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Abstract. The topological structure of RDF graphs inherently differs from other types of graphs, like social graphs, due to the
pervasive existence of hierarchical relations (TBox), which complement transversal relations (ABox). Graph measures capture
such particularities through descriptive statistics. Besides the classical set of measures established in the field of network analysis,
such as size and volume of the graph or the type of degree distribution of its vertices, there has been some effort to define
measures that capture some of the aforementioned particularities RDF graphs adhere to. However, some of them are redundant,
computationally expensive, and not meaningful enough to describe RDF graphs. In particular, it is not clear which of them are
efficient metrics to capture specific distinguishing characteristics of datasets in different knowledge domains (e.g., Cross Domain
vs. Linguistics). In this work, we address the problem of identifying a minimal set of measures that is efficient, essential (non-
redundant), and meaningful. Based on 54 measures and a sample of 280 graphs of nine knowledge domains from the Linked
Open Data Cloud, we identify an essential set of thirteen measures, having the capacity to describe graphs concisely. These
measures have the capacity to present the topological structures and differences of datasets in established knowledge domains.

Keywords: RDF Graph, Graph Topology, Graph Measures, Measure Assessment, RDF Graph Profiling

1. Introduction

Characteristics of RDF graphs can be captured
through descriptive statistics using graph-based
measures.

Understanding the topology of RDF graphs can
guide and inform the development of, e.g., synthetic
dataset generators, sampling methods, profiling tools,
dataset discovery, index structures, or query
optimizers. Solutions in the aforementioned research
areas rely on effective measures and statistics, in order
to be compliant with real-world situations and to
return appropriate results.

*Corresponding author. E-mail: matthaeus.zloch@gesis.org.

RDF graphs have a distinct topology from other
graphs, like social graphs or computer networks, due
to the pervasive existence of hierarchical relations:
relations within the ABox (assertional statements - the
data) are complemented by relations within the TBox
(terminological statements - schema definitions, e.g.,
rdfs:subClassOf) as well as between ABox and TBox.
rdf:type is probably the most famous example
adhering to almost every description of a resource in
an RDF dataset. These particularities are directly
reflected in one RDF graph’s topology and lead to,
e.g., higher overall connectivity and existence of
redundant structural patterns in the graphs, and as
such, they cannot be captured with ordinary measures.
In addition to known measures from the field of
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network analysis [1, 2], such as the number of
vertices/ edges and the distribution of vertex degrees,
there has been some effort to define measures to
characterize RDF graphs [3], in order to capture the
aforementioned particularities RDF graphs involve.

Problem Statement
Computing arbitrary graph measures for RDF

graphs is computationally expensive. Measures like
diameter (the longest shortest path in a graph),
clustering coefficient (tendency of the graph to build
clusters), or the mean repetitive distinct predicate set
usage per subject, e.g., involve a degree of complexity
and are costly in terms of computation time
(depending of the size of the graph, i.e., number of
vertices/edges). Focusing on an efficient set of
descriptive measures helps RDF profiling tools to
speed up the process and to create concise
descriptions of RDF graphs.

The main objective of this paper is to identify such
an essential set of measures. We aim to identify a set
of meaningful, efficient, and non-redundant measures,
for the goal of describing RDF graph topologies more
accurately and facilitating the development of the
aforementioned solutions. An efficient measure is
considered to be discrete and adding extra value in
describing a graph, without being dependent on
another measure. Its existence contributes to the
conciseness of a graph’s description.

Approach and Methodology
In order to gain an understanding of measure

effectiveness and identify optimal graph measures, we
investigate 54 distinct graph measures and apply
feature engineering techniques on various tasks. Our
study bases on 280 RDF datasets sampled from all
categories of the Linked Open Data Cloud1 (LOD
Cloud) late 2017, and values of about 54 (RDF)
graph-based measures.

We follow a three-stage approach. First, we
investigate feature redundancy by computing feature
correlations among all measures and apply feature
selection methods, to eliminate redundant and
non-effective measures. For the resulting set of
non-redundant measures, we study measure
variability in terms of statistical tests across and
within categories, i.e., the nine distinct knowledge
domains provided by the LOD Cloud. Finally, we
assess measure performance concerning a measure’s

1https://lod-cloud.net/

capacity to discriminate dataset categories in binary
classification tasks, using state-of-the-art machine
learning models.

The experiment results show that a large proportion
of graph measures are redundant, in terms of that they
do not add value to describe RDF graphs. Only the
essential set of thirteen measures have the capacity to
describe RDF graphs concisely. Moreover,
characteristics of RDF graphs vary notably across
knowledge domains, which is well reflected in the
evaluation of measure impact when it comes to
discriminating RDF graphs by knowledge domain.

Contributions and Structure
This work is considered an extension of a recently

published paper [2]2.
Whereas key contributions of [2] include (a) a

framework for efficiently computing graph measures
and (b) an initial application of such measures to
datasets of the LOD cloud, this work is an extension
through the following contributions:

- Formal definitions of 28 graph measures in terms
of RDF graphs (§ 3),

- Implementation of 31 RDF graph measures
formally defined in [3], as an extension of the
software framework3, and

- an update of the website as a browsable version4

for all datasets that were analyzed, with values
from the measure computation.

- A graph-based analysis of a mixed set of
fifty-four graph and RDF graph measures,
obtained from a sample of 280 datasets from the
LOD Cloud (§ 4).

- Identification of an efficient set of measures
through feature engineering techniques, in order
to retrieve concise descriptions about RDF
graphs (§ 5.1).

- A report about topological differences of
real-world RDF datasets within distinct
categories (§ 5.2).

- An analysis of (RDF) graph measure
performance, concerning their capacity to
discriminate dataset categories (§ 5.3).

2In order for this paper to be self-contained, please note that
we have re-used some paragraphs, especially for the related work in
Section 2, the textual descriptions of graph measures in Section 3.2,
and for the description about the acquisition of RDF datasets from
the LOD Cloud in Section 4.2.1.

3https://doi.org/10.5281/zenodo.2109469
4https://data.gesis.org/lodcc/2017-08/

https://doi.org/10.5281/zenodo.2109469
https://data.gesis.org/lodcc/2017-08/
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- Based on our observations, we identify relevant
measures or graph invariants that characterize
graphs in the Semantic Web.

2. Related Work

The RDF data model imposes unique characteristics
that are not present in other graph-based data models.
Therefore, we distinguish between works that analyze
the structure of RDF datasets in terms of RDF-specific
measures and measures of graph invariants.

Many of the research related can be considered
profiling approaches. An RDF dataset profile or RDF
summary graph is a quantitative representation of an
RDF dataset in terms of its features (characteristics)
adhering at instance- and schema-level [4]. Profiling
in this context means the activity of extracting such
features from RDF datasets. Thus, some of the works
mentioned appear in research activities in this domain
of research [4, 5]. Creating an RDF summary graph
aims at building concise overviews of the data in RDF
knowledge bases [5], in order to optimize, for
example, querying and processing times for SPARQL
endpoints [6, 7], rather than aiming at extracting
information about its topology.

RDF-specific Analyses
This category includes studies about the general

structure and quality of RDF graphs at instance-,
schema-, and metadata-levels. Schmachtenberg et
al. [8] present the status of RDF datasets in the LOD
Cloud in terms of size, linking, vocabulary usage, and
metadata. LODStats [9] and the large-scale approach
DistLODStats [10] report on descriptive statistics
about RDF datasets on the web, including the number
of triples, RDF terms, properties per entity, and usage
of vocabularies across datasets. ExpLOD [11]
generates summaries and aggregated statistics about
the structure of RDF graphs, e.g., sets of used
properties or the number of instances per class. In
addition, [12] presents an approach for extracting
structured topic profiles of RDF datasets from dataset
samples. ProLOD++ [13, 14] is an online tool which
profiles any RDF dataset. It reports on, for example,
frequencies and distributions of subjects, predicates,
objects, ratio of incoming/outgoing links, and
performs pattern analysis on object values. It enables
“to perform further analysis only on subsets of the
dataset that correspond to clusters”[14]. Loupe [15], a
“comprehensive linked data profiling tool”, provides a

RESTful web service for profiling SPARQL engines.
The API reports on vocabulary, class, and property
usage and cardinalities, and facilitates the analysis of
implicit data patterns. Hogan et al. [16] study the
distribution of RDF terms, classes, instances, and
datatypes to measure the quality of public RDF data.

The quality aspect of Linked Open Data has been
subject to some recent studies. Debattista et al.
assessed the quality of metadata and dataset
availability, investigating datasets from the LOD
Cloud 2014 [17] and early 2019 [18]. Haller et
al. [19] investigated different types of links, i.e.,
contained in the ABox and TBox, exposed by 430
datasets in the LOD Cloud.

A recent study provides a comprehensive overview
of “available methods and tools for assessing and
profiling structured datasets” and vocabularies to
represent profiles in the past decades [4]. According
to the study, the full range of available features may
be categorized into seven groups: Qualitative,
Provenance, Links, Licensing, Statistical, Dynamics,
and Other. Part of our (RDF) graph-based measures
(see Section 3) belongs to the group of Statistical
features. However, most of the tools listed in the
paper gather comprehensive statistics and summaries
at instance- and/or schema-level, leaving out to target
the topology.

In summary, the study of RDF-specific properties of
publicly available RDF datasets has been extensively
covered. It is currently supported by online services
and tools, such as LODStats and Loupe. Therefore, in
addition to these works, we focus on analyzing graph
invariants in RDF datasets.

Graph-based Analyses
In the area of structural network analysis, it is

common to study the distribution of specific graph
measures in order to characterize a graph. RDF
datasets and schemas have also been subject to these
studies. Most of these works focus on studying
different in- and out-degree distributions, path length,
and are limited to one dataset or a rather small
collection of RDF datasets, for instance, when
investigating topological characteristics of one
particular vocabulary of interest.

The study by Ding et al. [20] reveals that the
power-law distribution at instance-level is prevalent
across graph invariants in RDF graphs, obtained from
1.7 million documents. Theoharis et al. also
investigated the schema level of RDF graphs [21].
Their study covers 250 schemata and concluded that
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the majority of classes with class descendants and
property degree distributions approximate a
power-law. Hu et al. studied entity links in the domain
of Life Sciences [22] and discovered that the degree
distribution of entity links does not strictly follow the
power law.

The small-world phenomenon [23], known from
experiments on social networks, were also studied
within the Semantic Web [24, 25], with the result of
saying that Linked Open Data is having the
small-world characteristic [3]. Bachlechner et al. [25]
found that the entire FOAF5 network is a small-world
with high local clustering coefficient and a power-law
distribution. Their analysis showed that, in this
network, the average degree is 9.56, with a diameter
(characteristic path length) of 6.26. The work by
Flores et al. [26] analyzes further relevant graph
invariants in RDF graphs, such as statistics on the
number of vertices and edges, in- and out-degree
distributions, density, reciprocity, and h-index. The
work by Flores et al. applied graph-based metrics on
synthetic RDF datasets. More recently, Fernández et
al. [3] have studied the structural features of
real-world RDF data and the relatedness between
vertices and edges in RDF graphs, using
subject-object, subject-predicate, and predicate-object
ratios. Their experimental study investigates fourteen
real-world RDF datasets from seven categories, in
order to find “common features and characterize
real-world RDF data”.

Complementary to these works, we present a study
on 280 RDF datasets acquired from the LOD Cloud.
We primarily focus on analyzing measure
effectiveness and measure performance from a set of
fifty-four graph-based measures. By this means, we
will also get some understanding and insights into the
structure of real-world RDF datasets.

3. Measures for RDF Graphs

In [2], we introduced a number of measures which
are formalized here. The set of measures utilized in
the experiments in the subsequent sections is
complemented by the measures described and
formalized by Fernández et al. in [3]. By this means,
we can provide an understanding of their
complementarity as a whole.

5http://xmlns.com/foaf/spec/

First, Section 3.1 introduces graph notations and
definitions that are used throughout the paper. Section
3.2 then introduces definitions for all graph measures
studied in [2]. Table 1 presents an overview of the
graph measures described in this section.

3.1. Graph Data Model

Definition 3.1 (Directed Multigraph). A multigraph G
is a pair of finite sets (V, E), with V denoting the set of
all vertices, and E a multiset of directed, labeled edges
in the graph G.

In this work, for the sake of simplicity, we use the
terms graph and multigraph interchangeably. They are
used when referred to a graph measure or graph
invariant. In particular, the RDF data model builds
upon this definition to represent RDF graphs. RDF
graphs [27] are multigraphs modeled as a set of RDF
triples. RDF triples are composed of terms from U, B,
L, which are disjoint finite sets of URI references,
blank nodes, and RDF literals, respectively.

Definition 3.2 (RDF triple). An RDF triple is a tuple
(s, p, o) ∈ (U ∪ B)×U × (U ∪ B∪ L). s is denoted as
the subject, p the predicate, and o the object.

Through RDF triples, we can define RDF
graphs [28].

Definition 3.3 (RDF graph). An RDF graph G is a set
of RDF triples, where each (s, p, o) becomes a directed
labeled graph structure of the form s

p→ o.

The sets of subjects, predicates, and objects in the
RDF graph G will be referred to as S G ⊆ (U ∪ B),
PG ⊆ U, and OG ⊆ (U ∪ B ∪ L), respectively. When
referring to the general graph topology V and E will
denote the set of vertices and edges of the graph G.
Moreover, with respect to the RDF terminology, V is
the set of all subjects and objects, i.e.,
V = {v | v ∈ (S G ∪ OG)}. Note that, the set of
vertices V may also contain predicates, as predicates
are subjects within the schema-definition (TBox, if
defined), and therefore elements of S G. As given in
the definition above, E is a multiset of (labeled)
edges, since a pair of subject and object resources
may be described with multiple RDF predicates. For
example, in the graph {s p1 o . s p2 o}, E has two
pairs of vertices, and therefore E = {(s, o)1, (s, o)2}.

http://xmlns.com/foaf/spec/
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3.2. Graph Measures

3.2.1. Basic Graph Measures
In the following, we describe measures that can be

applied to graphs in general (cf. Definition 3.1).
We report on the total number of vertices n and

the total number of edges m for a graph G. Some
works in the literature refer to these values as size and
volume, respectively. These measures are relevant, as
the number of vertices and edges usually varies
drastically across knowledge domains.

n = |V| (1)

m = |E| (2)

In multigraphs, parallel edges represent edges that
share the same pair of source and target vertices.
Therefore, the measure number of parallel edges,
denoted as mp, is defined as

mp = |{e | counte(e, E) > 1, e ∈ E}| (3)

with counte(e, E) being a function that returns the
multiplicity of e in E, i.e., number of times e is
contained in E. Based on the above measure, we also
compute the total number of edges without counting
parallel edges, called the number of unique edges,
denoted as mu. This measure will give us an
impression of the “raw” shape of the graph, which is
useful when one may want to study graph clustering,
like in a network, for instance. It is computed by
subtracting mp from the total number of edges m, i.e.

mu = m− mp (4)

3.2.2. Degree-based Measures
In a graph G = (V, E), the degree of a vertex v ∈ V

is the total number of edges that are connected to it.
With directed graphs, as is the case of RDF graphs, it
is common to distinguish between in-degree and out-
degree of a vertex v. For a given v ∈ V , we define the
total degree by means of the in- and out-degree.

d(v) = d+(v) + d−(v) (5)

with
d+(v) = |{(u, v) | ∃ u ∈ V, (u, v) ∈ E}| (6)

d−(v) = |{(v, u) | ∃ u ∈ V, (v, u) ∈ E}| (7)

The previous definitions of d+ and d− also take into
account parallel edges.

In social network analyses, vertices with a high
out-degree are said to be “influential”, whereas
vertices with a high in-degree are called “prestigious”.
To identify these vertices in an RDF graph, we
compute the maximum total-, in-, and out-degree of
the graph’s vertices, denoted as d = maxv∈V d(v),
d+ = maxv∈V d+(v), d− = maxv∈V d−(v),
respectively. In addition, we compute the graph’s
mean total-, in-, and out-degree denoted z, z+, and
z−, respectively.

These measures may be applied in research about
RDF data management, for instance, where the
(average) degree of a vertex (database table record)
has a significant impact on query evaluation, since
queries on dense graphs can be more costly in terms
of execution time [29].

Another degree-based measure is h-index, known
from citation networks [30]. In a graph G a value of h
means that for the number of h vertices in the graph,
the degree of these vertices is greater or equal to h.
In order to compute the value through the following
equation, as a prerequisite, it is required to have a list
of all vertex degrees sorted in descending order.

h = max
i∈|V|

min (d(vi), i), vi ∈ V (8)

with i being the position in the list and d(vi) the
degree of the vertex at the i-th position.

This measure may be an indicator of the
importance of a vertex, similar to a centrality measure
(see Section 3.2.3). Further, a high value of a graph’s
h−index could be an indicator for a “dense” graph
and that its vertices are more “prestigious”. In this
work, we report on this network measure for the
directed graph (using only the in-degree of vertices)
denoted as h+ and the undirected graph (using in- and
out-degree of vertices) denoted as h.

3.2.3. Centrality Measures
In social network analyses, the concept of point

centrality expresses the importance of nodes in a
network. There are many interpretations for the term
“importance” and so are measures for centrality [1]. A
high centrality value of a vertex generally means that
it is more “important”, although for different reasons,
as indicated by the different measures.

Using the degree of a vertex, d(v), point centrality
is denoted as Cd. To indicate that it is a centrality
measure, and not just the degree, the literature often
normalizes these values by the total number of all



6 M. Zloch et al. / Characterizing RDF Graphs through Graph-based Measures - Framework and Assessment

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Set of graph measures implemented and evaluated in this study

Measure Name Value Symbol Measure Group Comment
vertices max n basic -
edges max m basic -

parallel edges max mp basic -
unique edges max mu basic -
total degree max | mean d | z degree-based -
in-degree max | mean d+ | z+ degree-based -
out-degree max | mean d− | z− degree-based -

h-index directed - h+ degree-based Employing the in-degree of the vertices.
h-index undirected - h degree-based Employing the total-degree of the vertices.
degree centrality max Cd centrality -

in-degree centrality max Cd+ centrality -
out-degree centrality max Cd− centrality -
centralization degree - C+

d centrality -
page-rank max PR centrality -
fill overall max p edge-based Respects all edges, i.e. including parallel edges.
fill unique max pu edge-based Respects only unique edges.
reciprocity max y edge-based -
diameter max δ edge-based Approximated value using pseudo-diameter

algorithm6.
variance in-degree - σ2+ descriptive stat. -
variance out-degree - σ2− descriptive stat. -
std.dev. in-degree - σ+ descriptive stat. -
std.dev. out-degree - σ− descriptive stat. -

coeff.variation in-degree - cv+ descriptive stat. -
coeff.variation out-degree - cv− descriptive stat. -

degree powerlaw exp. - α descriptive stat. -
in-degree powerlaw exp. - α+ descriptive stat. -

vertices. We compute the maximum point centrality
for the graph G as

Cd =
d
n
, with d = max

v∈V
d(v) (9)

Besides the point centrality, there is also the
measure of graph centralization [31], which is known
from social network analysis. This measure may also
be seen as an indicator of the type of graph. It
expresses the degree of inequality and concentration
of vertices by means of a perfectly star-shaped graph,
which itself is at most centralized and unequal with
regard to its degree distribution. The graph
centralization value of one graph G regarding the
degree is defined as:

C+
d =

∑v∈V
(d − d(v))

(n− 1) ∗ (n− 2)
(10)

Another centrality measure is PageRank [32], which
considers all incoming edges to a vertex to estimate its
importance. After computing the PageRank value for
all vertices v ∈ V in the graph G, denoted as PR(V),
the maximum PageRank value is defined as

PR = max
v∈|V|

PR(v) (11)

3.2.4. Edge-based Measures
As the (average) number of vertices and edges vary

highly across knowledge domains [2], it is interesting
to measure the so-called “density” of a graph,
sometimes referred to as “connectance” or “fill”. The
density is computed as the ratio of all edges to the
total number of all possible edges. The formula is in
accordance with the definition of RDF graphs, which
are directed and may contain loops. As mentioned
earlier, RDF graphs may contain parallel edges, and
thus we provide an additional measure, which uses
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unique edges only. Therefore, fill_overall and fill,
denoted as p and pu, respectively, are defined as
follows:

p =
m
n2

(12)

pu =
mu

n2
(13)

These measures may be used to calculate the
probability of an edge between two randomly chosen
vertices in the graph G. Comparing the measure fill
with centrality measures shows that dense graphs
show higher centrality values of the vertices, which in
turn leads to higher “connectivity” and linkage among
them, as mentioned earlier. This also has a positive
impact on navigation through the graph.

As RDF graphs are directed and labeled graphs, the
aspect of “navigability” through the graph through
RDF predicates is of interest. We analyze the fraction
of bidirectional connections between vertices in the
graph. These are pairs of vertices forward- connected
by some edge, which are also backward-connected by
some other edge. The value of reciprocity, denoted as
y, is expressed as the ratio of the number of
bidirectional edges, denoted as mbi, among all edges
in the graph G

y =
mbi

m
(14)

with

mbi = |{(u, v) ∈ E | ∃(v, u) ∈ E}| (15)

High values of reciprocity mean there are many
links between vertices that are bidirectional. This
value is typically high in citation or social networks.

Another critical group of measures that is described
by the graph topology is related to paths. A path is a
set of edges one can follow along between two
vertices. As there can be more than one path, the
diameter is defined as the longest shortest path
between two vertices of the network [1], denoted as δ.

δ = max
v,u∈V

path(v, u) (16)

The diameter is usually a very time-consuming
measure to compute since all possible paths have to
be considered. Thus, we used the pseudo diameter

algorithm6 to estimate the value of the diameter for
the studied RDF graphs. In query optimization over
RDF data, this measure may be applied to estimate
the cardinality of joins (e.g., subject-object joins),
which heavily depends on the paths in an RDF graph.

3.2.5. Descriptive Statistical Measures
Descriptive statistical measures are useful to

describe distributions of some set of values. It can be
useful to consult the degree of dispersion of the
distribution of interest; in our scenario, it is the
distribution of vertex degrees in the graphs. Types of
dispersion are, for example, the degree variance σ2,
and the degree standard deviation σ,

σ2 =

∑
v∈V(d(v)− z)2

n− 1
(17)

σ =
√
σ2 (18)

We compute these measures also for the in- and
out-degree distributions of vertices in the graphs,
denoted as σ2+, σ2−, and σ+, σ−, respectively. They
are defined adequately using the appropriate in- and
out-degree values for vertex degree and mean degree
of all vertices V of a graph.

However, when one would want to compare
different standard deviation values, it would not be
very meaningful, since they most probably are
computed using different means. The coefficient of
variation, denoted as cv, may be consulted to have a
comparable measure for distributions with different
mean values. It is obtained by dividing the standard
deviation σ by the corresponding mean z.

cv =
σ

z
(19)

cv may also report the type of distribution
concerning a set of values. For example, a low value
of cv− means a constant influence of vertices in the
graph (homogeneous group). In contrast, a high value
of cv+ means high prominence of some vertices in the
graph (heterogeneous group).

Further, the type of degree distribution is an often
considered measure of graphs. In some knowledge
domains, datasets report on degree distributions that
follow a power-law function [22], which means that
the number of vertices with degree k behaves
proportionally to the power of k−α, for some α ∈ R.

6https://graph-tool.skewed.de/static/doc/topology.html#graph_
tool.topology.pseudo_diameter

https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.pseudo_diameter
https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.pseudo_diameter
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Such networks are called scale-free. The literature has
found that values in the range of 2 < α < 3 are typical
in many real-world networks [1]. The scale-free
behavior also applies to some datasets and measures
of RDF datasets [3, 20]. However, to reason about
whether a distribution follows a power-law can be
technically challenging [33], and computing the
exponent α, that falls into a specific range of values, is
not sufficient. We compute the exponent for the total-
and in-degree distributions [33], denoted as α and αin,
respectively. Also, to support the analysis of
power-law distributions, the framework produces
plots for both distributions. A power-law distribution
is described as a line in a log-log plot.

Determining the function that fits the distribution
may be of high value to estimate the selectivity of
vertices and attributes in graphs. The structure and
size of datasets created by synthetic datasets, for
instance, can be controlled with these measures. Also,
an explicit power-law distribution allows for high
compression rates of RDF datasets [3].

4. Performance of Graph Measures for Dataset
Profiling - Research Questions and Setup

Building on the implementations of graph measures
introduced in the previous section, this section
introduces an experimental investigation into the
performance of measures for describing, profiling,
and distinguishing datasets. Whereas Section 4.1
presents our research questions and motivates the
experiments, Section 4.2 describes the design and
methodology of the experiments which apply and
assess our measures on datasets from the LOD Cloud
through established feature selection and analysis
techniques.

4.1. Research Questions

This section elaborates on the research questions
which motivated our experiment. Let M denote the set
of all measures employed in our experiments. Further,
let C denote the set of all knowledge domains, i.e.,
categories or classes, available in the LOD-Cloud. Dc

denotes the set of datasets assigned to the
corresponding category c ∈ C.

A (graph) measure is a feature in the context of
statistical operations (correlations, feature
engineering, statistical learning algorithms). Starting
from here, we will use these terms interchangeably.

The usage of the corresponding terms should be clear
from the context.

RQ1: What is an efficient and non-redundant set of
features for characterizing RDF graphs?

In order to characterize graphs or sets of graphs
within domains efficiently, concise graph descriptions
have to be based on efficient, non-redundant feature
sets where each feature provides significant
information gain.

This question aims at finding a concise and finite
set M′ ⊂ M of measures that reduce or eliminate
redundancy and maximize information gain through
correlation analysis. This step will improve the
effectiveness of the resulting set of graph measures
and improve their applicability, for instance, as part of
machine learning models.

RQ2: Which measures describe and characterize
individual knowledge domains most/least efficiently?

Datasets within the LOD cloud are categorized into
nine distinct knowledge domains so that each dataset
is associated with precisely one specific category. In
order to understand the representativeness and
variability of topological measures within a
knowledge domain, we investigate the heterogeneity
of feature values within and across distinct domains
through basic statistic metrics and discuss observed
values representative for distinct LOD domains. We
will refer to this feature set as M′′c with c ∈ C. Please
note that M′′c ⊂ M′,∀c ∈ C.

This will provide insights into the capacity of
individual features to represent the nature of
particular domains and may contribute to
discriminative models and to filtering out noise
features when profiling datasets.

RQ3: Which measures show the best performance to
discriminate individual knowledge domains?

Datasets from a knowledge domain exhibit distinct
characteristics with respect to topological features of
the graphs but also with respect to other features, such
as vocabulary adoption. A particular question is
which (RDF-) graph measures are most descriptive
within one particular knowledge domain. In contrast
to RQ2, this research question investigates feature
importance for each domain. The findings are of
interest to synthetic dataset generators, for example.
By generating a synthetic dataset, benchmark suites
most often target some particular domain of interest.
When generating datasets for the Publications
knowledge domain, for example, a generator should
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Table 2
Statistics on RDF datasets which were acquired for the experiments. Listed are the number of RDF datasets per knowledge domain and their
corresponding maximum and average number of vertices n and edges m

Domain # datasets Maximum Average
n m n m

Cross Domain 15 291,178,702 1,042,217,722 36,276,052 111,329,448
Geography 11 47,541,174 340,880,391 9,763,721 61,049,429
Government 37 131,634,287 1,489,689,235 7,491,531 71,263,878
Life Sciences 32 356,837,444 722,889,087 25,550,646 85,262,882
Linguistics 122 120,683,397 291,314,466 1,260,455 3,347,268
Media 6 48,318,259 161,749,815 9,504,622 31,100,859
Publications 50 218,757,266 720,668,819 9,036,204 28,017,502
Social Networking 3 331,647 1,600,499 237,003 1,062,986
User Generated 4 2,961,628 4,932,352 967,798 1,992,069

follow a specific set of measures, range of values, and
used vocabularies, in order to be identified with that
category of datasets.

4.2. Experimental Setup

Section 4.2.1 explains which datasets were
acquired and used for our experiment. Section 4.2.2
gives details about the framework and the measure
computation. Section 4.2.3 explains how measure
efficiency and measure importance were obtained.

4.2.1. Datasets
We have downloaded a large group of datasets from

the LOD Cloud 20177 and prepared it with our
framework presented in [2].

From the total number of 1,163 potentially
available datasets in the LOD Cloud 2017, 280
datasets were selected based on the criteria: (i) RDF
media types statements that were correct for the
datasets, and (ii) the availability of data dumps
provided by the services. To not stress SPARQL
endpoints to transfer large amounts of data, in this
experiment, only datasets that provide downloadable
dumps were considered.

To dereference RDF datasets, we relied on the
metadata (so called data-package) available at
DataHub, which specifies URLs and media types for
the corresponding data provider of one dataset8. We
collected the datapackage metadata for all datasets
and manually mapped the obtained media types from
the datapackage to their corresponding official media
types that are given in the specifications. For instance,

7http://lod-cloud.net/versions/2017-08-22/datasets_
22-08-2017.tsv.

8Example: https://old.datahub.io/dataset/<dataset-name>
/datapackage.json

rdf, xml_rdf or rdf_xml were mapped to
application/rdf+xml and similar.9 In this way,
we obtained the URLs of 890 RDF datasets. After
that, we checked whether the dumps are available by
performing HTTP HEAD requests on the URLs. At
the time of the experiment, this returned 486 potential
RDF dataset dumps to download. For the other not
available URLs, we verified the status of those
datasets with http://stats.lod2.eu. After these manual
preparation steps, the data dumps could be
downloaded with the framework.

The framework needs to transform all formats into
N-Triples. From here, the number of prepared datasets
for the analysis further reduced to 280. The reasons
were: (1) corrupt downloads, (2) wrong file media
type statements, and (3) syntax errors or other formats
than these what were expected during the
transformation process. This number seems low
compared to the total number of available datasets in
the LOD Cloud, though it sounds reasonable
compared to recent studies on the LOD
Cloud [17–19]. Table 2 gives some descriptive
statistics about the analyzed datasets.

As graph library we used graph-tool10, an efficient
library for statistical analysis of graphs. In graph-tool,
core data structures and algorithms are implemented
in C/C++, while the library itself can be used with
Python. graph-tool comes with pre-defined
implementations for graph analysis, e.g., degree
distributions or more advanced implementations on
graphs like PageRank or clustering coefficient.
Further, some values may be stored as attributes of

9Other media type statements like
html_json_ld_ttl_rdf_xml or rdf_xml_turtle_html
were ignored, since they are ambiguous.

10graph-tool, https://graph-tool.skewed.de/

http://lod-cloud.net/versions/2017-08-22/datasets_22-08-2017.tsv
http://lod-cloud.net/versions/2017-08-22/datasets_22-08-2017.tsv
https://old.datahub.io/dataset/<dataset-name>/datapackage.json
https://old.datahub.io/dataset/<dataset-name>/datapackage.json
http://stats.lod2.eu
https://graph-tool.skewed.de/
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Table 3
Set of twenty-nine RDF graph measures, which were implemented
and evaluated in this study

Measure Name Value Group
out-degree max | mean subject out-degrees

partial out-degree max | mean subject out-degrees
labelled out-degree max | mean subject out-degrees
direct out-degree max | mean subject out-degrees

in-degree max | mean object in-degrees
partial in-degree max | mean object in-degrees

labelled in-degree max | mean object in-degrees
direct in-degree max | mean object in-degrees

subject/object ratio ratio common ratios
degree max | mean predicate degree

in-degree max | mean predicate degree
out-degree max | mean predicate degree

repeated predicate list ratio predicate lists
predicate list degree max | mean predicate lists

distinct classes max typed subjects/objects
typed subjects max typed subjects/objects

ratio of typed subjects ratio typed subjects/objects

vertices or edges in the graph structure. The library’s
internal graph-structure may be serialized as a
compressed binary object for future re-use. It can be
reloaded by graph-tool with much higher
performance than the original edgelist. We
instantiated the graphs from the binary representation
(see next section) and operated on the graph objects
provided by the graph-tool library.

4.2.2. Graph Measures Computation
All graph-based measures introduced in Section 3.2

where already part of the framework introduced in [2].
In order to do a more comprehensive evaluation of the
effectiveness of graph measures, we include RDF
graph measures from Fernández et al. [3], who
provides a comprehensive list and formalization of
various RDF graph-based measures. Table 3 gives an
overview of all RDF graph-measures we implemented
as a module extension3 of our framework. In order to
optimize performance, we worked with lists of
vertices, edges, and edge labels (predicates), using
Python’s build-in operations for lists and additional
libraries for scientific computing in Python, like
numpy11, and pandas12. That way, the computation of

11numpy, the fundamental package for scientific computing with
Python, https://numpy.org/

12pandas, a library providing high-performance, easy-to-use data
structures and data analysis tools for the Python programming
language, https://pandas.pydata.org/

measures, such as the maximum and mean
in-/out-degree of all vertices, was straight-forward. A
more complex example is the partial out-degree
measure, which is “defined as the number of triples of
G in which s occurs as subject and p as predicate”. In
order to compute this measure from the perspective of
a native graph object in memory, one must create an
array of all pairs of source vertices (subjects) and their
outgoing edge labels (predicates) and count the
number of grouped occurrences of these pairs.

On graphs with a particularly large number of
edges (> 100, 000, 000) the building temporary lists
of edge labels and the linear iteration over lists of
vertices is not of acceptable performance. Therefore,
we employed graph partitioning mechanisms for a
large number of measures, in order to compute the
desired values in a map-reduce-fashion. We
encourage the interested reader to look into the
corresponding package of the framework3 to find the
implementation for all measures.

4.2.3. Measure Efficiency and Measure Importance
For RQ1, we will first give an overview of all the

measures and their relationship among each other by
calculating the Spearman correlation coefficients
between all measures. To this end, the Spearman
correlation test is employed, since most of the
distributions of measure values do not follow a
normal distribution. To reduce the number of
measures, we employ two popular methods: (a) a low
variance test, which filters measures which fall below
a certain threshold, and (b) popular univariate
statistical tests, from which we choose Chi2, and
Mutual Information (MI). Since many of the variables
are continuous, and MI only works with discrete
values, Maximum Information Non-parametric
Estimation (MINE) is utilized additionally. Therefore,
M′ is defined as follows:

M′ = {m ∈ M | threshold(m, F) > 3}, (20)

with F being the set of all feature selection methods
mentioned above. threshold() returns the number of
methods having a match over the given measure m.

For RQ2, we will show boxplots as aggregated
descriptive statistics for some selected measures. This
will give insights into the distribution of values. In
order to investigate the variability at the category
level, we apply some statistical methods. To show the
variability per category, we group all datasets by
categories and compute the variance per measure and

https://numpy.org/
https://pandas.pydata.org/
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group. By this means, we can analyze noisy and
non-noisy features in terms of variance and assign the
corresponding M′′c for all c ∈ C.

The variability across categories (vac) is computed
by taking the mean of a measure for all datasets in a
particular category c ∈ C computing the standard
deviation over the obtained means subsequently. More
formally, with val denoting all values for measure
m ∈ M′ and datasets in Dc, with c ∈ C

vac(m) = std({ val(m,Dc) | c ∈ C }) (21)

For the classification tasks in RQ3, we deploy and
tune a Random Forest classifier for both tasks. Initial
experiments have shown that Random Forest
outperforms other established classification on our
task. Measure efficiency/performance is evaluated in
two different experiments. First, we will train a
classifier in order to predict one of all six domains. By
means of this classification task, we will investigate
measure performance, in order to discriminate all
domains between each other. Second, in another
classification task, we want to find those measures
with the best performance to describe one particular
knowledge domain. This is done by employing the
binary relevance method, which is a one-vs-rest
version of the first classification task. It will evaluate
measure performance for each individual domain by
training one independent classifier per domain. The
measures with the best performance will have the
ability to characterize datasets within one particular
category most effectively.

Please note that our main aim is to understand
overall and class-wise feature (i.e., graph measure)
importance, rather than finding the best model for
predicting category labels of RDF graphs. However,
we want to find meaningful results. Thus we are
obliged to tune the classifier to some extend. We
hyper-tune the parameters via grid-search and
five-fold cross-validation.

Since the classes are not balanced (cf. Table 2), we
experimented with over- and undersampling
strategies. For oversampling, we used the
SMOTE-algorithm, for undersampling, a random
undersampler. The results are presented by employing
the highest scored classifier from the
parameter-tuning and sampling strategy.

4.3. Execution Environment

The operating system, client software, database
(with the records for all measures), reside all on one

server during the experiment. The experiments were
performed on a rack server Dell PowerBridge R720,
having two Intel(R) Xeon(R) E5-2600 processors
with 16 cores each, 192GB of main memory, and a
10TB total main storage. The operating system was
Ubuntu 18.04.1 LTS, kernel version 4.15. Docker
image version with the corresponding graph-tool10

library was 2.29. All RDF graph measures shown in
Table 3 were computed directly on the instantiated
graph-object after loading into memory.

The computation of the measures on the graphs
requires much physical memory. For graphs with less
than 100M edges, the framework was configured to
work in parallel with 12 concurrent processes. All
other graphs (more than 100M edges) were computed
one after another.

5. Assessing Graph Measures of the Linked Open
Data Cloud - Results

We present our results by referring to the research
questions. A more detailed discussion about the results
can be found in the follow-up section (cf. Section 6).

5.1. RQ1: What is an efficient and non-redundant set
of features for characterizing RDF graphs?

Correlation coefficients
We first report on observations about correlation

coefficients between measures. Figure 1 shows a
correlation matrix of all measures, encoded as blue
(strong positive correlation), light (no correlation), to
red (strong negative correlation). The values were
computed with the Spearman correlation test.

In the group of graph measures, the number of
edges m and vertices n has an almost perfect
correlation with (a) max_degree and (b)
max_in_degree. In addition, the two measures have a
strong positive mutual correlation. Due to this, other
measures which employ these measures are in turn
strongly correlated with each other. In particular, this
can be observed for measures employing the
in-degree. Descriptive statistics on the distribution of
in-degrees, like var_in_degree, stddev_in_degree,
and coefficient_var_in_degree, grow with the size
and volume of the graphs. This does not apply for
measures relating to the vertices out-degree: measures
using the in-degree differ from measures using the
out-degree. Most of the measures employing the
out-degree do not correlate with almost any of the
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Fig. 1. Correlation matrix. Shows the whole set of measures and their Spearman correlation coefficient encoded as blue (strong positive
correlation), light (no correlation), to red (strong negative correlation).

other measures, which makes them more descriptive.
A negative correlation value implies that while values
for a measure x increase, values for another measure y
decrease. This is the case with measures employing
the aspect of density (fill) of the graphs with
increasing size n and volume m. The density of a graph
also has a negative correlation to the distribution of
vertex degrees, as we can see with variance, standard
deviation, and coefficient of variation values. This
means that the denser the graphs are (fill increases),
the more homogeneous the vertex degrees of the
graphs become (descriptive statistics over vertex

degrees become smaller). Almost no dependencies are
exhibited by avg_degree, reciprocity, diameter,
centrality measures, and the powerlaw_exponents,
which measures the type of distribution of vertex
(in-)degrees.

In the group of RDF graph measures, there are less
inter-relationships. As a group, measures employing
predicate degrees, max_predicate_list_degree,
together with max_partial_in_degree,
max_direct_in_degree as well as the
typed_subjects measure, have strong positive
mutual correlations. All of the mentioned measures
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Fig. 2. Meaningful measures (highlighted in blue) according to different statistical feature selection scoring methods.

grow with the size n and volume m of the graphs.
Some individual mutual strong positive correlations
can be observed, for instance, between
repeated_predicate_lists and
mean_predicate_list_degree,
mean_direct_in_degree and mean_in_degree and
mean_partial_in_degree. As in the first group of
graph measures, all “mean” in-degree measures have
strong correlations among each other as well as to the
mean_degree.

Measure selection
Figure 2 highlights in blue the measures that were

selected by the individual tests.
Overall, there is variance and no particular

consensus of the statistical tests. However, there are
some agreements. Looking at agreements in all tests,
only thirteen measures are providing information
gain; only three were dismissed by all tests, i.e., two
degree-centrality measures and
ratio_of_typed_subjects. Sixteen measures have
agreements in three tests (threshold was not met in
one of the tests); ten measures met the threshold in
only one test. With thirty measures, the pair Chi2 and
Variance Threshold has the highest number of
agreements; Mutual Information and Variance
Threshold agree on twenty-seven measures. The least
agreements can be found for the pair Mutual
Information and MINE (eighteen).

Summary of results
With particular regard to RDF graphs and the above

analysis, we conclude with the following observations:

– The larger the density, the more “stable” and
homogeneous is the (in-/out-) degree distribution
of vertices in the graphs.

– The larger the size and volume of the graphs, the
more typed subjects become present, and the
higher the number of subjects using a fixed set of
predicates appears (cf. predicate degree and
predicate lists measures).

– The average degree of the graphs is mainly
influenced by the in-degree.

– Measures employing the distribution of
out-degrees are more descriptive.

The next subsections report the results on the
reduced set of meaningful measures obtained from the
feature selection methods. In particular, M′ is defined
as the set of measures where at least three of the tests
have an agreement, i.e., |M′| = 29.

5.2. RQ2: Which measures and values describe and
characterize knowledge domains most/least
efficiently?

In order to get a sense of the variability of measures
within and across knowledge domains, in this section,
we look closer and report on characteristics for some
individual measures first. Afterwards, we aggregate
and report on variability across knowledge domains,
through variance and standard deviation.

Characteristics of values
Figure 3 shows, by example, the distribution of

values for two groups of measures. The first group at
the top row shows exemplary measures which were
sorted out by the feature selection approaches in
Section 5.1, such as the mean total-degree and the
mean out-degree; the bottom row shows exemplary
features of M′. The figure shows all available
knowledge domains except Media, Social
Networking, and the User Generated, due to few
dataset retrieved in these categories (cf. Table 2).

Regarding the mean total-degree, some categories
show very similar median values, like Cross Domain,
Life Sciences, and Publications. Cross Domain,
Geography, Life Sciences, and Linguistics share a
similar maximum value. However, regarding the
outliers, Life Sciences contains a dataset that has by
far the highest average degree, followed by a dataset
in the Government category. The mean out-degree
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Fig. 3. Descriptive statistics of measures sorted out by feature selection methods (top) and measures considered meaningful (bottom). * indicates
that x-axis is log-scaled

(outgoing predicates of subjects) is higher for most of
the categories (two outliers can be observed with very
high values). The boxes reveal that the majority of
values are larger than the mean total-degree, which
means that the mean total-degree is mainly influenced
by the in-degree. This is particularly striking for
datasets in the Geography and Life Sciences domains.

The last two plots in the first group show the
mean_direct_out_degree and
mean_labelled_out_degree measures, which
describe the relationship of subjects to their average
number of different objects and predicates,
respectively. Overall, the number of different objects
is higher than the number of predicates. The
distribution of values is similar for Cross Domain and
Publications, as well as for Geography and
Linguistics, particularly for the predicates
(mean_labelled_out_degree). Comparing
mean_degree and mean_out_degree as well as
mean_direct_out_degree and
mean_labelled_out_degree with each other, we can
see that they show very similar characteristics.

Generally, the distribution of values is not symmetric
(different whisker lengths of the boxes) and skewed,
thus they do not follow a normal distribution. Further,
there is little variability (short length of boxes).

Below in Figure 3 are exemplary measures of M′,
i.e., those that were considered to be non-redundant
and meaningful according to the feature selection
approaches in Section 5.1. There is much higher
variability in most of the measures and knowledge
domains. Also, the number of outliers is larger. Please
note that the x-axis is log scaled for some measures,
which makes it hard to make statements about the
skewness of the distributions; thus, we would like to
point out h_index_d. It gives us the number of at least
x RDF objects with x incoming predicates.

Lowest spread and little variability can be found for
h_index_d. The distribution of values in Cross
Domain, Geography, Government is highly skewed to
the right, which means that most of the values are
rather low. However, there are some datasets with
quite high value above 4000, e.g., in Cross Domain,
Government, Life Sciences, and Publications. The
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Fig. 4. Measure variance. The lighter the color the lower the variance and the more homogeneous the values are within the corresponding
category.

Fig. 5. Degree of variance across knowledge domains. A low/high value indicates low/high variance across knowledge domains. Colors encode
graph (in light-blue) and RDF graph measures (in blue). y-axis is log-scaled.

largest value can be found for a dataset in the
Government domain.

Variability of values
As a first overview, Figure 4 shows measure

variance of the datasets within the given categories as
a heat-map: the lighter the color, the lower the
variance and therefore the more homogeneous the
corresponding values are for the corresponding
category and measure.

Overall, datasets in the Life Sciences, Cross
Domain, and Government (in this order) have quite
heterogeneous distributions of values for a high
number of measures. On the contrary, only one, two,
or three measures have high variance in the
Publications, Linguistics, and Geography domain (in
this order). Some measures exhibit high variance in
just one category and a low variance in the others. Just

to name a few: max_out_degree and
max_partial_out_degree in Life Sciences,
pseudo_diameter and distinct_classes in
Linguistics, max_labelled_in_degree and
mean_predicate_list_degree in Government,
max_predicate_list_degree in Cross Domain,
max_direct_out_degree in Publications. These
measures may be used to discriminate categories
against each other very well, as their characteristically
distribution of values for a particular category can be
considered meaningful. In turn, some measures also
exhibit a rather low variance in one or two domains
and higher in the others. These are, for instance, m,
h_index_d, std_in_degree in Linguistics.

Figure 5 shows the degree of variance across
knowledge domains. The scores are obtained by
grouping datasets by category, taking the mean of the
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corresponding measure for all datasets per category,
and then computing the standard deviation over these
means. Lowest variances across all categories can be
found for mean_out_degree,
mean_direct_in_degree, pseudo_diameter, both
h_index measures, std_dev_in_degree,
coefficient_variation_out_degree,
distinct_classes, and
mean_predicate_list_degree. Among the top five
measures with large dispersion between categories (m,
m_unique, parallel_edges, n, and
max_predicate_degree) are four measures
employing graph edges. The figure also includes
minimum (dark blue) and maximum (red) values. For
some measures, the minimum value varies
significantly from the standard deviation value. To
name a few: pseudo_diameter,
max_labelled_in_degree,
max_predicate_list_degree, and
distinct_classes.

Summary of results
– For the majority of the measures, the distribution

of values is not normally distributed.
– The degree of variance across domains is

significant for most of the measures. A low
variance across domains is rather exceptional.

– Datasets in Cross Domain are heterogeneous,
i.e., largest variability of the number of classes.
While individual datasets have a high number of
distinct classes, the variability within categories
is less significant. Additionally, the number of
typed subjects highly varies.

– Datasets in the Government domain have high
variance in the mean degree of predicate lists,
meaning that they are not homogeneous in terms
of the used predicates per subject.

– Datasets in the Linguistics domain have high
diameter6.

– Each knowledge domain has datasets (graphs)
with unique characteristics, which enables
discrimination from the other domains.

5.3. RQ3: Which measures show the best per-
formance to discriminate knowledge domains?

To recall, with this question, we aim at finding the
most essential (RDF) graph measures able to
discriminate knowledge domains efficiently and to
measure individual measure performance. We used
the approach of setting up two classification tasks

with Random Forest classifiers, each tuned by
hyperparameter grid-search. The first task (1) is a
multiclass classification problem, the second task (2)
a two-class, one-vs-rest, binary version of the first.
We removed three categories and the corresponding
datasets from the initially available nine knowledge
domains, due to too little datasets in these categories
(<= 6, cf. Table 2). The remaining data was subject to
standardization with robust-scaling since earlier, we
found that most features have outliers.

Overall measure importance
Figure 6 shows the results of classification task (1).

The colors encode graph measures in light-blue and
RDF graph measures in blue. The x-axis shows all
measures m ∈ M′. The y-axis shows the mean
importance score obtained from 300 estimators’
feature importance calculation, in descending order. It
can be interpreted as a percentage value of the extent
to which a particular feature contributes to decrease
the weighted impurity in the decision tree.

While the ranking shows a steadily decreasing
order, the overall scores are rather low. The first
thirteen measures can be considered to have some
impact. From the fourteenth value on, there is hardly a
change, and the impact score is low.

Among the top ten measures of the highest score
are three graph measures (pseudo_diameter,
coefficient_variation_out_degree, and
distinct_classes) and seven RDF graph measures.
Overall, measures employing the out-degree are
favored. mean_predicate_list_degree, describing
the mean number of repeated predicate used to
describe subjects, has the highest score; m, describing
the number of edges, the lowest.

Per-category measure importance
Figure 7 shows the results of classification task (2),

where one can get a picture on measure performance in
each of the categories. It shows per knowledge domain
the top seven measures with the highest scores from
the one-vs-rest classifier. Like in Figure 6, the y-axis
shows the degree of contribution to decrease impurity
in the decision tree.

At first glance, we can see that the set of measures
considered most important varies much across
knowledge domains and that individual scores are
higher than in classification task (1). Overall, there are
thirteen distinct measures considered here (after
measure selection, the initial set of measures in M′

was twenty-nine). Among these, six measures are
employing the max, three measures employing the
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Fig. 6. Overall measure importance while discriminating datasets (classification task (1)). Shown are mean values for all non-redundant
measures m ∈ M′. Colors encode graph measures (in light-blue) and RDF graph measures (in blue).

Fig. 7. Per-category measure importance while discriminating datasets (classification task (2)). Measures are encoded by color throughout all
knowledge domains.

mean, and four measures employing an other absolute
value. To complete this overall observation: out of the
thirteen distinct measures, six employ outgoing edges,
i.e., RDF predicates of subjects; two employ
incoming edges of objects.

max_labelled_out_degree,
mean_direct_in_degree and mean_out_degree are
present in five out of six knowledge domains,
although each with different scores and ranking.
distinct_classes and max_direct_out_degree are
present in four domains. Collecting the top two and
top three measures of each knowledge domain results
in having ten and eleven distinct measures,
respectively. No measure is present in exclusively one
category. Hence, there seems to be no measure with
particular importance in a specific category. However,

distinct_classes,
coefficient_variation_out_degree, and
pseudo_diameter, have highest scores in Cross
Domain, Life Sciences, and Linguistics, respectively.
mean_predicate_list_degree is even scored highest
in three domains: Geography, Government, and
Publications. By far, mean_predicate_list_degree,
coefficient_variation_out_degree have the
highest scores in Geography, Life Sciences, and
Publications, respectively. These measures can be
considered most important in the corresponding
categories. Their values have distinctive
characteristics, which enable classifiers to
discriminate datasets according to these categories.
Looking closer, the results of this binary relevance
task here aligns well with the single performance
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analysis from above: the top ten measures from
Figure 6 are the ones which are most likely to be
found in the corresponding categories in Figure 7.

Summary of results
– To discriminate knowledge domains from each

other, classifiers favor RDF graph measures over
topological graph measures.

– Measures employing a max-value are favored
over mean- and absolute values, like
distinct_classes.

– Measures employing the out-degree are
considered more important than measures
employing the in-degree.

– To discriminate datasets from another, each
knowledge domain considers a different set of
measures as meaningful.

6. Discussion

We would like to address two major aspects
exposed by the conducted experiments, namely (i)
structural differences about RDF graphs from the
viewpoint of graph measures, and (ii) the assessment
of graph measure efficiency. The section closes up
with limitations of this study.

6.1. Structural Characteristics of real-world RDF
Datasets

The following discussion is based on the results of
measure correlation coefficients (cf. Figure 1) and
measure performance scores (cf. Figure 6 and 7).

General observations
By identifying effective graph features describing

and discriminating RDF datasets and applying such
features to LOD datasets, we gained an understanding
of the topological differences of real-world datasets
within distinct categories. The topology of RDF
graphs (knowledge graphs more generally speaking)
is distinct from other graph datasets, such as social
graphs, due to the prevalence of hierarchical relations,
that is, relations within the TBox (e.g.
rdfs:subClassOf) or between ABox and TBox (e.g.
rdf:type). This complements traversal relations and,
by this means, imposes special characteristics that
lead to generally higher connectivity, shorter paths,
and the existence of vertex-“hubs” with high
attractiveness from other vertices.

This is very well reflected in the graph measures.
For example, measures like the number of edges, the
maximum degree, and the maximum in-degree
perfectly correlate with each other (cf. Section 5.1).
Looking closer at the values for those measures
reveals that 83% of the RDF graphs have vertices with
a maximum in-degree being exactly equal to the
maximum degree (in 94% of the cases, it is even
almost equal). In most graphs, vertices representing
the type (vertices with an “RDF type”-edge incident)
are the ones with the highest in-degree. Such behavior
of modeling, which is typical for RDF graphs and
generally accepted as best practice in the RDF
community, involves high connectivity of the graph’s
topology. More references to the schema enhance this
effect. In turn, more profound is the loss of
connectivity as soon as the graph misses/loses
references to the schema.

As more vertices and edges adhere to the graphs,
the more heterogeneous and unstable the connectivity
becomes. As a consequence, the overall density
shrinks (cf. negative correlation of m, max_degree

with fill) and the tendency of the topology to
generate large sub-graphs having the shape of a “star”
increase. Due to this and the aforementioned
topological characteristic, measures employing the
in-degree (some descriptive statistical measures,
predicate (list-) degree measures, typed subjects, etc.)
show a high correlation among each other. A stable
value with growing size and volume of the graph
would result in a homogeneous distribution, leading
to a more stable and equally distributed connectivity
of vertices among each other. The two mentioned
examples can be considered being particularly RDF
graph specific phenomena, which can be measured
with the provided graph measures.

Observations within distinct categories
Vocabulary usage has a significant impact on the

graph’s topology since schema and cardinality
definitions are directly reflected in the graphs as
options/restrictions to append vertices and edges.
Thus, some measures are considered having a
particular impact in individual categories, as shown in
Figure 7. Cross Domain, for instance, has a diverse
and irregular vocabulary usage, which implies a large
number of mixed and heterogeneous datasets, with
(larger) co-occurrence of schema references and
type-statements (distinct_classes). Geography and
Publications report on a regular usage of
vocabularies. The recurrence of a fixed set of
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predicates (mean_predicate_list_degree) is the
main distinguishable feature of these categories.
Geography additionally reports on a proportionally
high ratio of parallel edges of its datasets. Inherently,
datasets in Linguistics stand out with a significantly
larger path length of traversal relations
(pseudo_diameter6). The modeling strategy there
seems fairly concise, resulting in a low average
number of types and outgoing predicates/edges per
subject, which is reflected by the measures
mean_out_degree and max_partial_out_degree.

In general, measure importance per category has a
dependency to the way how publishers, data
extraction tools, and researchers describe data. For
example, according to the naming pattern datasets in
Linguistics are clustered into three groups:
universal-dependencies-treebank-... (63 datasets),
apertium-rdf-... (22 datasets), and other (37 datasets).
Other examples of clusters can be found in Life
Sciences (bio2rdf-..., 26 datasets) and Publications
(rkb-explorer-..., 32 datasets) categories. This implies
similarities of vocabulary usage, which in turn is
reflected in recurrences of particular patterns in the
topological structure. On account of this fact, the
prevalent measure impact is also influenced by the
habits of people and tools populating datasets in the
individual categories.

Therefore, category-specific topological
characteristics should be reflected in samples,
benchmarks, or synthetic data.

6.2. Efficient RDF Graph Measures

The initial set of fifty-four measures (M) was
subject to correlation coefficient analysis and feature
selection methods. The size of the set reduced to
twenty-nine non-redundant measures after feature
elimination (M′). This set was subject to an analysis
of variability within and across knowledge domains.
After this preliminary analysis, we employed a
classifier to obtain feature impact scores to rank
measure importance.

Both experiments in Section 5.3 evaluated the same
distinct set of measures. Measures below the threshold
of 0.02 were considered having a particularly low level
of impact. From a mixed set of graph and RDF graph
measures, we identified a final effective set of thirteen
measures, that is distinct and meaningful.

Low variability
As mentioned earlier, datasets in the individual

knowledge domains show similarities in their
topological structure. Thus, the set of measures
considered being efficient and meaningful varies
across these categories (cf. Figure 7). According to
the classifier, each of the thirteen measures provides
some form of information gain and meaning. A
somewhat naive intuition is that a measure with low
variability is characteristic and may be a suited
candidate in a particular category. The first
experiment showed that measures with low variability
(e.g., mean_out_degree, mean_direct_in_degree

and pseudo_diameter) were preferred during
category prediction and evaluated with higher impact
scores (cf. Figure 5 and 6). The second experiment,
focusing on individual categories, showed a different
situation. Measures were considered characteristic
and assessed with higher impact scores as their
per-category variability (shown in Figure 4) was high.
For example, mean_predicate_list_degree shows a
high impact score in Government due to higher
variability within and across categories (cf. Figure 4
and 5). Similar applies for other measures, like
coefficient_variation_out_degree,
max_partial_out_degree, and
max_labelled_out_degree. Cross Domain, for
instance, employs only measures of low variability
(e.g., distinct_classes, max_direct_out_degree,
etc.). Thus, in our classification tasks, the classifier
tries to find the right balance between a low
variability across categories and a somewhat
characteristic variability as a topological feature.

Type of measures
Compared to other types of graphs, like social

networks, RDF knowledge graph topologies adhere
special characteristics, such as the pervasive reference
to schema elements, with rdf:type statements
being the most famous reference. This peculiarity
influences the assessment about the meaningfulness
of measures with regard to the discrimination of
categories. For example, the classification task in
Section 5.3 showed that RDF graph measures are
preferred and obtained higher scores over other graph
invariants, such as h-index (cf. Figure 6). Out of ten
top-performing features in classification task (1),
seven were RDF graph measures. Further, measures
employing the in-degree are considered less effective,
due to their heterogeneous (“unstable”) value
distributions. Hence, measures considering subjects
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and their out-degrees are considered more
meaningful. Measures like the number of
(parallel/unique) edges, maximal (in-) degree,
maximum predicate (in-/out-) degree, and the number
of typed subjects, are inherently high in variability
within and across knowledge domains. Their
heterogeneous character lets them be ineffective and
not appropriate for dataset/category discrimination.

6.3. Limitations

There are some limitations of our experimental
study that are worth to mention.

Size of the sample
The analysis of measure efficiency involved 280

datasets out of 1, 163 (end of 2017). While this
number seems low regarding the theoretically
available number of datasets, compared to other
qualitative studies on datasets from the LOD Cloud,
for instance [17–19], it sounds reasonable and of
sufficient representativeness. Unfortunately, this is the
current situation and, without additionally querying
SPARQL-endpoints, the most that one can get from
crawling the LOD Cloud.

Unbalanced domain classes
In order to tackle the class imbalance of our

sample, we investigated class weighting and over- and
undersampling techniques on the training sample
passed to the classifier. Oversampling creates
synthetic datasets (no duplicates) in each class up to
the number of datasets of the largest class;
undersampling down-sampled all classes to the size of
the smallest class.

Feature importance methods are sensitive to the
data structure and the distribution of feature values,
and thus all methods showed different scores for the
corresponding measures. What is interesting though,
the set of measures considered important was similar
to a great extent, in particular the most important
measure per category (e.g., mean_out_degree,
mean_predicate_list_degree, pseudo_diameter,
and max_labelled_out_degree). Further, the model
was trained following best practices for model tuning
and cross-validation-based model selection. Hence,
we assume that the obtained impact ratio of the
classifier for each feature is reliable.

Limited set of features
If one actually wanted to perform category

prediction [34, 35] or measure the structural similarity

between RDF datasets [36], we could ask if the graph
measures presented in this paper are appropriate and
sufficient. As discussed earlier, vocabulary usage and
the way how publishers, data extraction tools, and
researchers describe data, has an impact on the
graph’s topology. Employing merely ontological
information of the RDF dataset is, however, not
sufficient to reach acceptable prediction
accuracy [34]. Our classification experiment showed
that, by employing topological measures, the
prediction of categories for datasets is possible. Thus,
knowledge domain-related, topological, and dataset
features should complement one another. Aligning
and integrating other tools and features for the
extraction of metadata and vocabulary usage [4]
would achieve improvements in prediction accuracy.
Further, the integration of measures to somewhat
distinguish hierarchical and traversal relations in the
graphs, as this is a key characteristic for RDF data,
would be beneficial.

Application and generalization of the findings to other
(non-LOD) graphs

All of the measures in M and M′ can be computed
on RDF graphs and datasets outside of the LOD
Cloud. Although metrics introduced by Fernández et
al. [3] are considered for RDF graph characterization,
of which in this paper only some could be
implemented into our framework3 and included in the
study about measure efficiency, on closer inspection,
most of them could also be applied to non-RDF
graphs. distinct_classes, typed_subjects, and
ratio_of_typed_subjects form exceptions, as they
require edges explicitly labeled with rdf:type. To
analyze non-RDF graphs, an essential requirement is
to have some form of consistent labeling (literal or
numeric) of the edges during graph initialization.

However, as RDF graphs are multigraphs, which
may contain multiple edges between the same pair of
source and target vertices, and whose use of (partly)
very specialized vocabularies exposes special
characteristics to the graph’s topology, the results are
unlikely to be applicable to non-RDF graphs and
categories outside the LOD Cloud. However, this
should be an interesting research question.

7. Conclusion and Future Work

We have created a framework with which one may
efficiently compute topological graph measures for an
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arbitrary number of RDF datasets [2]. The main
objective of this paper is to assess measure
effectiveness and performance of fifty-four graph and
RDF graph measures for RDF datasets. This is
accomplished by means of statistical tests, such as the
analysis of correlation coefficients, results of feature
selection, variability, and a supervised classification
task, in order to assess a measure’s efficiency in terms
of its capacity to discriminate dataset knowledge
domains. For this purpose, a sample of 280 RDF
datasets from nine knowledge domains was acquired
from the LOD Cloud late 2017. All 280 datasets,
instantiated graph objects, and values for fifty-four
measures per graph are available for download on our
website13. Please note that, despite following best
practices for model tuning and cross-validation-based
model selection, the primary aim was not to find the
best classification model but to provide an
understanding of feature performance, i.e., the
importance of distinct graph measures in this
particular task.

From a mixed set of initially fifty-four graph and
RDF graph measures, the final set of thirteen
measures is actually effective, distinct, and
meaningful, in order to describe RDF graphs. The
majority of the measures are RDF graph-based,
according to the definition in [3], and preferably
employs the out-degree and out-going edges of
subjects to some extend. To discriminate categories,
the following measures have the most significant
impact: the average number of repeated predicate lists
(mean_predicate_list_degree), the diameter of the
graph (pseudo_diameter6), the maximum number of
predicates with which a subject is related
(max_labelled_out_degree), and the mean
out-degree of the vertices (mean_out_degree).

The prevalent structure of topology is shaped by
means of two mutually influencing aspects: (1)
fundamental characteristics that adhere to RDF
knowledge graph topologies in particular, and (2) the
compliance to a standardized vocabulary. The
distinctness of a measure’s impact in the individual
knowledge domains implies that there are
fundamental differences in the shape of topologies.
An RDF dataset that is re-using a popular vocabulary
will likely show characteristics that can be found in
other RDF graphs. The more diverse the use of
vocabularies in a dataset is, the more variety and

13https://data.gesis.org/lodcc/2017-08

irregularity will be found in common structural
patterns of the topology. Therefore, datasets using
proprietary vocabularies will differ in their structure.
Hence, a group of RDF graphs with similar
characteristics causes knowledge domain-dependent
feature performance and impact.

Apart from the classification experiments, we also
gained some understanding of the general ability to
predict category labels for RDF datasets, by relying
on topological measures of the graphs exclusively.
The positively surprising accuracy is comparable with
other approaches and experiments, such as [34] and
[35]. We came to the conclusion that this is on
account of the usage of standardised and established
vocabularies in the knowledge domains itself. This
can be considered as being a qualitative aspect of a
particular knowledge domain.

Implications
We are confident that related work in the fields of

synthetic dataset generation, sampling methods, and
frameworks for quality evaluation, e.g., can benefit
from considering efficient topological (RDF) graph
measures and category-specific assessments of the
RDF graph’s topology.

- A primary goal of synthetic dataset generators is
to emulate datasets and to be as close as possible
to a real-world setting. Thus, topological
characteristics exhibited by a particular
knowledge domain are of high value. Beyond
parameters like the dataset size, which is
typically interpreted as the number of triples,
synthetic dataset generators might employ
meaningful and disregard non-efficient (RDF)
graph measures, in order to target the domain of
test-data generation more appropriately.

- Sampling methods aim at finding a most
representative sample from an original dataset.
Apart from considering qualitative aspects, like
classes, properties, instances, and used
vocabularies, also topological aspects of the
original RDF graph should be considered. Our
framework and the proposed (RDF) graph-based
measures could help to evaluate the quality of a
graph sample.

- Having topological measures as another group of
features is beneficial for solutions that evaluate
and ensure the quality of Linked Open Data,
such as RDF dataset profile generators.
Concerning efficient measures, each category
(LOD Cloud domain class) might have its own

https://data.gesis.org/lodcc/2017-08
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understanding of quality, such as a large
diameter for datasets in Linguistics, a lower
average degree for datasets in the Life Sciences,
etc. Outliers and striking values for some
measures could be indicators for erroneous data
or ways of modeling or using a vocabulary that is
not compliant with the knowledge domain of
interest.

Future work
Part of our future work is to align graph features

with features extracted by established RDF profiling
tools. This widens the field of potential research and
applications involving graph-based measures. For
instance, we plan to improve the prediction of
appropriate category labels for datasets by including
features at instance- and schema-level of an RDF
dataset. Moreover, this enables research in the
direction of quality assurance and dataset search. We
further plan to include more datasets from sources,
e.g., SPARQL endpoints and non-LOD Cloud
datasets. The evaluation of measures will be extended
towards non-RDF graphs, with the aim to compare
measure impact between these two types of graphs.

In terms of infrastructure, our portal is going to be
updated with an upload functionality. A website visitor
may then upload or provide the URL of an RDF dataset
to let our framework analyze the corresponding RDF
graph. By this means, we hope to collect more datasets
and statistics.

In order to facilitate the access, usage, and querying
of the results, we consider to represent all measures for
all RDF graphs as an RDF dataset itself and import it
into a publicly available SPARQL-endpoint. The RDF
Data Cube Vocabulary [37] is considered for this.
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