7

Lusail[18] 7 7 3 7 3 7 3 7 7 7 7 7 7 7 7

BioFed[25] 7 7 7 3 3 3 3 7 7 7 7 3 3 7 7

Table 1: Metrics used in the existing federated SPARQL query processing systems, Res: Resource Related, RS:
Result Set Related, Add: Additional, Cr: index compression ratio, Gt: the index/summary generation time, Qp:
Query Planning time, #Ts: total number of triple pattern-wise sources selected, Qet: the average query execution
time, #A: total number of SPARQL ASK requests submitted, Sst: the average source selection time, #Tt: number
of transferred tuples, #Er: number of endpoint requests, Cu: CPU usage, Mu: Memory usage, Cp: Result Set
completeness, Ct: Result Set correctness, @K: dief@k, @T: dief@t

time, and overall query runtime are the reported
metrics in this category.

– Network-Related: Federated engines collect
information from multiple data sources, e.g.,
SPARQL endpoints. Thus, it is important to mini-
mize the network traffic generated by the engines
during query processing. The number of trans-
ferred tuples and the number of endpoint requests
generated by the federation engine are the two
network related metrics used in existing federated
SPARQL query processing evaluations.

– Result-Set-Related: Two systems are only com-
parable if they produce exactly the same results.
Therefore, result set correctness and completeness
are the two most important metrics in this cate-
gory.

– Resource-Related: The CPU and memory re-
sources consumed during query processing dictate
the query load an engine can bear. Hence, they are
of importance when evaluating the performance
of federated SPARQL engines.

– Additional: Two metrics dief@t and dief@k are
proposed to measure continuous efficiency of
query processing approaches.

All of these metrics are helpful to evaluate the per-
formance of different components of federated query
engines. However, none of these metrics can be used to
evaluate the accuracy of the cardinality estimators of
cost-based federation engines. Consequently, studying
the effect of estimated cardinality errors on the over-

all query runtime performance of federation engines
cannot be conducted based on these metrics. To over-
come these limitations, we propose metrics for measur-
ing errors in cardinality estimations of triple patterns,
joins between triple patterns, and overall query plan,
and show how these metrics are affecting the overall
runtime performance of federation engines.

3. Motivating Example

In this section, we present an example to motivate
our work and to understand the proposed metrics. We
assume that the reader is familiar with the concepts of
SPARQL and RDF, including the notions of a triple
pattern, the joins between triple patterns, the cardinal-
ity (result size) of a triple pattern, and left-deep query
execution plans. As aforementioned, most cost-based
SPARQL federation engines first estimate individual
triple pattern cardinality and use this information to esti-
mate the cardinality of joins found in the query. Finally,
the query execution plan is generated by ordering the
joins. In general, the optimizer first selects the triple pat-
terns and joins with minimum estimated cardinalities
[8].

Figure 1 shows a motivating example containing a
SPARQL query with three triple patterns—namely TP1,
TP2 and TP3—and two joins. Consider two different
cost-based federation engines with different cardinality
estimators. Figure 1a shows the real (Cr) and estimated
cardinalities (Ce1 for Engine 1 and Ce2 for Engine

4 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT * WHERE {
? s : p1 ? o1 .
Cr (TP1) : 1 0 0
Ce1 (TP1) : 9 0
Ce2 (TP1) : 2 0 0

? s : p2 ? o2 .
Cr (TP2) : 2 0 0
Ce1 (TP2) : 2 5 0
Ce2 (TP2) : 6 0 0

? s : p3 ? o3 .
Cr (TP3) : 3 0 0
Ce1 (TP3) : 3 0 0
Ce2 (TP3) : 5 0 0 }

(a) Example query

𝜋

⋈

⋈

TP1
Cr(TP1): 100
Ce1(TP1): 90
Q(TP1): 1.11

TP2
Cr(TP2): 200
Ce1(TP2): 250
Q(TP2): 1.25

Cr(BGP1⋈TP3): 50
Ce1(BGP1⋈TP3): 150

Q(BGP1⋈TP3): 3

Cr(TP1⋈TP2): 50
Ce1(TP1⋈TP2): 65
Q(TP1⋈TP2): 1.3

TP3
Cr(TP3): 300
Ce1(TP3): 300
Q(TP3): 1

BGP1

(b) Engine 1 optimal query plan

𝜋

⋈

⋈

TP1
Cr(TP1): 100
Ce2(TP1): 200
Q(TP1): 2

Cr(BGP1⋈TP2): 50
Ce2(BGP1⋈TP2)): 75
Q(BGP1⋈TP2)): 1.5

Cr(TP1⋈TP3): 100
Ce2(TP1⋈TP3)): 50
Q(TP1⋈TP3)): 2

BGP1

TP3
Cr(TP3): 300
Ce2(TP3): 500
Q(TP2): 1.66

TP2
Cr(TP2): 200
Ce2(TP2): 600
Q(TP2): 3

(c) Engine 2 sub-optimal query plan

Fig. 1.: Motivating Example: A sample SPARQL query and the corresponding query plans of two different federation
engines

2) for triple patterns of the query. Let us assume that
both engines generate left-deep query plans by selecting
triple patterns with the smallest cardinalities to perform
their first join. The results of this join are then used
to perform the second join with the remaining third
triple pattern. By using actual cardinalities, the optimal
query execution plan would be to first perform the join
between TP1 and TP2 and then perform the second join
with TP3. The same plan will be generated by Engine 1
as well, as shown in Figure 1b. The sub-optimal plan
generated by Engine 2 is given in Figure 1c. Note that
Engine 2 did not select the optimal plan because of
large errors in cardinality estimations of triple patterns
and joins between triple patterns.

The motivating example clearly shows that good car-
dinality estimations are essential to produce a better
query plan. The question we aim to answer pertains
to how much the accuracy of cardinality estimations
affects the overall query plan and the overall query run-
time performance. To answer this question, the q-error
(Q in Figure 1) was introduced in [5] in the database lit-
erature. In the next section, we define this measure and
propose new metrics based on similarities to measure
the overall triple patterns error ET , overall joins error
EJ as well as overall query plan error EP.

4. Metrics

Now we formally define the q-error and our proposed
metrics, namely ET , EJ , EP to measure the overall er-
ror in cardinality estimations of triple patterns, joins
between triple patterns and overall query plan error,
respectively.

4.1. q-error

The q-error is the factor by which an estimated car-
dinality value differs from the actual cardinality value
[5].

Definition 1 (q-error). Let ~r = (r1, . . . , rn) ∈ R where
ri > 0 be a vector of real values and ~e = (e1, . . . , en) ∈
R be the vector of the corresponding estimated values.
By defining ~e/~r = ~e

~r = (e1/r1, . . . , en/rn), then q-error
of estimation e of r is given as

||e/r||Q = max
16i6n

||ei/ri||Q, where

||ei/ri||Q = max(ei/ri, ri/ei)

In this definition, over- and underestimations are
treated symmetrically [5]. In the motivating example
given in Figure 1, the real cardinality of TP1 is 100 (i.e.,
Cr(TP1)=100) while the estimated cardinality by en-
gine 1 for the same triple pattern is 90 (i.e., Cr(TP1) =
90). Thus, the q-error for this individual triple pattern is
max(90/100,100/90) = 1.11. The query’s overall q-error
of its triple patterns (see Figure 1b) is the maximum

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

value of all the q-error values of triple patterns, i.e.,
max(1.11, 1.25, 1) = 1.25. The q-error of the complete
query plan would be the maximum q-error values in
all triple patterns and joins used in the query plan, i.e.,
max(1.11, 1.25, 1, 1.3, 3) = 3.

The q-error makes use of the ratio instead of an ab-
solute or quadratic difference and is hence able to cap-
ture the intuition that only relative differences matter
for making planning decisions. In addition, the q-error
provides a theoretical upper bound for the plan quality
if the q-error of a query is bounded. Since it only con-
siders the maximum value amongst those calculated, it
is possible that plans with good average estimations are
regarded as poor by this measure. Consider the query
plans given in Figure 1b and Figure 1c. Both have a
q-error of 3, yet the query plan in Figure 1b is optimal,
while the query plan in Figure 1c is not. To solve this
problem, we introduce the additional metrics defined
below.

4.2. Similarity Errors

The overall similarity error of query triple patterns is
defined as follows:

Definition 2 (Triple Patterns Error ET). Let Q be
a SPARQL query containing triple patterns T =
{T P1, . . . ,T Pn}. Let ~r = (Cr(T P1), . . . ,Cr(T Pn)) ∈
R be the vector of real cardinalities of T and ~e =
(Ce(T P1), . . . ,Ce(T Pn)) ∈ R be the vector of the cor-
responding estimated cardinalities of T. Then, we define
our overall triple pattern error as follows:

ET = 2 ∗ |~r−~e||~r|+|~e|

= 2 ∗
√∑n

i=1(Cr(T Pi)−Ce(T Pi))2√∑n
i=1 (Cr(T Pi))2+

√∑n
i=1 (Ce(T Pi))2

In the motivating example given in Figure 1, the real
cardinalities vector ~r = (100,200,300) and the Engine 1
estimated cardinalities vector ~e = (90,250,300). Thus,
ET = 2∗0.0658 = 0.1316. Similarly, Engine 2 estimated
cardinality vector is ~e = (200,500,600). Thus, Engine 2
achieves ET = 2 ∗ 0.388 = 0.7765.

Definition 3 (Joins Error EJ). Let Q be a SPARQL
query containing joins J = {J1, . . . , Jn}. Let ~r =
(Cr(J1), . . . ,Cr(Jn)) ∈ R a vector of real cardinalities
of J and ~e = (Ce(J1), . . . ,Ce(Jn)) ∈ R be the vector
of the corresponding estimated cardinalities of J, then
the overall joins error is defined as follows:

EJ = 2 ∗ |~r−~e||~r|+|~e|

= 2 ∗
√∑n

i=1(Cr(Ji)−Ce(Ji))2√∑n
i=1 (Cr(Ji))2+

√∑n
i=1 (Ce(Ji))2

Definition 4 (Query Plan Error EP). Let Q be a
SPARQL query and TJ be the set of triple patterns and
joins in Q. Let ~r = (r1, . . . , rn) ∈ R be a vector of real
cardinalities of TJ and ~e = (e1, . . . , en) ∈ R be the
vector of corresponding estimated cardinalities of TJ,
then the overall query plan error is defined as follows:

EP = 2 ∗ |~r−~e||~r|+|~e|

= 2 ∗
√∑n

i=1(Cr(ri)−Ce(ei))2√∑n
i=1 (Cr(ri))2+

√∑n
i=1 (Ce(ei))2

In the motivating example given in Figure 1b, the
real cardinalities vector of all triple patterns and joins,
~r = (100,200,300,50,50) and the Engine 1 estimated
cardinalities vectors ~e = (90,250,300,65,150). Thus, EP

= 2*0.1391 = 0.2784 for Engine 1. Engine 2 achieves
EP = 2*0.3838 = 0.7676. In these matrices, over- and
underestimations are also treated symmetrically.

5. Selected Federation Engines

In this section, we give a brief overview of the se-
lected cost-based SPARQL federation engines.

CostFed: CostFed [8] makes use of pre-computed
statistics stored in index to estimate the cardinality
of triple patterns and joins between triple patterns.
CostFed uses both HashJoin and BindJoin for joining
the results of triple patterns. Deciding which join to
select is based on calculating the cost of both joins.
CostFed creates 3 buckets for each distinct predicate
used in the RDF dataset. This bucket information is
also used during cost calculations and query planning.

SemaGrow: SemaGrow [13] is another cost-based
federated query engine. The query planning is based
on VoID2 statistics about datasets. SemaGrow imple-
ments bind, hash, and merge joins, and their selection
to perform the required join operation is based on a
cost calculation. It uses a reactive model for retrieving
results of the joins as well as individual triple patterns.

Odyssey: Odyssey [11] makes use of distributed Char-
acteristic sets (CS) [35] and characteristic pair (CP)
[36] statistics to estimate cardinalities. It then uses dy-
namic programming to produce query execution plans.

LHD: LHD [9] is an index-assisted and cardinality-
based approach that aims to maximize parallel execu-
tion of sub-queries. It also makes use of VoiD statistics
to estimate the cardinality of triple patterns and joins

2VoID vocabulary: https://www.w3.org/TR/void/

https://www.w3.org/TR/void/

6 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

between triple patterns. Bind join is used in the query
planning.

SPLENDID: SPLENDID [12] also uses VoID statis-
tics to generate query execution plans. It uses a dy-
namic programming approach to produce query execu-
tion plans.

6. Evaluation and Results

In this section, we discuss our evaluation results.
Complete results of our evaluation are also available
from our resource homepage. First, we evaluate our
novel metrics in terms of how they are correlated with
the overall query runtime performances. Thereafter, we
compare existing cost-based SPARQL federation en-
gines against the proposed metrics and discuss the eval-
uation results.

6.1. Experiment Setup and Hardware:

Benchmarks Used: In our experiments, we used the
most recent state-of-the-art benchmark for federated
engines dubbed LargeRDFBench [26]. The benchmark
includes all FedBench[27] queries. LargeRDFBench
comprises a total of 40 queries: 14 simple queries (S1-
S14) from FedBench, 10 complex queries (C1-C10),
8 complex plus high sources queries (CH1-CH8), and
10 large data queries (L1-L10). We used all queries
except large data queries (L1-L10) in our experiments.
The reason for skipping L1-L10 was that the evaluation
results [26] show that most engines are not yet able
to execute these queries. LargeRDFBench comprises
a total of 13 real-world RDF datasets of varying sizes.
We loaded each dataset into a Virtuoso 7.2 server.

Cost-based Federation Engines: We evaluated five—
CostFed [8], Odyessey[11], SemaGrow[13], LHD[9]
and SPLENDID[12]—state-of-the-art cost-based SPARQL
federation engines. To the best of our knowledge, these
are most of the currently available, open-source cost-
based federation engines.

Hardware Used: Each Virtuoso was deployed on a
physical machine (32 GB RAM, Core i7 processor and
500 GB hard disc). We ran the selected federation en-
gines on a local client machine with same specifications.
Our experiments were run in a local environment where
the network cost is negligible.

Warm-up and Number of Runs: We warmed up each
federation engine for 10 minutes by executing the
Linked Data (LD1-LD10) queries from FedBench. Ex-
periments were run 3 times and the results were aver-
aged. The query timeout was set to 30 minutes.

Metrics: We present results for: (1) q-error of triple
patterns, (2) q-error of joins between triple patterns,
(3) q-error of overall query plans, (4) errors of triple
patterns, (5) errors of joins between triple patterns, (6)
errors of overall query plans, and (7) the overall query
runtimes. In addition, we used Spearman’s correlation
coefficient to measure the correlation between the pro-
posed metrics and the overall query runtimes. We used
simple linear and robust regression models to compute
the correlation.

6.2. Regression Experiments

First, we wanted to investigate the dependency be-
tween proposed metrics and overall query runtime per-
formance of the federation engines. Figure 2 shows the
results of a simple linear regression experiment aim-
ing to compute the dependency between q-error and
similarity errors, and the overall query runtimes. For
a particular engine, the left figure shows the depen-
dency between the q-error and overall runtime while
the right figure in the same row shows the result of
the corresponding similarity error. The higher coeffi-
cients (dubbed R in the figure) computed in the experi-
ments with similarity errors suggest that it is likely that
the similarity errors are a better predictor for runtime.
The positive value of the coefficient suggests that an
increase in similarity error also means an increase in
the overall runtime. It can be observed from the figure
that the outliers are contaminating the results. In Figure
3, we further apply robust regression[37–39] using the
Huber loss function [40] to remove the outliers from
the results (especially for q-errors). This is because we
wanted to avoid the possible high impact of outliers.
We observe that after removing outliers using robust
regression, the similarity-based error correlation further
increases. The lower p-values in the similarity-error-
based experiments further confirm that our metrics are
more likely to be a better predictor for runtime than the
q-error. The reason for this result is clear: Our measures
exploit more information and are hence less affected by
outliers. This is not the case for the q-error, which can
be perturbed significantly by a single outlier.

To investigate the correlation between metrics and
runtimes further, we measured Spearman’s correlation

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

coefficient between query runtimes and corresponding
errors of each of the first six metrics. The results are
shown in Table 2.

Table 2 shows that the proposed metrics on average
have positive correlations with query runtimes, i.e., the
smaller the error, the smaller the query runtimes. The
similarity error of overall query plan (EP) has the high-
est impact (i.e. 0.35) on query runtimes, followed by
the similarity error of the triple pattern (i.e. ET with
0.27), q-error of joins (i.e. QJ with 0.26), similarity
error of Join (i.e. EJ with 0.22), q-error of overall plan
(i.e. QP with 0.17), and q-error of triple patterns (i.e.
QT with 0.06), respectively.

In order to do a fair comparison between the results,
we only take the common queries on which every sys-
tem passed. We eliminate the LHD [9], because it failed
in 20/32 benchmark queries, (which is a very high num-
ber and only 12 simple queries passed), and is not ad-
equate for comparison. We apply Spearmam’s corre-
lation again on common queries. Table 3 shows that
the proposed metric has a stronger positive correlation
with query runtime when we deal with only common
queries. The similarity error of overall plan (EP) and
triple pattern (ET) has the highest impact (i.e. 0.40) on
query runtime, followed by similarity error of joins (i.e.
EJ with 0.39), q-error of joins (i.e. QJ with 0.17) and
overall query plan (i.e. QP with 0.17), and q-error of
triple patterns (i.e. QT with 0.01), respectively.

Furthermore, we remove outliers influencing results
by applying robust regression. Robust regression is
done by Iterated Re-weighted Least Squares (IRLS)
[37]. We used Huber weights[40] as weighting function
in IRLS. This approach further fine tuned the results
and made the correlation for our proposed similarity
error and run time stronger. Table 4 shows that all met-
rics have a stronger positive correlation. However, in
our proposed metric this difference is definite. The sim-
ilarity error of overall query plan (EP) has the highest
impact (i.e. 0.56) on query runtimes, followed by the
similarity error of the triple pattern (i.e. ET with 0.49),
similarity error of joins (EJ with 0.45), q-error of joins
(i.e. QJ with 0.22), q-error of overall plan (i.e. QP with
0.18) and triple pattern (i.e. QP with 0.18), respectively.
Table 4 also shows that the q-error for Odyssey is neg-
atively correlated with runtime. We can also observe
high q-error values from Figure 4.

Overall, the results show that the proposed similar-
ity errors correlate better with query runtimes than the
q-error. Moreover, the correct estimation of the overall
plan is clearly the most crucial fragment of the plan gen-
eration. Thus, it is important for federation engines to

pay particular attention to the cardinality estimation of
the overall query plan. However, given that this estima-
tion commonly depends on triple patterns and join esti-
mations, better means for approximating triple patterns
and join cardinalities should lead to better plans.

6.3. q-error and Similarity-Based Errors

We now present a comparison of the selected cost-
based engines based on the 6 metrics given in Figure
4.

Overall, the similarity errors of query plans given
in Figure 4a suggests that CostFed produces the small-
est errors followed by SPLENDID, LHD, SemaGrow,
and Odyssey, respectively. CostFed produces smaller
errors than SPLENDID in 10/17 comparable queries
(excluding queries with timeout and runtime errors).
SPLENDID produces smaller errors than LHD in 12/14
comparable queries. LHD produces smaller errors than
SemaGrow in 6/12 comparable queries. In turn, Sema-
Grow produces smaller errors than Odyssey in 9/15
comparable queries.

An overall evaluation of the q-error of query plans
given in Figure 4b leads to the following result: CostFed
produces the smallest errors followed by SPLENDID,
SemaGrow, Odyssey, and LHD, respectively. In par-
ticular, CostFed produces smaller errors than SPLEN-
DID in 9/17 comparable queries (excluding queries
with timeout and runtime error). SPLENDID pro-
duces smaller errors than SemaGrow in 9/17 compara-
ble queries. SemaGrow produces smaller errors than
Odyssey in 8/13 comparable queries. Odyssey is supe-
rior to LHD in 5/8 cases.

An overall evaluation of the similarity error joins
leads to a different picture (see Figure 4c). While
CostFed remains the best system and produces the
smallest errors, it is followed by Odyssey, SPLEN-
DID, SemaGrow, and LHD, respectively. In particu-
lar, CostFed outperforms Odyssey in 12/17 comparable
queries (excluding queries with timeout and runtime
error). Odyssey produces less errors than SPLENDID
in 7/14 comparable queries. SPLENDID is superior to
SemaGrow in 11/17 comparable queries. SemaGrow
outperforms LHD in 7/12 comparable queries.

As an overall evaluation of the q-error of joins given
in Figure 4d, CostFed produces the smallest errors fol-
lowed by SPLENDID, SemaGrow, Odyssey, and LHD,
respectively. CostFed produces less errors than SPLEN-
DID in 12/17 comparable queries (excluding queries
with timeout and runtime error). SPLENDID produces
less errors than SemaGrow in 9/17 comparable queries.

8 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

R = 0.24 , p = 0.28

4

6

8

10

0 1000 2000 3000
Qerror

ru
nT

im
e

costFed
R = 0.59 , p = 0.0094

4

6

8

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = 0.4 , p = 0.079

5.0

7.5

10.0

12.5

0 500 1000 1500 2000
Qerror

ru
nT

im
e

SemaGrow
R = 0.56 , p = 0.042

4

6

8

10

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = 0.041 , p = 0.86

8

10

12

14

0 2000 4000 6000
Qerror

ru
nT

im
e

Splendid
R = 0.45 , p = 0.073

6

8

10

12

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = − 0.015 , p = 0.96

6

8

10

12

0.0e+00 5.0e+06 1.0e+07 1.5e+07
Qerror

ru
nT

im
e

Odyssey
R = 0.42 , p = 0.13

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

Fig. 2.: q-error and Similarity Error vs. runtime. (Simple Linear Regression Analysis)

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

R = 0.16 , p = 0.46

4

6

8

10

0 100 200 300
Qerror

ru
nT

im
e

costFed

R = 0.66 , p = 0.0021

2.5

5.0

7.5

10.0

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = 0.53 , p = 0.016

6

9

12

0 300 600 900 1200
Qerror

ru
nT

im
e

SemaGrow
R = 0.56 , p = 0.042

4

6

8

10

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = 0.041 , p = 0.86

8

10

12

0 25 50 75 100 125
Qerror

ru
nT

im
e

Splendid
R = 0.55 , p = 0.023

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

R = − 0.02 , p = 0.94

7

9

11

0 1000 2000 3000 4000 5000
Qerror

ru
nT

im
e

Odyssey
R = 0.45 , p = 0.11

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0
similarity_error

ru
nT

im
e

Fig. 3.: q-error and Similarity Error vs. runtime. (Robust Regression Analysis)

10 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rank 1 2 3 4 5 6
Similarity Error q-error

Feature EJ EP ET Average QJ QP QT Average
F.

Q
E

ng
in

es CostFed 0.23 0.59 0.43 0.42 0.14 0.26 0.1 0.17

SemaGrow 0.33 0.33 0.33 0.33 0.47 0.37 0.001 0.28

ODYSSEY 0.11 0.14 0.55 0.26 0.01 0.03 −0.06 −0.01
SPLENDID 0.3 0.4 0.24 0.32 0.17 0.1 0.24 0.17

LHD 0.16 0.28 −0.2 0.08 0.51 0.11 0.04 0.22

Average 0.22 0.35 0.27 0.28 0.26 0.17 0.06 0.17

Table 2: Spearman’s rank correlation coefficients between query plan features and query runtimes for all queries.

Rank 1 2 3 4 5 6
Similarity Error q-error

Feature EJ EP ET Average QJ QP QT Average

F.
Q

E
ng

in
es CostFed 0.54 0.61 0.36 0.5 0.11 0.23 0.05 0.13

SemaGrow 0.44 0.56 0.43 0.48 0.49 0.40 −0.02 0.29
ODYSSEY 0.22 0.42 0.53 0.39 −0.04 −0.01 −0.20 −0.08

SPLENDID 0.35 0.45 0.27 0.36 0.12 0.04 0.21 0.12

Average 0.39 0.51 0.40 0.43 0.17 0.17 0.01 0.12

Table 3: Spearman’s rank correlation coefficients between query plan features and query runtimes after linear
regression (only for common queries between all systems).

Rank 1 2 3 4 5 6
Similarity Error q-error

Feature EJ EP ET Average QJ QP QT Average

F.
Q

E
ng

in
es CostFed 0.60 0.66 0.62 0.63 0.16 0.16 0.16 0.16

SemaGrow 0.56 0.56 0.57 0.56 0.60 0.53 0.57 0.56

ODYSSEY 0.25 0.45 0.59 0.43 −0.04 −0.02 −0.20 −0.08
SPLENDID 0.49 0.55 0.20 0.38 0.14 0.041 0.18 0.12

Average 0.45 0.56 0.49 0.50 0.22 0.18 0.18 0.19

Table 4: Spearman’s rank correlation coefficients between query plan features and query runtimes after robust
regression (only for common queries between all systems). EJ: Similarity Error of Joins, EP: Similarity Error of
overall query plan, ET : Similarity Error of Triple Patterns, QJ : q-error of Joins, QP: q-error of overall query plan, QT :
q-error Error of Triple Patterns, F.Q: Federated Query. Correlations and colors (−+): 0.00. . .0.19 very weak (),
0.20. . .0.39 weak (), 0.40. . .0.59 moderate (), 0.60. . .0.79 strong (), 0.80. . .1.00 very strong ().

SemaGrow produces less errors than Odyssey in 9/13
comparable queries. Odyssey produces less errors than
LHD in 4/8 comparable queries.

Overall, the evaluation of the similarity errors of
triple patterns given in Figure 4e reveals that CostFed
produces the smallest errors followed by SPLENDID,
Odyssey, SemaGrow, and LHD, respectively. CostFed
produces smaller errors than SPLENDID in 10/17 com-
parable queries (excluding queries with timeout and
runtime error). SPLENDID produces smaller errors

than Odyssey in 15/17 comparable queries. Odyssey
produces smaller errors than SemaGrow in 7/14 com-
parable queries. SemaGrow outperformed LHD in 6/12
queries.

An overall evaluation of the q-error of triple patterns
given in Figure 4f leads to a different ranking: CostFed
produces the smallest errors followed by LHD, Sema-
Grow, SPLENDID, and Odyssey, respectively. CostFed
outperforms LHD in 6/11 comparable queries (exclud-
ing queries with timeout and runtime error). LHD pro-

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

CostFed SemaGrow SPLENDID Odyssey LHD
0

0.5

1

1.5

2

2.5

(a) Overall Similarity Error of query plans

CostFed SemaGrow SPLENDID Odyssey LHD
1E00

1E02

1E04

1E06

1E08

(b) Overall q-error of query plans

CostFed SemaGrow SPLENDID Odyssey LHD
0

0.5

1

1.5

2

2.5

(c) Join Similarity Error of query plans

CostFed SemaGrow SPLENDID Odyssey LHD

1E00

1E02

1E04

1E06

1E08

(d) Join q-error of query plan

CostFed SemaGrow SPLENDID Odyssey LHD
0

0.5

1

1.5

2

2.5

(e) Triple pattern Similarity Error of query

CostFed SemaGrow SPLENDID Odyssey LHD

1E00

1E02

1E04

1E06

1E08

(f) Triple pattern q-error of query

Fig. 4.: Similarity and q-error of Query plan

12 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

duces fewer errors than SemaGrow in 5/10 comparable
queries. SemaGrow is better than SPLENDID in 10/17
comparable queries. SPLENDID produces fewer errors
than Odyssey in 7/14 comparable queries.

We observed that it is possible for a federation engine
to produce quite a high cardinality estimation error (i.e.,
1.974217 is overall similarity error for S11 query in
SemaGrow), yet it produces the optimal query plan.
Hence, the runtime is smaller (i.e., 191 ms). However,
in our evaluation, we compared which engine better
estimates the cardinalities, both for joins, as well as
triple patterns. Furthermore, these are potentially better
metrics for such comparisons.

6.4. Query Execution Time:

Finally, we present the query runtime results of
the selected federation engines across the different
queries categories of LargeRDFBench. Figure 5 gives
an overview of our results. In our runtime evaluation on
simple queries (S1-S14) (see Figure 5a), CostFed has
the shortest runtimes, followed by SemaGrow, LHD,
Odyssey, and SPLENDID, respectively. CostFed’s run-
times are shorter than SemaGrow’s on 13/13 compa-
rable queries (excluding queries with timeout and run-
time error) (average runtime = 524ms for CostFed vs.
2,539ms for SemaGrow). SemaGrow outperforms LHD
on 4/11 comparable queries with an average runtime of
2,539ms for SemaGrow vs. 2,752ms for LHD. LHD’s
runtimes are shorter than Odyssey’s on 8/10 compa-
rable queries with an average runtime of 8,515ms for
Odyssey. Finally, Odyssey is clearly faster than SPLEN-
DID on 8/12 comparable queries with an average run-
time of 131,586.8ms for SPLENDID.

Our runtime evaluation on the complex queries (C1-
C10) (see Figure 5b) leads to a different ranking:
CostFed produces the shortest runtimes followed by
SemaGrow, Odyssey, and SPLENDID, respectively.
CostFed outperforms SemaGrow in 6/6 comparable
queries (excluding queries with timeout and runtime
error) with an average runtime of 3,402ms for CostFed
vs. 9,324 for SemaGrow. SemaGrow’s runtimes are
shorter than Odyssey’s in 3/4 comparable queries with
an average runtime of 63,157ms for Odyssey. Odyssey
is better than SPLENDID in 5/5 comparable queries,
where SPLENDID’s average runtime is 98,494.52ms.

The runtime evaluation on the complex and high
sources queries (CH1-C8) given in Figure 5c estab-
lishes CostFed as the best query federation engine, fol-
lowed by SPLENDID and then SemaGrow, respectively.
CostFed’s runtimes are smaller than SemaGrow in 3/3

comparable queries (excluding queries with timeout
and runtime error), with an average runtime of 4,237ms
for CostFed vs. 191,315ms for SemaGrow. SPLENDID
has no comparable queries with CostFed and Sema-
Grow. LHD and Odyssey both fail to produce results
when faced with complex queries.

7. Conclusion

In this paper, we presented an extensive evaluation of
existing cost-based federated query engines. We used
existing metrics from relational database research and
proposed new metrics to measure the quality of car-
dinality estimators of selected engines. To the best of
our knowledge, this work is the first evaluation of cost-
based SPARQL federation engines focused on the qual-
ity of the cardinality estimations. Overall, our key re-
sults are as follows:

– The proposed similarity-based errors have a more
positive correlation with runtimes, i.e., the smaller
the error values, the better the query runtimes.

– The higher coefficients (R values) with similarity
errors, (as opposed to q-error), suggest that the
proposed similarity errors are a better predictor for
runtime than the q-error.

– The smaller p-values of the similarity errors, as
compared to q-error, further confirm that similarity
errors are more likely to be a better predictor for
runtime than the q-error.

– Errors in the cardinality estimation of triple pat-
terns have a higher correlation to runtimes than the
error in the cardinality estimation of joins.Thus,
cost-based federation engines must pay particular
attention to attaining accurate cardinality estima-
tions of triple patterns

– On average, the CostFed engine produces the
fewest estimation errors and has the shortest exe-
cution time for the majority of LargeRDFBench
queries.

As future work, we want to compare heuristic-based
(index-free) federated SPARQL query processing en-
gines with cost-based federated engines. We want to
investigate how much an index is assisting a cost-based
federated SPARQL engine to generate optimized query
execution plans.

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

T
IM
E
O
U
T

T
IM
E
O
U
T

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Avrg
1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

A
v
e
ra

g
e
 e

x
e
c
u

ti
o
n

 t
im

e
(m

s
e
c
)

lo
g

 s
c
a
le

COSTFED
SEMAGROW
ODYSSEY
SPLENDID
LHD

(a) Average execution time of simple (S) queries (FedBench)

T
IM
E
O
U
T

FA
IL
E
D

T
IM
E
O
U
T

FA
IL
E
D

T
IM
E
O
U
T

T
IM
E
O
U
T

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avrg
1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

A
v
e
ra

g
e
 e

x
e
c
u

ti
o
n

 t
im

e
(m

s
e
c
)

lo
g

 s
c
a
le

COSTFED
SEMAGROW
ODYSSEY
SPLENDID
LHD

(b) Average execution time of complex (C) queries (LargeRDFBench)

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

T
IM
E
O
U
T

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

T
IM
E
O
U
T

FA
IL
E
D

T
IM
E
O
U
T

FA
IL
E
D

T
IM
E
O
U
T

T
IM
E
O
U
T

T
IM
E
O
U
T

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

T
IM
E
O
U
T

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

FA
IL
E
D

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 Avrg
1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

A
v
e
ra

g
e
 e

x
e
c
u

ti
o
n

 t
im

e
(m

s
e
c
)

lo
g

 s
c
a
le

COSTFED
SEMAGROW
ODYSSEY
SPLENDID
LHD

(c) Average execution time of complex and high data structures (ch) queries(LargeRDFBench)

Fig. 5.: Average execution time of LargeRDFBench and FedBench Queries.

14 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Acknowledgments

This work is supported by the National Research
Foundation of Korea(NRF) (grant funded by the Korea
government(MSIT) (No. NRF-2018R1A2A2A05023669)).
The work has also been supported by the project
LIMBO (Grant no. 19F2029I), OPAL (no. 19F2028A),
KnowGraphs (no. 860801), and SOLIDE (no. 13N14456)
conducted in the University of Leipzig.

References

[1] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov and A.-
C. Ngonga Ngomo, A fine-grained evaluation of SPARQL end-
point federation systems, Semantic Web Journal 7(5) (2016),
493–518. doi:10.3233/SW-150186.

[2] N.A. Rakhmawati, J. Umbrich, M. Karnstedt, A. Hasnain and
M. Hausenblas, Querying over Federated SPARQL Endpoints
- A State of the Art Survey, CoRR abs/1306.1723 (2013). http:
//arxiv.org/abs/1306.1723.

[3] M. Wylot, M. Hauswirth, P. Cudré-Mauroux and S. Sakr, RDF
Data Storage and Query Processing Schemes: A Survey, ACM
Comput. Surv. 51(4) (2018), 84:1–84:36. doi:10.1145/3177850.

[4] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kem-
per and T. Neumann, How Good Are Query Optimiz-
ers, Really?, Proc. VLDB Endow. 9(3) (2015), 204–215.
doi:10.14778/2850583.2850594.

[5] G. Moerkotte, T. Neumann and G. Steidl, Preventing
Bad Plans by Bounding the Impact of Cardinality Esti-
mation Errors, Proc. VLDB Endow. 2(1) (2009), 982–993.
doi:10.14778/1687627.1687738.

[6] A. Schwarte, P. Haase, K. Hose, R. Schenkel and M. Schmidt,
FedX: Optimization Techniques for Federated Query Process-
ing on Linked Data, in: The Semantic Web – ISWC 2011,
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,
N. Noy and E. Blomqvist, eds, Springer-Verlag Berlin Heidel-
berg, Berlin, Heidelberg, 2011, pp. 601–616. ISBN 978-3-642-
25073-6. doi:10.1007/978-3-642-25073-6_38.

[7] G. Montoya, M.-E. Vidal and M. Acosta, A Heuristic-based
Approach for Planning Federated SPARQL Queries, in: Pro-
ceedings of the Third International Conference on Consuming
Linked Data - Volume 905, COLD’12, CEUR-WS.org, Aachen,
Germany, Germany, 2012, pp. 63–74. http://dl.acm.org/citation.
cfm?id=2887367.2887373.

[8] M. Saleem, A. Potocki, T. Soru, O. Hartig and A.-C.N. Ngomo,
CostFed: Cost-Based Query Optimization for SPARQL End-
point Federation, Elsevier, 2018, pp. 163–174, Proceedings of
the 14th International Conference on Semantic Systems 10th
– 13th of September 2018 Vienna, Austria. ISSN 1877-0509.
doi:10.1016/j.procs.2018.09.016.

[9] X. Wang, T. Tiropanis and H. Davis, LHD Optimising Linked
Data Query Processing Using Parallelisation, in: Workshop
on Linked Data on the Web (LDOW1́3), Proceedings of the
WWW2013, CEUR Workshop Proceedings, Vol. 996, CEUR-
WS.org, Rio de Janeiro, Brazil, 2013. ISSN 1613-0073. http:
//eprints.soton.ac.uk/350719/.

[10] B. Quilitz and U. Leser, Querying Distributed RDF Data
Sources with SPARQL, in: Proceedings of the 5th European
Semantic Web Conference on The Semantic Web: Research and
Applications, ESWC’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 524–538. ISBN 3-540-68233-3, 978-3-540-68233-2.
http://dl.acm.org/citation.cfm?id=1789394.1789443.

[11] G. Montoya, H. Skaf-Molli and K. Hose, The Odyssey Ap-
proach for Optimizing Federated SPARQL Queries, The Seman-
tic Web – ISWC 2017 (2017), 471–489–. ISBN 9783319682884.
doi:10.1007/978-3-319-68288-4_28.

[12] O. Görlitz and S. Staab, SPLENDID: SPARQL Endpoint Fed-
eration Exploiting VOID Descriptions, in: Proceedings of the
Second International Conference on Consuming Linked Data
- Volume 782, COLD’11, CEUR-WS.org, Aachen, Germany,
Germany, 2010, pp. 13–24. http://dl.acm.org/citation.cfm?id=
2887352.2887354.

[13] A. Charalambidis, A. Troumpoukis and S. Konstantopou-
los, SemaGrow: Optimizing Federated SPARQL Queries,
in: Proceedings of the 11th International Conference on
Semantic Systems, SEMANTICS ’15, ACM, New York,
NY, USA, 2015, pp. 121–128. ISBN 978-1-4503-3462-4.
doi:10.1145/2814864.2814886.

[14] A. Hasnain, R. Fox, S. Decker and H.F. Deus, Cataloguing
and Linking Life Sciences LOD Cloud, in: 1st International
Workshop on Ontology Engineering in a Data-driven World
(OEDW 2012) collocated with 8th International Conference on
Knowledge Engineering and Knowledge Management (EKAW
2012), 2012, pp. 114–130.

[15] A. Hasnain, S. Sana e Zainab, M. Kamdar, Q. Mehmood, J. War-
ren ClaudeN., Q. Fatimah, H. Deus, M. Mehdi and S. Decker,
A Roadmap for Navigating the Life Sciences Linked Open
Data Cloud, in: Semantic Technology, T. Supnithi, T. Yam-
aguchi, J.Z. Pan, V. Wuwongse and M. Buranarach, eds, Lec-
ture Notes in Computer Science, Vol. 8943, Springer Interna-
tional Publishing, 2015, pp. 97–112. ISBN 978-3-319-15614-9.
doi:10.1007/978-3-319-15615-6_8.

[16] G. Ladwig and T. Tran, SIHJoin: Querying Remote and Lo-
cal Linked Data, in: The Semantic Web: Research and Ap-
plications, G. Antoniou, M. Grobelnik, E. Simperl, B. Par-
sia, D. Plexousakis, P. De Leenheer and J. Pan, eds, Lec-
ture Notes in Computer Science, Vol. 6643, Springer Berlin
Heidelberg, 2011, pp. 139–153. ISBN 978-3-642-21033-4.
doi:10.1007/978-3-642-21034-1_10. http://dx.doi.org/10.1007/
978-3-642-21034-1_10.

[17] S. Lynden, I. Kojima, A. Matono and Y. Tanimura, ADERIS:
An Adaptive Query Processor for Joining Federated SPARQL
Endpoints, in: R. Meersman, T. Dillon, P. Herrero, A. Kumar,
M. Reichert, L. Qing, B.-C. Ooi, E. Damiani, D.C. Schmidt,
J. White, M. Hauswirth, P. Hitzler, M. Mohania, editors, On
the Move to Meaningful Internet Systems (OTM2011), Part II.
LNCS, Vol. 7045, Springer Heidelberg, 2011, pp. 808–817.

[18] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga and
P. Kalnis, Lusail: A System for Querying Linked Data at Scale,
Proceedings of the VLDB Endowment 11(4) (2017), 485–498.
doi:10.1145/3186728.3164144.

[19] K.M. Endris, M. Galkin, I. Lytra, M.N. Mami, M.-E. Vidal
and S. Auer, MULDER: Querying the Linked Data Web by
Bridging RDF Molecule Templates, in: Database and Expert
Systems Applications (DEXA1́7), D. Benslimane, E. Damiani,
W.I. Grosky, A. Hameurlain, A. Sheth and R.R. Wagner, eds,

http://arxiv.org/abs/1306.1723
http://arxiv.org/abs/1306.1723
http://dl.acm.org/citation.cfm?id=2887367.2887373
http://dl.acm.org/citation.cfm?id=2887367.2887373
http://eprints.soton.ac.uk/350719/
http://eprints.soton.ac.uk/350719/
http://dl.acm.org/citation.cfm?id=1789394.1789443
http://dl.acm.org/citation.cfm?id=2887352.2887354
http://dl.acm.org/citation.cfm?id=2887352.2887354
http://dx.doi.org/10.1007/978-3-642-21034-1_10
http://dx.doi.org/10.1007/978-3-642-21034-1_10

An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Springer International Publishing, Cham, 2017, pp. 3–18. ISBN
978-3-319-64468-4. doi:10.1007/978-3-319-64468-4_1.

[20] M. Saleem and A.-C. Ngonga Ngomo, HiBISCuS: Hypergraph-
Based Source Selection for SPARQL Endpoint Federation,
in: The Semantic Web: Trends and Challenges, V. Presutti,
C. d’Amato, F. Gandon, M. d’Aquin, S. Staab and A. Tordai,
eds, Lecture Notes in Computer Science, Vol. 8465, Springer
International Publishing, 2014, pp. 176–191. ISBN 978-3-319-
07442-9. doi:10.1007/978-3-319-07443-6_13.

[21] M. Saleem, A.-C. Ngonga Ngomo, J. Xavier Parreira, H.F. Deus
and M. Hauswirth, DAW: Duplicate-AWare Federated Query
Processing over the Web of Data, in: Proceedings of the 12th
International Semantic Web Conference - Part I, Lecture Notes
in Computer Science, Springer-Verlag New York, Inc., New
York, NY, USA, 2013, pp. 574–590. ISBN 978-3-642-41334-6.
doi:10.1007/978-3-642-41335-3_36.

[22] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo and E. Ruckhaus,
ANAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints, in: The Semantic Web – ISWC 2011, L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy
and E. Blomqvist, eds, Lecture Notes in Computer Science,
Vol. 7031, Springer-Verlag Berlin Heidelberg, 2011, pp. 18–34.
ISBN 978-3-642-25072-9. doi:10.1007/978-3-642-25073-6_2.

[23] J. Umbrich, A. Hogan, A. Polleres and S. Decker, Link Traversal
Querying for a Diverse Web of Data, Semantic Web Journal
6(6) (2015), 585–624. doi:10.3233/SW-140164.

[24] M. Acosta, M.-E. Vidal and Y. Sure-Vetter, Diefficiency Met-
rics: Measuring the Continuous Efficiency of Query Processing
Approaches, in: The Semantic Web – ISWC 2017, C. d’Amato,
M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Se-
queda, C. Lange and J. Heflin, eds, Springer-Verlag Berlin Hei-
delberg, Cham, 2017, pp. 3–19. ISBN 978-3-319-68204-4.

[25] A. Hasnain, Q. Mehmood, S. Sana E Zainab, M. Saleem,
C. Warren Jr, D. Zehra, S. Decker and D. Rebholz-Schuhman,
BioFed: Federated query processing over life sciences linked
open data, Journal of Biomedical Semantics 8(1) (2017), 13.
doi:10.1186/s13326-017-0118-0.

[26] M. Saleem, A. Hasnain and A.-C. Ngonga Ngomo, Larg-
eRDFBench: A Billion Triples Benchmark for SPARQL End-
point Federation, Journal of Web Semantics 48 (2018), 85–125.
doi:10.1016/j.websem.2017.12.005.

[27] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and
T. Tran, FedBench: A Benchmark Suite for Federated Semantic
Data Query Processing, in: The Semantic Web – ISWC 2011,
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,
N. Noy and E. Blomqvist, eds, Springer-Verlag Berlin Heidel-
berg, Berlin, Heidelberg, 2011, pp. 585–600. ISBN 978-3-642-
25073-6. doi:10.1007/978-3-642-25073-6_37.

[28] O. Görlitz, M. Thimm and S. Staab, SPLODGE: System-
atic Generation of SPARQL Benchmark Queries for Linked
Open Data, in: Proceedings of the 11th International Confer-
ence on The Semantic Web - Volume Part I, The Semantic
Web – ISWC’12, Springer-Verlag Berlin Heidelberg, Berlin,
Heidelberg, 2012, pp. 116–132. ISBN 978-3-642-35175-4.
doi:10.1007/978-3-642-35176-1_8.

[29] M. Morsey, J. Lehmann, S. Auer and A.-C.N. Ngomo, DBpe-
dia SPARQL Benchmark: Performance Assessment with Real

Queries on Real Data, in: Proceedings of the 10th International
Conference on The Semantic Web - Volume Part I, The Se-
mantic Web – ISWC’11, Springer-Verlag Berlin Heidelberg,
Berlin, Heidelberg, 2011, pp. 454–469. ISBN 978-3-642-25072-
9. doi:10.1007/978-3-642-25073-6_29.

[30] N.A. Rakhmawati, M. Saleem, S. Lalithsena and S. Decker,
QFed: Query Set For Federated SPARQL Query Benchmark, in:
Proceedings of the 16th International Conference on Informa-
tion Integration and Web-based Applications & Services,
iiWAS ’14, ACM, New York, NY, USA, 2014, pp. 207–211.
ISBN 978-1-4503-3001-5. doi:10.1145/2684200.2684321.

[31] A. Hasnain, M. Saleem, A.N. Ngomo and D. Rebholz-
Schuhmann, Extending LargeRDFBench for Multi-Source Data
at Scale for SPARQL Endpoint Federation, in: Proceedings of
the 12th International Workshop on Scalable Semantic Web
Knowledge Base Systems co-located with 17th International
Semantic Web Conference, SSWS@ISWC 2018, Monterey, Cal-
ifornia, USA, October 9, 2018, Vol. 2179, 2018, pp. 28–44.
http://ceur-ws.org/Vol-2179/SSWS2018_paper3.pdf.

[32] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus and C. Buil-
Aranda, Benchmarking Federated SPARQL Query Engines: Are
Existing Testbeds Enough?, in: P. Cudre Mauroux, J. Heflin, E.
Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J.X. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist, editors,
The Semantic Web – ISWC 2012, Part II. LNCS, Vol. 7650,
Springer-Verlag Berlin Heidelberg, 2012, pp. 313–324.

[33] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, in:
International Journal on Semantic Web and Information Sys-
tems (IJSWIS), Vol. 5, IGI Global, 2009, pp. 1–24.

[34] M. Schmidt, T. Hornung, G. Lausen and C. Pinkel, SPˆ 2Bench:
A SPARQL Performance Benchmark, in: Proceedings of the
25th International Conference on Data Engineering ICDE,
IEEE, 2009, pp. 222–233.

[35] T. Neumann and G. Moerkotte, Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins, in:
Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering, IEEE, 2011, pp. 984–994, IEEE Computer
Society. ISSN 1063-6382. doi:10.1109/ICDE.2011.5767868.

[36] A. Gubichev and T. Neumann, Exploiting the query structure for
efficient join ordering in SPARQL queries., in: EDBT, Vol. 14,
2014, pp. 439–450.

[37] P.W. Holland and R.E. Welsch, Robust regression us-
ing iteratively reweighted least-squares, Communications
in Statistics - Theory and Methods 6(9) (1977), 813–827.
doi:10.1080/03610927708827533.

[38] D.P. O’Leary, Robust Regression Computation Using Iteratively
Reweighted Least Squares, SIAM J. Matrix Anal. Appl. 11(3)
(1990), 466–480. doi:10.1137/0611032.

[39] P.J. Rousseeuw and A.M. Leroy, Robust regression and
outlier detection, Vol. 589, 1st edn, John wiley & sons,
Inc., New York, NY, USA, 1987. ISBN 0-471-85233-3.
doi:10.1002/0471725382.

[40] P.J. Huber, Robust Estimation of a Location Parameter, in:
Breakthroughs in Statistics: Methodology and Distribution,
S. Kotz and N.L. Johnson, eds, Springer New York, New
York, NY, 1992, pp. 492–518. ISBN 978-1-4612-4380-9.
doi:10.1007/978-1-4612-4380-9_35.

http://ceur-ws.org/Vol-2179/SSWS2018_paper3.pdf

	Introduction
	Related Work
	Motivating Example
	Metrics
	q-error
	Similarity Errors

	Selected Federation Engines
	Evaluation and Results
	Experiment Setup and Hardware:
	Regression Experiments
	q-error and Similarity-Based Errors
	Query Execution Time:

	Conclusion
	Acknowledgments
	References

