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Abstract. Within manufacturing processes, faults and failures may cause severe economic loss. With the vision of Industry
4.0, artificial intelligence techniques such as data mining play a crucial role in automatic fault and failure prediction. However,
due to the heterogeneous nature of industrial data, data mining results normally lack both machine and human-understandable
representation and interpretation of knowledge. This may cause the semantic gap issue, which stands for the incoherence between
the knowledge extracted from industrial data and the interpretation of the knowledge from a user. To address this issue, ontology-
based approaches have been used to bridge the semantic gap between data mining results and users. However, only a few
existing ontology-based approaches provide satisfactory knowledge modeling and representation for all the essential concepts in
predictive maintenance. Moreover, most of the existing research works merely focus on the classification of operating conditions
of machines, while lacking the extraction of specific temporal information of failure occurrence. This brings obstacles for users
to perform maintenance actions with the consideration of temporal constraints.

To tackle these challenges, in this paper we introduce a novel hybrid approach to facilitate predictive maintenance tasks
in manufacturing processes. The proposed approach is a combination of data mining and semantics, within which chronicle
mining is used to predict the future failures of the monitored industrial machinery, and a Manufacturing Predictive Maintenance
Ontology (MPMO) with its rule-based extension is used to predict temporal constraints of failures and to represent the predictive
results formally. As a result, Semantic Web Rule Language (SWRL) rules are constructed for predicting the occurrence time of
machinery failures in the future. The proposed rules provide explicit knowledge representation and semantic enrichment of failure
prediction results, thus easing the understanding of the inferred knowledge. A case study on a semi-conductor manufacturing
process is used to demonstrate our approach in detail. The evaluation of results shows that the MPMO ontology is free of bad
practices in the structural, functional, and usability-profiling dimensions. The constructed SWRL rules posses more than 80% of
True Positive Rate, Precision, and F-measure, which shows promising performance in failure prediction.
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1. Introduction

Manufacturing processes are sets of structured oper-
ations to transform raw material or semi-finished prod-
uct parts into further completed products. To ensure
high productivity, availability and efficiency of manu-
facturing processes, the detection of harmful tenden-
cies and conditions of production lines is a crucial is-
sue for manufacturers. In general, anomaly detection
on production lines is performed by analyzing data col-
lected by sensors, which are located on machine com-
ponents and also in production environments. The col-
lected data record real-time situations and reflect the
correctness of mechanical system conditions. When
the tendency of a mechanical failure emerges, experi-
enced operators in factories are able to take appropri-
ate operations to prevent the outage situations of pro-
duction systems. However, as the collected data be-
come more heterogeneous and complex, it is conceiv-
able that the operators may fail to respond to mechani-
cal failures timely and accurately. In the context of In-
dustry 4.0, advanced techniques such as the Industry
Internet of Things (IIoT) and Cloud Computing enable
machines and production systems in smart factories to
be interconnected to exchange data continuously. This
trend has brought opportunities to manufactures to ef-
fectively manage and use the collected big data and
has triggered the demand of methodologies to detect
anomalies on production lines automatically.

In the manufacturing domain, the detection of
anomalies such as mechanical faults and failures en-
ables the launching of predictive maintenance tasks,
which aim to predict future faults, errors, and failures
and also enable maintenance actions. Normally, a pre-
dictive maintenance task relies on the monitoring of a
measurable system diagnostic parameter, which iden-
tifies the state of a system [2]. In this way, maintenance
decisions, such as calling the intervention of a machine
operator, are proposed based on the severity of anoma-
lies, to prevent the halt of the production lines and to
minimize economic loss. Several techniques have been
used to detect wear and tear in mechanical units and to
predict future machinery conditions, such as machine
learning, data mining, statistics, and information the-
ory [3].

*Corresponding author. E-mail: qiushi.cao@insa-rouen.fr.

1.1. Existing Challenges of the Predictive
Maintenance Tasks in Industry 4.0

With the trend of Industry 4.0, the predictive main-
tenance tasks are benefiting from a cyber-physical ap-
proach. Within cyber-physical systems (CPS), produc-
tion facilities are able to exchange information with
autonomy and intelligence, which enable manufactur-
ers to optimize the production processes. Fig. 1 shows
the architecture of a CPS designed for predictive main-
tenance tasks. Within a CPS, predictive maintenance of
manufacturing entities is performed based on a three-
layer collaboration between the cyber space and the
physical space: 1). The Physical Space, where ma-
chine operating data is gathered using sensors located
on the machines and machine components. Additional
data is collected from the products, manufacturing en-
vironments, as well as the machine operators’ expe-
rience; 2). The Cyber-Physical Interface, where sta-
tistical techniques such as data mining and machine
learning use the collected data to understand the manu-
facturing processes and to learn from operators’ expe-
rience; 3). The Cyber Space, where decision-making
about machine failure prediction and maintenance are
proposed. In this layer, machine degradation models,
and knowledge base of machine health are employed
to predict machine damage, quality loss or mainte-
nance demands in the future.

In the second layer of the architecture, data min-
ing is normally performed by obtaining and process-
ing sensor data that contain measurements of physi-
cal signals of machinery, such as temperature, voltage,
and vibration. By identifying events and patterns that
are not consistent with the expected behavior, potential
hazards in production systems, such as power outage
of the systems, could be detected.

However, sometimes the knowledge extracted from
data mining is presented in a complex structure, there-
fore formal knowledge representation methods are re-
quired to facilitate the understanding and exploitation
of it [4]. Furthermore, there may exist the semantic gap
issue, which stands for the incoherence between the
knowledge extracted from industrial data and the in-
terpretation of the knowledge from a user [5]. To over-
come these issues, semantic technologies have been
utilized in several research efforts to promote the in-
terpretation and management of knowledge [1, 4, 5].
Also, since semantic technologies ensure the explicit
representations of machine-interpretable domain se-
mantics, they can support the semantic interoperability
in a large heterogeneous environment of loosely cou-
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Fig. 1. A predictive maintenance task based on a cyber-physical approach [1].

pled systems [6]. In the data mining domain, several
stages can benefit from the involvement of formal se-
mantics, such as data transformation, algorithm selec-
tion, and post-processing [5]. Moreover, the use of se-
mantic technologies can also integrate the capitaliza-
tion of domain experts’ experience. For example, in a
predictive maintenance task of machine cutting tool,
when data mining algorithms fail to identify the occur-
rence time of a future cutter failure, logic-based expert
rules which capitalize experience of domain experts
can be applied to propose predictive decisions.

In the context of predictive maintenance in smart
factories, pattern mining has been widely used to
discover frequently occurring temporally-constrained
patterns, through which warning signals can be sent
to humans for a timely intervention [7]. Among pat-
tern mining techniques, chronicle mining has been
applied to industrial data sets for extracting tempo-
ral information of events and to predict potential ma-
chinery failures [8]. However, even though chronicle
mining results are expressive and interpretable repre-
sentations of complex temporal information, domain
knowledge is required for users to have a compre-
hensive understanding of the mined chronicles [9].
As the predictive maintenance domain is becoming
more knowledge-intensive, tasks performed in this do-
main can often benefit from incorporating domain and
contextual knowledge, by which the semantics of the
chronicle mining results can be explicitly represented

and clearly interpreted. This helps to reduce the se-
mantic gap issue. However, to the best of our knowl-
edge, no work has been proposed to combine chron-
icle mining, and semantics to facilitate the predictive
maintenance of manufacturing processes. Also, most
of the existing research works about predictive main-
tenance in the manufacturing domain merely focus on
the classification of operating conditions of machines
(e.g., normal operating condition, breakdown condi-
tion...), while lacking the extraction of specific tempo-
ral information of failure occurrence. This brings ob-
stacles for users to perform maintenance actions with
the consideration of temporal constraints.

1.2. The Use of Chronicles for Predictive
Maintenance in Industry 4.0: a Case Study

In manufacturing factories, rotating machinery is a
core and critical component of a variety of machines,
machine tools, industrial plants, and ground trans-
portation vehicles. During the operation time of ro-
tating machinery, several elements produce vibrations
when the machine or machine tool is partially or com-
pletely degraded [10]. The analysis of these vibration
signals allows the setting up of condition-based mon-
itoring of rotating machinery and to avoid the break-
down of the machine or machine tool. Inside a piece
of rotating machinery, bearings are the most impor-
tant components for identifying the working condi-
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tions. The defects of bearings can be categorized into
cage defect, a ball, or an inner race or outer race. These
bearing conditions are identified by the monitoring and
analysis of the root mean square (RMS) and the crest
factor of the vibration signal.

For a machine that constructed with a set of rotat-
ing machinery, the mining of machine historical data
allows the extraction of a set of chronicles such as the
one shown in Fig. 2. Inside this chronicle, vertices are
set of events characterized by the values of RMS and
crest factor. Edges are the time intervals among differ-
ent events. The numbers are associated with the time
intervals, representing the lower and upper bound of
the time duration. G stands for the good condition of
the bearing, which indicates the bearing works without
defect. Dir is the condition that the bearing suffers in-
ner race defect, and Dor indicates the bearing is with
outer race defect. F represents a failure event, which
means the breakdown of the machinery.

Fig. 2. A chronicle extracted from the mining of machine history
data, for the aim of condition-based monitoring of a rotating ma-
chinery.

By matching a set of chronicles with real data, nor-
mal and abnormal machine conditions can be iden-
tified. Also, the occurrence of future machinery fail-
ures and the temporal constraints of these failures
can be predicted. This allows the monitoring system
to detect anomalies at an appropriate time, and send
alerts/alarms to humans for a timely intervention [11].
The prediction of temporal constraints of failures can
be further used for identifying the criticality of the
failures, thus enabling machine operators to schedule
maintenance actions intelligently [12].

1.3. Contributions of This Paper

To address the challenges mentioned in Section 1.1,
in this paper, we propose an ontology-based approach

to represent chronicle mining results in a semantic rich
format, which enhances the representation and reuse of
knowledge. The proposed approach is based on a com-
bined use of chronicle mining and semantic technolo-
gies. By specifying domain semantics and annotating
industrial data with rich and formal semantics, ontolo-
gies with their rule-based extensions help to address
the issues described in Section 1.1. In more detail, the
contributions of this paper are as follows:

– We present a domain ontology named Manufac-
turing Predictive Maintenance Ontology (MPMO),
which is a Web Ontology Language (OWL) [13]
based ontology designed to model the knowl-
edge related to condition-based maintenance. The
MPMO ontology provides the foundation to for-
mally represent chronicles with their numerical
time constraints, for the purpose of predictive
maintenance.

– We propose an algorithm to transform chroni-
cles into Semantic Web Rule Language (SWRL)
based logic rules, by which the predictive results
are formalized, thus interpretable for both human
and machines. The proposed transformation en-
ables the automatic generation of SWRL rules
from chronicle mining results, thus allowing an
automatic semantic approach for machinery fail-
ure prediction.

– We evaluate the feasibility and effectiveness of
our approach by conducting experimentation on
a real industrial data set. The performance of
SWRL rule construction and the quality of fail-
ure prediction is evaluated against the aforemen-
tioned data set.

The rest of this paper is structured as follows. Sec-
tion 2 provides a review of existing ontology-based
models and systems developed for predictive mainte-
nance. Section 3 introduces the foundations and ba-
sic notions of chronicle mining and semantics that are
necessary for describing our approach. It contains for-
mal definitions of chronicles and the Semantic Web
Rule Language (SWRL). Sections 4 presents a hy-
brid semantic approach for automatic failure predic-
tion. The approach includes the use of the MPMO on-
tology, which models necessary and principle knowl-
edge related to chronicles. We introduce a real-world
example scenario and use it to describe our approach in
detail. Also, one algorithm for transforming chronicles
to SWRL-based predictive rules is introduced. Section
5 evaluates our approach through a real industrial data
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set. Section 6 gives concluding remarks and outlines
future research directions.

2. Related Work

There are plentiful of works that deal with the pre-
dictive maintenance tasks in Industry 4.0. In this sec-
tion, we analyze the related works according to two
perspectives: 1). The common approaches for machin-
ery failure prediction within manufacturing processes;
2). Existing ontologies and ontological models that are
used by knowledge-based predictive maintenance sys-
tems.

2.1. Common Approaches to Predictive Maintenance
in Industry 4.0

The main objective of machinery failure prediction
is to estimate the time of the occurrence of future fail-
ures. The prediction is normally based on the exami-
nation of the current condition of the machinery and
the past operation profile. The estimation of remain-
ing useful life (RUL) is the main approach that is used
in predictive maintenance. The commonly used meth-
ods for RUL estimation can be classified into four cat-
egories [14]:

– Knowledge-based Models. This type of models
assess the similarity between an observed situ-
ation and a databank of previously defined fail-
ures and deduce the life expectancy from previous
events [15]. Normally, a knowledge-based model
contains a rule base that consists of a set of rules.
The rules are formulated as IF-THEN statements,
and they are often proposed based on heuristic
facts acquired by domain experts. Knowledge-
based models can be further classified into Expert
Systems and Fuzzy Systems.

– Life Expectancy Models. They determine the
RUL of individual machine components with re-
spect to the expected risk of deterioration un-
der known operating conditions [15]. This type
of models can be further grouped into Stochastic
Models and Statistical Models.

– Artificial Neural Networks. They compute an es-
timated output for the RUL of a piece of machin-
ery, directly or indirectly, from a mathematical
representation of the machinery derived from ob-
servation data rather than a physical understand-
ing of the failure processes [15]. This type of

models can be used for direct RUL forecasting or
parametric estimation for other models.

– Physical Models. They compute an estimated out-
put for the RUL of a piece of machinery from a
mathematical representation of the physical be-
haviour of the degradation processes [15]. By
using physical models, users can obtain a thor-
ough understanding of the system behaviour in re-
sponse to different levels of stress and burden, at
both macroscopic and microscopic levels.

In this work, we focus on the use of Knowledge-
based Models in predictive maintenance. In the next
subsection, we present the existing solutions, espe-
cially the ontology-based approaches that are applied
to failure prediction tasks.

2.2. Existing Knowledge-based Models to Predictive
Maintenance

In recent years, several knowledge-based models
have been proposed to facilitate the failure prediction
tasks in the predictive maintenance domain. Among
them, the ontology-based approach is an effective and
notable method that has drawn considerable attention
from researchers. Ontologies are explicit specifications
of conceptualizations, and they are comprehensive and
reusable knowledge repositories in various domains
[16]. In general, this type of approach uses ontolo-
gies to formally define the semantics of knowledge and
data, and utilizes sets of logic rules to enable onto-
logical reasoning, for inferring new knowledge. The
available research works related to this approach can
be categorized into two major fields, according to dif-
ferent purposes: i) using ontology-based approach to
represent data mining results in a formal and struc-
tured way, to further enrich knowledge bases; ii) using
ontology-based approach to facilitate knowledge for-
malization,sharing and reuse in the predictive mainte-
nance domain.

To formalize the data mining results and to facili-
tate the interpretation of them, many researchers tried
to incorporate explicit domain knowledge with using
ontologies. The DAMON ontology [17] is developed
as a data mining ontology to simplify the development
of distributed knowledge discovery systems. The on-
tology is used as a knowledge reference model to help
domain experts solve tasks. Also, the ontology enables
users to search for data mining resources and soft-
ware when they want to find solutions for a specific
problem. The EXPO ontology [18] formalizes con-
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cepts about experimental design, methodologies and
results representation in a general way. The ontology
promotes the sharing of experimental results within
and among different subjects, and it can reduce the in-
formation duplication and loss in the sharing process.
The OntoDM-core ontology [19] is developed to for-
mally describe core data mining entities. The ontol-
ogy provides a framework to represent essential and
basic data mining concepts, such as data sets, data
mining tasks, algorithms, and constraints. The advan-
tage of this ontology is its powerful representation of
constraint-based data mining activities.

The use of an ontology-based approach can also
facilitate knowledge formalization, sharing and reuse
in the predictive maintenance domain. In the con-
text of predictive maintenance, several ontologies and
ontology-based intelligent systems are developed to
achieve this goal. To enhance the expressiveness of
these ontologies, several rule-based extensions were
proposed to perform ontological reasoning, in order to
facilitate maintenance decisions of users. We review
existing ontologies according to two aspects: ontolo-
gies that model manufacturing processes and ontolo-
gies that model preventive maintenance tasks.

As indicated in the introduction, manufacturing pro-
cesses are structured sets of operations that transform
raw materials or semi-finished product segments into
further completed product parts. Over the last decades,
several ontologies have been developed to represent
knowledge about manufacturing processes. The Pro-
cess Specification Language (PSL) ontology [20] is
one of the early-stage contributions. This ontology ax-
iomatizes a set of semantic primitives that are essen-
tial for describing a wide range of manufacturing pro-
cesses. The axioms defined in this ontology model the
key elements of manufacturing processes, such as pro-
cess scheduling, process modeling, production plan-
ning, and project management [20]. Another contribu-
tion in this subdomain is the Manufacturing Service
Description Language (MSDL) ontology, which de-
fines a well-defined framework for formal represen-
tation of manufacturing services [21]. This ontology
formalizes manufacturing capabilities of manufactur-
ing resources in different levels of abstraction, based
on which a rule-based extension of the ontology is
proposed to enable automatic supplier discovery. At
last we mention the Manufacturing Reference Ontol-
ogy (MRO) [22] that is developed to formalize a set
of core concepts about the manufacturing in a high
abstraction level. The ontology categorizes the manu-
facturing domain into eight general concepts: Realized

Part, Part Version, Manufacturing Facility, Manufac-
turing Resource, Manufacturing Method, Manufactur-
ing Process, Feature and Part Family. This categoriza-
tion enables further development of more specific on-
tologies in the production domain.

Compared to ontologies that model manufacturing
processes, ontologies for predictive maintenance are
much less numerous. These type of ontologies nor-
mally focus on the issues of fault or failure prognostics
and machine health monitoring. Among these ontolo-
gies, the OntoProg Ontology [23] addresses the failure
prediction of machines in smart factories. The ontol-
ogy is developed based on a set of international stan-
dards, and a classification for severity criteria, detec-
tion, diagnostics and prognostics of failure modes is
provided. The ontology standardizes the concepts that
are necessary for tackling machinery failure analysis
tasks. As another most recent contribution, the Sensing
System Ontology [24] is proposed to define the em-
bedded sensing systems for industrial Product-Service
Systems (PSSs). This ontology is used as the back-
bone of the PSS knowledge-based framework and it
describes the sensors that are embedded on PSSs, for
the aim of providing customized services for users.

We summarize the domain coverage of existing
ontologies in Table 1. A comparison among exist-
ing ontologies with respect to the MPMO ontology
is also presented. We evaluate the domain coverage
and scopes of these ontologies by examining whether
the key concepts required for describing the predic-
tive maintenance domain are covered and formally de-
scribed in existing ontologies. These key concepts can
be categorized into three subdomains: Manufacturing,
Context, and Condition Monitoring. For the Manufac-
turing subdomain, the key concepts are Product, Pro-
cess and Resource. For the Context subdomain, the
key concepts are Identity, Activity, Time, and Loca-
tion. While for the Condition Monitoring subdomain,
Anomaly, Fault, Failure, Severity, Prognostics, Diag-
nostics, Alarm, and Alert are the key concepts. These
concepts form the columns of the Table 1, and the on-
tologies are enumerated by rows. If the concept is cov-
ered by the ontology, a check mark is placed in the ta-
ble. Otherwise, a cross mark is assigned.

After reviewing the ontologies mentioned above, we
recognize that none of them provides a satisfactory
knowledge representation of the three subdomains.
Some of these ontologies focus on a narrow field,
such as manufacturing resource planning, and they
do not formalize predictive maintenance-related con-
cepts, e.g., machinery Failure and Fault. Also, none
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Table 1
A comparison between the proposed MPMO ontology and the existing ontologies with respect to their domain coverage.

Ontologies Context Condition Monitoring Manufacturing

Identity Activity Time Location Anomaly Fault Failure Severity Prognostics Diagnostics Alarm Alert Product Process Resource

MASON [25] 3 3 7 7 7 7 7 7 7 7 7 7 3 3 3

MSDL [21] 3 3 3 3 7 7 7 7 7 7 7 7 3 3 3

MRO [22] 3 3 3 3 7 7 7 7 7 7 7 7 3 3 3

ONTO-PDM [26] 3 3 3 3 7 7 7 7 7 7 7 7 3 3 3

MCCO [27] 3 3 3 7 3 7 7 7 7 7 3 7 3 3 3

MaRCO [28] 3 3 7 3 7 7 7 7 7 7 7 7 3 3 3

Sensing System Ontology [24] 3 3 3 7 7 7 3 7 3 7 3 3 7 7 7

OntoProg Ontology [23] 3 3 7 3 3 3 3 3 3 3 3 3 7 7 3

MPMO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

of the existing ontologies standardize the concepts re-
lated to chronicle mining. To jointly use chronicle min-
ing with semantic technologies for a predictive mainte-
nance task, the knowledge-based model should incor-
porate not only the machine-interpretable knowledge
of manufacturing entities such as product and process
but also the knowledge about chronicles within which
the machinery failures are described in a structured
way. To this end, an ontology that formally describes
all the concepts in Table 1 is needed. This motivates
us to propose the MPMO ontology. The MPMO ontol-
ogy aims to formalize all the predictive maintenance-
related concepts as well as relationships.

3. Foundations and Basic Notions

In this section, we introduce the foundations and
basic notions of chronicle mining and semantics that
are necessary for describing our approach. The foun-
dations include a formal description of Sequential Pat-
tern Mining (SPM) and chronicles, as well as an intro-
duction to Semantic Web Rule Language (SWRL).

3.1. Foundations of Sequential Pattern Mining

In industry, data collected for preventive mainte-
nance tasks are normally represented as sets of se-
quences with time stamps [29]. To cope with this type
of data sets, SPM is one important technique to ex-
tract frequently occurring patterns. SPM was first stud-
ied by [30], to analyze customer purchase behavior se-
quences. One SPM task could be described as follows:
Given a data set containing a number of sequences, the
goal of SPM is to find sequential patterns whose sup-
port exceed a predefined numeric support threshold.

This support threshold indicates the minimal num-
ber of occurrences of the sequential patterns, and the
found patterns are called frequent sequential patterns.

For the output of SPM algorithms, each frequent se-
quential pattern is a sequence which consists of a set
of items in a certain order.

To give a formal description of sequential patterns,
in this subsection we review the definitions of key con-
cepts. A sequence S is a set of ordered itemsets, de-
noted by S =< S ID, < I1 I2 I3 ... In >>, with SID
standing for the index of the sequence with I j repre-
senting a non-empty set of items. Given two sequences
S a =< S ID, < a1 a2 a3 ...am >> and S b =< S ID, <
b1 b2 b3 ...bn >>, the sequence S a is considered to be
the subsequence of S b, denoted as S a ⊆ S b, if there
exists integers 1 6 k1 < k2 < ... < km 6 n such that
a1 ⊆ bk1, a2 ⊆ bk2, ..., am ⊆ bkm [31]. One exam-
ple of sequence data set is shown in Table 2. In the ta-
ble, each row is a sequence of elements. The elements
are presented with a certain order, showing the prece-
dence relationships among them. For example, regard-
ing the definitions we recalled before, the sequence
< ce(ac) > is the subsequence of < c(abe)(ac f ) >. If
we set the minimum support to 3, we can validate that
< (ab)c > is a sequential pattern with the support of 3.

Over the last decades, considerable contributions
have been settled in the research field of SPM [32]. As
a result, various SPM algorithms have been proposed
to mine frequent sequential patterns. Based on these
proposed SPM algorithms, a variety of approaches and
experiments have been launched to improve the perfor-
mance and efficiency of SPM tasks.

3.2. Sequential Pattern Mining with Time Intervals

Even though sequential patterns contain information
about the orders of items, the algorithms introduced
in the previous section can not specify the time in-
tervals between elements and items. In real-world sit-
uations, the occurrences of events are often recorded
with temporal information, such as time points and
time intervals between events. Thus, several contri-
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Table 2
An example sequence data set.

SID Sequences

10 < c(abe)(ac f ) >

20 < (bcd)(ac)(bd)(ad f ) f >

30 < (cd)(ab)(bc f )e >

40 < b(d f )(bd f )c(ab) >

50 < (ab)(be f )de >

60 < (abe)(cd)(ce) >

butions have been proposed to obtain the time inter-
vals between successive items in sequences. The no-
tion of the time-interval sequential pattern is first pre-
sented by Yoshida et al. [33]. The authors name this
kind of patterns as “delta patterns". A delta pattern is
an ordered list of itemsets with the time intervals be-
tween two neighboring itemsets. It can be represented
as A [0,3]−−→ B [2,5]−−→ C, where A −→ B −→ C is a fre-
quent sequential pattern. The time intervals [0, 3] and
[2, 5] are bounding intervals, which means the transi-
tion time of A → B is contained in the time interval
[0, 3], and the transition time of B→ C is placed in the
time interval [2, 5].

With the introduction of delta patterns, a group
of algorithms were proposed to facilitate the min-
ing process in temporal sequence data sets. One sig-
nificant contribution is the work by Hirate et al.
[34]. In this work, the authors propose the Hirate-
Yamana algorithm to mine all frequent time-extended
sequences. To do this, the authors generalize SPM
with item intervals. In the generalization, they define
a set of time-extended sequences , denoted as S t =<
S ID, (t1,1, i1), (t1,2, i2), (t1,3, i3), ..., (t1,n, in) >>, where
i j means an item, and tα,β is the item interval between
items iα and iβ, tα,β can be interpreted according to two
aspects of conditions [34]:

– If the data sets contain time stamps, which indi-
cate the transaction occurrences of items, then tα,β
becomes the time interval and can be computed
by the equation tα,β = iβ.time − iα.time, where
iβ.time and iα.time are time stamps of items iα and
iβ respectively. For example, one time-extended
sequence could be< (0, c), (1, abe), (3, ac), (5, f )
>, which means item c occurs at time point 0,
followed by itemset abe occurring at 1 time unit
later. Itemset ac occurs 2 time unites after abe,
and the last itemset f occurs 2 time unites after
ac.

– If the data sets do not contain time stamps, then
tα,β may become the item gap and defined by the

equation tα,β = β−α. In this case, the item gap is
defined as the number of items that occur between
two items. This type of representation is suitable
to be applied to data sets which contain fixed item
intervals, but it is not applicable to data sets which
contain various length of time intervals.

The study on existing notions and algorithms help
to capture the core concepts in the domain of time-
interval SPM. These core concepts form the founda-
tions of chronicle mining.

3.3. Foundations of Chronicle Mining

As introduced in the previous section, the temporal
patterns we consider in this paper are chronicles. To
give formal definition of chronicles, we start by intro-
ducing the concept of Event, given by [8].

Definition 1 (Event). Let E be a set of event types, and
T a time domain such that T ⊆ R. E is assumed totally
ordered and is denoted 6E. According to [8], an event
is a couple (e, t) where e ∈ E is the type of the event
and t ∈ T is its time. In SPM, events represent itemsets
of a single sequence.

A sequence contains a set of ordered events, which
are timestamped. The events contained in a sequence
appear according to their time of occurrences.

Definition 2 (Sequence). Let E be a set of event
types, and T a time domain such that T ⊆ R. E
is assumed totally ordered and is denoted 6E. Ac-
cording to the definition in [8], a sequence is a
couple 〈S ID, 〈(e1, t1), (e2, t2), ..., (en, tn)〉〉 such that
〈(e1, t1), (e2, t2), ..., (en, tn)〉 is a sequence of events.
For all i, j ∈ [1, n], i < j ⇒ ti 6 t j. If ti = t j then
ei <E e j.

When the events are time-stamped, how to describe
the quantitative time intervals among different events
is vital important for the prediction of possible future
events. To achieve this goal, we introduce the notion
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temporal constraints in the following definition. The
definition of temporal constraints is adopted from the
one introduced in [8].

Definition 3 (Temporal constraint). A temporal con-
straint is a quadruplet (e1, e2, t−, t+), denoted e1[t−, t+]e2,
where e1, e2 ∈ E, e1 6E e2 and t−, t+ ∈ T.

t− and t+ are two integers which are called lower
bound and upper bound of the time interval, such that
t− 6 t+. A couple of events (e1, t1) and (e2, t2) are
said to satisfy the temporal constraint e1[t−, t+]e2 iff
t2 − t1 ∈ [t−, t+].

We say that e1[a, b]e2 ⊆ e′1[a
′, b′]e′2 iff [a, b] ⊆

[a′, b′], e1 = e′1, and e2 = e′2
With obtaining introducing the events and temporal

constraints among different events within a sequence,
we are able to to define the concept of chronicles [8].

Definition 4 (Chronicle). A chronicle is a pair C =
(E , T ) such that:

1. E = {e1...en}, where ∀i, ei ∈ E and ei 6E ei+1,
2. T = {ti j}16i< j6|E| is a set of temporal con-

straints on E such that for all pairs (i, j) satisfy-
ing i < j, ti j is denoted by ei[t−i j , t

+
i j ]e j.

E is called the episode of C, according to the defini-
tion of episode’s discovery in sequences [8].

In the chronicle discovery process, support is used
as a measure to compute the frequency of a pattern in-
side a sequence. It can therefore be formalized by the
definition below.

Definition 5 (Chronicle support). An occurrence of a
chronicle C in a sequence S is a set (e1, t1)...(en, tn)
of events of the sequence S that satisfies all temporal
constraints defined in C. The support of a chronicle C
in the sequence S is the number of its occurrences in
S, or the percentage of its occurrences in the sequence
S [29].

The relevance of a chronicle is essentially based on
the value of its support.

To illustrate these basic definitions, we give an ex-
ample including a sequence and a chronicle extracted
from it. Assuming a sequence S contains three events
< A, B,C >, represented as follows:

In Fig. 3, time constraints that describe the pattern
{A, B, C} are noted by A[2,5]B, B[1,5]C and A[6,7]C.
Here [2,5], [1,4] and [6,7] lower and upper bounds of
the time intervals among events.

After the generation of temporal constraints, these
events can be represented as a graphical way, as shown

Fig. 3. A sequence representing three events.

in Fig. 4. In the figure, events are represented by the
circles, and temporal constraints are displayed through
arrows among events. The values above each arrow are
quantitative numerical bounds of temproal constraints.

Fig. 4. Example of a chronicle.

In the domain of predictive maintenance, frequent
chronicle mining has been used to detect machine
anomalies in advance. To combine frequent chronicle
mining and semantics for facilitating predictive main-
tenance tasks, a special type of chronicles, called fail-
ure chronicles is introduced [29].

Definition 6 (Failure chronicle). For a chronicle CF =

(E , T ), we say that CF is a failure chronicle if and only
if the events that describe it are set according to their
order of occurrence in the sequence, and that the end
of the chronicle is the event that represents the failure,
i.e. for E = {e1 · · · en|ei 6E ei+1, i ∈ [1, n]}, en is the
failure event.

In [29], a new algorithm called CPM has been in-
troduced to mine frequent failure chronicles. Based on
their work, in this paper, we propose a novel algorithm
to automatically generate SWRL rules from frequent
failure chronicles. The generated SWRL rules aim to
provide decision making for predictive maintenance in
industry. The algorithm is introduced in Section 4.



10 Qiushi Cao et al. / Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. The procedure of the semantic approach for predictive maintenance.

3.4. Semantic Web Rule Language

Semantic Web Rule Language (SWRL) is based on
a combination of its sublanguages OWL DL and OWL
Lite with the RuleMarkup Language. A SWRL rule is
in the form of an implication between an antecedent
(body) and consequent (head), which can be inter-
preted in a way that whenever the conditions speci-
fied in the antecedent hold, then the conditions speci-
fied in the consequent must also hold [35]. In SWRL, a
rule has the syntax: Antecedent→ Consequent, where
both the antecedent (body) and consequent (head) con-
tains zero or more atoms. Atoms in SWRL rules can
be the form of C(x), P(x,y), where C(x) is an OWL
class, P is an OWL property, and x,y are either vari-
ables, OWL individuals or OWL data values [35].

In this work, the reason we choose SWRL rules is
two-fold. Firstly, SWRL provides model-theoretic se-
mantics and has the advantage of its close association
with OWL ontologies, which enables the definition of
complex rules for reasoning about individuals in on-
tologies. Secondly, the use of SWRL to write rules is
independent of rule implementation languages within
rule engines, which has the advantage of the flexible
selection of rule engines and inference platform.

To represent data mining results, especially chron-
icles, in a formal and structured way, we use ontolo-
gies as well as SWRL rules to propose predictive rules.
The proposed rules describe events and temporal con-
straints within chronicles, and predict a special type
of event (a machinery failure), with corresponding to
temporal information.

4. A Novel Hybrid Semantic Approach For
Predictive Maintenance

To propose the novel hybrid semantic approach
for predictive maintenance, we jointly use data min-
ing and semantic technologies, within which chroni-
cle mining is used to predict the future failures of the
monitored industrial machinery, and domain ontolo-
gies with their rule-based extension is used to predict
temporal constraints of failures and to represent the
predictive results formally. The procedure of the se-
mantic approach is shown in Fig. 5. Firstly, data pre-
processing is implemented on raw industry data sets
to obtain sequences in the form of pairs (event, time
stamp), where each sequence finishes with the failure
event. Secondly, frequent chronicle mining algorithms
mine the pre-processed data to discover frequent pat-
terns that indicate machinery failures. Thirdly, based
on the mined frequent patterns, semantic technologies
are used to automate the generation of SWRL-based
predictive rules. These rules enable ontological reason-
ing over individuals in ontologies, thus facilitating de-
cision making.

4.1. Domain Knowledge

Within an intelligent system, ontologies contain
the domain knowledge to operate. In this work, the
MPMO ontology is developed to describe the concepts
and relationships within chronicles. The definitions of
key concepts and relationships in the MPMO ontology
are formalized based on the basic notions introduced in
Section 3. To ensure the reusability of the MPMO on-
tology, we adopt the ontology modularization method
during the development process [36]. As a result, the
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Fig. 6. The global architecture of the MPMO ontology [1].

ontology is constructed with three small reusable mod-
ules: the Condition Monitoring Module, the Manufac-
turing Module, and the Context Module. In this way,
other ontology engineers and ontologists can reuse a
portion of the MPMO ontology when they need. This
ensures the reusability of the MPMO ontology. Fig.
6 shows the global architecture of the ontology. In
the figure, round rectangles stand for classes, solid
lines stand for is-a or subsumption relationships, and
dashed lines represent object properties. The classes
with gray background belong to the Manufacturing
Module, classes with black background are associated
with the Context Module, and classes with white back-
ground belong to the Condition Monitoring Module.
More detailed descriptions of the MPMO ontology can
be found in our previous paper [1].

The original MPMO ontology is not capable of
providing specific knowledge about different types of
events (non-failure events, failure events) as well as
their temporal information. This motivates us to de-
velop a more specific domain ontology, which extends
the MPMO ontology and focus on the modelling of
essential knowledge for failure prediction. To enable
failure prediction based on chronicles, we extend the
MPMO ontology to describe different types of events
and their temporal information. We use a UML nota-
tion where boxes stand for ontology classes, and ar-
rows represent object properties. Data properties are
indicated by class attributes. The UML diagram for de-
scribing the main classes is shown in Fig. 7. For the
purpose of clarity, only a subset of the whole classes
and relationships are presented.

We then give the axioms of the main classes in
the MPMO ontology. The axioms defining the main

classes are presented below using the description logic
(DL) syntax [37].

– ManufacturingResource: This class describes the
resources that are used within manufacturing pro-
cesses. It consists three subclasses: FinancialRe-
source, HumanResource, and PhysicalResource.
Among the three subclasses, PhysicalResource
stands for a set of physical entities that the predic-
tive maintenance tasks are performed upon, such
as machine tools, workpieces, and final products.
The definition of this class is extended from the
class MASON: Resource, in the MASON ontol-
ogy [25]. The DL axioms for defining this class
and the PhysicalResource class are

Manu f acturingResource ≡ HumanResource t

PhysicalResource t FinancialResource,

and

Manu f acturingResource v ∀MakesUse−

O f−1.Manu f acturingProcess.

– ManufacturingProcess: It describes different types
of structured sets of operations that transform raw
materials or semi-finished product segments into
further completed product parts [1]. The DL ax-
ioms for defining this class are

Manu f acturingProcess ≡ AssemblyProcess t

FinishingProcess t FormingProces t

MachiningProcess t MouldingProcess,
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Fig. 7. The main classes in the extended MPMO ontology.

and

Manu f acturingProcess ≡ ∃MakesUseO f .Ma−

nu f acturingResource u ∃hasProcessInput.W−

orkpiece u ∃Produces.RealizedPart.

– Chronicle: Chronicles are a special type of tem-
poral patterns, in which temporal orders of events
are quantified with numerical bounds [8]. To in-
troduce this concept in the MPMO ontology, we
use the following axiom.

Chronicle ≡ ∀hasEvent.Event u

(> 1 hasEvent.Event) u ∀hasT imeInterval.Ti−

meInterval u (> 1 hasT imeInterval.TimeInte−

rval) u ∃isLearnedFrom.Manu f acturingPro−

cess.

– Event: . In predictive maintenance tasks, an Event
is generally associated with a set of Observed-
Properties which indicate the correctness of the
operation of a piece of machinery. In this context,
the DL axioms for defining this class is

Event ≡ ∀hasObservedProperty.Observed−

Property u (> 1 hasObserved.Property).

– ObservedProperty: This is an attribute which rep-
resents some significant measurable characteristic
of a monitored ManufacturingProcess, Manufac-
turingResource or RealizedPart. The value of an
ObservedProperty is measured by sensors which
are located at different components of the mon-
itored entity. This class is also called Attribute.
The DL axioms for defining this class are
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ObservedProperty v ∃hasObserved−

Property−1.Event u ∃Observes−1.S ensor.

– Failure: This class represents the Failures that are
indicated by Events. A Failure is the inability of
an entity to perform one required function, and it
can be the result of a propagation of a machinery
error [38]. The following axiom is used to define
this class:

Failure v ∀PropagatesInto−1.Error.

– TimeInterval: A temporal entity with an extent or
duration. The definition of this class is adopted
from the Time Ontology [39]. The axiom for de-
scribing this class is

TemporalInterval v ∃hasProceeding−

Event.Event u ∃hasS ubsequentEvent.Event u

∃hasT imeInterval−1.Chronicle.

By defining the common concepts and relationships
in the predictive maintenance domain, the MPMO on-
tology can support semantic interoperability among
different systems and system components. Also, the
MPMO ontology provides rich representations of
machine-interpretable semantics for knowledge-based
predictive maintenance systems. This ensures the pre-
dictive maintenance systems can interoperate with
shared semantics and a high level of semantic preci-
sion.

4.2. Rules

In the proposed semantic approach, different SWRL
rules are used for predicting machinery failures. The
launching of these rules allows reasoning over individ-
uals contained in the MPMO ontology. In this subsec-
tion, we first introduce SWRL rules which are used to
predict the time interval between a certain event and
a future failure, and then introduce the algorithm de-
veloped for transforming chronicles into SWRL rules.
The proposed rules and algorithm enable the semantic
approach for automatic failure prediction in the predic-
tive maintenance domain.

4.2.1. Failure Time Prediction Rules
Chronicles provide not only the order of occurrence

of events, but also the intervals of time they occur in.
Fig. 8 gives an example failure chronicle within which
the last event is a failure.

Fig. 8. Example of a failure chronicle.

Inside the chronicle, A, B and C are different events.
The three events are identified by their associated
observed properties and quantitative values. The ob-
served properties and quantitative values are obtained
by a feature selection method, that determines the most
relevant attributes in predicting the future failures. The
last event C indicates a failure, and the time intervals
among events A, B with event C gives the temporal
information of a future failure (event C).

However, even though the chronicle in Fig. 8 is rep-
resented in a structured format, it lacks formal seman-
tics and domain knowledge to be interpreted by hu-
mans and predictive maintenance systems. For exam-
ple, the descriptions of events A, B, and C are miss-
ing, which may cause the semantic gap between chron-
icle mining results and users. To overcome this issue,
we use ontologies with their rule-based extensions to
represent chronicles in a semantic rich format, which
helps the sharing and reuse of chronicle mining results.

As the mining of sequential data sets can generate
frequent failure chronicles, SWRL rules can be pro-
posed to reason about temporal information of machin-
ery failures. Therefore, when a new sequence of times-
tamped events arrive, SWRL rules can be launched to
predict the time intervals among different events and
future failures. As stated in Section 4.1, an event within
a chronicle is determined by a set of observed proper-
ties (with their associated values). Based on this defini-
tion, we construct the antecedent of such a rule by de-
scribing quantitative values of observed properties (at-
tributes) and the temporal constraints inside a chroni-
cle. The consequent of such a rule comprises the lower
and upper bounds of the time intervals among certain
events and the failure.
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Fig. 9. Example of a SWRL-based predictive rule, generated from the chronicle introduced in Fig. 8.

Based on the chronicle in Fig. 8, a SWRL rule can
be elicited. Fig. 9 demonstrates how the rule that de-
scribes different events and temporal constraints can
be constructed from the chronicle in Fig. 8. Within
the rule, Chronicle stands for the root class of all
the chronicle individuals in the ontology. hasEvent is
the object property that links individuals of the class
Chronicle and those under the class Event. hasA1V,
hasA2V, hasA3V, and hasA4V are data properties that
assign quantitative values of attributes to the two in-
dividuals A and B under the Event class. TimeIn-
terval corresponds to the root class of all individu-
als of time intervals. There are two object proper-
ties that link TimeInterval with Event: hasSubEvent
and hasProEvent, among which hasSubEvent corre-
sponds to the subsequent event of a time interval, and
hasProEvent indicates the proceeding event of a time
interval. In this case, event A is the proceeding event
of the time interval between A and B, and event B
is the subsequent event of this time interval. By de-
scribing the numerical values of different attributes and
the time interval with its proceeding and subsequent
events, temporal constraints among events A, B with
the failure C are indicated. The temporal constraints
comprise the minimum time duration between an event
with the failure, described by the data property has-
MinF, and the maximum time duration between an
event with the failure, described by another data prop-
erty hasMaxF.

4.2.2. Automatic Rule Generation Based on
Chronicles

To enable the automatic generation of a SWRL rule,
in this work we propose an algorithm to transform
chronicles into predictive SWRL rules. Algorithm 1
demonstrates the general idea of our rule transforma-
tion method. It runs in four major steps:

1. The function LastNonfailureEvent extracts the
last non-failure event within a chronicle.

2. For each temporal constraint in a chronicle,
the two functions ProceedingEvent and Subse-

quentEvent extract the proceeding and subse-
quent events of the time interval that is defined
in this temporal constraint. Then the two events
and this time interval forms different atoms in
the antecedent of the rule, and they are treated as
conjunctions.

3. For each last non-failure event before the fail-
ure (there could be multiple last events before the
failure), extract the temporal constraint between
this event and the failure. The extracted temporal
constraint is treated as a conjunction with the last
event, to form the consequent of the rule.

4. At last, a rule is constructed as an implication
between the antecedent and the consequent.

We then analyze the time complexity of Algorithm
1. The input of the algorithm is a chronicle CF that con-
tains i non-failure events and one failure event at the
end. The construction phase for the rule antecedent has
complexity of O(i2) as it is performed by a loop to all
the non-failure events ei for each temporal constraint
ei[t−i j , t

+
i j ]e j in T . Similarly, the construction phase for

the rule consequent has complexity of O(i2), depend-
ing on the number of non-failure events that are asso-
ciated with the failure. Once the rule antecedent and
consequent are generated, the algorithm constructs a
SWRL rule by setting up an implication between the
antecedent and consequent. The complexity for set-
ting up the implication is quadratic CimplicationO(i2),
where Cimplication is the complexity of constructing the
implication between rule antecedent and consequent.
Cimplication is dependent on the size of an input chroni-
cle (number of e in the episode E , number of temporal
constraints ei[t−i j , t

+
i j ]e j in T ).

A sequence can be described by one or multiple
chronicles. To improve the quality of failure predic-
tion, we only keep the most relevant chronicles for the
rule transformation. In this context, we take features
of chronicles such as Chronicle Support as a reference
measure, to select the most relevant chronicles.



Qiushi Cao et al. / Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 1 Algorithm to transform a chronicle into
a predictive SWRL rule.

Require: CF : A chonicle within which the last event is
a failure event, E : the episode of CF which contains
different types of events in a chronicle.

Ensure: R
1: EL← LastNon f ailureEvent(CF , E)
2: . Extract the last non-failure event before the

failure within a chronicle.
3: R← ∅, A← ∅, C ← ∅, Atoma ← ∅, Atomc ← ∅.
4: for each ei[t−i j , t

+
i j ]e j ∈ T do

5: pe← ProceedingEvent(ei[t−i j , t
+
i j ]e j)

6: . Extract the proceeding event of this time
interval

7: se← S ubsequentEvent(ei[t−i j , t
+
i j ]e j)

8: . Extract the subsequent event of this time
interval

9: Atoma ← [t−i j , t
+
i j ] ∧ pe ∧ se

10: A← Atoma ∧ ([t−i j , t
+
i j ] ∧ pe ∧ se)

11: end for each
12: for each el ∈ EL do
13: f tc← FailureT imeConstraint(el,T I)
14: . Extract the time constraint between the last

event before the failure and the failure event.
15: Atomc ← el ∧ f tc
16: C ← Atomc ∧ (el ∧ f tc)
17: end for each
18: R← (A→ C)
19: return R

5. Experiments

We validate our approach by conducting experimen-
tation on the SECOM data set [40], which contains
measurements of features of semi-conductor produc-
tions within a semi-conductor manufacturing process.
To evaluate the effectiveness of our approach, a soft-
ware prototype is developed based on Java 10.0.2, Pro-
tégé 5.5.0 [41], OWL API [42] and SWRL API [43]1.
The reason we choose Protégé and OWL API is their
convenience of creating, parsing, manipulating, and
serializing OWL Ontologies. SWRL API allows us
to create and interact with SWRL rules and SQWRL
queries. Also, the graphical tools embedded in SWRL
API ease the visualization and interpretation of rule-
based reasoning and querying results. Among these
tools, OWL API is used to build and manipulate the

1The source codes for this paper can be found at:
https://sites.google.com/view/combiningchronicleminingandsem/home

MPMO ontology. Different types of chronicles are cre-
ated as individuals within the MPMO ontology, and
SWRL-based predictive rules are proposed using the
transformation algorithm introduced in Section 4.2.2.
To enable ontology reasoning, the SWRL API, which
includes a SWRL Rule Engine API, is used to create
the transformed rules and then execute them. Within
this process, the Drools rule engine [44] is used for rule
execution. At last, the inferred knowledge is returned
to the OWL API, and stored in the new ontology. The
running environment of the software prototype is Mi-
crosoft Windows 10.

5.1. The SECOM Data Set

In the SECOM data set, 1567 recordings and 590 at-
tributes are collected, with each recording being char-
acterized by a time stamp referring to the time that
the data is recorded. Each recording is also associated
with a label, which is either 1 or -1. The label of every
recording explains the correctness of the event, with -1
corresponding to a non-failure event, and 1 refers to a
failure. Timestamps are associated with all the records
indicating the moment of each specific test point. In to-
tal, 104 pieces of records represent the failures of pro-
duction. The data is stored in a raw text file, within
which each line represents an individual example of
recording with its timestamp. The features are sepa-
rated by spaces.

However, the data contained in SECOM data set do
not have the same types of attributes and values, that
some of the information contained in the data is irrele-
vant to the failure prediction task thus is considered as
noise. Moreover, due to the inter-dependency among
individual features and the complex behavior of com-
bined features, it is difficult to extract frequent patterns
and rules based on analysis of all the 590 attributes.
Thus, in this context, instead of going through the en-
tire data set and use all 590 attributes for failure predic-
tion, we use feature selection methods [45] to identify
and select the most relevant attributes in predicting the
failures. The selected attributes are subsequently used
to extract the key factors and patterns that lead to ma-
chine failures. This reduces the data processing time
and memory consumption.

5.2. The Extraction of Frequent Failure Chronicles

We aim to extract frequent failure chronicles and test
the performance of Algorithm 1 on the SECOM data
set. To obtain frequent failure chronicles, we use the
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Fig. 10. Different steps used in the frequent failure chronicle mining approach, adapted from [29].

Table 3
Extracted failure chronicles that have the highest 10 chronicle support.

Failure Chronicle Number of Events Number of Time Intervals Attributes Chronicle Support

CF1 3 3 A63, A64, A102, A204, A209, A476 83.65%
CF2 3 3 A63, A64, A102, A204, A209, A347, A476 82.69%
CF3 3 3 A58, A64, A102, A204, A209, A476 82.69%
CF4 3 3 A58, A63, A102, A204, A209, A347 81.73%
CF5 3 3 A58, A63, A64, A102, A204, A209, A347, A476 81.73%
CF6 3 3 A58, A102, A204, A209, A347, A476 80.77%
CF7 3 3 A58, A204, A209, A347, A476 80.77%
CF8 4 4 A63, A64, A102, A204, A209, A347, A476 78.84%
CF9 4 4 A58, A63, A102, A204, A209, A347 78.84%
CF10 4 4 A58, A204, A209, A347, A476 78.84%

frequent chronicle mining approach introduced in [29].
In [29], an industrial data pre-processing method is in-
troduced, including data discretization and sequential-
ization. Fig. 10 shows different steps within the data
mining, especially the frequent chronicle mining ap-
proach. The steps presented in Fig. 10 elaborates the
data mining procedure which is described in Fig. 5.
The approach starts with the aforementioned feature
selection, after which a feature subset of the SECOM
data set is obtained while retaining a suitably high ac-
curacy in representing the original data set. As a result,
10 most relevant attributes are selected as the optimal
subset of all 590 attributes. After the feature selection,
data discretization [46] is employed to discretize con-
tinuous values for obtaining nominal ones. Thereafter,
data sequentialization is used to transform the data
into the form of pairs (event, time stamp), where each
sequence finishes with a failure. With obtaining se-
quences that contain failures, CloSpan algorithm [47]

is applied to the pre-processed data set, to extract fre-
quent sequential patterns. Also, the frequent chronicle
mining algorithm introduced in [29] is used to extract
the temporal constraints among these sequential pat-
terns. Up to this step, we are able to obtain frequent
failure chronicles that will be transformed into predic-
tive rules.

As introduced in Section 4, to improve the quality
of failure prediction, we take Chronicle Support as a
reference measure, to select the most relevant failure
chronicles for failure prediction. As a result, only a
subset of all frequent chronicles are used for predictive
rule transformation. Table 3 shows the failure chroni-
cles that have the 10 highest chronicle support. We use
these chronicles as examples to demonstrate the pre-
dictive rule generation approach. In Table 3, each fail-
ure chronicle is described by the number of events that
it contains, the number of time intervals among events,
all the observed properties (attributes) that character-
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ize the failure chronicle, and the chronicle support. For
the ease of demonstration, we label the 590 attributes
as A1, A2, A3...A590.

For an event within a failure chronicle, it is not only
identified by a set of attributes, but also the quantita-
tive values of them. To obtain the corresponding quan-
titative attribute values for describing each event, data
discretization has been applied to the SECOM data set.
After data discretization, the quantitative data has been
translated into qualitative data. Also, an association be-
tween each numerical value and a certain interval has
been created. Taking the chronicle that is presented in
Fig. 8 as an example, Table 4 shows the numerical
intervals for describing the events within this failure
chronicle. This chronicle is the failure chronicle CF5

introduced in Table 3.

5.3. The Generation of SWRL-based Predictive Rules

Based on the descriptions of the failure chronicle
CF5, we use the algorithm introduced in Section 4.2.2
to generate a SWRL-based predictive rule. The result
of this rule generation is shown in Fig. 11. In this rule,
hasA58V, hasA63V, hasA64V, hasA102V, hasA204V,
hasA209V, hasA347V, hasA476V are data properties
in the MPMO ontology that link individuals of the
Event class with XML Schema Datatype values. They
correspond to the quantitative values of the attributes
A58, A63, A64, A102, A204, A209, A347, and A476 in
the SECOM data set. To describe the numerical in-
tervals which are obtained by discretization, SWRL
Built-Ins are used to specify the upper and lower nu-
merical boundaries. The consequent of this rule com-
prises the temporal constraints among Events A, B and
C. The minimum time duration between an event with
the failure is described by the data property hasMinF,
and the maximum time duration between an event with
the failure is described by another data property has-
MaxF. By this way, the temporal constraints of a future
failure is inferred by the launching of such a predictive
SWRL rule. This rule is an instantiation of the generic
rule introduced in Fig. 9.

5.4. Results Evaluation

To evaluate the usefulness and effectiveness of our
approach, we conduct results evaluation from two per-
spectives: i) the evaluation of the MPMO ontology;
and ii) the evaluation of the SWRL rule-based failure
prediction results. It should be noted that for evalua-
tion we focus on the quality of semantic enrichment

to the chronicle mining results, and the evaluation of
the performance of the chronicle mining phase is out
of the scope of this paper.

5.4.1. Evaluation of the MPMO Ontology
Ontology evaluation enables users to assess the

quality of ontologies. It is essential for the wide adop-
tion of ontologies, since ontologies can be shared and
reused by different users, and the quality of ontologies
such as the consistency, completeness, and concise-
ness of taxonomies are key considerations when differ-
ent users reuse ontologies in specific contexts. In this
paper, to evaluate the quality of the proposed MPMO
ontology, we use OOPS!, which is an online ontology
evaluation tool [48]. The reason we choose this tool for
ontology evaluation is two-fold. Firstly, OOPS! allows
automatic detection of common pitfalls in ontologies,
and the detection of pitfalls can be executed indepen-
dently of the ontology development software and plat-
forms. Secondly, it enlarges the list of errors that can
be detected by most recent ontology evaluation tools,
thus providing a broader scope of anomaly detection
in ontologies [48].

In OOPS!, ontology pitfalls are classified into three
categories: structural, functional, and usability-profiling.
Under each category, fine-grained classification crite-
ria is provided to cope with specific types of anoma-
lies. The MPMO ontology is examined according to
the following three categories [48]:

– Structural dimension: It focuses on anomaly de-
tection on syntax and formal semantics. Since
the MPMO ontology consists of logical axioms,
the syntax and logical consistency can be eval-
uated and validated through anomaly detection
within this category. To be more specific, This
category is composed of five criteria: i) modeling
decisions, which evaluates whether users use the
ontology implementation language in a correct
way; ii) real-world modeling or common sense,
which evaluates the completeness of the domain
knowledge formalized by the MPMO ontology;
iii) no inference, which checks whether the de-
sired knowledge can be inferred through ontology
reasoning; iv) wrong inference, which refers to
the detection of inference that lead to erroneous
or invalid knowledge; and v) ontology language,
which assesses the correctness of the ontology de-
velopment language of the MPMO ontology.

– Functional dimension: It considers the intended
use and functionality of the MPMO ontology.
Under this category, two specific criteria are



18 Qiushi Cao et al. / Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Attributes with their numerical intervals within the failure chronicle CF5.

Event Attribute Numerical Value Interval

A 63 [89.2564, 94.8757)
A 204 [4925.1678, 4999.2456)
A 209 [20.1884, 23.0750)
A 347 [6.4877, 6.9573)
A 476 [125.1988, 137.4435)
B 58 [4.5537, 4.8994)
B 63 [89.3158, 94.8757)
B 64 [90.0196, 94.3934)
B 102 [-0.1188, 0.5231)
B 347 [6.2446, 6.9574)

Fig. 11. The SWRL-based predictive rule transformed from the failure Chronicle CF5, with describing the attributes and their numerical value
intervals.

used to evaluate the MPMO ontology: i) require-
ment completeness, which evaluates coverage of
the domain knowledge that is formalized by the
MPMO ontology; ii) application context, which
evaluates the adequacy of the MPMO ontology
for a given use case or application.

– Usability-profiling dimension: It evaluates the
level of ease of communication when different
groups of users use the same ontology. Within
this category, two specific criteria are applied
for ontology evaluation: i) ontology understand-
ing, which evaluates the quality of information
or knowledge that is provided to users for eas-
ing the understanding of the ontology; ii) ontol-

ogy clarity, which assesses the quality of ontology
elements for being easily recognized and under-
stood by users. These criteria is commonly used
to check the quality of ontologies when users do
not have sufficient domain knowledge.

To evaluate the MPMO ontology according to the
aforementioned categories, we uploaded the ontology
code to the OOPS! online tool. After loading the ontol-
ogy code, the ontology pitfall scanner is used to check
the pitfalls that exist in the MPMO ontology. Fig. 12
shows the evaluation result. The result shows that our
ontology is free of bad practices in the structural, func-
tional, and usability-profiling dimensions of evalua-
tion. Moreover, the MPMO ontology is developed and
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Fig. 12. Screenshot of the ontology evaluation result using OOPS! online tool.

formalized using OWL, which is a widely used lan-
guage for knowledge representation and ontology de-
velopment. This eases the reuse of the MPMO ontol-
ogy in other contexts and also simplifies the integration
of the MPMO ontology with other knowledge compo-
nents that are developed with the same language.

5.4.2. Evaluation of the SWRL Rule-based Failure
Prediction Results

To evaluate the quality of the SWRL rule-based fail-
ure prediction results, we apply the SWRL rules on the
sequences in the SECOM data set, and three measures
are used to assess the quality of these rules: the True
Positive Rate (TPR), the Precision of failure predic-
tion, and the F-measure. The equations for computing
these three measures are shown in Equation 1, 2 and 3.

T PR =
T P

T P + FN
. (1)

Precision =
T P

T P + FP
. (2)

F − measure =
2T P

2T P + FP + FN
. (3)

Among them, TPR measures the proportion of posi-
tive examples that are correctly identified after a classi-
fication approach. In our experimentation, TPR aims to
measure the percentage of positive sequences that have

been correctly classified. In Equation 1, T P (True Posi-
tive) is the true positive results standing for the number
of valid sequences that at least one SWRL rule could
predict the failures in these sequences, and FN (False
Negative) is the false negative results which stand for
the number of sequences that no SWRL rule could pre-
dict the failures in these sequences.

Precision is the fraction of relevant training exam-
ples among the total number of positive examples. In
our case, Precision of failure prediction measures the
percentage of sequences based on which the SWRL
rules are constructed correctly. For a given sequence,
failure chronicles are extracted through chronicle min-
ing and SWRL rules are constructed for failure pre-
diction. After applying the SWRL rules, if the pre-
dicted failure temporal constraints are out of the range
of the failure occurrence time intervals in the sequence,
then it indicates that the SWRL rules could not pre-
dict the temporal constraints of the failure in this se-
quence. Thus, the failure is classified as False Positive.
In Equation 2, T P (True Positive) is the true positive
results standing for the number of valid sequences that
at least one SWRL rule could predict the failures in
these sequences, and FP (False Positive) is the num-
ber of sequences for which the SWRL rules incorrectly
predict the temporal constraints of the future failures.

With obtaining the above two measures, we can
compute the F-measure according to the Equation 3.
F-measure a measurement of a test’s accuracy. It con-
siders both the TPR and the Precision of a rule to com-
pute the value.

Table 5 shows the experimental results of the three
measures. The three measures are computed accord-
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Table 5
True Positive Rate, Precision and F-measure of Failure Prediction Based on SWRL Rules.

f tmin True Positive Rate Precision F-measure

1 82.24% ±6.46% 83.79% ±6.32% 85.35% ±4.52%
0.9 84.21% ±5.35% 86.12% ±6.11% 85.11% ±6.59%
0.8 86.29% ±7.22% 84.44% ±6.27% 85.81% ±6.28%
0.7 89.44% ±5.98% 85.28% ±6.34% 86.55% ±6.17%
0.6 91.18% ±7.69% 88.51% ±5.36% 87.26% ±5.73%
0.5 91.18% ±7.69% 88.28% ±4.08% 87.94% ±5.56%

ing to different frequency thresholds of sequences in
the data set. We use f tmin to denote the minimum fre-
quency threshold of a sequence in the data set.

We can see from Table 5 that all computed values
for the three measures are above 80%, which shows the
results are encouraging. As the minimum frequency
threshold f tmin values decreases, the values of three
measures show an increase tendency. This can be ex-
plained as follows: as f tmin increases, the number of
extracted chronicles decreases, which lead to the de-
crease of the number of transformed SWRL rules. For
this reason, each sequence for testing is less likely to
be validated by the transformed SWRL rules.

Since the SWRL rules are generated from chroni-
cle mining results, the quality of their prediction exclu-
sively depend on the mined frequent chronicles. In this
context, the 10-fold cross validation principle [49] is
used to evaluate the quality of failure prediction. To ap-
ply the 10-fold cross validation principle, the SECOM
data set is partitioned into two parts: the training set
and the test set. Firstly, chronicles are extracted from
the training sequences in the training set. Then, for the
test set, we check for each sequence, its membership in
at least one chronicle among those extracted. The num-
ber of sequences validated by the chronicles is com-
puted to estimate its percentage with respect to the se-
quence set. This procedure is repeated 10 times to val-
idate all the sequences of the database.

The launching of such a set of SWRL-based pre-
dictive rules enables the prediction of temporal con-
straints of future machinery failures. This allows users
to take further maintenance actions, such as the re-
placement of the machine tools used on the production
line. The performance of failure prediction could be
enhanced by considering a new set of rules that reason
about the severity levels of failures. We are currently
applying machine learning techniques to classify the
severity levels of failures, according to the temporal
constraints among the failures and other events.

6. Conclusion and Future Perspectives

This paper demonstrates a novel hybrid approach for
implementing predictive maintenance in industry. The
proposed hybrid approach is a combination of frequent
chronicle mining and semantics, within which chroni-
cle mining is used to extract frequent chronicles based
on industrial data sets, and a knowledge-based struc-
ture is used to automate the SWRL rule generation pro-
cess and to formalize the predictive maintenance re-
sults.

The contributions of this paper are three-fold. Firstly,
chronicles are formally represented with the use of on-
tologies, by which the main concepts and relationships
for describing chronicles are formalized, then easing
the knowledge representation and interpretation of fre-
quent chronicle mining results. Secondly, a novel al-
gorithm for transforming chronicles into SWRL-based
predictive rules is introduced. The novel algorithm al-
lows the automatic generation of SWRL rules based
on the mined frequent chronicles, thus enabling an au-
tomatic semantic approach for predictive maintenance.
Thirdly, the reasoning about temporal constraints of
future machinery failures is enabled by the joint use
of data mining and semantics, which allows the im-
plementation of maintenance actions such as alarm
launching.

However, there exists several limitations of the pro-
posed approach. In general, there are three major prob-
lems need to be solved. The first problem is the par-
tition method of numerical values. Since the rules
we proposed in Section 5 are based on crisp logic,
when the numeric values of attributes collected by
sensors are considerably close to partition thresholds,
the rules proposed in Section 5 may fail to partition
these numeric values into correct categories. To deal
with such kind of uncertainty situations, the use of
fuzzy logic should be considered and a fuzzy seman-
tic approach needs to be implemented. This approach
will use machine learning techniques to automatically
derive membership functions and fuzzy if-then rules
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from data sets. The fuzzy rules aim to enhance the rep-
resentation of imprecise severity level of machinery
failures. For example, an identification of failure will
be associated with a fuzzy index, indicating the grade
of its membership to a “low” or “high” level of fail-
ure. The fuzzy approach will be applied to tackle the
challenge of symbol anchoring problem [50].

The second problem is the evolution of the ontol-
ogy and the rule base. Since the manufacturing domain
is highly-dynamic, the predictive maintenance system
should be able to adapt itself to dynamic situations
over time, for example, the change of context. Also,
when the system fails to provide satisfactory results
through launching the rules, it is required to consult
domain experts for decisions about failure prediction
and maintenance. In this situation, the domain experts
use their expertise and experience to assess the current
state of the system and provide appropriate decisions.
For example, when the temperature measured by a sen-
sor located at a cutting tool exceeds its threshold and
no rule in the rule base is able to warn about his ab-
normal condition, domain experts can use their expe-
rience and expertise to identify this abnormal condi-
tion and provide possible solutions in order to avoid
the production line to produce unqualified products. In
this way, new rules which capitalize experts’ experi-
ence needs to be proposed to update the initial set of
rules in the rule base, in order to facilitate the qual-
ity of failure prediction. In this context, when the next
time a similar situation needs to be addressed, the rule
which capitalizes domain experts’ experience will be
launched together with the initial rules to identify po-
tential failures and to make predictions. This requires
the ontology and the rule base to be capable of coping
with the dynamic change of knowledge. To deal with
this issue, knowledge base evolution solutions should
be proposed: The ontology should be able to adapt it-
self efficiently to the changes with using ontology evo-
lution techniques, and the rule base should be updated
according to the change of context, by implementing
contextual reasoning.

The third problem is the handling of real-time data.
Since the manufacturing domain is highly-dynamic,
how to process real-time and heterogeneous data
streams is a crucial concern to manufactures. However,
the proposed approach uses the classical ontology rea-
soning techniques, which can not deal with highly dy-
namic data in a timely fashion. To cope with this is-
sue, stream reasoning techniques should be adopted
to reason upon a variety of highly dynamic data [51].
In stream reasoning, rich query languages are pro-

vided by stream reasoners to continuously query data
streams. In this way, predictive maintenance systems
are able to detect and predict machinery failures in
real-time.
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